1
|
Kakarla S, Aswathy MJ, Sreelekshmi MP, Shabeer MP, Namboodiri N. Beyond the blueprint: decoding calmodulinopathy-a case report showcasing the utility of multifaceted treatments. Eur Heart J Case Rep 2025; 9:ytaf140. [PMID: 40191639 PMCID: PMC11969334 DOI: 10.1093/ehjcr/ytaf140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
Background Calmodulinopathies are adrenergically-induced life-threatening arrhythmias. Available therapies are disquietingly insufficient, especially for CALM-LQTS (calmodulinopathy-associated long QT syndrome). This case report illustrates a novel mutation in CALM-LQTS and its response to multimodality treatment strategies. Case summary The proband was the first child born to a nonconsanguineous Indian couple, a 26-year-old woman and a 30-year-old man. The child was delivered prematurely, and at birth, a functional 2:1 atrioventricular block was noted with sinus bradycardia with a corrected QT by Bazzet's of 716 ms. Clinical exome sequencing of the proband revealed a novel missense variant c.287A>G in exon 5 of the CALM3 gene in a heterozygous state, resulting in an Asp96Gly change. The OMIM phenotype associated with it is long QT syndrome 16 (#618782). Despite receiving a dose of 4.5 mg/kg/day of propranolol, the child still had a persistent long QTc. Mexiletine was started at the trial dose of 1.5 mg/kg/day, and after 1 h, QTc was reduced to 507 ms from 560 ms. After a left-cardiac sympathectomy, he remains asymptomatic after 1.3 years of follow-up with a QTc value of 490 ms. Discussion CALM3 pathogenic variants are gain-of-function variants mainly affecting amino acids residing in the Ca2-binding loops. Earlier data suggested the role of the Nav1.5 channel in leading to persistent Na+ leaks resulting in LQTS. However, they only focused on LQTS-CALM1 and CALM2 models and did not include CALM3-related genes. Despite similarities, the precise impact of CaM on Nav1.5 channels still needs to be defined as CaV1.2. The exact role of mexiletine is not fully understood.
Collapse
Affiliation(s)
- Saikiran Kakarla
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Medical College Junction, Thiruvananthapuram, Kerala 695011, India
| | - Madhusoodanan Jalaja Aswathy
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Medical College Junction, Thiruvananthapuram, Kerala 695011, India
| | - Madhusoodanan Pillai Sreelekshmi
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Medical College Junction, Thiruvananthapuram, Kerala 695011, India
| | - Machilakath Panangandi Shabeer
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Medical College Junction, Thiruvananthapuram, Kerala 695011, India
| | - Narayanan Namboodiri
- Department of Pediatrics, IQRAA International Hospital and Research Centre, Malaparamba, Calicut, Kerala 673009, India
| |
Collapse
|
2
|
Gupta N, Richards EMB, Morris VS, Morris R, Wadmore K, Held M, McCormick L, Prakash O, Dart C, Helassa N. Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca 2+ channel (Ca v1.2) and reduce Ca 2+-dependent inactivation. Acta Physiol (Oxf) 2025; 241:e14276. [PMID: 39825574 PMCID: PMC11742489 DOI: 10.1111/apha.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 11/19/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
AIM Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship. Our study focuses on the L-type calcium channel Cav1.2, a crucial component of the ventricular action potential and excitation-contraction coupling. METHODS We used circular dichroism (CD), 1H-15N HSQC NMR, and trypsin digestion to determine the structural and stability properties of CaM variants. The affinity of CaM for Ca2+ and interaction of Ca2+/CaM with Cav1.2 (IQ and NSCaTE domains) were investigated using intrinsic tyrosine fluorescence and isothermal titration calorimetry (ITC), respectively. The effect of CaM variants of Cav1.2 activity was determined using HEK293-Cav1.2 cells (B'SYS) and whole-cell patch-clamp electrophysiology. RESULTS Using a combination of protein biophysics and structural biology, we show that the disease-associated mutations D131E and Q135P mutations alter apo/CaM structure and stability. In the Ca2+-bound state, D131E and Q135P exhibited reduced Ca2+ binding affinity, significant structural changes, and altered interaction with Cav1.2 domains (increased affinity for Cav1.2-IQ and decreased affinity for Cav1.2-NSCaTE). We show that the mutations dramatically impair Ca2+-dependent inactivation (CDI) of Cav1.2, which would contribute to abnormal Ca2+ influx, leading to disrupted Ca2+ handling, characteristic of cardiac arrhythmia syndromes. CONCLUSIONS These findings provide insights into the molecular mechanisms behind arrhythmia caused by calmodulin mutations, contributing to our understanding of cardiac syndromes at a molecular and cellular level.
Collapse
Affiliation(s)
- Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ella M. B. Richards
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Vanessa S. Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
3
|
Zhang C, Shao D, Zheng X, Hao L. The mechanism of LQTS related CaM mutation E141G interfering with Ca V1.2 channels function through its C-lobe. J Physiol Biochem 2025; 81:185-197. [PMID: 39699847 DOI: 10.1007/s13105-024-01064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Mutations in the CALM1-3 genes, which encode calmodulin (CaM), have been reported in clinical cases of long QT syndrome (LQTS). Specifically, the CaM mutant E141G (CaME141G) in the variant CALM1 gene has been identified as a causative factor in LQTS. This mutation disrupts the normal Ca2+-dependent inactivation (CDI) function of CaV1.2 channels. However, it is still unclear how CaME141G interferes with the regulatory role of wild-type (WT) CaM on CaV1.2 channels and leads to abnormal CDI. A CaM molecule contains two lobes with similar structure, the N-lobe and the C-lobe. In this study, a CaM-truncated C-lobe mutant E141G (C-lobeE141G) was engineered to exclude the impact of the unmutated N-lobe. Our findings revealed that at low Ca2+ concentration ([Ca2+]), the binding of C-lobeE141G to the preIQ, IQ and N-terminus (NT) of CaV1.2 channels has higher binding capacity (Bmax: 0.17, 0.22, 0.13) compared with those of WT C-lobe (Bmax: 0.04, 0.14, 0.11) in GST pull-down assay. With an increase in [Ca2+], the Ca2+-dependency for C-lobeE141G binding to CaV1.2 channels was impaired. Moreover, C-lobeE141G induced the relative channel activity to 240.58 ± 51.37% at resting [Ca2+], but it was unable to diminish the channel activity at high [Ca2+] even in the presence of WT N-lobe, which may be responsible for the abnormal CDI of CaV1.2 channels affected by the LQTS-related CaM mutation. Our research provides preliminary insights into the mechanism by which the CaM mutation interferes with CaV1.2 channels function through its C-lobe.
Collapse
Affiliation(s)
- Chenyang Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xi Zheng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Kleynerman A, Rybova J, McKillop WM, Dlugi TA, Faber ML, Fuller M, O'Meara CC, Medin JA. Cardiac dysfunction and altered gene expression in acid ceramidase-deficient mice. Am J Physiol Heart Circ Physiol 2025; 328:H141-H156. [PMID: 39665198 DOI: 10.1152/ajpheart.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Farber disease (FD) is an ultrarare, autosomal-recessive, lysosomal storage disorder attributed to ASAH1 gene mutations. FD is characterized by acid ceramidase (ACDase) deficiency and the accumulation of ceramide in various tissues. Classical FD patients typically manifest symptoms including lipogranulomatosis, respiratory complications, and neurological deficits, often leading to mortality during infancy. Cardiac abnormalities in several FD patients have been described; however, a detailed examination of cardiac pathology in FD has not been conducted. Here we report pronounced cardiac pathophysiology in a new P361R-FD mouse model of ACDase deficiency that we generated. P361R-FD mice displayed smaller hearts, altered cardiomyocyte architecture, disrupted tissue composition, and inclusion-containing macrophages. Echocardiography suggested ventricular atrophy, valve dysfunction, decreased cardiac output, and lowered stroke volumes. Troponin I was significantly elevated in P361R-FD mice. Hearts from P361R-FD mice were found to have increased ceramide, cholesterol, and other lipids. Histopathological analysis of heart tissue from neonatal P361R-FD mice revealed lysosomal disruption as early as postnatal day 1. Finally, we report cardiac conduction, striated muscle contraction, and sphingolipid homeostasis gene expression differences during cardiac development in P361R-FD mice. In summary, we investigated the heart in a mouse model of ACDase deficiency, demonstrating that ACDase deficiency induced lysosomal dysfunction, sphingolipid and cholesterol imbalances, tissue disruption, and significant inflammation, leading to impaired cardiac function in these animals.NEW & NOTEWORTHY This is the first characterization of cardiac function and histopathology in a mouse model of acid ceramidase deficiency. We report physiologic disruption suggestive of heart failure with preserved ejection fraction, progressive histopathology, and aberrant gene expression. We found significant lysosomal disruption at both neonatal and adult ages, suggesting a crucial role of acid ceramidase, and potentially ceramides, in cardiac development and function.
Collapse
Affiliation(s)
- Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Theresa A Dlugi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mary L Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide Medical School and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Caitlin C O'Meara
- Department of Physiology, Cardiovascular Center, and Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
6
|
Wang S, Du J, Shen Q, Haas C, Neubauer J. Interpretation of molecular autopsy findings in 45 sudden unexplained death cases: from coding region to untranslated region. Int J Legal Med 2025; 139:15-25. [PMID: 39266800 PMCID: PMC11732962 DOI: 10.1007/s00414-024-03329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Sudden unexplained death (SUD) can affect apparently healthy adolescents and young adults with no prior clinical symptoms and no clear diagnostic findings at autopsy. Although primary cardiac arrhythmias have been shown to be the direct cause of death in the majority of SUD cases, the genetic predisposition contributing to SUD remains incompletely understood. Currently, molecular autopsy is considered to be an effective diagnostic tool in the multidisciplinary management of SUD, but the analysis focuses mainly on the coding region and the significance of many identified variants remains unclear. Recent studies have demonstrated the strong association between human disease and genetic variants in untranslated regions (UTRs), highlighting the potential role of UTR variants in the genetic predisposition to SUD. In this study, we searched for UTR variants with likely functional effects in the exome data of 45 SUD cases. Among 244 genes associated with cardiac diseases, three candidate variants with high confidence of pathogenicity were identified in the UTRs of SCO2, CALM2 and TBX3 based on a rigorous filtering strategy. A functional assay further validated the effect of these candidate variants on gene transcriptional activity. In addition, the constraint metrics, intolerance indexes, and dosage sensitivity scores of genes affected by the candidate variants were considered when estimating the consequence of aberrant gene expression. In conclusion, our study presents a practical strategy for UTR variant prioritization and functional annotation, which could improve the interpretation of molecular autopsy findings in SUD cohorts.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianghua Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Zhao J, Qin X, Yang L, Guo H, Chen S, Tian K, Guo Q, Zhao W, Zhang P, Jia Z, Yang Z, Kong D, Zhang W. Application of TCM network pharmacology and experimental verification to explore the mechanism of kaempferol against epilepsy. Brain Res Bull 2025; 220:111150. [PMID: 39608614 DOI: 10.1016/j.brainresbull.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/12/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Kaempferol (KF), the main active ingredient in identifying the authenticity of safflower, has a variety of pharmacological activities and neuroprotective effects. However, the mechanism of KF in the treatment of epilepsy remains unclear. This study aimed to investigate the protective effects of KF on epilepsy and its related mechanisms. METHODS Network pharmacology was used to explore the targets and mechanisms of safflower antiepileptic action. The protective effect of KF on epilepsy was assessed in the behavior and tissues of epileptic mice. Additionally, the impact of KF on the excitability and calcium transients of rat cortical neurons and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor (AMPAR) were investigated using patch clamp and calcium imaging techniques. RESULTS Network pharmacology indicated safflower could be involved in calcium signaling pathways and calcium channel inhibitor activity. Experimental validation demonstrated that KF delayed seizure onset and mitigated neuronal damage in the prefrontal cortex of mice. It also reduced neuronal excitability, as indicated by action potential parameters, and suppressed Glutamate (Glu)-induced calcium transients. In tsA201 cells, KF inhibited AMPAR-mediated currents, suggesting a role in regulating [Ca2+]i homeostasis. CONCLUSION These results indicate that KF's anticonvulsant properties may arise from its neuroprotection against cell injury, edema, and necrosis, its reduction of neuronal hyperexcitability, and its prevention of calcium-induced cytotoxicity, potentially involving AMPAR modulation. This study positions KF as a promising candidate for epilepsy therapy, offering a scientific foundation for its clinical investigation.
Collapse
Affiliation(s)
- Jiaojiao Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Lei Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Han Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Keying Tian
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Qinghui Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Wenya Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China.
| |
Collapse
|
8
|
Saravanan S, Sasikumar N, Issacs TR, Kumar RK, Jahangir A, Chakraborty P. Therapeutic benefits of phenytoin in calmodulinopathy: A rare and challenging case report. Heart Rhythm 2024:S1547-5271(24)03512-4. [PMID: 39477194 DOI: 10.1016/j.hrthm.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Affiliation(s)
| | | | | | | | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, Aurora Sinai/Aurora St Luke's Medical Centers, Advocate Aurora Health, Milwaukee, Wisconsin
| | - Praloy Chakraborty
- Peter Munk Cardiac Center, Division of Cardiology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Guo S, Zha L. Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases. Genes (Basel) 2024; 15:1368. [PMID: 39596569 PMCID: PMC11593610 DOI: 10.3390/genes15111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary arrhythmias, as a class of cardiac electrophysiologic abnormalities caused mainly by genetic mutations, have gradually become one of the most important causes of sudden cardiac death in recent years. With the continuous development of genetics and molecular biology techniques, the study of inherited arrhythmias has made remarkable progress in the past few decades. More and more disease-causing genes are being identified, and there have been advances in the application of genetic testing for disease screening in individuals with disease and their family members. Determining more refined disease prevention strategies and therapeutic regimens that are tailored to the genetic characteristics and molecular pathogenesis of different groups or individuals forms the basis of individualized treatment. Understanding advances in the study of inherited arrhythmias provides important clues to better understand their pathogenesis and clinical features. This article provides a review of the pathophysiologic alterations caused by genetic variants and their relationship to disease phenotypes, including mainly cardiac ion channelopathies and cardiac conduction disorders.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Schwartz PJ, Crotti L, Nyegaard M, Overgaard MT. Role of Calmodulin in Cardiac Disease: Insights on Genotype and Phenotype. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004542. [PMID: 39247953 DOI: 10.1161/circgen.124.004542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Calmodulin, a protein critically important for the regulation of all major cardiac ion channels, is the quintessential cellular calcium sensor and plays a key role in preserving cardiac electrical stability. Its unique importance is highlighted by the presence of 3 genes in 3 different chromosomes encoding for the same protein and by their extreme conservation. Indeed, all 3 calmodulin (CALM) genes are among the most constrained genes in the human genome, that is, the observed variants are much less than expected by chance. Not surprisingly, CALM variants are poorly tolerated and accompany significant clinical phenotypes, of which the most important are those associated with increased risk for life-threatening arrhythmias. Here, we review the current knowledge about calmodulin, its specific physiological, structural, and functional characteristics, and its importance for cardiovascular disease. Given our role in the development of this knowledge, we also share some of our views about currently unanswered questions, including the rational approaches to the clinical management of the affected patients. Specifically, we present some of the most critical information emerging from the International Calmodulinopathy Registry, which we established 10 years ago. Further progress clearly requires deep phenotypic information on as many carriers as possible through international contributions to the registry, in order to expand our knowledge about Calmodulinopathies and guide clinical management.
Collapse
Affiliation(s)
- Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Mette Nyegaard
- Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark (M.N.)
- Department of Health Science and Technology (M.N.), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
11
|
Hamrick SK, Kim CSJ, Tester DJ, Gencarelli M, Tobert KE, Gluscevic M, Ackerman MJ. Single Construct Suppression and Replacement Gene Therapy for the Treatment of All CALM1-, CALM2-, and CALM3-Mediated Arrhythmia Disorders. Circ Arrhythm Electrophysiol 2024; 17:e012036. [PMID: 39069900 DOI: 10.1161/circep.123.012036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND CaM (calmodulin)-mediated long-QT syndrome is a genetic arrhythmia disorder (calmodulinopathies) characterized by a high prevalence of life-threatening ventricular arrhythmias occurring early in life. Three distinct genes (CALM1, CALM2, and CALM3) encode for the identical CaM protein. Conventional pharmacotherapies fail to adequately protect against potentially lethal cardiac events in patients with calmodulinopathy. METHODS Five custom-designed CALM1-, CALM2-, and CALM3-targeting short hairpin RNAs (shRNAs) were tested for knockdown (KD) efficiency using TSA201 cells and reverse transcription-quantitative polymerase chain reaction. A dual-component suppression and replacement (SupRep) CALM gene therapy (CALM-SupRep) was created by cloning into a single construct CALM1-, CALM2-, and CALM3-specific shRNAs that produce KD (suppression) of each respective gene and a shRNA-immune CALM1 cDNA (replacement). CALM1-F142L, CALM2-D130G, and CALM3-D130G induced pluripotent stem cell-derived CMs were generated from patients with CaM-mediated long-QT syndrome. A voltage-sensing dye was used to measure action potential duration at 90% repolarization (APD90). RESULTS Following shRNA KD efficiency testing, a candidate shRNA was identified for CALM1 (86% KD), CALM2 (71% KD), and CALM3 (94% KD). The APD90 was significantly prolonged in CALM2-D130G (647±9 ms) compared with CALM2-WT (359±12 ms; P<0.0001). Transfection with CALM-SupRep shortened the average APD90 of CALM2-D130G to 457±19 ms (66% attenuation; P<0.0001). Additionally, transfection with CALM-SupRep shortened the APD90 of CALM1-F142L (665±9 to 410±15 ms; P<0.0001) and CALM3-D130G (978±81 to 446±6 ms; P<0.001). CONCLUSIONS We provide the first proof-of-principle suppression-replacement gene therapy for CaM-mediated long-QT syndrome. The CALM-SupRep gene therapy shortened the pathologically prolonged APD90 in CALM1-, CALM2-, and CALM3-variant CaM-mediated long-QT syndrome induced pluripotent stem cell-derived CM lines. The single CALM-SupRep construct may be able to treat all calmodulinopathies, regardless of which of the 3 CaM-encoding genes are affected.
Collapse
Affiliation(s)
- Samantha K Hamrick
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - C S John Kim
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - Manuela Gencarelli
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - Kathryn E Tobert
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - Martina Gluscevic
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
- Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic) (M.J.A.), Mayo Clinic, Rochester, MN
- Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Killen SAS, Strasburger JF. Diagnosis and Management of Fetal Arrhythmias in the Current Era. J Cardiovasc Dev Dis 2024; 11:163. [PMID: 38921663 PMCID: PMC11204159 DOI: 10.3390/jcdd11060163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Diagnosis and management of fetal arrhythmias have changed over the past 40-50 years since propranolol was first used to treat fetal tachycardia in 1975 and when first attempts were made at in utero pacing for complete heart block in 1986. Ongoing clinical trials, including the FAST therapy trial for fetal tachycardia and the STOP-BLOQ trial for anti-Ro-mediated fetal heart block, are working to improve diagnosis and management of fetal arrhythmias for both mother and fetus. We are also learning more about how "silent arrhythmias", like long QT syndrome and other inherited channelopathies, may be identified by recognizing "subtle" abnormalities in fetal heart rate, and while echocardiography yet remains the primary tool for diagnosing fetal arrhythmias, research efforts continue to advance the clinical envelope for fetal electrocardiography and fetal magnetocardiography. Pharmacologic management of fetal arrhythmias remains one of the most successful achievements of fetal intervention. Patience, vigilance, and multidisciplinary collaboration are key to successful diagnosis and treatment.
Collapse
Affiliation(s)
- Stacy A. S. Killen
- Thomas P. Graham Jr. Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Monroe Carell Jr. Children’s Hospital at Vanderbilt, 2200 Children’s Way, Suite 5230, Nashville, TN 37232, USA
| | - Janette F. Strasburger
- Division of Cardiology, Departments of Pediatrics and Biomedical Engineering, Children’s Wisconsin, Herma Heart Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
13
|
Caruso E, Farruggio S, Guccione P. Calmodulin mutation in long QT syndrome 15 associated with congenital heart defects further complicated by a functional 2:1 atrioventricular block: Management from foetal life to postpartum. Indian Pacing Electrophysiol J 2024; 24:150-154. [PMID: 38281621 PMCID: PMC11143731 DOI: 10.1016/j.ipej.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
We report a long QT syndrome 15 whose diagnosis was suspected during foetal life and confirmed at birth and was associated with congenital heart disease. Genetic testing revealed a rare mutation associated with the CALM2 gene. At 23 weeks of gestation, severe foetal sinus bradycardia (∼100 bpm) was detected. In the third trimester, the foetus developed severe right ventricular hypertrophy. At birth, the electrocardiogram showed a long QT interval of 640 ms, and after 1 hour, the newborn showed functional 2:1 atrioventricular block at ventricular rate of 50 bpm. After further pharmacological therapies, epicardial wires were surgically implanted for transient pacing in VVI mode at 90 bpm. Echocardiogram showed aneurysmatic left atrial appendage, dilated right segments, hypertrophied right ventricle, ostium secundum type atrial septal defect, and muscular ventricular septal defect. At two weeks of postpartum, a permanent dual-chamber pacemaker was implanted in the DDD mode and the patient was discharged with a prescription of beta-blockers and calcium therapy.
Collapse
Affiliation(s)
- Elio Caruso
- Mediterranean Pediatric Cardiology Center "Bambino Gesù", San Vincenzo Hospital, Taormina, ME, Italy
| | - Silvia Farruggio
- Mediterranean Pediatric Cardiology Center "Bambino Gesù", San Vincenzo Hospital, Taormina, ME, Italy.
| | - Paolo Guccione
- Mediterranean Pediatric Cardiology Center "Bambino Gesù", San Vincenzo Hospital, Taormina, ME, Italy
| |
Collapse
|
14
|
Qi J, Li H, Yang Y, Sun X, Wang J, Han X, Chu X, Sun Z, Chu L. Mechanistic insights into the ameliorative effects of hypoxia-induced myocardial injury by Corydalis yanhusuo total alkaloids: based on network pharmacology and experiment verification. Front Pharmacol 2024; 14:1275558. [PMID: 38273838 PMCID: PMC10808789 DOI: 10.3389/fphar.2023.1275558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Corydalis yanhusuo total alkaloids (CYTA) are the primary active ingredients in yanhusuo, known for their analgesic and cardioprotective effects. However, the mechanisms underlying the treatment of Myocardial ischemia (MI) with CYTA have not been reported. The purpose of this study was to explore the protective effect of CYTA on MI and its related mechanisms. Methods: A network pharmacology was employed to shed light on the targets and mechanisms of CYTA's action on MI. The protective effect of CYTA against hypoxia damage was evaluated in H9c2 cells. Furthermore, the effects of CYTA on L-type Ca2+ current (ICa-L), contractile force, and Ca2+ transient in cardiomyocytes isolated from rats were investigated using the patch clamp technique and IonOptix system. The network pharmacology revealed that CYTA could regulate oxidative stress, apoptosis, and calcium signaling. Cellular experiments demonstrated that CYTA decreased levels of CK, LDH, and MDA, as well as ROS production and Ca2+ concentration. Additionally, CYTA improved apoptosis and increased the activities of SOD, CAT, and GSH-Px, along with the levels of ATP and Ca2+-ATPase content and mitochondrial membrane potential. Moreover, CYTA inhibited ICa-L, cell contraction, and Ca2+ transient in cardiomyocytes. Results: These findings suggest that CYTA has a protective effect on MI by inhibiting oxidative stress, mitochondrial damage, apoptosis and Ca2+ overload. Discussion: The results prove that CYTA might be a potential natural compound in the field of MI treatment, and also provide a new scientific basis for the its utilization.
Collapse
Affiliation(s)
- Jiaying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Haoying Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xiaoqi Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianxin Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenqing Sun
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Sun Q, Xie Z, Wang F, Guo J, Yan X. Case report of a child with long QT syndrome type 14 caused by CALM1 gene mutation and literature review. Mol Genet Genomic Med 2024; 12:e2287. [PMID: 37905352 PMCID: PMC10767591 DOI: 10.1002/mgg3.2287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE To analyze the clinical and genetic characteristics of a patient with long QT syndrome type 14 (long QT syndrome-14, LQT14, OMIM # 616247) caused by a de novo CALM1 mutation. METHODS The clinical data of the patient were collected, next-generation sequencing technology was used to determine the exome gene sequence of the patient, and the suspected pathogenic locus was verified by Sanger sequencing. RESULTS A 5-year and 9-month-old girl was admitted to the hospital due to a syncopal episode. During the attack, the main symptoms were loss of consciousness, cyanosis of the face and lips, and weakness of limbs. The child had multiple seizures in the past, all of which occurred after emotional excitement and activity. She was diagnosed with epilepsy for more than 3 years, but the effect of antiepileptic treatment was not satisfactory. The electrocardiogram was normal in the past. A month ago, convulsions occurred again after exercise, and the electrocardiogram showed QTc 496 ms. The treadmill test showed a significant prolongation of QTc after exercise, and the genetic results suggested a new heterozygous variant of CALM1, c.395A>G; p. (Asp132Gly). Consequently, she was diagnosed with LQT14 and treated with propranolol. During a follow-up of 15 months, there were no seizures or syncope. CONCLUSIONS This patient had multiple episodes of convulsions or syncope after emotional stimulation or activity, with intermittent prolongation of the QTc on routine ECG, marked prolongation of the QTc after exercise, and T-wave alternans, which differed from the LQT14 phenotype caused by the previous CALM1 mutation.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of CardiologyChildren's Hospital Affiliated to Zhengzhou University, Zhengzhou Hospital of Beijing Children's HospitalZhengzhouChina
| | - Zhenhua Xie
- Henan Key Laboratory of Pediatric Inherited and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou University, Zhengzhou Hospital of Beijing Children's HospitalZhengzhouChina
| | - Fangjie Wang
- Department of CardiologyChildren's Hospital Affiliated to Zhengzhou University, Zhengzhou Hospital of Beijing Children's HospitalZhengzhouChina
| | - Jun Guo
- Beijing Key Laboratory for Genetics of Birth DefectsBeijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Xiaochen Yan
- Department of CardiologyChildren's Hospital Affiliated to Zhengzhou University, Zhengzhou Hospital of Beijing Children's HospitalZhengzhouChina
| |
Collapse
|
16
|
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
Affiliation(s)
- John W. Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Worawan B. Limpitikul
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Ivy E. Dick School of Medicine, University of Maryland, Baltimore, MD21210
| |
Collapse
|
17
|
Wong LC, Roses-Noguer F, Bueno A, Villabriga BB, Homfray T, Till J. Early-onset cardiac arrest, prolonged QT interval, and left ventricular hypertrophy: Phenotypic manifestations of a pathogenic de novo calmodulin variant. HeartRhythm Case Rep 2023; 9:858-862. [PMID: 38204837 PMCID: PMC10774527 DOI: 10.1016/j.hrcr.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Affiliation(s)
- Leonie C.H. Wong
- Department of Paediatric Cardiology, Royal Brompton Hospital, London, United Kingdom
| | - Ferran Roses-Noguer
- Department of Paediatric Cardiology, Royal Brompton Hospital, London, United Kingdom
- Department of Paediatric Cardiology, Vall d’Hebron University Hospital, Barcelona, Spain
- European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Andrea Bueno
- Department of Paediatric Cardiology, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Begoña Benito Villabriga
- Department of Cardiology, Vall d’Hebron University Hospital, Barcelona, Spain
- European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Tessa Homfray
- Department of Medical Genetics, Royal Brompton Hospital, London, United Kingdom
- Department of Medical Genetics, St George’s University of London, London, United Kingdom
| | - Jan Till
- Department of Paediatric Cardiology, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
18
|
Fukuyama M, Horie M, Kato K, Aoki H, Fujita S, Yoshida Y, Sakazaki H, Toda T, Ueno M, Izumi G, Momoi N, Muneuchi J, Makiyama T, Nakagawa Y, Ohno S. Calmodulinopathy in Japanese Children - Their Cardiac Phenotypes Are Severe and Show Early Onset in Fetal Life and Infancy. Circ J 2023; 87:1828-1835. [PMID: 37380439 DOI: 10.1253/circj.cj-23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND Cardiac calmodulinopathy, characterized by a life-threatening arrhythmia and sudden death in the young, is extremely rare and caused by genes encoding calmodulin, namely calmodulin 1 (CALM1), CALM2, and CALM3. METHODS AND RESULTS We screened 195 symptomatic children (age 0-12 years) who were suspected of inherited arrhythmias for 48 candidate genes, using a next-generation sequencer. Ten probands were identified as carrying variants in any of CALM1-3 (5%; median age 5 years), who were initially diagnosed with long QT syndrome (LQTS; n=5), catecholaminergic polymorphic ventricular tachycardia (CPVT; n=3), and overlap syndrome (n=2). Two probands harbored a CALM1 variant and 8 probands harbored 6 CALM2 variants. There were 4 clinical phenotypes: (1) documented lethal arrhythmic events (LAEs): 4 carriers of N98S in CALM1 or CALM2; (2) suspected LAEs: CALM2 p.D96G and D132G carriers experienced syncope and transient cardiopulmonary arrest under emotional stimulation; (3) critical cardiac complication: CALM2 p.D96V and p.E141K carriers showed severe cardiac dysfunction with QTc prolongation; and (4) neurological and developmental disorders: 2 carriers of CALM2 p.E46K showed cardiac phenotypes of CPVT. Beta-blocker therapy was effective in all cases except cardiac dysfunction, especially in combination with flecainide (CPVT-like phenotype) and mexiletine (LQTS-like). CONCLUSIONS Calmodulinopathy patients presented severe cardiac features, and their onset of LAEs was earlier in life, requiring diagnosis and treatment at the earliest age possible.
Collapse
Affiliation(s)
- Megumi Fukuyama
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Koichi Kato
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Hisaaki Aoki
- Department of Pediatric Cardiology, Osaka Women's and Children's Hospital
| | - Shuhei Fujita
- Department of Pediatrics, Toyama Prefectural Central Hospital
| | - Yoko Yoshida
- Division of Pediatric Electrophysiology, Osaka City General Hospital
| | - Hisanori Sakazaki
- Department of Pediatric Cardiology, Hyogo Prefectural Amagasaki Hospital
| | - Takako Toda
- Department of Pediatrics, University of Yamanashi, Faculty of Medicine
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center
| | | | - Gaku Izumi
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Nobuo Momoi
- Department of Pediatrics, Fukushima Medical University School of Medicine
| | - Jun Muneuchi
- Division of Pediatric Cardiology, Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center
| |
Collapse
|
19
|
Kang PW, Woodbury L, Angsutararux P, Sambare N, Shi J, Marras M, Abella C, Bedi A, Zinn D, Cui J, Silva JR. Arrhythmia-associated calmodulin variants interact with KCNQ1 to confer aberrant membrane trafficking and function. PNAS NEXUS 2023; 2:pgad335. [PMID: 37965565 PMCID: PMC10642763 DOI: 10.1093/pnasnexus/pgad335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023]
Abstract
Missense variants in calmodulin (CaM) predispose patients to arrhythmias associated with high mortality rates ("calmodulinopathy"). As CaM regulates many key cardiac ion channels, an understanding of disease mechanism associated with CaM variant arrhythmias requires elucidating individual CaM variant effects on distinct channels. One key CaM regulatory target is the KCNQ1 (KV7.1) voltage-gated potassium channel that carries the IKs current. Yet, relatively little is known as to how CaM variants interact with KCNQ1 or affect its function. Here, we take a multipronged approach employing a live-cell fluorescence resonance energy transfer binding assay, fluorescence trafficking assay, and functional electrophysiology to characterize >10 arrhythmia-associated CaM variants for effect on KCNQ1 CaM binding, membrane trafficking, and channel function. We identify one variant (G114W) that exhibits severely weakened binding to KCNQ1 but find that most other CaM variants interact with similar binding affinity to KCNQ1 when compared with CaM wild-type over physiological Ca2+ ranges. We further identify several CaM variants that affect KCNQ1 and IKs membrane trafficking and/or baseline current activation kinetics, thereby delineating KCNQ1 dysfunction in calmodulinopathy. Lastly, we identify CaM variants with no effect on KCNQ1 function. This study provides extensive functional data that reveal how CaM variants contribute to creating a proarrhythmic substrate by causing abnormal KCNQ1 membrane trafficking and current conduction. We find that CaM variant regulation of KCNQ1 is not uniform with effects varying from benign to significant loss of function, suggesting how CaM variants predispose patients to arrhythmia via the dysregulation of multiple cardiac ion channels. Classification: Biological, Health, and Medical Sciences, Physiology.
Collapse
Affiliation(s)
- Po wei Kang
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Lucy Woodbury
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Namit Sambare
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Martina Marras
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Carlota Abella
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Anish Bedi
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - DeShawn Zinn
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| |
Collapse
|
20
|
Do NT, Lee SY, Lee YS, Shin C, Kim D, Lee TG, Son JG, Kim SH. Time-sequential fibroblast-to-myofibroblast transition in elastin-variable 3D hydrogel environments by collagen networks. Biomater Res 2023; 27:103. [PMID: 37848974 PMCID: PMC10583321 DOI: 10.1186/s40824-023-00439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Fibrosis plays an important role in both normal physiological and pathological phenomena as fibroblasts differentiate to myofibroblasts. The activation of fibroblasts is determined through interactions with the surrounding extracellular matrix (ECM). However, how this fibroblast-to-myofibroblast transition (FMT) is regulated and affected by elastin concentration in a three-dimensional (3D) microenvironment has not been investigated. METHODS We developed an insoluble elastin-gradient 3D hydrogel system for long-lasting cell culture and studied the molecular mechanisms of the FMT in embedded cells by nanoflow LC-MS/MS analysis along with validation through real-time PCR and immunofluorescence staining. RESULTS By optimizing pH and temperature, four 3D hydrogels containing fibroblasts were successfully fabricated having elastin concentrations of 0, 20, 50, and 80% in collagen. At the low elastin level (20%), fibroblast proliferation was significantly increased compared to others, and in particular, the FMT was clearly observed in this condition. Moreover, through mass spectrometry of the hydrogel environment, it was confirmed that differentiation proceeded in two stages. In the early stage, calcium-dependent proteins including calmodulin and S100A4 were highly associated. On the other hand, in the late stage after several passages of cells, distinct markers of myofibroblasts were presented such as morphological changes, increased production of ECM, and increased α-SMA expression. We also demonstrated that the low level of elastin concentration induced some cancer-associated fibroblast (CAF) markers, including PDGFR-β, and fibrosis-related disease markers, including THY-1. CONCLUSION Using our developed 3D elastin-gradient hydrogel system, we evaluated the effect of different elastin concentrations on the FMT. The FMT was induced even at a low concentration of elastin with increasing CAF level via calcium signaling. With this system, we were able to analyze varying protein expressions in the overall FMT process over several cellular passages. Our results suggest that the elastin-gradient system employing nonlinear optics imaging provides a good platform to study activated fibroblasts interacting with the microenvironment, where the ECM plays a pivotal role.
Collapse
Affiliation(s)
- Nhuan T Do
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
- BioMedical Measurement, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Sun Young Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Yoon Seo Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - ChaeHo Shin
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
- Nanoconvergence Measurement, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Daeho Kim
- Bruker Nano Surface & Metrology, Bruker Korea, Seongnam, 13493, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
- Nanoconvergence Measurement, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jin Gyeong Son
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| | - Se-Hwa Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
- BioMedical Measurement, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
21
|
Wren LM, DeKeyser JM, Barefield DY, Hawkins NA, McNally EM, Kearney JA, Wasserstrom JA, George AL. Sex and Gene Influence Arrhythmia Susceptibility in Murine Models of Calmodulinopathy. Circ Arrhythm Electrophysiol 2023; 16:e010891. [PMID: 37589122 PMCID: PMC10530303 DOI: 10.1161/circep.122.010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/16/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Pathogenic variants in genes encoding CaM (calmodulin) are associated with a life-threatening ventricular arrhythmia syndrome (calmodulinopathy). The in vivo consequences of CaM variants have not been studied extensively and there is incomplete understanding of the genotype-phenotype relationship for recurrent variants. We investigated effects of different factors on calmodulinopathy phenotypes using 2 mouse models with a recurrent pathogenic variant (N98S) in Calm1 or Calm2. METHODS Genetically engineered mice with heterozygous N98S pathogenic variants in Calm1 or Calm2 were generated. Differences between the sexes and affected genes were assessed using multiple physiological assays at the cellular and whole animal levels. Statistical significance among groups was evaluated using 1-way ANOVA or the Kruskal-Wallis test when data were not normally distributed. RESULTS Calm1N98S/+ (Calm1S/+) or Calm2N98S/+ (Calm2S/+) mice exhibited sinus bradycardia and were more susceptible to arrhythmias after exposure to epinephrine and caffeine. Male Calm1S/+ mice had the most severe arrhythmia phenotype with evidence of early embryonic lethality, greater susceptibility for arrhythmic events, frequent premature beats, corrected QT prolongation, and more heart rate variability after epinephrine and caffeine than females with the same genotype. Calm2 S/+ mice exhibited a less severe phenotype, with female Calm2 S/+ mice having the least severe arrhythmia susceptibility. Flecainide was not effective in preventing arrhythmias in heterozygous CaM-N98S mice. Intracellular Ca2+ transients observed in isolated ventricular cardiomyocytes from male heterozygous CaM-N98S mice had lower peak amplitudes and slower sarcoplasmic reticulum Ca2+ release following in vitro exposure to epinephrine and caffeine, which were not observed in cardiomyocytes from heterozygous female CaM-N98S mice. CONCLUSIONS We report heterogeneity in arrhythmia susceptibility and cardiomyocyte Ca2+ dynamics among male and female mice heterozygous for a recurrent pathogenic variant in Calm1 or Calm2, illustrating a complex calmodulinopathy phenotype in vivo. Further investigation of sex and genetic differences may help identify the molecular basis for this heterogeneity.
Collapse
Affiliation(s)
- Lisa M. Wren
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Jean-Marc DeKeyser
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - David Y. Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Nicole A. Hawkins
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Elizabeth M. McNally
- Center for Genetic Medicine, The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Jennifer A. Kearney
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - J. Andrew Wasserstrom
- Department of Medicine, The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Alfred L. George
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| |
Collapse
|
22
|
McCormick L, Wadmore K, Milburn A, Gupta N, Morris R, Held M, Prakash O, Carr J, Barrett‐Jolley R, Dart C, Helassa N. Long QT syndrome-associated calmodulin variants disrupt the activity of the slowly activating delayed rectifier potassium channel. J Physiol 2023; 601:3739-3764. [PMID: 37428651 PMCID: PMC10952621 DOI: 10.1113/jp284994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 μm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.
Collapse
Affiliation(s)
- Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory HubSaint Mary's HospitalManchesterUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Amy Milburn
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Joseph Carr
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Richard Barrett‐Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
23
|
Brohus M, Busuioc AO, Wimmer R, Nyegaard M, Overgaard MT. Calmodulin mutations affecting Gly114 impair binding to the Na V1.5 IQ-domain. Front Pharmacol 2023; 14:1210140. [PMID: 37663247 PMCID: PMC10469309 DOI: 10.3389/fphar.2023.1210140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Missense variants in CALM genes encoding the Ca2+-binding protein calmodulin (CaM) cause severe cardiac arrhythmias. The disease mechanisms have been attributed to dysregulation of RyR2, for Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) and/or CaV1.2, for Long-QT Syndrome (LQTS). Recently, a novel CALM2 variant, G114R, was identified in a mother and two of her four children, all of whom died suddenly while asleep at a young age. The G114R variant impairs closure of CaV1.2 and RyR2, consistent with a CPVT and/or mild LQTS phenotype. However, the children carrying the CALM2 G114R variant displayed a phenotype commonly observed with variants in NaV1.5, i.e., Brugada Syndrome (BrS) or LQT3, where death while asleep is a common feature. We therefore hypothesized that the G114R variant specifically would interfere with NaV1.5 binding. Here, we demonstrate that CaM binding to the NaV1.5 IQ-domain is severely impaired for two CaM variants G114R and G114W. The impact was most severe at low and intermediate Ca2+ concentrations (up to 4 µM) resulting in more than a 50-fold reduction in NaV1.5 binding affinity, and a smaller 1.5 to 11-fold reduction at high Ca2+ concentrations (25-400 µM). In contrast, the arrhythmogenic CaM-N98S variant only induced a 1.5-fold reduction in NaV1.5 binding and only at 4 µM Ca2+. A non-arrhythmogenic I10T variant in CaM did not impair NaV1.5 IQ binding. These data suggest that the interaction between NaV1.5 and CaM is decreased with certain CaM variants, which may alter the cardiac sodium current, INa. Overall, these results suggest that the phenotypic spectrum of calmodulinopathies may likely expand to include BrS- and/or LQT3-like traits.
Collapse
Affiliation(s)
- Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ana-Octavia Busuioc
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mette Nyegaard
- Department of Health Science and Technology, Aalborg University, Gistrup, Denmark
| | | |
Collapse
|
24
|
Gerasimavicius L, Livesey BJ, Marsh JA. Correspondence between functional scores from deep mutational scans and predicted effects on protein stability. Protein Sci 2023; 32:e4688. [PMID: 37243972 PMCID: PMC10273344 DOI: 10.1002/pro.4688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Many methodologically diverse computational methods have been applied to the growing challenge of predicting and interpreting the effects of protein variants. As many pathogenic mutations have a perturbing effect on protein stability or intermolecular interactions, one highly interpretable approach is to use protein structural information to model the physical impacts of variants and predict their likely effects on protein stability and interactions. Previous efforts have assessed the accuracy of stability predictors in reproducing thermodynamically accurate values and evaluated their ability to distinguish between known pathogenic and benign mutations. Here, we take an alternate approach, and explore how well stability predictor scores correlate with functional impacts derived from deep mutational scanning (DMS) experiments. In this work, we compare the predictions of 9 protein stability-based tools against mutant protein fitness values from 49 independent DMS datasets, covering 170,940 unique single amino acid variants. We find that FoldX and Rosetta show the strongest correlations with DMS-based functional scores, similar to their previous top performance in distinguishing between pathogenic and benign variants. For both methods, performance is considerably improved when considering intermolecular interactions from protein complex structures, when available. Furthermore, using these two predictors, we derive a "Foldetta" consensus score, which improves upon the performance of both, and manages to match dedicated variant effect predictors in reflecting variant functional impacts. Finally, we also highlight that predicted stability effects show consistently higher correlations with certain DMS experimental phenotypes, particularly those based upon protein abundance, and, in certain cases, can significantly outcompete sequence-based variant effect prediction methodologies for predicting functional scores from DMS experiments.
Collapse
Affiliation(s)
- Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics & CancerUniversity of EdinburghEdinburghUK
| | - Benjamin J. Livesey
- MRC Human Genetics Unit, Institute of Genetics & CancerUniversity of EdinburghEdinburghUK
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics & CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
25
|
Geitgey DK, Lee M, Cottrill KA, Jaffe M, Pilcher W, Bhasin S, Randall J, Ross AJ, Salemi M, Castillo-Castrejon M, Kilgore MB, Brown AC, Boss JM, Johnston R, Fitzpatrick AM, Kemp ML, English R, Weaver E, Bagchi P, Walsh R, Scharer CD, Bhasin M, Chandler JD, Haynes KA, Wellberg EA, Henry CJ. The 'omics of obesity in B-cell acute lymphoblastic leukemia. J Natl Cancer Inst Monogr 2023; 2023:12-29. [PMID: 37139973 PMCID: PMC10157791 DOI: 10.1093/jncimonographs/lgad014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
The obesity pandemic currently affects more than 70 million Americans and more than 650 million individuals worldwide. In addition to increasing susceptibility to pathogenic infections (eg, SARS-CoV-2), obesity promotes the development of many cancer subtypes and increases mortality rates in most cases. We and others have demonstrated that, in the context of B-cell acute lymphoblastic leukemia (B-ALL), adipocytes promote multidrug chemoresistance. Furthermore, others have demonstrated that B-ALL cells exposed to the adipocyte secretome alter their metabolic states to circumvent chemotherapy-mediated cytotoxicity. To better understand how adipocytes impact the function of human B-ALL cells, we used a multi-omic RNA-sequencing (single-cell and bulk transcriptomic) and mass spectroscopy (metabolomic and proteomic) approaches to define adipocyte-induced changes in normal and malignant B cells. These analyses revealed that the adipocyte secretome directly modulates programs in human B-ALL cells associated with metabolism, protection from oxidative stress, increased survival, B-cell development, and drivers of chemoresistance. Single-cell RNA sequencing analysis of mice on low- and high-fat diets revealed that obesity suppresses an immunologically active B-cell subpopulation and that the loss of this transcriptomic signature in patients with B-ALL is associated with poor survival outcomes. Analyses of sera and plasma samples from healthy donors and those with B-ALL revealed that obesity is associated with higher circulating levels of immunoglobulin-associated proteins, which support observations in obese mice of altered immunological homeostasis. In all, our multi-omics approach increases our understanding of pathways that may promote chemoresistance in human B-ALL and highlight a novel B-cell-specific signature in patients associated with survival outcomes.
Collapse
Affiliation(s)
- Delaney K Geitgey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Miyoung Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Kirsten A Cottrill
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - William Pilcher
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Swati Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica Randall
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Anthony J Ross
- Riley Children’s Health, Indiana University Health, Indianapolis, IN, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, Davis, 95616, CA
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew B Kilgore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayjha C Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Rich Johnston
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Melissa L Kemp
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Eric Weaver
- Shimadzu Scientific Instruments, Columbia, MD, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Walsh
- Shimadzu Scientific Instruments, Columbia, MD, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
26
|
Kang PW, Woodbury L, Angsutararux P, Sambare N, Shi J, Marras M, Abella C, Bedi A, Zinn D, Cui J, Silva JR. Arrhythmia-associated Calmodulin Variants Interact with KCNQ1 to Confer Aberrant Membrane Trafficking and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526031. [PMID: 36747728 PMCID: PMC9900995 DOI: 10.1101/2023.01.28.526031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rationale Missense variants in calmodulin (CaM) predispose patients to arrhythmias associated with high mortality rates. As CaM regulates several key cardiac ion channels, a mechanistic understanding of CaM variant-associated arrhythmias requires elucidating individual CaM variant effect on distinct channels. One key CaM regulatory target is the KCNQ1 (K V 7.1) voltage-gated potassium channel that underlie the I Ks current. Yet, relatively little is known as to how CaM variants interact with KCNQ1 or affect its function. Objective To observe how arrhythmia-associated CaM variants affect binding to KCNQ1, channel membrane trafficking, and KCNQ1 function. Methods and Results We combine a live-cell FRET binding assay, fluorescence trafficking assay, and functional electrophysiology to characterize >10 arrhythmia-associated CaM variants effect on KCNQ1. We identify one variant (G114W) that exhibits severely weakened binding to KCNQ1 but find that most other CaM variants interact with similar binding affinity to KCNQ1 when compared to CaM wild-type over physiological Ca 2+ ranges. We further identify several CaM variants that affect KCNQ1 and I Ks membrane trafficking and/or baseline current activation kinetics, thereby contextualizing KCNQ1 dysfunction in calmodulinopathy. Lastly, we delineate CaM variants with no effect on KCNQ1 function. Conclusions This study provides comprehensive functional data that reveal how CaM variants contribute to creating a pro-arrhythmic substrate by causing abnormal KCNQ1 membrane trafficking and current conduction. We find that CaM variant regulation of KCNQ1 is not uniform with effects varying from benign to significant loss of function. This study provides a new approach to collecting details of CaM binding that are key for understanding how CaM variants predispose patients to arrhythmia via the dysregulation of multiple cardiac ion channels.
Collapse
|
27
|
Abstract
Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.
Collapse
|
28
|
Keefe JA, Moore OM, Ho KS, Wehrens XHT. Role of Ca 2+ in healthy and pathologic cardiac function: from normal excitation-contraction coupling to mutations that cause inherited arrhythmia. Arch Toxicol 2023; 97:73-92. [PMID: 36214829 PMCID: PMC10122835 DOI: 10.1007/s00204-022-03385-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023]
Abstract
Calcium (Ca2+) ions are a key second messenger involved in the rhythmic excitation and contraction of cardiomyocytes throughout the heart. Proper function of Ca2+-handling proteins is required for healthy cardiac function, whereas disruption in any of these can cause cardiac arrhythmias. This comprehensive review provides a broad overview of the roles of Ca2+-handling proteins and their regulators in healthy cardiac function and the mechanisms by which mutations in these proteins contribute to inherited arrhythmias. Major Ca2+ channels and Ca2+-sensitive regulatory proteins involved in cardiac excitation-contraction coupling are discussed, with special emphasis on the function of the RyR2 macromolecular complex. Inherited arrhythmia disorders including catecholaminergic polymorphic ventricular tachycardia, long QT syndrome, Brugada syndrome, short QT syndrome, and arrhythmogenic right-ventricular cardiomyopathy are discussed with particular emphasis on subtypes caused by mutations in Ca2+-handling proteins.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin S Ho
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA. .,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Calmodulin variant E140G associated with long QT syndrome impairs CaMKIIδ autophosphorylation and L-type calcium channel inactivation. J Biol Chem 2023; 299:102777. [PMID: 36496072 PMCID: PMC9830374 DOI: 10.1016/j.jbc.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.
Collapse
|
30
|
Postrigan AE, Babushkina NP, Svintsova LI, Plotnikova IV, Skryabin NA. Clinical and Genetic Characteristics of Congenital Long QT Syndrome. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Rosamilia MB, Lu IM, Landstrom AP. Pathogenicity Assignment of Variants in Genes Associated With Cardiac Channelopathies Evolve Toward Diagnostic Uncertainty. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003491. [PMID: 35543671 DOI: 10.1161/circgen.121.003491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accurately determining variant pathogenicity is critical in the diagnosis of cardiac channelopathies; however, it remains unknown how variant pathogenicity status changes over time. Our aim is to use a comprehensive analysis of ClinVar to understand the mutability of variant evaluation in channelopathy-associated genes to inform clinical decision-making around variant calling. METHODS We identified 10 genes (RYR2, CASQ2, KCNQ1, KCNH2, SCN5A, CACNA1C, CALM1, CALM2, CALM3, TRDN) strongly associated with cardiac channelopathies, as well as 3 comparison gene sets (disputed long QT syndrome, sudden unexpected death in epilepsy, and all ClinVar). We comprehensively analyzed variant pathogenicity calls over time using the ClinVar database with Rstudio. Analyses focused on the frequency and directionality of clinically meaningful changes in disease association, defined as a change from one of the following three categories to another: likely benign/benign, conflicting evidence of pathogenicity/variant of uncertain significance, and likely pathogenic/pathogenic. RESULTS In total, among channelopathy-associated genes, there were 9975 variants in ClinVar and 8.4% had a clinically meaningful change in disease association at least once over the past 10 years, as opposed to 4.9% of all ClinVar variants. The 3 channelopathy-associated genes with the most variants undergoing a clinically significant change were KCNQ1 (20.9%), SCN5A (11.2%), and KCNH2 (10.1%). Ten of the 12 included genes had variant evaluations that trended toward diagnostic uncertainty over time. Specifically, channelopathy-associated gene variants with either pathogenic/likely pathogenic or benign/likely benign assignments were 5.6× and 2×, respectively, as likely to be reevaluated to conflicting/variant of uncertain significance compared to the converse. CONCLUSIONS Over the past 10 years, 8.4% of variants in channelopathy-associated genes have changed pathogenicity status with a decline in overall diagnostic certainty. Ongoing clinical and genetic variant follow-up is needed to account for presence of clinically meaningful change in variant pathogenicity assignment over time.
Collapse
Affiliation(s)
- Michael B Rosamilia
- Division of Pediatric Cardiology, Department of Pediatrics (M.B.R., I.M.L., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Isa M Lu
- Division of Pediatric Cardiology, Department of Pediatrics (M.B.R., I.M.L., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Andrew P Landstrom
- Division of Pediatric Cardiology, Department of Pediatrics (M.B.R., I.M.L., A.P.L.), Duke University School of Medicine, Durham, NC.,Department of Cell Biology (A.P.L.), Duke University School of Medicine, Durham, NC
| |
Collapse
|
32
|
Basit A, Yadav AK, Bandyopadhyay P. Calcium Ion Binding to the Mutants of Calmodulin: A Structure-Based Computational Predictive Model of Binding Affinity Using a Charge Scaling Approach in Molecular Dynamics Simulation. J Chem Inf Model 2022; 62:2821-2834. [PMID: 35608259 DOI: 10.1021/acs.jcim.2c00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of calcium ions (Ca2+) to the calcium-binding proteins (CBPs) controls a plethora of regulatory processes. Among the roles played by CBPs in several diseases, the onset and progress of some cardiovascular diseases are caused by mutations in calmodulin (CaM), an important member of CBPs. Rationalization and prediction of the binding affinity of Ca2+ ions to the CaM can play important roles in understanding the origin of cardiovascular diseases. However, there is no robust structure-based computational method for predicting the binding affinity of Ca2+ ions to the different forms of CBPs in general and CaM in particular. In the current work, we have devised a fast yet accurate computational technique to accurately calculate the binding affinity of Ca2+ to the different forms of CaM. This method combines the well-known molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method and a charge scaling approach developed by previous authors that takes care of the polarization of CaM and Ca2+ ions. Our detailed analysis of the different components of binding free energy shows that subtle changes in electrostatics and van der Waals contribute to the difference in the binding affinity of mutants from that of the wild type (WT), and the charge scaling approach is superior in calculating these subtle changes in electrostatics as compared to the nonpolarizable force field used in this work. A statistically significant regression model made from our binding free energy calculations gives a correlation coefficient close to 0.8 to the experimental results. This structure-based predictive model can open up a new strategy to understand and predict the binding of Ca2+ to the mutants of CBPs, in general.
Collapse
Affiliation(s)
- Abdul Basit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajeet Kumar Yadav
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
33
|
Kato K, Isbell HM, Fressart V, Denjoy I, Debbiche A, Itoh H, Poinsot J, George AL, Coulombe A, Shea MA, Guicheney P. Novel CALM3 Variant Causing Calmodulinopathy With Variable Expressivity in a 4-Generation Family. Circ Arrhythm Electrophysiol 2022; 15:e010572. [PMID: 35225649 DOI: 10.1161/circep.121.010572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CaM (calmodulin), encoded by 3 separate genes (CALM1, CALM2, and CALM3), is a multifunctional Ca2+-binding protein involved in many signal transduction events including ion channel regulation. CaM variants may present with early-onset long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia, or sudden cardiac death. Most reported variants occurred de novo. We identified a novel CALM3 variant, p.Asn138Lys (N138K), in a 4-generation family segregating with LQTS. The aim of this study was to elucidate its pathogenicity and to compare it with that of p.D130G-CaM-a variant associated with a severe LQTS phenotype. METHODS We performed whole exome sequencing for a large, 4-generation family affected by LQTS. To assess the effect of the detected CALM3 variant, the intrinsic Ca2+-binding affinity was measured by stoichiometric Ca2+ titrations and equilibrium titrations. L-type Ca2+ and slow delayed rectifier potassium currents (ICaL and IKs) were recorded by whole-cell patch-clamp. Cav1.2 and Kv7.1 membrane expression were determined by optical fluorescence assays. RESULTS We identified 14 p.N138K-CaM carriers in a family where 2 sudden deaths occurred in children. Several members were only mildly affected compared with CaM-LQTS patients to date described in literature. The intrinsic Ca2+-binding affinity of the CaM C-terminal domain was 10-fold lower for p.N138K-CaM compared with wild-type-CaM. ICaL inactivation was slowed in cells expressing p.N138K-CaM but less than in p.D130G-CaM cells. Unexpectedly, a larger IKs current density was observed in cells expressing p.N138K-CaM, but not for p.D130G-CaM, compared with wild-type-CaM. CONCLUSIONS The p.N138K CALM3 variant impairs Ca2+-binding affinity of CaM and ICaL inactivation but potentiates IKs. The variably expressed phenotype of this variant compared with previously published de novo LQTS-CaM variants is likely explained by a milder impairment of ICaL inactivation combined with IKs augmentation.
Collapse
Affiliation(s)
- Koichi Kato
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.).,Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.K.)
| | - Holly M Isbell
- Department of Biochemistry, Carver College of Medicine, University of Iowa (H.M.I., M.A.S.)
| | - Véronique Fressart
- AP-HP, Pitié-Salpêtrière Hospital, Functional Unit of Cardiogenetics and Myogenetics, Paris, France (V.F.)
| | - Isabelle Denjoy
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.).,Cardiology Department, Referring Center for Heritable or Rare Cardiac Diseases, AP-HP, Bichat Hospital, HUPNVS, Referring Center for Rare Cardiac Diseases, Sorbonne University, Paris, France (I.D.)
| | - Amal Debbiche
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.)
| | - Hideki Itoh
- Division of Patient Safety, Hiroshima University Hospital, Japan (H.I.)
| | - Jacques Poinsot
- Unité de cardio-pediatrie, service de medecine pediatrique, Centre Hospitalier Universitaire de Tours, Tours, France (J.P.)
| | - Alfred L George
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (A.L.G.)
| | - Alain Coulombe
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.)
| | - Madeline A Shea
- Department of Biochemistry, Carver College of Medicine, University of Iowa (H.M.I., M.A.S.)
| | - Pascale Guicheney
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.)
| |
Collapse
|
34
|
Dal Cortivo G, Barracchia CG, Marino V, D'Onofrio M, Dell'Orco D. Alterations in calmodulin-cardiac ryanodine receptor molecular recognition in congenital arrhythmias. Cell Mol Life Sci 2022; 79:127. [PMID: 35133504 PMCID: PMC8825638 DOI: 10.1007/s00018-022-04165-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/27/2021] [Accepted: 01/23/2022] [Indexed: 12/03/2022]
Abstract
Calmodulin (CaM), a ubiquitous and highly conserved Ca2+-sensor protein involved in the regulation of over 300 molecular targets, has been recently associated with severe forms of lethal arrhythmia. Here, we investigated how arrhythmia-associated mutations in CaM localized at the C-terminal lobe alter the molecular recognition with Ryanodine receptor 2 (RyR2), specifically expressed in cardiomyocytes. We performed an extensive structural, thermodynamic, and kinetic characterization of the variants D95V/H in the EF3 Ca2+-binding motif and of the D129V and D131H/E variants in the EF4 motif, and probed their interaction with RyR2. Our results show that the specific structural changes observed for individual CaM variants do not extend to the complex with the RyR2 target. Indeed, some common alterations emerge at the protein–protein interaction level, suggesting the existence of general features shared by the arrhythmia-associated variants. All mutants showed a faster rate of dissociation from the target peptide than wild-type CaM. Integration of spectroscopic data with exhaustive molecular dynamics simulations suggests that, in the presence of Ca2+, functional recognition involves allosteric interactions initiated by the N-terminal lobe of CaM, which shows a lower affinity for Ca2+ compared to the C-terminal lobe in the isolated protein.
Collapse
Affiliation(s)
- Giuditta Dal Cortivo
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | | | - Valerio Marino
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | - Daniele Dell'Orco
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
35
|
Zhang W, Dai X, Liu H, Li L, Zhou S, Zhu Q, Chen J. Case report: Prenatal diagnosis of fetal non-compaction cardiomyopathy with bradycardia accompanied by de novo CALM2 mutation. Front Pediatr 2022; 10:1012600. [PMID: 36507129 PMCID: PMC9727144 DOI: 10.3389/fped.2022.1012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
We herein report what appears to be the first case of fetal non-compaction cardiomyopathy in both ventricles accompanied by a mutation in the calmodulin gene (CALM2). A 25-year-old woman was referred to our hospital at 25+1 weeks of gestation for evaluation of fetal defects. Prenatal echocardiography showed biventricular non-compaction cardiomyopathy with sinus bradycardia. After termination of the pregnancy, fetal biventricular non-compaction cardiomyopathy was confirmed by autopsy and histopathologic examination. Additionally, whole-exome sequencing of genomic DNA demonstrated a de novo heterozygous mutation (c.389A > G; p.D130G) in CALM2, whereas the parents were normal. In this case report, we highlight the importance of prenatal ultrasound and genetic testing in fetal non-compaction cardiomyopathy with arrhythmia.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Ultrasonic Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaohui Dai
- Department of Ultrasonic Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Lei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.,Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Shu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.,Department of Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Qi Zhu
- Department of Ultrasonic Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiao Chen
- Department of Ultrasonic Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Network Pharmacology-Based Strategy and Molecular Docking to Explore the Potential Mechanism of Jintiange Capsule for Treating Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5338182. [PMID: 34899951 PMCID: PMC8664513 DOI: 10.1155/2021/5338182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022]
Abstract
Background With the advent of ageing population, osteoporosis (OP) has already become a global challenge. Jintiange capsule is extensively applied to treat OP in China. Although recent studies demonstrate that it generates significant effects on strengthening bone, the exact mechanism of the jintiange capsule for treating OP remains unknown. Purpose To understand the main ingredients of the jintiange capsule, predict the possible targets and the relevant signal transduction pathways, and explore the mechanism of the jintiange capsule for the treatment of OP. Methods Main ingredients of the jintiange capsule, drug targets, and potential disease targets for OP were obtained from public databases. Molecular biological processes and signaling pathways were determined via bioinformatic analysis, containing protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the disease-drug-ingredient-targets-pathways networks were constructed using Cytoscape. According to CytoNCA, core targets were acquired. Finally, the present study conducted molecular docking for better testing the abovementioned results. Results In the current work, we found that 4 main ingredients of the jintiange capsule, 33 drug targets, 4745 potential disease targets for OP, and 12 overlapping targets were identified. PPI network containing 12 nodes and 25 edges proved that there existed a complex relationship. As revealed by GO functional annotation, the intersected targets were mostly associated with BP, CC, and MF. The targets were enriched to 368 items in BP, 27 items in CC, and 42 items in MF. They mainly included calcium ion homeostasis, calcium channel complex, and calcium channel regulator activity. According to KEGG pathway analysis, the intersected targets were mostly associated with Rap 1, cGMP-PKG, Ras, cAMP, calcium pathways, and so on. Based on the analysis with CytoNCA, we acquired 4 core targets, respectively—CALR, SPARC, CALM1, and CALM2. Besides, 2 core targets, CALR and CALM1, were selected for molecular docking experiments. Molecular docking revealed that the main ingredient, calcium phosphate, had good binding with the CALR protein and CALM1 protein. Conclusion To conclude, the main ingredient of the jintiange capsule, particularly calcium phosphate, may interact with 2 targets, CALR and CALM1, and regulate multiple signaling pathways to treat OP. Additionally, this also benefits us in further understanding the mechanism of the jintiange capsule for treating OP.
Collapse
|
37
|
Mahling R, Hovey L, Isbell HM, Marx DC, Miller MS, Kilpatrick AM, Weaver LD, Yoder JB, Kim EH, Andresen CNJ, Li S, Shea MA. Na V1.2 EFL domain allosterically enhances Ca 2+ binding to sites I and II of WT and pathogenic calmodulin mutants bound to the channel CTD. Structure 2021; 29:1339-1356.e7. [PMID: 33770503 PMCID: PMC8458505 DOI: 10.1016/j.str.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 11/23/2022]
Abstract
Neuronal voltage-gated sodium channel NaV1.2 C-terminal domain (CTD) binds calmodulin (CaM) constitutively at its IQ motif. A solution structure (6BUT) and other NMR evidence showed that the CaM N domain (CaMN) is structurally independent of the C-domain (CaMC) whether CaM is bound to the NaV1.2IQp (1,901-1,927) or NaV1.2CTD (1,777-1,937) with or without calcium. However, in the CaM + NaV1.2CTD complex, the Ca2+ affinity of CaMN was more favorable than in free CaM, while Ca2+ affinity for CaMC was weaker than in the CaM + NaV1.2IQp complex. The CTD EF-like (EFL) domain allosterically widened the energetic gap between CaM domains. Cardiomyopathy-associated CaM mutants (N53I(N54I), D95V(D96V), A102V(A103V), E104A(E105A), D129G(D130G), and F141L(F142L)) all bound the NaV1.2 IQ motif favorably under resting (apo) conditions and bound calcium normally at CaMN sites. However, only N53I and A102V bound calcium at CaMC sites at [Ca2+] < 100 μM. Thus, they are expected to respond like wild-type CaM to Ca2+ spikes in excitable cells.
Collapse
Affiliation(s)
- Ryan Mahling
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Liam Hovey
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Holly M Isbell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Dagan C Marx
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Mark S Miller
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Adina M Kilpatrick
- Department of Physics and Astronomy, Drake University, Des Moines, IA 50311-4516, USA
| | - Lisa D Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Jesse B Yoder
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Elaine H Kim
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Corinne N J Andresen
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Shuxiang Li
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Madeline A Shea
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
38
|
Lin DJ, Lee WS, Chien YC, Chen TY, Yang KT. The link between abnormalities of calcium handling proteins and catecholaminergic polymorphic ventricular tachycardia. Tzu Chi Med J 2021; 33:323-331. [PMID: 34760626 PMCID: PMC8532576 DOI: 10.4103/tcmj.tcmj_288_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare autosomal dominant or recessive disease, usually results in syncope or sudden cardiac death. Most CPVT patients do not show abnormal cardiac structure and electrocardiogram features and symptoms, usually onset during adrenergically mediated physiological conditions. CPVT tends to occur at a younger age and is not easy to be diagnosed and managed. The main cause of CPVT is associated with mishandling Ca2+ in cardiomyocytes. Intracellular Ca2+ is strictly controlled by a protein located in the sarcoplasm reticulum (SR), such as ryanodine receptor, histidine-rich Ca2+-binding protein, triadin, and junctin. Mutation in these proteins results in misfolding or malfunction of these proteins, thereby affecting their Ca2+-binding affinity, and subsequently disturbs Ca2+ homeostasis during excitation–contraction coupling (E-C coupling). Furthermore, transient disturbance of Ca2+ homeostasis increases membrane potential and causes Ca2+ store overload-induced Ca2+ release, which in turn leads to delayed after depolarization and arrhythmia. Previous studies have focused on the interaction between ryanodine receptors and protein kinase or phosphatase in the cytosol. However, recent studies showed the regulation signaling for ryanodine receptor not only from the cytosol but also within the SR. The changing of Ca2+ concentration is critical for protein interaction inside the SR which changes protein conformation to regulate the open probability of ryanodine receptors. Thus, it influences the threshold of Ca2+ released from the SR, making it easier to release Ca2+ during E-C coupling. In this review, we briefly discuss how Ca2+ handling protein variations affect the Ca2+ handling in CPVT.
Collapse
Affiliation(s)
- Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsung-Yu Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
39
|
Mu G, Zhu Y, Dong Z, Shi L, Deng Y, Li H. Calmodulin 2 Facilitates Angiogenesis and Metastasis of Gastric Cancer via STAT3/HIF-1A/VEGF-A Mediated Macrophage Polarization. Front Oncol 2021; 11:727306. [PMID: 34604066 PMCID: PMC8479158 DOI: 10.3389/fonc.2021.727306] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
Background Tumor-associated macrophages (TAMs) are indispensable to mediating the connections between cells in the tumor microenvironment. In this study, we intended to research the function and mechanism of Calmodulin2 (CALM2) in gastric cancer (GC)-TAM microenvironment. Materials and methods CALM2 expression in GC tissues and GC cells was determined through quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). The correlation between CALM2 level and the survival rate of GC patients was assessed. The CALM2 overexpression or knockdown model was constructed to evaluate its role in GC cell proliferation, migration, and invasion. THP1 cells or HUVECs were co-cultured with the conditioned medium of GC cells. Tubule formation experiment was done to examine the angiogenesis of endothelial cells. The proliferation, migration, and polarization of THP1 cells were measured. A xenograft model was set up in BALB/c male nude mice to study CALM2x’s effects on tumor growth and lung metastasis in vivo. Western Blot (WB) checked the profile of JAK2/STAT3/HIF-1/VEGFA in GC tissues and cells. Results In GC tissues and cell lines, CALM2 expression was elevated and positively relevant to the poor prognosis of GC patients. In in-vitro experiments, CALM2 overexpression or knockdown could facilitate or curb the proliferation, migration, invasion, and angiogenesis of HUVECs and M2 polarization of THP1 cells. In in-vivo experiments, CALM2 boosted tumor growth and lung metastasis. Mechanically, CALM2 could arouse the JAK2/STAT3/HIF-1/VEGFA signaling. It was also discovered that JAK2 and HIF-1A inhibition could attenuate the promoting effects of CALM2 on GC, HUVECs cells, and macrophages. Conclusion CALM2 modulates the JAK2/STAT3/HIF-1/VEGFA axis and bolsters macrophage polarization, thus facilitating GC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Ganggang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijie Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Dong
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lang Shi
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Tsai WC, Chen PS, Rubart M. Calmodulinopathy in inherited arrhythmia syndromes. Tzu Chi Med J 2021; 33:339-344. [PMID: 34760628 PMCID: PMC8532581 DOI: 10.4103/tcmj.tcmj_182_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that controls and regulates key cellular functions. In all vertebrates, three CaM genes located on separate chromosomes encode an identical 149 amino acid protein, implying an extraordinarily high level of evolutionary importance and suggesting that CaM mutations would be possibly fatal. Inherited arrhythmia syndromes comprise a spectrum of primary electrical disorders caused by mutations in genes encoding ion channels or associated proteins leading to various cardiac arrhythmias, unexplained syncope, and sudden cardiac death. CaM mutations have emerged as an independent entity among inherited arrhythmia syndromes, referred to as calmodulinopathies. The most common clinical presentation associated with calmodulinopathy is congenital long QT syndrome, followed by catecholaminergic polymorphic ventricular tachycardia, both of which significantly increase the possibility of repeated syncope, lethal arrhythmic events, and sudden cardiac death, especially in young individuals. Here, we aim to give an overview of biochemical and structural characteristics of CaM and progress toward updating current known CaM mutations and associated clinical phenotypes. We also review the possible mechanisms underlying calmodulinopathy, based on several key in vitro studies. We expect that further experimental studies are needed to explore the complexity of calmodulinopathy.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- Department of Cardiology, Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Peng-Sheng Chen
- Department of Cardiology, Cedar-Sinai Medical Center, Los Angeles, CA, USA
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Rubart
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
41
|
Jeong H, Kim Y, Jung YS, Kang DR, Cho YR. Entropy-Based Graph Clustering of PPI Networks for Predicting Overlapping Functional Modules of Proteins. ENTROPY 2021; 23:e23101271. [PMID: 34681995 PMCID: PMC8534328 DOI: 10.3390/e23101271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022]
Abstract
Functional modules can be predicted using genome-wide protein-protein interactions (PPIs) from a systematic perspective. Various graph clustering algorithms have been applied to PPI networks for this task. In particular, the detection of overlapping clusters is necessary because a protein is involved in multiple functions under different conditions. graph entropy (GE) is a novel metric to assess the quality of clusters in a large, complex network. In this study, the unweighted and weighted GE algorithm is evaluated to prove the validity of predicting function modules. To measure clustering accuracy, the clustering results are compared to protein complexes and Gene Ontology (GO) annotations as references. We demonstrate that the GE algorithm is more accurate in overlapping clusters than the other competitive methods. Moreover, we confirm the biological feasibility of the proteins that occur most frequently in the set of identified clusters. Finally, novel proteins for the additional annotation of GO terms are revealed.
Collapse
Affiliation(s)
- Hoyeon Jeong
- Department of Biostatistics, Wonju College of Medicine, Yonsei University, Wonju-si 26426, Gangwon-do, Korea; (H.J.); (D.R.K.)
- National Health Big Data Clinical Research Institute, Wonju College of Medicine, Yonsei University, Wonju-si 26426, Gangwon-do, Korea
| | - Yoonbee Kim
- Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Korea; (Y.K.); (Y.-S.J.)
| | - Yi-Sue Jung
- Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Korea; (Y.K.); (Y.-S.J.)
| | - Dae Ryong Kang
- Department of Biostatistics, Wonju College of Medicine, Yonsei University, Wonju-si 26426, Gangwon-do, Korea; (H.J.); (D.R.K.)
- National Health Big Data Clinical Research Institute, Wonju College of Medicine, Yonsei University, Wonju-si 26426, Gangwon-do, Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Korea; (Y.K.); (Y.-S.J.)
- Division of Digital Healthcare, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Korea
- Correspondence: ; Tel.: +82-33-760-2245
| |
Collapse
|
42
|
Ledford HA, Park S, Muir D, Woltz RL, Ren L, Nguyen PT, Sirish P, Wang W, Sihn CR, George AL, Knollmann BC, Yamoah EN, Yarov-Yarovoy V, Zhang XD, Chiamvimonvat N. Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. J Gen Physiol 2021; 152:211546. [PMID: 33211795 PMCID: PMC7681919 DOI: 10.1085/jgp.202012667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca2+-dependent proteins and ion channels. Mutations in CaM cause life-threatening cardiac arrhythmias. Among the known CaM targets, small-conductance Ca2+-activated K+ (SK) channels are unique, since they are gated solely by beat-to-beat changes in intracellular Ca2+. However, the molecular mechanisms of how CaM mutations may affect the function of SK channels remain incompletely understood. To address the structural and functional effects of these mutations, we introduced prototypical human CaM mutations in human induced pluripotent stem cell–derived cardiomyocyte-like cells (hiPSC-CMs). Using structural modeling and molecular dynamics simulation, we demonstrate that human calmodulinopathy-associated CaM mutations disrupt cardiac SK channel function via distinct mechanisms. CaMD96V and CaMD130G mutants reduce SK currents through a dominant-negative fashion. By contrast, specific mutations replacing phenylalanine with leucine result in conformational changes that affect helix packing in the C-lobe, which disengage the interactions between apo-CaM and the CaM-binding domain of SK channels. Distinct mutant CaMs may result in a significant reduction in the activation of the SK channels, leading to a decrease in the key Ca2+-dependent repolarization currents these channels mediate. The findings in this study may be generalizable to other interactions of mutant CaMs with Ca2+-dependent proteins within cardiac myocytes.
Collapse
Affiliation(s)
- Hannah A Ledford
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Duncan Muir
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Ryan L Woltz
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Lu Ren
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Phuong T Nguyen
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Wenying Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Choong-Ryoul Sihn
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| |
Collapse
|
43
|
Berchtold MW, Munk M, Kulej K, Porth I, Lorentzen L, Panina S, Zacharias T, Larsen MR, la Cour JM. The heart arrhythmia-linked D130G calmodulin mutation causes premature inhibitory autophosphorylation of CaMKII. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119119. [PMID: 34391760 DOI: 10.1016/j.bbamcr.2021.119119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) is well known for transmitting Ca2+-signals, which leads to a multitude of physiological responses. Its functionality is believed to involve CaMKII holoenzyme dynamics where trans-autophosphorylation of the crucial phosphorylation site, T286 occurs. Phosphorylation of this site does not occur when stimulated exclusively with the arrhythmia associated D130G mutant form of CaM in vitro. Here, we present evidence that the loss-of-CaMKII function correlates with premature phosphorylation of its inhibitory phosphosite T306 in CaMKIIα and T307 in CaMKIIδ as this site was up to 20-fold more phosphorylated in the presence of D130G CaM compared to wildtype CaM. Indeed, changing this phosphosite to a non-phosphorylatable alanine reversed the inhibitory effect of D130G both in vitro and in live cell experiments. In addition, several phosphosites with so far undescribed functions directing the Ca2+-sensitivity of the CaMKII sensor were also affected by the presence of the D130G mutation implicating a role of several additional autophosphosites (besides T286 and T306/T307) so far not known to regulate CaMKII Ca2+ sensitivity. Furthermore, we show that introducing a D130G mutation in the CALM2 gene of the P19CL6 pluripotent mouse embryonic carcinoma cell line using CRISPR/Cas9 decreased the spontaneous beat frequency compared to wildtype cells when differentiated into cardiomyocytes supporting an alteration of cardiomyocyte physiology caused by this point mutation. In conclusion, our observations shed for the first time light on how the D130G CaM mutation interferes with the function of CaMKII and how it affects the beating frequency of cardiomyocyte-like cells.
Collapse
Affiliation(s)
| | - Mads Munk
- Department of Biology, University of Copenhagen, Denmark
| | - Katarzyna Kulej
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Isabel Porth
- Department of Biology, University of Copenhagen, Denmark
| | - Lasse Lorentzen
- Department of Biology, University of Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, Denmark; MonTa Biosciences ApS, Diplomvej 381, 2800 kgs Lyngby, Denmark
| | | | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Jonas M la Cour
- Department of Biology, University of Copenhagen, Denmark; ChemoMetec A/S, Gydevang 43, 3450 Lillerød, Denmark
| |
Collapse
|
44
|
Huang J, Huang S, Li J, Li M, Gong L, Li T, Gu L. CALM1 rs3179089 polymorphism might contribute to coronary artery disease susceptibility in Chinese male: a case-control study. Genes Genomics 2021; 44:415-423. [PMID: 34338988 DOI: 10.1007/s13258-021-01144-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Calmodulin 1 (CALM1) mutations are involved in the development of coronary artery disease (CAD). However, the relationship of CALM1 rs3179089 polymorphism with CAD is unknown. OBJECTIVE This study aimed to identify the relationship of CALM1 rs3179089 polymorphism with CAD susceptibility, CALM1 expression, blood pressure, blood glucose, blood coagulation and serum lipid levels of CAD patients. METHODS 550 CAD patients and 550 control subjects were genotyped for CALM1 using Sequenom MassARRAY technology. CALM1 expression level was measured by quantitative real time polymerase chain reaction (qRT-PCR). RESULTS CALM1 mRNA expression was higher in CAD patients than that in control subjects (P < 0.001). CAD patients with CC genotype had higher CALM1 mRNA expression level than control subjects with CC genotype (P = 0.006). Genotypic frequency of rs3179089 was different between male patients of CAD and control subjects (P = 0.045). Rs3179089 polymorphism was related to CAD risk of males in recessive model (P = 0.039). Moreover, rs3179089 polymorphism was associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), and D-Dimer (D-D) level of patients with CAD in recessive model (P = 0.013 for SBP; P = 0.034 for DBP; P = 0.004 for FPG; P = 0.046 for D-D). In addition, rs3179089 polymorphism was correlated with low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) serum levels of patients with CAD in both addictive (P = 0.025 for LDL-C; P = 0.001 for TC) and recessive models (P = 0.001 for LDL-C; P = 0.001 for TC). CONCLUSION CALM1 expression is associated with development of CAD. CALM1 rs3179089 polymorphism affects CAD susceptibility in males, and blood pressure, blood glucose, blood coagulation and serum lipid of CAD patients.
Collapse
Affiliation(s)
- Jingyan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.,Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,University at Buffalo, The State University of New York, Buffalo, NY, 14228, USA.,Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China
| | - Siyun Huang
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Jinhong Li
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Minhua Li
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lin Gong
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Tongshun Li
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lian Gu
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China. .,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.
| |
Collapse
|
45
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Xu M, Zhang K, Song J. Targeted Therapy in Cardiovascular Disease: A Precision Therapy Era. Front Pharmacol 2021; 12:623674. [PMID: 33935716 PMCID: PMC8085499 DOI: 10.3389/fphar.2021.623674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted therapy refers to exploiting the specific therapeutic drugs against the pathogenic molecules (a protein or a gene) or cells. The drug specifically binds to disease-causing molecules or cells without affecting normal tissue, thus enabling personalized and precision treatment. Initially, therapeutic drugs included antibodies and small molecules, (e.g. nucleic acid drugs). With the advancement of the biology technology and immunotherapy, the gene editing and cell editing techniques are utilized for the disease treatment. Currently, targeted therapies applied to treat cardiovascular diseases (CVDs) mainly include protein drugs, gene editing technologies, nucleic acid drugs and cell therapy. Although targeted therapy has demonstrated excellent efficacy in pre-clinical and clinical trials, several limitations need to be recognized and overcome in clinical application, (e.g. off-target events, gene mutations, etc.). This review introduces the mechanisms of different targeted therapies, and mainly describes the targeted therapy applied in the CVDs. Furthermore, we made comparative analysis to clarify the advantages and disadvantages of different targeted therapies. This overview is expected to provide a new concept to the treatment of the CVDs.
Collapse
Affiliation(s)
- Mengda Xu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailun Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| |
Collapse
|
47
|
Wang Y, Yang L. Genomic Evidence for Convergent Molecular Adaptation in Electric Fishes. Genome Biol Evol 2021; 13:6151746. [PMID: 33638979 PMCID: PMC7952227 DOI: 10.1093/gbe/evab038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Fishes have independently evolved electric organs (EOs) at least six times, and the electric fields are used for communication, defense, and predation. However, the genetic basis of convergent evolution of EOs remains unclear. In this study, we conducted comparative genomic analyses to detect genes showing signatures of positive selection and convergent substitutions in electric fishes from three independent lineages (Mormyroidea, Siluriformes, and Gymnotiformes). Analysis of 4,657 orthologs between electric fishes and their corresponding control groups identified consistent evidence for accelerated evolution in electric fish lineages. A total of 702 positively selected genes (PSGs) were identified in electric fishes, and many of these genes corresponded to cell membrane structure, ion channels, and transmembrane transporter activity. Comparative genomic analyses revealed that widespread convergent amino acid substitutions occurred along the electric fish lineages. The overlap of convergent genes and PSGs was identified as adaptive convergence, and a subset of genes was putatively associated with electrical and muscular activities, especially scn4aa (a voltage-gated sodium channel gene). Our results provide hints to the genetic basis for the independent evolution of EOs during millions of years of evolution.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
48
|
Abstract
Long QT syndrome (LQTS) is a cardiovascular disorder characterized by an abnormality in cardiac repolarization leading to a prolonged QT interval and T-wave irregularities on the surface electrocardiogram. It is commonly associated with syncope, seizures, susceptibility to torsades de pointes, and risk for sudden death. LQTS is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. The availability of therapy for this lethal disease emphasizes the importance of early and accurate diagnosis. Additionally, understanding of the molecular mechanisms underlying LQTS could help to optimize genotype-specific treatments to prevent deaths in LQTS patients. In this review, we briefly summarize current knowledge regarding molecular underpinning of LQTS, in particular focusing on LQT1, LQT2, and LQT3, and discuss novel strategies to study ion channel dysfunction and drug-specific therapies in LQT1, LQT2, and LQT3 syndromes.
Collapse
Affiliation(s)
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
49
|
Etheridge SP, Niu MC. Calmodulinopathies: throwing back the veil on the newest life-threatening genetic arrhythmia syndrome. Curr Opin Cardiol 2021; 36:61-66. [PMID: 33027101 DOI: 10.1097/hco.0000000000000808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review provides a basic understanding of the calmodulin gene and its role in calcium homeostasis. We outline the functional effects and clinical expression of CALM mutations and review disease expression and management. RECENT FINDINGS Calmodulinopathies are rare life-threatening arrhythmia syndromes affecting young individuals. They are caused by mutations in any of the three genes (CALM 1-3) that encode calmodulin (CaM), a ubiquitously expressed Ca signaling protein with multiple targets that in the heart, modulates several ion channels. Patients express varied phenotypes: long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, sudden death, idiopathic ventricular fibrillation, hypertrophic cardiomyopathy, or mixed disease. This is severe disease. Over half of 2019 International Calmodulin Registry patients experienced recurrent cardiac events despite management strategies that included: monotherapy and combination therapy with beta blockers, sodium channel blockers, other antiarrhythmics, sympathetic denervation, and pacing. Induced pluripotent stem cell-derived cardiomyocytes from patients harboring CALM mutations have provided a platform for better understanding pathogenic mechanisms and avenues for therapy. SUMMARY Calmodulinopathies are among the more novel inherited arrhythmia syndromes. These are rare but highly lethal diseases with diverse clinical expressions. The practicing electrophysiologist should be aware these conditions, how to recognize them clinically, and understand the challenges in management.
Collapse
Affiliation(s)
- Susan P Etheridge
- University of Utah and Primary Children's Hospital, Salt Lake City, Utah, USA
| | | |
Collapse
|
50
|
Wei J, Yao J, Belke D, Guo W, Zhong X, Sun B, Wang R, Paul Estillore J, Vallmitjana A, Benitez R, Hove-Madsen L, Alvarez-Lacalle E, Echebarria B, Chen SRW. Ca 2+-CaM Dependent Inactivation of RyR2 Underlies Ca 2+ Alternans in Intact Heart. Circ Res 2020; 128:e63-e83. [PMID: 33375811 DOI: 10.1161/circresaha.120.318429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Ca2+ alternans plays an essential role in cardiac alternans that can lead to ventricular fibrillation, but the mechanism underlying Ca2+ alternans remains undefined. Increasing evidence suggests that Ca2+ alternans results from alternations in the inactivation of cardiac RyR2 (ryanodine receptor 2). However, what inactivates RyR2 and how RyR2 inactivation leads to Ca2+ alternans are unknown. OBJECTIVE To determine the role of CaM (calmodulin) on Ca2+ alternans in intact working mouse hearts. METHODS AND RESULTS We used an in vivo local gene delivery approach to alter CaM function by directly injecting adenoviruses expressing CaM-wild type, a loss-of-function CaM mutation, CaM (1-4), and a gain-of-function mutation, CaM-M37Q, into the anterior wall of the left ventricle of RyR2 wild type or mutant mouse hearts. We monitored Ca2+ transients in ventricular myocytes near the adenovirus-injection sites in Langendorff-perfused intact working hearts using confocal Ca2+ imaging. We found that CaM-wild type and CaM-M37Q promoted Ca2+ alternans and prolonged Ca2+ transient recovery in intact RyR2 wild type and mutant hearts, whereas CaM (1-4) exerted opposite effects. Altered CaM function also affected the recovery from inactivation of the L-type Ca2+ current but had no significant impact on sarcoplasmic reticulum Ca2+ content. Furthermore, we developed a novel numerical myocyte model of Ca2+ alternans that incorporates Ca2+-CaM-dependent regulation of RyR2 and the L-type Ca2+ channel. Remarkably, the new model recapitulates the impact on Ca2+ alternans of altered CaM and RyR2 functions under 9 different experimental conditions. Our simulations reveal that diastolic cytosolic Ca2+ elevation as a result of rapid pacing triggers Ca2+-CaM dependent inactivation of RyR2. The resultant RyR2 inactivation diminishes sarcoplasmic reticulum Ca2+ release, which, in turn, reduces diastolic cytosolic Ca2+, leading to alternations in diastolic cytosolic Ca2+, RyR2 inactivation, and sarcoplasmic reticulum Ca2+ release (ie, Ca2+ alternans). CONCLUSIONS Our results demonstrate that inactivation of RyR2 by Ca2+-CaM is a major determinant of Ca2+ alternans, making Ca2+-CaM dependent regulation of RyR2 an important therapeutic target for cardiac alternans.
Collapse
Affiliation(s)
- Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Darrell Belke
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Xiaowei Zhong
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Bo Sun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
| | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.).,Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain (R.B.)
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona IIBB-CSIC, CIBERCV and IIB Sant Pau, Hospital de Sant Pau, Barcelona, Spain (L.H.-M.)
| | - Enrique Alvarez-Lacalle
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain (E.A.-L., B.E.)
| | - Blas Echebarria
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain (E.A.-L., B.E.)
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| |
Collapse
|