1
|
Van Wauwe J, Mahy A, Craps S, Ekhteraei-Tousi S, Vrancaert P, Kemps H, Dheedene W, Doñate Puertas R, Trenson S, Roderick HL, Beerens M, Luttun A. PRDM16 determines specification of ventricular cardiomyocytes by suppressing alternative cell fates. Life Sci Alliance 2024; 7:e202402719. [PMID: 39304345 PMCID: PMC11415600 DOI: 10.26508/lsa.202402719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
PRDM16 is a transcription factor with histone methyltransferase activity expressed at the earliest stages of cardiac development. Pathogenic mutations in humans lead to cardiomyopathy, conduction abnormalities, and heart failure. PRDM16 is specifically expressed in ventricular but not atrial cardiomyocytes, and its expression declines postnatally. Because in other tissues PRDM16 is best known for its role in binary cell fate decisions, we hypothesized a similar decision-making function in cardiomyocytes. Here, we demonstrated that cardiomyocyte-specific deletion of Prdm16 during cardiac development results in contractile dysfunction and abnormal electrophysiology of the postnatal heart, resulting in premature death. By combined RNA+ATAC single-cell sequencing, we found that PRDM16 favors ventricular working cardiomyocyte identity, by opposing the activity of master regulators of ventricular conduction and atrial fate. Myocardial loss of PRDM16 during development resulted in hyperplasia of the (distal) ventricular conduction system. Hence, PRDM16 plays an indispensable role during cardiac development by driving ventricular working cardiomyocyte identity.
Collapse
Affiliation(s)
- Jore Van Wauwe
- https://ror.org/05f950310 Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Alexia Mahy
- https://ror.org/05f950310 Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Craps
- https://ror.org/05f950310 Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- https://ror.org/05f950310 Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Vrancaert
- https://ror.org/05f950310 Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hannelore Kemps
- https://ror.org/05f950310 Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Dheedene
- https://ror.org/05f950310 Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Rosa Doñate Puertas
- https://ror.org/05f950310 Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Trenson
- https://ror.org/05f950310 Cardiology Lab, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- https://ror.org/05f950310 Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Manu Beerens
- Institute for Clinical Chemistry and Laboratory Medicine, Medizinische Klinik und Poliklinik Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Aernout Luttun
- https://ror.org/05f950310 Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Boulgakoff L, D'Amato G, Miquerol L. Molecular Regulation of Cardiac Conduction System Development. Curr Cardiol Rep 2024; 26:943-952. [PMID: 38990492 DOI: 10.1007/s11886-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW The cardiac conduction system, composed of pacemaker cells and conducting cardiomyocytes, orchestrates the propagation of electrical activity to synchronize heartbeats. The conduction system plays a crucial role in the development of cardiac arrhythmias. In the embryo, the cells of the conduction system derive from the same cardiac progenitors as the contractile cardiomyocytes and and the key question is how this choice is made during development. RECENT FINDINGS This review focuses on recent advances in developmental biology using the mouse as animal model to better understand the cellular origin and molecular regulations that control morphogenesis of the cardiac conduction system, including the latest findings in single-cell transcriptomics. The conducting cell fate is acquired during development starting with pacemaking activity and last with the formation of a complex fast-conducting network. Cardiac conduction system morphogenesis is controlled by complex transcriptional and gene regulatory networks that differ in the components of the cardiac conduction system.
Collapse
Affiliation(s)
| | - Gaetano D'Amato
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France.
| |
Collapse
|
3
|
Boulgakoff L, Sturny R, Olejnickova V, Sedmera D, Kelly RG, Miquerol L. Participation of ventricular trabeculae in neonatal cardiac regeneration leads to ectopic recruitment of Purkinje-like cells. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1140-1157. [PMID: 39198628 DOI: 10.1038/s44161-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Unlike adult mammals, newborn mice can regenerate a functional heart after myocardial infarction; however, the precise origin of the newly formed cardiomyocytes and whether the distal part of the conduction system (the Purkinje fiber (PF) network) is properly formed in regenerated hearts remains unclear. PFs, as well as subendocardial contractile cardiomyocytes, are derived from trabeculae, transient myocardial ridges on the inner ventricular surface. Here, using connexin 40-driven genetic tracing, we uncover a substantial participation of the trabecular lineage in myocardial regeneration through dedifferentiation and proliferation. Concomitantly, regeneration disrupted PF network maturation, resulting in permanent PF hyperplasia and impaired ventricular conduction. Proliferation assays, genetic impairment of PF recruitment, lineage tracing and clonal analysis revealed that PF network hyperplasia results from excessive recruitment of PFs due to increased trabecular fate plasticity. These data indicate that PF network hyperplasia is a consequence of trabeculae participation in myocardial regeneration.
Collapse
Affiliation(s)
- Lucie Boulgakoff
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Rachel Sturny
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Veronika Olejnickova
- Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic
| | - David Sedmera
- Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France.
| |
Collapse
|
4
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
5
|
Oh Y, Abid R, Dababneh S, Bakr M, Aslani T, Cook DP, Vanderhyden BC, Park JG, Munshi NV, Hui CC, Kim KH. Transcriptional regulation of the postnatal cardiac conduction system heterogeneity. Nat Commun 2024; 15:6550. [PMID: 39095365 PMCID: PMC11297185 DOI: 10.1038/s41467-024-50849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information. Integration of single-cell and spatial transcriptomics uncover region-specific markers and zonation patterns of expression. Network inference shows heterogeneous gene regulatory networks across the CCS. Notably, region-specific gene regulation is recapitulated in vitro using neonatal mouse atrial and ventricular myocytes overexpressing CCS-specific transcription factors, Tbx3 and/or Irx3. This finding is supported by ATAC-seq of different CCS regions, Tbx3 ChIP-seq, and Irx motifs. Overall, this study provides comprehensive molecular profiles of the postnatal CCS and elucidates gene regulatory mechanisms contributing to its heterogeneity.
Collapse
Affiliation(s)
- Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rimshah Abid
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marwan Bakr
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Termeh Aslani
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jin G Park
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Ashok D, Liu T, Criscione J, Prakash M, Kim B, Chow J, Craney M, Papanicolaou KN, Sidor A, Brian Foster D, Pekosz A, Villano J, Kim DH, O'Rourke B. Innate Immune Activation and Mitochondrial ROS Invoke Persistent Cardiac Conduction System Dysfunction after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574280. [PMID: 38260287 PMCID: PMC10802485 DOI: 10.1101/2024.01.05.574280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Cardiac risk rises during acute SARS-CoV-2 infection and in long COVID syndrome in humans, but the mechanisms behind COVID-19-linked arrhythmias are unknown. This study explores the acute and long term effects of SARS-CoV-2 on the cardiac conduction system (CCS) in a hamster model of COVID-19. Methods Radiotelemetry in conscious animals was used to non-invasively record electrocardiograms and subpleural pressures after intranasal SARS-CoV-2 infection. Cardiac cytokines, interferon-stimulated gene expression, and macrophage infiltration of the CCS, were assessed at 4 days and 4 weeks post-infection. A double-stranded RNA mimetic, polyinosinic:polycytidylic acid (PIC), was used in vivo and in vitro to activate viral pattern recognition receptors in the absence of SARS-CoV-2 infection. Results COVID-19 induced pronounced tachypnea and severe cardiac conduction system (CCS) dysfunction, spanning from bradycardia to persistent atrioventricular block, although no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped after the pulmonary infection was resolved, indicating persistent CCS injury. Increased cardiac cytokines, interferon-stimulated gene expression, and macrophage remodeling in the CCS accompanied the electrophysiological abnormalities. Interestingly, the arrhythmia phenotype was reproduced by cardiac injection of PIC in the absence of virus, indicating that innate immune activation was sufficient to drive the response. PIC also strongly induced cytokine secretion and robust interferon signaling in hearts, human iPSC-derived cardiomyocytes (hiPSC-CMs), and engineered heart tissues, accompanied by alterations in electrical and Ca 2+ handling properties. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by in vivo inhibition of JAK/STAT signaling or by a mitochondrially-targeted antioxidant. Conclusions The findings indicate that long term dysfunction and immune cell remodeling of the CCS is induced by COVID-19, arising indirectly from oxidative stress and excessive activation of cardiac innate immune responses during infection, with implications for long COVID Syndrome.
Collapse
|
7
|
Wei N, Lee C, Duan L, Galdos FX, Samad T, Raissadati A, Goodyer WR, Wu SM. Cardiac Development at a Single-Cell Resolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:253-268. [PMID: 38884716 DOI: 10.1007/978-3-031-44087-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.
Collapse
Affiliation(s)
- Nicholas Wei
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Carissa Lee
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Lauren Duan
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | - Tahmina Samad
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | | | - Sean M Wu
- Stanford University, Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
8
|
Sun T, Grassam-Rowe A, Pu Z, Li Y, Ren H, An Y, Guo X, Hu W, Liu Y, Zheng Y, Liu Z, Kou K, Ou X, Chen T, Fan X, Liu Y, Tu S, He Y, Ren Y, Chen A, Shang Z, Xia Z, Miquerol L, Smart N, Zhang H, Tan X, Shou W, Lei M. Dbh + catecholaminergic cardiomyocytes contribute to the structure and function of the cardiac conduction system in murine heart. Nat Commun 2023; 14:7801. [PMID: 38016975 PMCID: PMC10684617 DOI: 10.1038/s41467-023-42658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
The heterogeneity of functional cardiomyocytes arises during heart development, which is essential to the complex and highly coordinated cardiac physiological function. Yet the biological and physiological identities and the origin of the specialized cardiomyocyte populations have not been fully comprehended. Here we report a previously unrecognised population of cardiomyocytes expressing Dbhgene encoding dopamine beta-hydroxylase in murine heart. We determined how these myocytes are distributed across the heart by utilising advanced single-cell and spatial transcriptomic analyses, genetic fate mapping and molecular imaging with computational reconstruction. We demonstrated that they form the key functional components of the cardiac conduction system by using optogenetic electrophysiology and conditional cardiomyocyte Dbh gene deletion models. We revealed their close relationship with sympathetic innervation during cardiac conduction system formation. Our study thus provides new insights into the development and heterogeneity of the mammalian cardiac conduction system by revealing a new cardiomyocyte population with potential catecholaminergic endocrine function.
Collapse
Affiliation(s)
- Tianyi Sun
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | - Zhaoli Pu
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yangpeng Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Huiying Ren
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yanru An
- BGI Research, Shenzhen, 518103, China
| | - Xinyu Guo
- BGI Research, Qingdao, 266555, China
| | - Wei Hu
- Department of Physics & Astronomy, The University of Manchester, Brunswick Street, Manchester, M13 9PL, UK
| | - Ying Liu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Yuqing Zheng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhu Liu
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kun Kou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yangyang Liu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Shu Tu
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yu He
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yue Ren
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ao Chen
- BGI Research, Shenzhen, 518103, China
| | | | - Zhidao Xia
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Lucile Miquerol
- Aix Marseille University, CNRS Institut de Biologie du Développement de Marseille UMR 7288, 13288, Marseille, France
| | - Nicola Smart
- Department of Physiology, Anatomy & Genetics, Sherrington Building, Oxford, University of, Oxford, OX1 3PT, UK
| | - Henggui Zhang
- Department of Physics & Astronomy, The University of Manchester, Brunswick Street, Manchester, M13 9PL, UK
- Beijing Academy of Artificial Intelligence, 100084, Beijing, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Weinian Shou
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA.
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
9
|
Kim EE, Shekhar A, Ramachandran J, Khodadadi-Jamayran A, Liu FY, Zhang J, Fishman GI. The transcription factor EBF1 non-cell-autonomously regulates cardiac growth and differentiation. Development 2023; 150:dev202054. [PMID: 37787076 PMCID: PMC10652039 DOI: 10.1242/dev.202054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Reciprocal interactions between non-myocytes and cardiomyocytes regulate cardiac growth and differentiation. Here, we report that the transcription factor Ebf1 is highly expressed in non-myocytes and potently regulates heart development. Ebf1-deficient hearts display myocardial hypercellularity and reduced cardiomyocyte size, ventricular conduction system hypoplasia, and conduction system disease. Growth abnormalities in Ebf1 knockout hearts are observed as early as embryonic day 13.5. Transcriptional profiling of Ebf1-deficient embryonic cardiac non-myocytes demonstrates dysregulation of Polycomb repressive complex 2 targets, and ATAC-Seq reveals altered chromatin accessibility near many of these same genes. Gene set enrichment analysis of differentially expressed genes in cardiomyocytes isolated from E13.5 hearts of wild-type and mutant mice reveals significant enrichment of MYC targets and, consistent with this finding, we observe increased abundance of MYC in mutant hearts. EBF1-deficient non-myocytes, but not wild-type non-myocytes, are sufficient to induce excessive accumulation of MYC in co-cultured wild-type cardiomyocytes. Finally, we demonstrate that BMP signaling induces Ebf1 expression in embryonic heart cultures and controls a gene program enriched in EBF1 targets. These data reveal a previously unreported non-cell-autonomous pathway controlling cardiac growth and differentiation.
Collapse
Affiliation(s)
- Eugene E. Kim
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jayalakshmi Ramachandran
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
10
|
Choquet C, Sicard P, Vahdat J, Nguyen THM, Kober F, Varlet I, Bernard M, Richard S, Kelly RG, Lalevée N, Miquerol L. Nkx2-5 Loss of Function in the His-Purkinje System Hampers Its Maturation and Leads to Mechanical Dysfunction. J Cardiovasc Dev Dis 2023; 10:jcdd10050194. [PMID: 37233161 DOI: 10.3390/jcdd10050194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
The ventricular conduction or His-Purkinje system (VCS) mediates the rapid propagation and precise delivery of electrical activity essential for the synchronization of heartbeats. Mutations in the transcription factor Nkx2-5 have been implicated in a high prevalence of developing ventricular conduction defects or arrhythmias with age. Nkx2-5 heterozygous mutant mice reproduce human phenotypes associated with a hypoplastic His-Purkinje system resulting from defective patterning of the Purkinje fiber network during development. Here, we investigated the role of Nkx2-5 in the mature VCS and the consequences of its loss on cardiac function. Neonatal deletion of Nkx2-5 in the VCS using a Cx40-CreERT2 mouse line provoked apical hypoplasia and maturation defects of the Purkinje fiber network. Genetic tracing analysis demonstrated that neonatal Cx40-positive cells fail to maintain a conductive phenotype after Nkx2-5 deletion. Moreover, we observed a progressive loss of expression of fast-conduction markers in persistent Purkinje fibers. Consequently, Nkx2-5-deleted mice developed conduction defects with progressively reduced QRS amplitude and RSR' complex associated with higher duration. Cardiac function recorded by MRI revealed a reduction in the ejection fraction in the absence of morphological changes. With age, these mice develop a ventricular diastolic dysfunction associated with dyssynchrony and wall-motion abnormalities without indication of fibrosis. These results highlight the requirement of postnatal expression of Nkx2-5 in the maturation and maintenance of a functional Purkinje fiber network to preserve contraction synchrony and cardiac function.
Collapse
Affiliation(s)
- Caroline Choquet
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
- INSERM, MMG, Aix-Marseille Université, 13385 Marseille, France
| | - Pierre Sicard
- INSERM, CNRS, PHYMEDEXP, University de Montpellier, 34295 Montpellier, France
| | - Juliette Vahdat
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
| | - Thi Hong Minh Nguyen
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
- INSERM, TAGC, UMR1090, Aix-Marseille Université, 13288 Marseille, France
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Frank Kober
- CNRS, CRMBM, Aix-Marseille Université, 13385 Marseille, France
| | - Isabelle Varlet
- CNRS, CRMBM, Aix-Marseille Université, 13385 Marseille, France
| | - Monique Bernard
- CNRS, CRMBM, Aix-Marseille Université, 13385 Marseille, France
| | - Sylvain Richard
- INSERM, CNRS, PHYMEDEXP, University de Montpellier, 34295 Montpellier, France
| | - Robert G Kelly
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
| | - Nathalie Lalevée
- INSERM, TAGC, UMR1090, Aix-Marseille Université, 13288 Marseille, France
- INSERM, C2VN, UMR1263, Aix-Marseille Université, 13005 Marseille, France
| | - Lucile Miquerol
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
| |
Collapse
|
11
|
Watanabe H, Tao G, Gan P, Westbury BC, Cox KD, Tjen K, Song R, Fishman GI, Makita T, Sucov HM. Purkinje Cardiomyocytes of the Adult Ventricular Conduction System Are Highly Diploid but Not Uniquely Regenerative. J Cardiovasc Dev Dis 2023; 10:jcdd10040161. [PMID: 37103040 PMCID: PMC10140853 DOI: 10.3390/jcdd10040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Adult hearts are characterized by inefficient regeneration after injury, thus, the features that support or prevent cardiomyocyte (CM) proliferation are important to clarify. Diploid CMs are a candidate cell type that may have unique proliferative and regenerative competence, but no molecular markers are yet known that selectively identify all or subpopulations of diploid CMs. Here, using the conduction system expression marker Cntn2-GFP and the conduction system lineage marker Etv1CreERT2, we demonstrate that Purkinje CMs that comprise the adult ventricular conduction system are disproportionately diploid (33%, vs. 4% of bulk ventricular CMs). These, however, represent only a small proportion (3%) of the total diploid CM population. Using EdU incorporation during the first postnatal week, we demonstrate that bulk diploid CMs found in the later heart enter and complete the cell cycle during the neonatal period. In contrast, a significant fraction of conduction CMs persist as diploid cells from fetal life and avoid neonatal cell cycle activity. Despite their high degree of diploidy, the Purkinje lineage had no enhanced competence to support regeneration after adult heart infarction.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Peiheng Gan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Baylee C Westbury
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristie D Cox
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kelsey Tjen
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ruolan Song
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Takako Makita
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Shin D, Choi Y, Soon ZY, Kim M, Jang MC, Seo JY, Kang JH, Shin K, Jung JH. Chemical hazard of robotic hull in-water cleaning discharge on coastal embryonic fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114653. [PMID: 36812868 DOI: 10.1016/j.ecoenv.2023.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
In-water cleaning (IWC) involves the removal of biofilms and foulants from the hull of a ship using brush or water jet. During IWC, several factors associated with the harmful chemical contaminants release to the marine environment, which can create "hotspots" of chemical contamination in coastal areas. To elucidate the potential toxic effects of IWC discharge, we investigated developmental toxicity in embryonic flounder, which are sensitive life stage to chemical exposure. Zinc and copper were the dominant metals, while zinc pyrithione was the most abundant biocide associated with IWC discharge in two remotely operated IWC. Discharge from IWC carried by both remotely operated vehicles (ROVs) produced developmental malformations including pericardial edema, spinal curvature, and tail-fin defects. In an analyses of differential gene expression profiles (fold-change of genes with a cutoff < 0.05) as assessed by high-throughput RNA sequencing, genes associated with muscle development were commonly and significantly changed. The gene ontology (GO) of embryos exposed to IWC discharge from ROV A activities highly enriched muscle and heart development, while cell signaling and transport were evident in embryos exposed to IWC discharge of ROV B. We analyzed the gene network by significant GO terms. In the network, TTN, MYOM1, CASP3, and CDH2 genes appeared to be key regulators of the toxic effects on muscle development. In embryos exposed to ROV B discharge, HSPG2, VEGFA, and TNF genes related to the nervous system pathway were affected. These results shed light on the potential impacts of muscle and nervous system development in non-target coastal organisms exposed to contaminants found in IWC discharge.
Collapse
Affiliation(s)
- Dongju Shin
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Youmi Choi
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Zhi Yang Soon
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min-Chul Jang
- Ballast Water Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Jin-Young Seo
- Ballast Water Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Jung-Hoon Kang
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyungsoon Shin
- Ballast Water Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
13
|
Adamova P, Lotto RR, Powell AK, Dykes IM. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery. J Mol Med (Berl) 2023; 101:65-81. [PMID: 36538060 PMCID: PMC9977902 DOI: 10.1007/s00109-022-02278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 03/02/2023]
Abstract
Prenatal diagnosis of congenital disease improves clinical outcomes; however, as many as 50% of congenital heart disease cases are missed by current ultrasound screening methods. This indicates a need for improved screening technology. Extracellular vesicles (EVs) have attracted enormous interest in recent years for their potential in diagnostics. EVs mediate endocrine signalling in health and disease and are known to regulate aspects of embryonic development. Here, we critically evaluate recent evidence suggesting that EVs released from the foetus are able to cross the placenta and enter the maternal circulation. Furthermore, EVs from the mother appear to be transported in the reverse direction, whilst the placenta itself acts as a source of EVs. Experimental work utilising rodent models employing either transgenically encoded reporters or application of fluorescent tracking dyes provide convincing evidence of foetal-maternal crosstalk. This is supported by clinical data demonstrating expression of placental-origin EVs in maternal blood, as well as limited evidence for the presence of foetal-origin EVs. Together, this work raises the possibility that foetal EVs present in maternal blood could be used for the diagnosis of congenital disease. We discuss the challenges faced by researchers in translating these basic science findings into a clinical non-invasive prenatal test.
Collapse
Affiliation(s)
- Petra Adamova
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Robyn R Lotto
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.,School of Nursing and Allied Health, Liverpool John Moores University, Tithebarn St, Liverpool, L2 2ER, UK
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Iain M Dykes
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK. .,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
14
|
Chapski DJ, Vondriska TM. Unwind to the beat: chromatin and cardiac conduction. J Clin Invest 2023; 133:165663. [PMID: 36719369 PMCID: PMC9888370 DOI: 10.1172/jci165663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
How chromatin accessibility and structure endow highly specialized cells with their unique phenotypes is an area of intense investigation. In the mammalian heart, an exclusive subset of cardiac cells comprise the conduction system. Many molecular components of this system are well studied and genetic variation in some of the components induces abnormal cardiac conduction. However, genetic risk for cardiac arrhythmias in human populations also occurs in noncoding regions. A study by Bhattacharyya, Kollipara, et al. in this issue of the JCI examines how chromatin accessibility and structure may explain the mechanisms by which noncoding variants increase susceptibility to cardiac arrhythmias. We discuss the implications of these findings for cell type-specific gene regulation and highlight potential therapeutic strategies to engineer locus-specific epigenomic remodeling in vivo.
Collapse
Affiliation(s)
| | - Thomas M. Vondriska
- Department of Anesthesiology and Perioperative Medicine,,Department of Medicine, and,Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
15
|
Prodan N, Ershad F, Reyes-Alcaraz A, Li L, Mistretta B, Gonzalez L, Rao Z, Yu C, Gunaratne PH, Li N, Schwartz RJ, McConnell BK. Direct reprogramming of cardiomyocytes into cardiac Purkinje-like cells. iScience 2022; 25:105402. [PMID: 36388958 PMCID: PMC9646947 DOI: 10.1016/j.isci.2022.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Currently, there are no treatments that ameliorate cardiac cell death, the underlying basis of cardiovascular disease. An unexplored cell type in cardiac regeneration is cardiac Purkinje cells; specialized cells from the cardiac conduction system (CCS) responsible for propagating electrical signals. Purkinje cells have tremendous potential as a regenerative treatment because they may intrinsically integrate with the CCS of a recipient myocardium, resulting in more efficient electrical conduction in diseased hearts. This study is the first to demonstrate an effective protocol for the direct reprogramming of human cardiomyocytes into cardiac Purkinje-like cells using small molecules. The cells generated were genetically and functionally similar to native cardiac Purkinje cells, where expression of key cardiac Purkinje genes such as CNTN2, ETV1, PCP4, IRX3, SCN5a, HCN2 and the conduction of electrical signals with increased velocity was observed. This study may help to advance the quest to finding an optimized cell therapy for heart regeneration.
Collapse
Affiliation(s)
- Nicole Prodan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Faheem Ershad
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Luge Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Lei Gonzalez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Zhoulyu Rao
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Cunjiang Yu
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
16
|
Goodyer WR, Beyersdorf BM, Duan L, van den Berg NS, Mantri S, Galdos FX, Puluca N, Buikema JW, Lee S, Salmi D, Robinson ER, Rogalla S, Cogan DP, Khosla C, Rosenthal EL, Wu SM. In vivo visualization and molecular targeting of the cardiac conduction system. J Clin Invest 2022; 132:e156955. [PMID: 35951416 PMCID: PMC9566899 DOI: 10.1172/jci156955] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Accidental injury to the cardiac conduction system (CCS), a network of specialized cells embedded within the heart and indistinguishable from the surrounding heart muscle tissue, is a major complication in cardiac surgeries. Here, we addressed this unmet need by engineering targeted antibody-dye conjugates directed against the CCS, allowing for the visualization of the CCS in vivo following a single intravenous injection in mice. These optical imaging tools showed high sensitivity, specificity, and resolution, with no adverse effects on CCS function. Further, with the goal of creating a viable prototype for human use, we generated a fully human monoclonal Fab that similarly targets the CCS with high specificity. We demonstrate that, when conjugated to an alternative cargo, this Fab can also be used to modulate CCS biology in vivo, providing a proof of principle for targeted cardiac therapeutics. Finally, in performing differential gene expression analyses of the entire murine CCS at single-cell resolution, we uncovered and validated a suite of additional cell surface markers that can be used to molecularly target the distinct subcomponents of the CCS, each prone to distinct life-threatening arrhythmias. These findings lay the foundation for translational approaches targeting the CCS for visualization and therapy in cardiothoracic surgery, cardiac imaging, and arrhythmia management.
Collapse
Affiliation(s)
- William R. Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Benjamin M. Beyersdorf
- Department of Cardiovascular Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Lauren Duan
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nynke S. van den Berg
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sruthi Mantri
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Francisco X. Galdos
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nazan Puluca
- Department of Cardiovascular Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Jan W. Buikema
- Department of Cardiology, Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Amsterdam University Medical Center, Location VUmc, Amsterdam, Netherlands
| | - Soah Lee
- Department of Pharmacy, Bioconvergence Program, Sungkyunkwan University, Suwon, South Korea
| | | | - Elise R. Robinson
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Stephan Rogalla
- Division of Gastroenterology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Dillon P. Cogan
- Departments of Chemistry and Chemical Engineering and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Chaitan Khosla
- Departments of Chemistry and Chemical Engineering and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Eben L. Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean M. Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
17
|
Barefield DY, Yamakawa S, Tahtah I, Sell JJ, Broman M, Laforest B, Harris S, Alvarez AA, Araujo KN, Puckelwartz MJ, Wasserstrom JA, Fishman GI, McNally EM. Partial and complete loss of myosin binding protein H-like cause cardiac conduction defects. J Mol Cell Cardiol 2022; 169:28-40. [PMID: 35533732 PMCID: PMC9329245 DOI: 10.1016/j.yjmcc.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
A premature truncation of MYBPHL in humans and a loss of Mybphl in mice is associated with dilated cardiomyopathy, atrial and ventricular arrhythmias, and atrial enlargement. MYBPHL encodes myosin binding protein H-like (MyBP-HL). Prior work in mice indirectly identified Mybphl expression in the atria and in small puncta throughout the ventricle. Because of its genetic association with human and mouse cardiac conduction system disease, we evaluated the anatomical localization of MyBP-HL and the consequences of loss of MyBP-HL on conduction system function. Immunofluorescence microscopy of normal adult mouse ventricles identified MyBP-HL-positive ventricular cardiomyocytes that co-localized with the ventricular conduction system marker contactin-2 near the atrioventricular node and in a subset of Purkinje fibers. Mybphl heterozygous ventricles had a marked reduction of MyBP-HL-positive cells compared to controls. Lightsheet microscopy of normal perinatal day 5 mouse hearts showed enrichment of MyBP-HL-positive cells within and immediately adjacent to the contactin-2-positive ventricular conduction system, but this association was not apparent in Mybphl heterozygous hearts. Surface telemetry of Mybphl-null mice revealed atrioventricular block and atrial bigeminy, while intracardiac pacing revealed a shorter atrial relative refractory period and atrial tachycardia. Calcium transient analysis of isolated Mybphl-null atrial cardiomyocytes demonstrated an increased heterogeneity of calcium release and faster rates of calcium release compared to wild type controls. Super-resolution microscopy of Mybphl heterozygous and homozygous null atrial cardiomyocytes showed ryanodine receptor disorganization compared to wild type controls. Abnormal calcium release, shorter atrial refractory period, and atrial dilation seen in Mybphl null, but not wild type control hearts, agree with the observed atrial arrhythmias, bigeminy, and atrial tachycardia, whereas the proximity of MyBP-HL-positive cells with the ventricular conduction system provides insight into how a predominantly atrial expressed gene contributes to ventricular arrhythmias and ventricular dysfunction.
Collapse
Affiliation(s)
- David Y. Barefield
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL;,Correspondence to: David Y. Barefield, PhD, Department of Cell and Molecular Physiology Loyola University Chicago, 2160 S. 1st Ave. Maywood, IL 60153,
| | - Sean Yamakawa
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ibrahim Tahtah
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jordan J. Sell
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Broman
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Brigitte Laforest
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Sloane Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alejandro A. Alvarez
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Kelly N. Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - J. Andrew Wasserstrom
- Department of Medicine and The Feinberg Cardiovascular and Renal Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Glenn I. Fishman
- Division of Cardiology, NYU Grossman School of Medicine, New York, New York
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Correspondence to: Elizabeth McNally, MD, PhD, Center for Genetic Medicine, Northwestern University, 303 E. Superior St. Chicago, IL 60611,
| |
Collapse
|
18
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
19
|
Anto Michel N, Ljubojevic-Holzer S, Bugger H, Zirlik A. Cellular Heterogeneity of the Heart. Front Cardiovasc Med 2022; 9:868466. [PMID: 35548426 PMCID: PMC9081371 DOI: 10.3389/fcvm.2022.868466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in technology such as the introduction of high throughput multidimensional tools like single cell sequencing help to characterize the cellular composition of the human heart. The diversity of cell types that has been uncovered by such approaches is by far greater than ever expected before. Accurate identification of the cellular variety and dynamics will not only facilitate a much deeper understanding of cardiac physiology but also provide important insights into mechanisms underlying its pathological transformation. Distinct cellular patterns of cardiac cell clusters may allow differentiation between a healthy heart and a sick heart while potentially predicting future disease at much earlier stages than currently possible. These advances have already extensively improved and will ultimately revolutionize our knowledge of the mechanisms underlying cardiovascular disease as such. In this review, we will provide an overview of the cells present in the human and rodent heart as well as genes that may be used for their identification.
Collapse
|
20
|
Blackwell DJ, Faggioni M, Wleklinski MJ, Gomez-Hurtado N, Venkataraman R, Gibbs CE, Baudenbacher FJ, Gong S, Fishman GI, Boyle PM, Pfeifer K, Knollmann BC. The Purkinje-myocardial junction is the anatomic origin of ventricular arrhythmia in CPVT. JCI Insight 2022; 7:e151893. [PMID: 34990403 PMCID: PMC8855823 DOI: 10.1172/jci.insight.151893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmia syndrome caused by gene mutations that render RYR2 Ca release channels hyperactive, provoking spontaneous Ca release and delayed afterdepolarizations (DADs). What remains unknown is the cellular source of ventricular arrhythmia triggered by DADs: Purkinje cells in the conduction system or ventricular cardiomyocytes in the working myocardium. To answer this question, we used a genetic approach in mice to knock out cardiac calsequestrin either in Purkinje cells or in ventricular cardiomyocytes. Total loss of calsequestrin in the heart causes a severe CPVT phenotype in mice and humans. We found that loss of calsequestrin only in ventricular myocytes produced a full-blown CPVT phenotype, whereas mice with loss of calsequestrin only in Purkinje cells were comparable to WT mice. Subendocardial chemical ablation or restoration of calsequestrin expression in subendocardial cardiomyocytes neighboring Purkinje cells was sufficient to protect against catecholamine-induced arrhythmias. In silico modeling demonstrated that DADs in ventricular myocardium can trigger full action potentials in the Purkinje fiber, but not vice versa. Hence, ectopic beats in CPVT are likely generated at the Purkinje-myocardial junction via a heretofore unrecognized tissue mechanism, whereby DADs in the ventricular myocardium trigger full action potentials in adjacent Purkinje cells.
Collapse
Affiliation(s)
- Daniel J. Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michela Faggioni
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew J. Wleklinski
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pharmacology and
| | - Nieves Gomez-Hurtado
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Raghav Venkataraman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Chelsea E. Gibbs
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Franz J. Baudenbacher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Shiaoching Gong
- Laboratory of Molecular Biology, Rockefeller University, New York, New York, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Patrick M. Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Institute for Stem Cell and Regenerative Medicine and
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Bjorn C. Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pharmacology and
| |
Collapse
|
21
|
Nakamura K, Neidig LE, Yang X, Weber GJ, El-Nachef D, Tsuchida H, Dupras S, Kalucki FA, Jayabalu A, Futakuchi-Tsuchida A, Nakamura DS, Marchianò S, Bertero A, Robinson MR, Cain K, Whittington D, Tian R, Reinecke H, Pabon L, Knollmann BC, Kattman S, Thies RS, MacLellan WR, Murry CE. Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. Stem Cell Reports 2021; 16:2473-2487. [PMID: 34506727 PMCID: PMC8514851 DOI: 10.1016/j.stemcr.2021.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Heart failure remains a significant cause of morbidity and mortality following myocardial infarction. Cardiac remuscularization with transplantation of human pluripotent stem cell-derived cardiomyocytes is a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a significant risk of engraftment arrhythmia (EA). Although transient, the risk posed by EA presents a barrier to clinical translation. We hypothesized that clinically approved antiarrhythmic drugs can prevent EA-related mortality as well as suppress tachycardia and arrhythmia burden. This study uses a porcine model to provide proof-of-concept evidence that a combination of amiodarone and ivabradine can effectively suppress EA. None of the nine treated subjects experienced the primary endpoint of cardiac death, unstable EA, or heart failure compared with five out of eight (62.5%) in the control cohort (hazard ratio = 0.00; 95% confidence interval: 0–0.297; p = 0.002). Pharmacologic treatment of EA may be a viable strategy to improve safety and allow further clinical development of cardiac remuscularization therapy. EA arises after hESC-CM transplantation in infarcted pigs Combination pharmacotherapy prevents EA-related mortality and morbidity Amiodarone and ivabradine significantly suppresses tachycardia and arrythmia burden EA is polymorphic and may be due to interaction with intramural Purkinje fibers
Collapse
Affiliation(s)
- Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lauren E Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Gerhard J Weber
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Hiroshi Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Sarah Dupras
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Faith A Kalucki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Anu Jayabalu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Akiko Futakuchi-Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Daisy S Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Silvia Marchianò
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Melissa R Robinson
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kevin Cain
- Department of Biostatics, University of Washington, Seattle, WA 98195, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Rong Tian
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lil Pabon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Steven Kattman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - R Scott Thies
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - W Robb MacLellan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Kahr PC, Tao G, Kadow ZA, Hill MC, Zhang M, Li S, Martin JF. A novel transgenic Cre allele to label mouse cardiac conduction system. Dev Biol 2021; 478:163-172. [PMID: 34245725 PMCID: PMC8482537 DOI: 10.1016/j.ydbio.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022]
Abstract
The cardiac conduction system is a network of heterogeneous cell population that initiates and propagates electric excitations in the myocardium. Purkinje fibers, a network of specialized myocardial cells, comprise the distal end of the conduction system in the ventricles. The developmental origins of Purkinje fibers and their roles during cardiac physiology and arrhythmia have been reported. However, it is not clear if they play a role during ischemic injury and heart regeneration. Here we introduce a novel tamoxifen-inducible Cre allele that specifically labels a broad range of components in the cardiac conduction system while excludes other cardiac cell types and vital organs. Using this new allele, we investigated the cellular and molecular response of Purkinje fibers to myocardial injury. In a neonatal mouse myocardial infarction model, we observed significant increase in Purkinje cell number in regenerating myocardium. RNA-Seq analysis using laser-captured Purkinje fibers showed a unique transcriptomic response to myocardial infarction. Our finds suggest a novel role of cardiac Purkinje fibers in heart injury.
Collapse
Affiliation(s)
- Peter C Kahr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Ge Tao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Zachary A Kadow
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Hill
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Zhang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Jorgensen R, Katta M, Wolfe J, Leach DF, Lavelle B, Chun J, Wilsbacher LD. Deletion of Sphingosine 1-Phosphate receptor 1 in cardiomyocytes during development leads to abnormal ventricular conduction and fibrosis. Physiol Rep 2021; 9:e15060. [PMID: 34618403 PMCID: PMC8496155 DOI: 10.14814/phy2.15060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Sphingosine 1-Phosphate receptor 1 (S1P1 , encoded by S1pr1) is a G protein-coupled receptor that signals in multiple cell types including endothelial cells and cardiomyocytes. Cardiomyocyte-specific deletion of S1pr1 during mouse development leads to ventricular noncompaction, with 44% of mutant mice surviving to adulthood. Adult survivors of embryonic cardiomyocyte S1pr1 deletion showed cardiac hypertrabeculation consistent with ventricular noncompaction. Surprisingly, systolic function in mutant mice was preserved through at least 1 year of age. Cardiac conduction was abnormal in cardiomyocyte S1pr1 mutant mice, with prolonged QRS intervals in mutants as compared with littermate control mice. Immunostaining of hearts from S1pr1 mutant embryos displayed a zone of intermediate Connexin 40 (Cx40) expression in the trabecular myocardium. However, we observed no significant differences in Cx40 and Connexin 43 immunostaining in hearts from adult survivors of embryonic cardiomyocyte S1pr1 deletion, which suggests normalized development of the ventricular conduction system in mutant mice. By contrast, the adult survivors of embryonic cardiomyocyte S1pr1 deletion showed increased cardiac fibrosis as compared with littermate controls. These results demonstrate that ventricular hypertrabeculation caused by embryonic deletion of cardiomyocyte S1pr1 correlates with cardiac fibrosis, which contributes to abnormal ventricular conduction. These results also reveal conduction abnormalities in the setting of hypertrabeculation with normal systolic function, which may be of clinical relevance in humans with ventricular hypertrabeculation.
Collapse
Affiliation(s)
- Ryan Jorgensen
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Meghna Katta
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jayne Wolfe
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Desiree F. Leach
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Bianca Lavelle
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Lisa D. Wilsbacher
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
24
|
New Insights into the Development and Morphogenesis of the Cardiac Purkinje Fiber Network: Linking Architecture and Function. J Cardiovasc Dev Dis 2021; 8:jcdd8080095. [PMID: 34436237 PMCID: PMC8397066 DOI: 10.3390/jcdd8080095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
The rapid propagation of electrical activity through the ventricular conduction system (VCS) controls spatiotemporal contraction of the ventricles. Cardiac conduction defects or arrhythmias in humans are often associated with mutations in key cardiac transcription factors that have been shown to play important roles in VCS morphogenesis in mice. Understanding of the mechanisms of VCS development is thus crucial to decipher the etiology of conduction disturbances in adults. During embryogenesis, the VCS, consisting of the His bundle, bundle branches, and the distal Purkinje network, originates from two independent progenitor populations in the primary ring and the ventricular trabeculae. Differentiation into fast-conducting cardiomyocytes occurs progressively as ventricles develop to form a unique electrical pathway at late fetal stages. The objectives of this review are to highlight the structure–function relationship between VCS morphogenesis and conduction defects and to discuss recent data on the origin and development of the VCS with a focus on the distal Purkinje fiber network.
Collapse
|
25
|
Mantri S, Wu SM, Goodyer WR. Molecular Profiling of the Cardiac Conduction System: the Dawn of a New Era. Curr Cardiol Rep 2021; 23:103. [PMID: 34196831 DOI: 10.1007/s11886-021-01536-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Recent technological advances have led to an increased ability to define the gene expression profile of the cardiac conduction system (CCS). Here, we review the most salient studies to emerge in recent years and discuss existing gaps in our knowledge as well as future areas of investigation. RECENT FINDINGS Molecular profiling of the CCS spans several decades. However, the advent of high-throughput sequencing strategies has allowed for the discovery of unique transcriptional programs of the many diverse CCS cell types. The CCS, a diverse structure with significant inter- and intra-component cellular heterogeneity, is essential to the normal function of the heart. Progress in transcriptomic profiling has improved the resolution and depth of characterization of these unique and clinically relevant CCS cell types. Future studies leveraging this big data will play a crucial role in improving our understanding of CCS development and function as well as translating these findings into tangible translational tools for the improved detection, prevention, and treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Sruthi Mantri
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William R Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Electrophysiology, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford University School of Medicine, Room G1105 Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
26
|
Delgado C, Bu L, Zhang J, Liu FY, Sall J, Liang FX, Furley AJ, Fishman GI. Neural cell adhesion molecule is required for ventricular conduction system development. Development 2021; 148:269045. [PMID: 34100064 PMCID: PMC8217711 DOI: 10.1242/dev.199431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system. Summary: The cell adhesion molecule NCAM-1 and its post-translational modification by polysialylation are required for normal formation and function of the specialized ventricular conduction system.
Collapse
Affiliation(s)
- Camila Delgado
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Lei Bu
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Joseph Sall
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, NY 10016, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, NY 10016, USA
| | - Andrew J Furley
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| |
Collapse
|
27
|
Zhu Y, Shamblin I, Rodriguez E, Salzer GE, Araysi L, Margolies KA, Halade GV, Litovsky SH, Pogwizd S, Gray M, Huke S. Progressive cardiac arrhythmias and ECG abnormalities in the Huntington's disease BACHD mouse model. Hum Mol Genet 2021; 29:369-381. [PMID: 31816043 DOI: 10.1093/hmg/ddz295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease. There is accumulating evidence that HD patients have increased prevalence of conduction abnormalities and compromised sinoatrial node function which could lead to increased risk for arrhythmia. We used mutant Huntingtin (mHTT) expressing bacterial artificial chromosome Huntington's disease mice to determine if they exhibit electrocardiogram (ECG) abnormalities involving cardiac conduction that are known to increase risk of sudden arrhythmic death in humans. We obtained surface ECGs and analyzed arrhythmia susceptibility; we observed prolonged QRS duration, increases in PVCs as well as PACs. Abnormal histological and structural changes that could lead to cardiac conduction system dysfunction were seen. Finally, we observed decreases in desmosomal proteins, plakophilin-2 and desmoglein-2, which have been reported to cause cardiac arrhythmias and reduced conduction. Our study indicates that mHTT could cause progressive cardiac conduction system pathology that could increase the susceptibility to arrhythmias and sudden cardiac death in HD patients.
Collapse
Affiliation(s)
- Yujie Zhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Isaac Shamblin
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Efrain Rodriguez
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Grace E Salzer
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lita Araysi
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine A Margolies
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ganesh V Halade
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Silvio H Litovsky
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven Pogwizd
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sabine Huke
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
29
|
Olejnickova V, Kocka M, Kvasilova A, Kolesova H, Dziacky A, Gidor T, Gidor L, Sankova B, Gregorovicova M, Gourdie RG, Sedmera D. Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle. Int J Mol Sci 2021; 22:2475. [PMID: 33804428 PMCID: PMC7957598 DOI: 10.3390/ijms22052475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.
Collapse
Affiliation(s)
- Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Institute of Physiology, CAS, 142 20 Prague, Czech Republic
| | - Matej Kocka
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Institute of Physiology, CAS, 142 20 Prague, Czech Republic
| | - Adam Dziacky
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Department of Pediatric Cardiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Tom Gidor
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Lihi Gidor
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Martina Gregorovicova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Institute of Physiology, CAS, 142 20 Prague, Czech Republic
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Institute of Physiology, CAS, 142 20 Prague, Czech Republic
| |
Collapse
|
30
|
Gómez-Torres FA, Estupiñán HY, Ruíz-Saurí A. Morphometric analysis of cardiac conduction fibers in horses and dogs, a comparative histological and immunohistochemical study with findings in human hearts. Res Vet Sci 2021; 135:200-216. [PMID: 33618179 DOI: 10.1016/j.rvsc.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
The principal function of the ventricular conduction system is rapid electrical activation of the ventricles. The aim of this study is to conduct a morphometric study to pinpoint the morphological parameters that define cardiac conduction cells, allowing us to distinguish them from other cells. Five male horse hearts and five male dog hearts were used in the study. The hearts were fixed in a 5% formaldehyde solution. Histological sections of 5 μm thickness were acquired and stained with hematoxylin-eosin and Masson's trichrome and cardiac conduction cells and their junctions were identified by desmin, connexin 40 and a PAS method. We found statistically significant differences in cardiac conduction fibers density and thickness, which was much higher in horses than in dogs (p = 0.000 for both values). By comparing the measured parameters of the cells in both species, we determined that cardiac conduction cells area and diameters were greater in horses than in dogs (p = 0.000 for all values). In dogs there are more junctions (30.8%) than in horses (26.1%), a statistically significant difference (p = 0.041). Our findings regarding the cardiac conduction fibers distribution in the animal species studied becomes new knowledge that contributes to the morphological study of this component of the cardiac conduction system and also makes it possible to locate exactly the site with the highest density of cardiac conduction fibers as a contribution to the cardiological study of these structures that lead to the prevention of ventricular arrhythmias and the identification of their treatment site.
Collapse
Affiliation(s)
- F A Gómez-Torres
- Department of Pathology, Faculty of Medicine, 1st floor, Universitat de Valencia, Av. de Blasco Ibáñez, 15, 46010 Valencia, Spain; Department of Basic Sciences, School of Medicine, Universidad Industrial de Santander, Cra 32 # 29-31, 68002 Bucaramanga, Colombia.
| | - H Y Estupiñán
- Department of Basic Sciences, School of Medicine, Universidad Industrial de Santander, Cra 32 # 29-31, 68002 Bucaramanga, Colombia; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institute, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden.
| | - A Ruíz-Saurí
- Department of Pathology, Faculty of Medicine, 1st floor, Universitat de Valencia, Av. de Blasco Ibáñez, 15, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, Av. de Blasco Ibáñez, 17, 46010 Valencia, Spain.
| |
Collapse
|
31
|
Crestani T, Steichen C, Neri E, Rodrigues M, Fonseca-Alaniz MH, Ormrod B, Holt MR, Pandey P, Harding S, Ehler E, Krieger JE. Electrical stimulation applied during differentiation drives the hiPSC-CMs towards a mature cardiac conduction-like cells. Biochem Biophys Res Commun 2020; 533:376-382. [PMID: 32962862 DOI: 10.1016/j.bbrc.2020.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) resemble fetal cardiomyocytes and electrical stimulation (ES) has been explored to mature the differentiated cells. Here, we hypothesize that ES applied at the beginning of the differentiation process, triggers both differentiation of the hiPSC-CMs into a specialized conduction system (CS) phenotype and cell maturation. We applied ES for 15 days starting on day 0 of the differentiation process and found an increased expression of transcription factors and proteins associated with the development and function of CS including Irx3, Nkx2.5 and contactin 2, Hcn4 and Scn5a, respectively. We also found activation of intercalated disc proteins (Nrap and β-catenin). We detected ES-induced CM maturation as indicated by increased Tnni1 and Tnni3 expression. Confocal micrographs showed a shift towards expression of the gap junction protein connexin 40 in ES hiPSC-CM compared to the more dominant expression of connexin 43 in controls. Finally, analysis of functional parameters revealed that ES hiPSC-CMs exhibited faster action potential (AP) depolarization, longer intracellular Ca2+ transients, and slower AP duration at 90% of repolarization, resembling fast conducting fibers. Altogether, we provided evidence that ES during the differentiation of hiPSC to cardiomyocytes lead to development of cardiac conduction-like cells with more mature cytoarchitecture. Thus, hiPSC-CMs exposed to ES during differentiation can be instrumental to develop CS cells for cardiac disease modelling, screening individual drugs on a precison medicine type platform and support the development of novel therapeutics for arrhythmias.
Collapse
Affiliation(s)
- Thayane Crestani
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Clara Steichen
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Elida Neri
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Mariliza Rodrigues
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | - Beth Ormrod
- School of Cardiovascular Medicine and Sciences, BHF Research Excellence Centre, King's College London, UK; Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences, King's College London), UK
| | - Mark R Holt
- School of Cardiovascular Medicine and Sciences, BHF Research Excellence Centre, King's College London, UK; Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences, King's College London), UK
| | - Pragati Pandey
- National Heart and Lung Institute, Imperial College London, UK
| | - Sian Harding
- National Heart and Lung Institute, Imperial College London, UK
| | - Elisabeth Ehler
- School of Cardiovascular Medicine and Sciences, BHF Research Excellence Centre, King's College London, UK; Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences, King's College London), UK
| | - Jose E Krieger
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
Jackson AO, Rahman GA, Yin K, Long S. Enhancing Matured Stem-Cardiac Cell Generation and Transplantation: A Novel Strategy for Heart Failure Therapy. J Cardiovasc Transl Res 2020; 14:556-572. [PMID: 33258081 DOI: 10.1007/s12265-020-10085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) remains one of the major causes of morbidity and mortality worldwide. Recent studies have shown that stem cells (SCs) including bone marrow mesenchymal stem (BMSC), embryonic bodies (EB), embryonic stem (ESC), human induced pluripotent stem (hiPSC)-derived cardiac cells generation, and transplantation treated myocardial infarction (MI) in vivo and in human. However, the immature phenotypes compromise their clinical application requiring immediate intervention to improve stem-derived cardiac cell (S-CCs) maturation. Recently, an unbiased multi-omic analysis involving genomics, transcriptomics, epigenomics, proteomics, and metabolomics identified specific strategies for the generation of matured S-CCs that may enhance patients' recovery processes upon transplantation. However, these strategies still remain undisclosed. Here, we summarize the recently discovered strategies for the matured S-CC generation. In addition, cardiac patch formation and transplantation that accelerated HF recuperation in clinical trials are discussed. A better understanding of this work may lead to efficient generation of matured S-CCs for regenerative medicine. Graphical abstract.
Collapse
Affiliation(s)
- Ampadu O Jackson
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, 421001, Hunan Province, China.,International College, University of South China, Hengyang, 421001, Hunan Province, China.,Cape Coast Teaching Hospital, Cape Coast, Department of Surgery, School of Medical Science, University of Cape Coast, Cape Coast, Ghana
| | - Ganiyu A Rahman
- Cape Coast Teaching Hospital, Cape Coast, Department of Surgery, School of Medical Science, University of Cape Coast, Cape Coast, Ghana
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Shiyin Long
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
34
|
Tsai WC, Guo S, Olaopa MA, Field LJ, Yang J, Shen C, Chang CP, Chen PS, Rubart M. Complex Arrhythmia Syndrome in a Knock-In Mouse Model Carrier of the N98S Calm1 Mutation. Circulation 2020; 142:1937-1955. [PMID: 32929985 PMCID: PMC7867118 DOI: 10.1161/circulationaha.120.046450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Calmodulin mutations are associated with arrhythmia syndromes in humans. Exome sequencing previously identified a de novo mutation in CALM1 resulting in a p.N98S substitution in a patient with sinus bradycardia and stress-induced bidirectional ventricular ectopy. The objectives of the present study were to determine if mice carrying the N98S mutation knocked into Calm1 replicate the human arrhythmia phenotype and to examine arrhythmia mechanisms. METHODS Mouse lines heterozygous for the Calm1N98S allele (Calm1N98S/+) were generated using CRISPR/Cas9 technology. Adult mutant mice and their wildtype littermates (Calm1+/+) underwent electrocardiographic monitoring. Ventricular de- and repolarization was assessed in isolated hearts using optical voltage mapping. Action potentials and whole-cell currents and [Ca2+]i, as well, were measured in single ventricular myocytes using the patch-clamp technique and fluorescence microscopy, respectively. The microelectrode technique was used for in situ membrane voltage monitoring of ventricular conduction fibers. RESULTS Two biologically independent knock-in mouse lines heterozygous for the Calm1N98S allele were generated. Calm1N98S/+ mice of either sex and line exhibited sinus bradycardia, QTc interval prolongation, and catecholaminergic bidirectional ventricular tachycardia. Male mutant mice also showed QRS widening. Pharmacological blockade and activation of β-adrenergic receptors rescued and exacerbated, respectively, the long-QT phenotype of Calm1N98S/+ mice. Optical and electric assessment of membrane potential in isolated hearts and single left ventricular myocytes, respectively, revealed β-adrenergically induced delay of repolarization. β-Adrenergic stimulation increased peak density, slowed inactivation, and left-shifted the activation curve of ICa.L significantly more in Calm1N98S/+ versus Calm1+/+ ventricular myocytes, increasing late ICa.L in the former. Rapidly paced Calm1N98S/+ ventricular myocytes showed increased propensity to delayed afterdepolarization-induced triggered activity, whereas in situ His-Purkinje fibers exhibited increased susceptibility for pause-dependent early afterdepolarizations. Epicardial mapping of Calm1N98S/+ hearts showed that both reentry and focal mechanisms contribute to arrhythmogenesis. CONCLUSIONS Heterozygosity for the Calm1N98S mutation is causative of an arrhythmia syndrome characterized by sinus bradycardia, QRS widening, adrenergically mediated QTc interval prolongation, and bidirectional ventricular tachycardia. β-Adrenergically induced ICa.L dysregulation contributes to the long-QT phenotype. Pause-dependent early afterdepolarizations and tachycardia-induced delayed afterdepolarizations originating in the His-Purkinje network and ventricular myocytes, respectively, constitute potential sources of arrhythmia in Calm1N98S/+ hearts.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cardiology, Cardiovascular Research Center, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Shuai Guo
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Michael A. Olaopa
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Loren J. Field
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jin Yang
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Changyu Shen
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ching-Pin Chang
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peng-Sheng Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Rubart
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
35
|
Ribeiro da Silva A, Neri EA, Turaça LT, Dariolli R, Fonseca-Alaniz MH, Santos-Miranda A, Roman-Campos D, Venturini G, Krieger JE. NOTCH1 is critical for fibroblast-mediated induction of cardiomyocyte specialization into ventricular conduction system-like cells in vitro. Sci Rep 2020; 10:16163. [PMID: 32999360 PMCID: PMC7527973 DOI: 10.1038/s41598-020-73159-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac fibroblasts are present throughout the myocardium and are enriched in the microenvironment surrounding the ventricular conduction system (VCS). Several forms of arrhythmias are linked to VCS abnormalities, but it is still unclear whether VCS malformations are cardiomyocyte autonomous or could be linked to crosstalk between different cell types. We reasoned that fibroblasts influence cardiomyocyte specialization in VCS cells. We developed 2D and 3D culture models of neonatal rat cardiac cells to assess the influence of cardiac fibroblasts on cardiomyocytes. Cardiomyocytes adjacent to cardiac fibroblasts showed a two-fold increase in expression of VCS markers (NAV1.5 and CONTACTIN 2) and calcium transient duration, displaying a Purkinje-like profile. Fibroblast-conditioned media (fCM) was sufficient to activate VCS-related genes (Irx3, Scn5a, Connexin 40) and to induce action potential prolongation, a hallmark of Purkinge phenotype. fCM-mediated response seemed to be spatially-dependent as cardiomyocyte organoids treated with fCM had increased expression of connexin 40 and NAV1.5 primarily on its outer surface. Finally, NOTCH1 activation in both cardiomyocytes and fibroblasts was required for connexin 40 up-regulation (a proxy of VCS phenotype). Altogether, we provide evidence that cardiac fibroblasts influence cardiomyocyte specialization into VCS-like cells via NOTCH1 signaling in vitro.
Collapse
Affiliation(s)
- Agatha Ribeiro da Silva
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Elida A Neri
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Lauro Thiago Turaça
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Rafael Dariolli
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Miriam H Fonseca-Alaniz
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Artur Santos-Miranda
- Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Danilo Roman-Campos
- Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Gabriela Venturini
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Jose E Krieger
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil.
| |
Collapse
|
36
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
37
|
Shah C, Jiwani S, Limbu B, Weinberg S, Deo M. Delayed afterdepolarization-induced triggered activity in cardiac purkinje cells mediated through cytosolic calcium diffusion waves. Physiol Rep 2020; 7:e14296. [PMID: 31872561 PMCID: PMC6928245 DOI: 10.14814/phy2.14296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiac Purkinje cells (PCs) are more susceptible to action potential abnormalities as compared to ventricular myocytes (VMs), which could be associated with their distinct intracellular calcium handling. We developed a detailed biophysical model of a mouse cardiac PC, which importantly reproduces the experimentally observed biphasic cytosolic calcium waves. The model includes a stochastic gating formulation for the opening and closing of ryanodine receptor (RyR) channels, simulated with a Monte Carlo method, to accurately reproduce cytosolic calcium wave propagation and the effects of spontaneous calcium release events. Simulations predict that during an action potential, smaller cytosolic calcium wavelets propagated from the sarcolemma towards the center of the cell and initiated larger magnitude cell‐wide calcium waves via a calcium‐induced‐calcium release mechanism. In the presence of RyR mutations, frequent spontaneous calcium leaks from sarcoplasmic reticulum (SR) initiated calcium waves, which upon reaching the cell periphery produced delayed afterdepolarizations (DADs) via sodium‐calcium exchanger (NCX) and T‐type calcium (ICaT) channel activation. In the presence of isoproterenol‐mediated effects, DADs induced triggered activity by reactivation of fast sodium channels. Based on our model, we found that the activation of either L‐type calcium channels (ICaL), ICaT, sodium‐potassium exchanger (INaK) or NCX is sufficient for occurrence of triggered activity; however, a partial blockade of ICaT or INaK is essential for its successful termination. Our modeling study highlights valuable insights into the mechanisms of DAD‐induced triggered activity mediated via cytosolic calcium waves in cardiac PCs and may elucidate the increased arrhythmogeneity in PCs.
Collapse
Affiliation(s)
- Chirag Shah
- School of Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Sohel Jiwani
- Department of Engineering, Norfolk State University, Norfolk, Virginia
| | - Bijay Limbu
- Department of Engineering, Norfolk State University, Norfolk, Virginia
| | - Seth Weinberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Makarand Deo
- Department of Engineering, Norfolk State University, Norfolk, Virginia
| |
Collapse
|
38
|
Zhang J, Vincent KP, Peter AK, Klos M, Cheng H, Huang SM, Towne JK, Ferng D, Gu Y, Dalton ND, Chan Y, Li R, Peterson KL, Chen J, McCulloch AD, Knowlton KU, Ross RS. Cardiomyocyte Expression of ZO-1 Is Essential for Normal Atrioventricular Conduction but Does Not Alter Ventricular Function. Circ Res 2020; 127:284-297. [PMID: 32345129 DOI: 10.1161/circresaha.119.315539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.
Collapse
Affiliation(s)
- Jianlin Zhang
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Kevin P Vincent
- Department of Bioengineering (K.P.V., A.D.M.), University of California San Diego, La Jolla, CA
| | - Angela K Peter
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Matthew Klos
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Hongqiang Cheng
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Selina M Huang
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Jordan K Towne
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Debbie Ferng
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Yusu Gu
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Nancy D Dalton
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Yunghang Chan
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Ruixia Li
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Kirk L Peterson
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Ju Chen
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Andrew D McCulloch
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
- Department of Bioengineering (K.P.V., A.D.M.), University of California San Diego, La Jolla, CA
| | | | - Robert S Ross
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
- Veterans Administration Healthcare, Cardiology Section, San Diego, CA (R.S.R.)
| |
Collapse
|
39
|
Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118509. [DOI: 10.1016/j.bbamcr.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
|
40
|
Birla RK, Williams SK. 3D bioprinting and its potential impact on cardiac failure treatment: An industry perspective. APL Bioeng 2020; 4:010903. [PMID: 32095736 PMCID: PMC7028435 DOI: 10.1063/1.5128371] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
3D printing technologies are emerging as a disruptive innovation for the treatment of patients in cardiac failure. The ability to create custom devices, at the point of care, will affect both the diagnosis and treatment of cardiac diseases. The introduction of bioinks containing cells and biomaterials and the development of new computer assisted design and computer assisted manufacturing systems have ushered in a new technology known as 3D bioprinting. Small scale 3D bioprinting has successfully created cardiac tissue microphysiological systems. 3D bioprinting provides an opportunity to evaluate the assembly of specific parts of the heart and most notably heart valves. With the continuous development of instrumentation and bioinks and a complete understanding of cardiac tissue development, it is proposed that 3D bioprinting may permit the assembly of a heart described as a total biofabricated heart.
Collapse
Affiliation(s)
| | - Stuart K. Williams
- Bioficial Organs Program, University of
Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
41
|
FISHMAN GLENNI. TRANSCRIPTIONAL REGULATION OF THE CARDIAC CONDUCTION SYSTEM. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:48-54. [PMID: 32675842 PMCID: PMC7358472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cardiac conduction system (VCS) is essential for normal myocardial excitation and contraction. Heritable and acquired syndromes perturbing conduction system formation or function are responsible for a substantial burden of cardiovascular disease, including heart block, triggered and reentrant arrhythmias, sudden cardiac death, myocardial dyssynchrony, and progression of heart failure. Our laboratory has employed stem cell models, genetically encoded conduction system reporter mice, comparative transcriptional profiling, and a battery of functional assays to elucidate the molecular determinants of conduction system development, physiology, and disease pathogenesis. Through these strategies, we have uncovered a diversity of novel conduction system-enriched genes, including transcription factors, receptors, and signaling molecules that modulate conduction system physiology. Our long-term goals are to leverage these discoveries for therapeutic impact and to diminish the burden of diseases resulting from abnormal cardiac rhythmicity.
Collapse
Affiliation(s)
- GLENN I. FISHMAN
- Correspondence and reprint requests: Glenn I. Fishman, MD, NYU School of Medicine, Science Building, Room 717, 435 East 30th Street, New York, NY 10016212-263-3967212-263-3972
| |
Collapse
|
42
|
Daniel LL, Yang T, Kroncke B, Hall L, Stroud D, Roden DM. SCN5A variant R222Q generated abnormal changes in cardiac sodium current and action potentials in murine myocytes and Purkinje cells. Heart Rhythm 2019; 16:1676-1685. [PMID: 31125670 PMCID: PMC6825529 DOI: 10.1016/j.hrthm.2019.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The cardiac sodium channel (SCN5A) mutation R222Q neutralizes a positive charge in the domain I voltage sensor. Mutation carriers display very frequent ectopy and dilated cardiomyopathy. OBJECTIVES To describe the effect of SCN5A R222Q on murine myocyte and Purkinje fiber electrophysiology, and identify underlying mechanisms. METHODS We generated mice carrying humanized wild-type (H) and mutant (RQ) SCN5A channels. We characterized whole-heart and isolated ventricular and Purkinje myocyte properties. RESULTS RQ/RQ mice were not viable. INa from RQ/H ventricular myocytes displayed increased "window current" and hyperpolarizing shifts in both inactivation and activation compared to H/H, as previously reported in heterologous expression systems. Surprisingly, action potentials were markedly abbreviated in RQ/H myocytes (action potential durations at 90% repolarization: 12.6 ± 1.3 ms vs 29.1 ± 1.0 ms in H/H, P < .01, n = 10 each). We identified a large [K+]o-dependent outward gating pore current in RQ/H but not H/H myocytes, and decreasing [K+]o elicited early afterdepolarizations (EADs) and triggered activity in isolated myocytes and ectopic beats in whole hearts. Further, RQ/H Purkinje cells displayed striking, consistent low-voltage EADs. In vivo, however, RQ/H mice displayed little ectopy and contractile function was normal. CONCLUSION While SCN5A R222Q increases plateau inward sodium current, action potentials were unexpectedly shortened, likely reflecting an outward gating-pore current. Low extracellular potassium increased this pore current, and was arrhythmogenic in vitro and ex vivo.
Collapse
Affiliation(s)
- Laura L Daniel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tao Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brett Kroncke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynn Hall
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dina Stroud
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
43
|
Raghunathan S, Islas JF, Mistretta B, Iyer D, Shi L, Gunaratne PH, Ko G, Schwartz RJ, McConnell BK. Conversion of human cardiac progenitor cells into cardiac pacemaker-like cells. J Mol Cell Cardiol 2019; 138:12-22. [PMID: 31678351 DOI: 10.1016/j.yjmcc.2019.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 01/01/2023]
Abstract
We used a screening strategy to test for reprogramming factors for the conversion of human cardiac progenitor cells (CPCs) into Pacemaker-like cells. Human transcription factors SHOX2, TBX3, TBX5, TBX18, and the channel protein HCN2, were transiently induced as single factors and in trio combinations into CPCs, first transduced with the connexin 30.2 (CX30.2) mCherry reporter. Following screens for reporter CX30.2 mCherry gene activation and FACS enrichment, we observed the definitive expression of many pacemaker specific genes; including, CX30.2, KCNN4, HCN4, HCN3, HCN1, and SCN3b. These findings suggest that the SHOX2, HCN2, and TBX5 (SHT5) combination of transcription factors is a much better candidate in driving the CPCs into Pacemaker-like cells than other combinations and single transcription factors. Additionally, single-cell RNA sequencing of SHT5 mCherry+ cells revealed cellular enrichment of pacemaker specific genes including TBX3, KCNN4, CX30.2, and BMP2, as well as pacemaker specific potassium and calcium channels (KCND2, KCNK2, and CACNB1). In addition, similar to human and mouse sinoatrial node (SAN) studies, we also observed the down-regulation of NKX2.5. Patch-clamp recordings of the converted Pacemaker-like cells exhibited HCN currents demonstrated the functional characteristic of pacemaker cells. These studies will facilitate the development of an optimal Pacemaker-like cell-based therapy within failing hearts through the recovery of SAN dysfunction.
Collapse
Affiliation(s)
- Suchi Raghunathan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5037, USA
| | - Jose Francisco Islas
- Department of Biochemistry and Molecular Medicine, Autonomous University of Nuevo León, Monterrey, Mexico
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Dinakar Iyer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Gladys Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5037, USA.
| |
Collapse
|
44
|
Abstract
The rate and rhythm of heart muscle contractions are coordinated by the cardiac conduction system (CCS), a generic term for a collection of different specialized muscular tissues within the heart. The CCS components initiate the electrical impulse at the sinoatrial node, propagate it from atria to ventricles via the atrioventricular node and bundle branches, and distribute it to the ventricular muscle mass via the Purkinje fibre network. The CCS thereby controls the rate and rhythm of alternating contractions of the atria and ventricles. CCS function is well conserved across vertebrates from fish to mammals, although particular specialized aspects of CCS function are found only in endotherms (mammals and birds). The development and homeostasis of the CCS involves transcriptional and regulatory networks that act in an embryonic-stage-dependent, tissue-dependent, and dose-dependent manner. This Review describes emerging data from animal studies, stem cell models, and genome-wide association studies that have provided novel insights into the transcriptional networks underlying CCS formation and function. How these insights can be applied to develop disease models and therapies is also discussed.
Collapse
|
45
|
Vincentz JW, Firulli BA, Toolan KP, Arking DE, Sotoodehnia N, Wan J, Chen PS, de Gier-de Vries C, Christoffels VM, Rubart-von der Lohe M, Firulli AB. Variation in a Left Ventricle-Specific Hand1 Enhancer Impairs GATA Transcription Factor Binding and Disrupts Conduction System Development and Function. Circ Res 2019; 125:575-589. [PMID: 31366290 DOI: 10.1161/circresaha.119.315313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE The ventricular conduction system (VCS) rapidly propagates electrical impulses through the working myocardium of the ventricles to coordinate chamber contraction. GWAS (Genome-wide association studies) have associated nucleotide polymorphisms, most are located within regulatory intergenic or intronic sequences, with variation in VCS function. Two highly correlated polymorphisms (r2>0.99) associated with VCS functional variation (rs13165478 and rs13185595) occur 5' to the gene encoding the basic helix-loop-helix transcription factor HAND1 (heart- and neural crest derivatives-expressed protein 1). OBJECTIVE Here, we test the hypothesis that these polymorphisms influence HAND1 transcription thereby influencing VCS development and function. METHODS AND RESULTS We employed transgenic mouse models to identify an enhancer that is sufficient for left ventricle (LV) cis-regulatory activity. Two evolutionarily conserved GATA transcription factor cis-binding elements within this enhancer are bound by GATA4 and are necessary for cis-regulatory activity, as shown by in vitro DNA binding assays. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated deletion of this enhancer dramatically reduces Hand1 expression solely within the LV but does not phenocopy previously published mouse models of cardiac Hand1 loss-of-function. Electrophysiological and morphological analyses reveals that mice homozygous for this deleted enhancer display a morphologically abnormal VCS and a conduction system phenotype consistent with right bundle branch block. Using 1000 Genomes Project data, we identify 3 additional single nucleotide polymorphisms (SNPs), located within the Hand1 LV enhancer, that compose a haplotype with rs13165478 and rs13185595. One of these SNPs, rs10054375, overlaps with a critical GATA cis-regulatory element within the Hand1 LV enhancer. This SNP, when tested in electrophoretic mobility shift assays, disrupts GATA4 DNA-binding. Modeling 2 of these SNPs in mice causes diminished Hand1 expression and mice present with abnormal VCS function. CONCLUSIONS Together, these findings reveal that SNP rs10054375, which is located within a necessary and sufficient LV-specific Hand1 enhancer, exhibits reduces GATA DNA-binding in electrophoretic mobility shift assay, and this enhancer in total, is required for VCS development and function in mice and perhaps humans.
Collapse
Affiliation(s)
- Joshua W Vincentz
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Beth A Firulli
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Kevin P Toolan
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (D.E.A.)
| | - Nona Sotoodehnia
- Department of Epidemiology, Division of Cardiology, University of Washington, Seattle (N.S.)
| | - Juyi Wan
- Division of Cardiology, Department of Medicine, Krannert Institute of Cardiology, Indianapolis (J.W., P.-S.C.).,Department of Cardiothoracic Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China (J.W.)
| | - Peng-Sheng Chen
- Division of Cardiology, Department of Medicine, Krannert Institute of Cardiology, Indianapolis (J.W., P.-S.C.)
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, the Netherlands (C.d.G.V., V.M.C.)
| | - Vincent M Christoffels
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, the Netherlands (C.d.G.V., V.M.C.)
| | - Michael Rubart-von der Lohe
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Anthony B Firulli
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| |
Collapse
|
46
|
Goodyer WR, Beyersdorf BM, Paik DT, Tian L, Li G, Buikema JW, Chirikian O, Choi S, Venkatraman S, Adams EL, Tessier-Lavigne M, Wu JC, Wu SM. Transcriptomic Profiling of the Developing Cardiac Conduction System at Single-Cell Resolution. Circ Res 2019; 125:379-397. [PMID: 31284824 DOI: 10.1161/circresaha.118.314578] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE The cardiac conduction system (CCS) consists of distinct components including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers. Despite an essential role for the CCS in heart development and function, the CCS has remained challenging to interrogate because of inherent obstacles including small cell numbers, large cell-type heterogeneity, complex anatomy, and difficulty in isolation. Single-cell RNA-sequencing allows for genome-wide analysis of gene expression at single-cell resolution. OBJECTIVE Assess the transcriptional landscape of the entire CCS at single-cell resolution by single-cell RNA-sequencing within the developing mouse heart. METHODS AND RESULTS Wild-type, embryonic day 16.5 mouse hearts (n=6 per zone) were harvested and 3 zones of microdissection were isolated, including: Zone I-sinoatrial node region; Zone II-atrioventricular node/His region; and Zone III-bundle branch/Purkinje fiber region. Tissue was digested into single-cell suspensions, cells isolated, mRNA reverse transcribed, and barcoded before high-throughput sequencing and bioinformatics analyses. Single-cell RNA-sequencing was performed on over 22 000 cells, and all major cell types of the murine heart were successfully captured including bona fide clusters of cells consistent with each major component of the CCS. Unsupervised weighted gene coexpression network analysis led to the discovery of a host of novel CCS genes, a subset of which were validated using fluorescent in situ hybridization as well as whole-mount immunolabeling with volume imaging (iDISCO+) in 3 dimensions on intact mouse hearts. Further, subcluster analysis unveiled isolation of distinct CCS cell subtypes, including the clinically relevant but poorly characterized transitional cells that bridge the CCS and surrounding myocardium. CONCLUSIONS Our study represents the first comprehensive assessment of the transcriptional profiles from the entire CCS at single-cell resolution and provides a characterization in the context of development and disease.
Collapse
Affiliation(s)
- William R Goodyer
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA.,Department of Pediatrics (W.R.G., S.M.W.), Stanford University, CA
| | - Benjamin M Beyersdorf
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA.,Department of Cardiovascular Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich at the Technical University of Munich, Germany (B.M.B.)
| | - David T Paik
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA
| | - Lei Tian
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA
| | - Guang Li
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA.,Department of Developmental Biology, University of Pittsburgh School of Medicine, PA (G.L.)
| | - Jan W Buikema
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA.,Department of Cardiology, Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, The Netherlands (J.W.B.)
| | - Orlando Chirikian
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA.,Department of Molecular, Cellular, and Developmental Biology, UC Santa Barbara, CA (O.C.)
| | - Shannon Choi
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA
| | - Sneha Venkatraman
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA
| | - Eliza L Adams
- Department of Biology (E.L.A., M.T.-L.), Stanford University, CA
| | | | - Joseph C Wu
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA.,Department of Medicine, Cardiovascular Medicine (J.C.W., S.M.W.), Stanford University School of Medicine, CA
| | - Sean M Wu
- From the Cardiovascular Institute (W.R.G., B.M.B., D.T.P., L.T., G.L., J.W.B., O.C., S.C., S.V., J.C.W., S.M.W.), Stanford University School of Medicine, CA.,Department of Medicine, Cardiovascular Medicine (J.C.W., S.M.W.), Stanford University School of Medicine, CA.,Department of Pediatrics (W.R.G., S.M.W.), Stanford University, CA
| |
Collapse
|
47
|
Li H, Xu J, Shen ZS, Wang GM, Tang M, Du XR, Lv YT, Wang JJ, Zhang FF, Qi Z, Zhang Z, Sokabe M, Tang QY. The neuropeptide GsMTx4 inhibits a mechanosensitive BK channel through the voltage-dependent modification specific to mechano-gating. J Biol Chem 2019; 294:11892-11909. [PMID: 31201274 DOI: 10.1074/jbc.ra118.005511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
The cardiac mechanosensitive BK (Slo1) channels are gated by Ca2+, voltage, and membrane stretch. The neuropeptide GsMTx4 is a selective inhibitor of mechanosensitive (MS) channels. It has been reported to suppress stretch-induced cardiac fibrillation in the heart, but the mechanism underlying the specificity and even the targeting channel(s) in the heart remain elusive. Here, we report that GsMTx4 inhibits a stretch-activated BK channel (SAKcaC) in the heart through a modulation specific to mechano-gating. We show that membrane stretching increases while GsMTx4 decreases the open probability (P o) of SAKcaC. These effects were mostly abolished by the deletion of the STREX axis-regulated (STREX) exon located between RCK1 and RCK2 domains in BK channels. Single-channel kinetics analysis revealed that membrane stretch activates SAKcaC by prolonging the open-time duration (τO) and shortening the closed-time constant (τC). In contrast, GsMTx4 reversed the effects of membrane stretch, suggesting that GsMTx4 inhibits SAKcaC activity by interfering with mechano-gating of the channel. Moreover, GsMTx4 exerted stronger efficacy on SAKcaC under membrane-hyperpolarized/resting conditions. Molecular dynamics simulation study revealed that GsMTx4 appeared to have the ability to penetrate deeply within the bilayer, thus generating strong membrane deformation under the hyperpolarizing/resting conditions. Immunostaining results indicate that BK variants containing STREX are also expressed in mouse ventricular cardiomyocytes. Our results provide common mechanisms of peptide actions on MS channels and may give clues to therapeutic suppression of cardiac arrhythmias caused by excitatory currents through MS channels under hyper-mechanical stress in the heart.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zhong-Shan Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Guang-Ming Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Mingxi Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang-Rong Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yan-Tian Lv
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jing-Jing Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiamen 361102, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Masahiro Sokabe
- ICORP Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466-8550, Japan .,Mechanobiology Laboratory, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan.,Department of Physiology, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China .,ICORP Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466-8550, Japan
| |
Collapse
|
48
|
van Eif VWW, Stefanovic S, van Duijvenboden K, Bakker M, Wakker V, de Gier-de Vries C, Zaffran S, Verkerk AO, Boukens BJ, Christoffels VM. Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development 2019; 146:dev.173161. [PMID: 30936179 DOI: 10.1242/dev.173161] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/20/2019] [Indexed: 02/03/2023]
Abstract
The rate of contraction of the heart relies on proper development and function of the sinoatrial node, which consists of a small heterogeneous cell population, including Tbx3+ pacemaker cells. Here, we have isolated and characterized the Tbx3+ cells from Tbx3 +/Venus knock-in mice. We studied electrophysiological parameters during development and found that Venus-labeled cells are genuine Tbx3+ pacemaker cells. We analyzed the transcriptomes of late fetal FACS-purified Tbx3+ sinoatrial nodal cells and Nppb-Katushka+ atrial and ventricular chamber cardiomyocytes, and identified a sinoatrial node-enriched gene program, including key nodal transcription factors, BMP signaling and Smoc2, the disruption of which in mice did not affect heart rhythm. We also obtained the transcriptomes of the sinoatrial node region, including pacemaker and other cell types, and right atrium of human fetuses, and found a gene program including TBX3, SHOX2, ISL1 and HOX family members, and BMP and NOTCH signaling components conserved between human and mouse. We conclude that a conserved gene program characterizes the sinoatrial node region and that the Tbx3 +/Venus allele provides a reliable tool for visualizing the sinoatrial node, and studying its development and function.
Collapse
Affiliation(s)
- Vincent W W van Eif
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Sonia Stefanovic
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Karel van Duijvenboden
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Martijn Bakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Stéphane Zaffran
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Arie O Verkerk
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
49
|
Flores DJ, Duong T, Brandenberger LO, Mitra A, Shirali A, Johnson JC, Springer D, Noguchi A, Yu ZX, Ebert SN, Ludwig A, Knollmann BC, Levin MD, Pfeifer K. Conditional ablation and conditional rescue models for Casq2 elucidate the role of development and of cell-type specific expression of Casq2 in the CPVT2 phenotype. Hum Mol Genet 2019; 27:1533-1544. [PMID: 29452352 DOI: 10.1093/hmg/ddy060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/12/2018] [Indexed: 01/30/2023] Open
Abstract
Cardiac calsequestrin (Casq2) associates with the ryanodine receptor 2 channel in the junctional sarcoplasmic reticulum to regulate Ca2+ release into the cytoplasm. Patients carrying mutations in CASQ2 display low resting heart rates under basal conditions and stress-induced polymorphic ventricular tachycardia (CPVT). In this study, we generate and characterize novel conditional deletion and conditional rescue mouse models to test the influence of developmental programs on the heart rate and CPVT phenotypes. We also compare the requirements for Casq2 function in the cardiac conduction system (CCS) and in working cardiomyocytes. Our study shows that the CPVT phenotype is dependent upon concurrent loss of Casq2 function in both the CCS and in working cardiomyocytes. Accordingly, restoration of Casq2 in only the CCS prevents CPVT. In addition, occurrence of CPVT is independent of the developmental history of Casq2-deficiency. In contrast, resting heart rate depends upon Casq2 gene activity only in the CCS and upon developmental history. Finally, our data support a model where low basal heart rate is a significant risk factor for CPVT.
Collapse
Affiliation(s)
- Daniel J Flores
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - ThuyVy Duong
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luke O Brandenberger
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apratim Mitra
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aditya Shirali
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - John C Johnson
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven N Ebert
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Andreas Ludwig
- Institut fuer Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark D Levin
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Kvasilova A, Gregorovicova M, Kundrat M, Sedmera D. HNK‐1 in Morphological Study of Development of the Cardiac Conduction System in Selected Groups of Sauropsida. Anat Rec (Hoboken) 2018; 302:69-82. [DOI: 10.1002/ar.23925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Alena Kvasilova
- Institute of Anatomy, Charles University Prague Czech Republic
| | - Martina Gregorovicova
- Institute of Anatomy, Charles University Prague Czech Republic
- Institute of Physiology, The Czech Academy of Sciences Prague Czech Republic
| | - Martin Kundrat
- Center for Interdisciplinary Biosciences, Innovation and Technology Park, University of Pavol Jozef Safarik Kosice Slovak Republic
| | - David Sedmera
- Institute of Anatomy, Charles University Prague Czech Republic
- Institute of Physiology, The Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|