1
|
Allen BG, Merlen C, Branco AF, Pétrin D, Hébert TE. Understanding the impact of nuclear-localized GPCRs on cellular signalling. Cell Signal 2024; 123:111358. [PMID: 39181220 DOI: 10.1016/j.cellsig.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
G protein-coupled receptors (GPCRs) have historically been associated with signalling events driven from the plasma membrane. More recently, signalling from endosomes has been recognized as a feature of internalizing receptors. However, there was little consideration given to the notion that GPCRs can be targeted to distinct subcellular locations that did not involve an initial trafficking to the cell surface. Here, we focus on the evidence for and the potential impact of GPCR signalling specifically initiated from the nuclear membrane. We also discuss the possibilities for selectively targeting this and other internal pools of receptors as novel venues for drug discovery.
Collapse
Affiliation(s)
- Bruce G Allen
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada; Departments of Biochemistry and Molecular Medicine, Medicine, Pharmacology and Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | - Ana F Branco
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
2
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Mei X, Mell B, Aryal S, Manandhar I, Tummala R, Zubcevic J, Lai K, Yang T, Li Q, Yeoh BS, Joe B. Genetically engineered Lactobacillus paracasei rescues colonic angiotensin converting enzyme 2 (ACE2) and attenuates hypertension in female Ace2 knock out rats. Pharmacol Res 2023; 196:106920. [PMID: 37716548 DOI: 10.1016/j.phrs.2023.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Engineered gut microbiota represents a new frontier in medicine, in part serving as a vehicle for the delivery of therapeutic biologics to treat a range of host conditions. The gut microbiota plays a significant role in blood pressure regulation; thus, manipulation of gut microbiota is a promising avenue for hypertension treatment. In this study, we tested the potential of Lactobacillus paracasei, genetically engineered to produce and deliver human angiotensin converting enzyme 2 (Lacto-hACE2), to regulate blood pressure in a rat model of hypertension with genetic ablation of endogenous Ace2 (Ace2-/- and Ace2-/y). Our findings reveal a sex-specific reduction in blood pressure in female (Ace2-/-) but not male (Ace2-/y) rats following colonization with the Lacto-hACE2. This beneficial effect of lowering blood pressure was aligned with a specific reduction in colonic angiotensin II, but not renal angiotensin II, suggesting the importance of colonic Ace2 in the regulation of blood pressure. We conclude that this approach of targeting the colon with engineered bacteria for delivery of ACE2 represents a promising new paradigm in the development of antihypertensive therapeutics.
Collapse
Affiliation(s)
- Xue Mei
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Blair Mell
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Sachin Aryal
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ramakumar Tummala
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Khanh Lai
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Beng San Yeoh
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
4
|
Komnenov D, Rossi NF. Fructose-induced salt-sensitive blood pressure differentially affects sympathetically mediated aortic stiffness in male and female Sprague-Dawley rats. Physiol Rep 2023; 11:e15687. [PMID: 37161090 PMCID: PMC10169770 DOI: 10.14814/phy2.15687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Hypertension is the leading risk factor for major adverse cardiovascular events (MACE). Aortic stiffness and sympathoexcitation are robust predictors of MACE. Combined high fructose and sodium intake increases arterial pressure, aortic stiffness, renin, and sympathetic nerve activity in male rats. We hypothesized that activation of the renin angiotensin system (RAS) and/or the sympathetic system mediates aortic stiffness in rats with fructose-induced salt-sensitive blood pressure. Male and female Sprague-Dawley rats ingested 20% fructose or 20% glucose in drinking water with 0.4% NaCl chow for 1 week. Then, fructose-fed rats were switched to 4% NaCl chow (Fru + HS); glucose-fed rats remained on 0.4% NaCl chow (Glu + NS, controls for caloric intake). After 2 weeks, mean arterial pressure (MAP) and aortic pulsed wave velocity (PWV) were evaluated at baseline or after acute intravenous vehicle, clonidine, enalapril, losartan, or hydrochlorothiazide. Baseline global longitudinal strain (GLS) was also assessed. MAP and PWV were greater in male Fru + HS versus Glu + NS male rats (p < 0.05 and p < 0.001, respectively). PWV was similar between the female groups. Despite similarly reduced MAP after clonidine, PWV decreased in Fru + HS versus Glu + NS male rats (p < 0.01). Clonidine induced similar decreases in MAP and PWV in females on either diet. GLS was lower in Fru + HS versus Glu + NS male rats and either of the female groups. Thus, acute sympathoinhibition improved aortic compliance in male rats with fructose salt-sensitive blood pressure. Female rats retained aortic compliance regardless of diet. Acute RAS inhibition exerted no significant effects. Male rats on fructose high salt diet displayed an early deficit in myocardial function. Taken together, these findings suggest that adult female rats are protected from the impact of fructose and high salt diet on blood pressure, aortic stiffness, and early left ventricular dysfunction compared with male rats.
Collapse
Affiliation(s)
- Dragana Komnenov
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
| | - Noreen F. Rossi
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
- John D. Dingell VA Medical CenterDetroitMichiganUSA
- Department of Internal MedicineWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
5
|
Wakabayashi Y, Nakayama S, Yamamoto A, Kitazawa T. High D-glucose levels induce ACE2 expression via GLUT1 in human airway epithelial cell line Calu-3. BMC Mol Cell Biol 2022; 23:29. [PMID: 35836103 PMCID: PMC9282902 DOI: 10.1186/s12860-022-00427-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2) receptors. ACE2 is expressed on human airway epithelial cells. Increased ACE2 expression may be associated with potentially high risk of COVID-19. However, the factors responsible for the regulation of ACE2 expression in human airway epithelial cells are unknown. Furthermore, hyperglycemia is a risk factor for poor disease prognosis. Results In this study, we investigated the effects of D-glucose on ACE2 mRNA and protein expressions in Calu-3 bronchial submucosal cells. The cells were cultured in minimal essential medium containing different D-glucose concentrations. After 48 and 72 h of high D-glucose (1000 mg/dL) treatment, ACE2 mRNA expressions were significantly increased. ACE2 protein expressions were significantly increased after 24 h of high D-glucose treatment. ACE2 mRNA expression was enhanced by a D-glucose concentration of 550 mg/dL or more after 72 h of treatment. In addition, we investigated the role of glucose transporters (GLUTs) in Calu-3 cells. ACE2 mRNA and protein expressions were suppressed by the GLUT1 inhibitor BAY-876 in high D-glucose-treated Calu-3 cells. GLUT-1 siRNA was also used and ACE2 mRNA expressions were suppressed in high D-glucose-treated Calu-3 cells with GLUT-1 knockdown. Conclusions This is the first report indicating that high D-glucose levels induced ACE2 expression via GLUT1 in bronchial submucosal cells in vitro. As hyperglycemia can be treated appropriately, these findings could help reduce the risk of worsening of coronavirus disease 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00427-4. SARS-CoV-2 enters the host cell by binding to its receptor, angiotensin-converting enzyme 2 (ACE2). ACE2 is expressed in many cell types, including bronchial epithelial cells. High D-glucose medium induced ACE2 expression in bronchial epithelial Calu-3 cells. Glucose transporter 1 (GLUT1) is expressed in Calu-3 cells, and GLUT1 inhibition decreased ACE2 expression.
Collapse
|
6
|
Ferrario CM, Saha A, VonCannon JL, Meredith WJ, Ahmad S. Does the Naked Emperor Parable Apply to Current Perceptions of the Contribution of Renin Angiotensin System Inhibition in Hypertension? Curr Hypertens Rep 2022; 24:709-721. [PMID: 36272015 DOI: 10.1007/s11906-022-01229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW To address contemporary hypertension challenges, a critical reexamination of therapeutic accomplishments using angiotensin converting enzyme inhibitors and angiotensin II receptor blockers, and a greater appreciation of evidence-based shortcomings from randomized clinical trials are fundamental in accelerating future progress. RECENT FINDINGS Medications targeting angiotensin II mechanism of action are essential for managing primary hypertension, type 2 diabetes, heart failure, and chronic kidney disease. While the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to control blood pressure is undisputed, practitioners, hypertension specialists, and researchers hold low awareness of these drugs' limitations in preventing or reducing the risk of cardiovascular events. Biases in interpreting gained knowledge from data obtained in randomized clinical trials include a pervasive emphasis on using relative risk reduction over absolute risk reduction. Furthermore, recommendations for clinical practice in international hypertension guidelines fail to address the significance of a residual risk several orders of magnitude greater than the benefits. We analyze the limitations of the clinical trials that have led to current recommended treatment guidelines. We define and quantify the magnitude of the residual risk in published hypertension trials and explore how activation of alternate compensatory bioprocessing components within the renin angiotensin system bypass the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to achieve a significant reduction in total and cardiovascular deaths. We complete this presentation by outlining the current incipient but promising potential of immunotherapy to block angiotensin II pathology alone or possibly in combination with other antihypertensive drugs. A full appreciation of the magnitude of the residual risk associated with current renin angiotensin system-based therapies constitutes a vital underpinning for seeking new molecular approaches to halt or even reverse the cardiovascular complications of primary hypertension and encourage investigating a new generation of ACE inhibitors and ARBs with increased capacity to reach the intracellular compartments at which Ang II can be generated.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA.
| | - Amit Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Jessica L VonCannon
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Wayne J Meredith
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| |
Collapse
|
7
|
Bai HY, Li H, Zhou X, Gu HB, Shan BS. AT2 Receptor Stimulation Inhibits Vascular Smooth Muscle Cell Senescence Induced by Angiotensin II and Hyperglycemia. Am J Hypertens 2022; 35:884-891. [PMID: 35793143 DOI: 10.1093/ajh/hpac083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 07/05/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Hyperglycemia has been widely reported to induce vascular senescence. We have previously demonstrated that angiotensin II (Ang II) could promote brain vascular smooth muscle cell (VSMC) senescence, and its type 2 (AT2) receptor deletion could enhance VSMC senescence. Therefore, we examined the possible cross-talk between Ang II and hyperglycemia on VSMC senescence, and the roles of AT2 receptor agonist, compound 21 (C21) on it. METHODS Aortic VSMCs were prepared from adult male mice and stimulated with Ang II and/or high glucose (Glu) and/or C21 and/or an autophagy inhibitor, 3-methyladenine (3-MA), and/or an autophagy agonist, rapamycin (RAP) for the indicated times. Cellular senescence, oxidative stress, and protein expressions were evaluated. RESULTS Combination treatment with Ang II and Glu synergistically increased the proportion of VSMC senescent area compared with control group and each treatment alone, which was almost completely attenuated by C21 treatment. Moreover, combination treatment induced significant changes in the levels of superoxide anion, the expressions of p21 and pRb, and the ratio of LC3B II/I expression, which were also significantly attenuated by C21 treatment. The proportion of VSMC senescent area and the levels of superoxide anion by combination treatment were increased after 3-MA treatment, and the proportion of senescent area and the expressions of p21 and pRb were decreased after RAP treatment, both of which were further attenuated by C21 treatment. CONCLUSIONS Ang II and hyperglycemia synergistically promoted VSMC senescence, at least partly through the participation by autophagy, oxidative stress, and p21-pRb pathway, which could be inhibited by C21.
Collapse
Affiliation(s)
- Hui-Yu Bai
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Bo Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bao-Shuai Shan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
8
|
Yuan S, Mason AM, Burgess S, Larsson SC. Differentiating Associations of Glycemic Traits With Atherosclerotic and Thrombotic Outcomes: Mendelian Randomization Investigation. Diabetes 2022; 71:2222-2232. [PMID: 35499407 PMCID: PMC7613853 DOI: 10.2337/db21-0905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022]
Abstract
We conducted a Mendelian randomization analysis to differentiate associations of four glycemic indicators with a broad range of atherosclerotic and thrombotic diseases. Independent genetic variants associated with fasting glucose (FG), 2 h glucose after an oral glucose challenge (2hGlu), fasting insulin (FI), and glycated hemoglobin (HbA1c) at the genome-wide significance threshold were used as instrumental variables. Summary-level data for 12 atherosclerotic and 4 thrombotic outcomes were obtained from large genetic consortia and the FinnGen and UK Biobank studies. Higher levels of genetically predicted glycemic traits were consistently associated with increased risk of coronary atherosclerosis-related diseases and symptoms. Genetically predicted glycemic traits except HbA1c showed positive associations with peripheral artery disease risk. Genetically predicted FI levels were positively associated with risk of ischemic stroke and chronic kidney disease. Genetically predicted FG and 2hGlu were positively associated with risk of large artery stroke. Genetically predicted 2hGlu levels showed positive associations with risk of small vessel stroke. Higher levels of genetically predicted glycemic traits were not associated with increased risk of thrombotic outcomes. Most associations for genetically predicted levels of 2hGlu and FI remained after adjustment for other glycemic traits. Increase in glycemic status appears to increase risks of coronary and peripheral artery atherosclerosis but not thrombosis.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Amy M. Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, U.K
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Arterial stiffness and atrial fibrillation: shared mechanisms, clinical implications and therapeutic options. J Hypertens 2022; 40:1639-1646. [PMID: 35943096 DOI: 10.1097/hjh.0000000000003223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Arterial stiffness (AS) and atrial fibrillation (AF) share commonalities in molecular and pathophysiological mechanisms and numerous studies have analyzed their reciprocal influence. The gold standard for AS diagnosis is represented by aortic pulse wave velocity, whose measurement can be affected by arrhythmias characterized by irregularities in heart rhythm, such as AF. Growing evidence show that patients with AS are at high risk of AF development. Moreover, the subset of AF patients with AS seems to be more symptomatic and rhythm control strategies are less effective in this population. Reducing AS through de-stiffening interventions may be beneficial for patients with AF and can be a new appealing target for the holistic approach of AF management. In this review, we discuss the association between AS and AF, with particular interest in shared mechanisms, clinical implications and therapeutic options.
Collapse
|
10
|
Fouda AY, Ahmed HA, Pillai B, Kozak A, Hardigan T, Ergul A, Fagan SC, Ishrat T. Contralesional angiotensin type 2 receptor activation contributes to recovery in experimental stroke. Neurochem Int 2022; 158:105375. [PMID: 35688299 PMCID: PMC9719365 DOI: 10.1016/j.neuint.2022.105375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023]
Abstract
We and others have previously shown that angiotensin II receptor type 2 receptor (AT2R) is upregulated in the contralesional hemisphere after stroke in normoglycemic Wistar rats. In this study, we examined the expression of AT2R in type 2 diabetic Goto-Kakizaki (GK) rats and control Wistars after stroke. We also tested the contribution of the contralesional AT2R in recovery after stroke through a specific knockdown of the AT2R in this hemisphere only. Two experiments were conducted. In the first experiment, GK rats were subjected to middle cerebral artery occlusion (MCAO) and treated with the angiotensin II receptor type 1 receptor (AT1R) blocker candesartan or saline at reperfusion. Stroke outcomes, as well as AT2R expression, were examined and compared to control Wistars at 24 h. In the second experiment, localized AT2R knockdown was achieved through intrastriatal injection of short hairpin RNA (shRNA) lentiviral particles or non-targeting control into the left-brain hemisphere of Wistar rats. After 14 days, rats were subjected to right MCAO and treated with the AT2R agonist, Compound 21 (C21), or saline for 7 days. Behavioral outcomes were assessed for up to 10 days. In the first experiment, stroke reduced the expression of AT2R in GK rats. Candesartan treatment failed to improve the neurobehavioral outcomes, preserve vascular integrity or reduce oxidative/nitrative stress or apoptotic markers at 24 h post stroke in these animals. In the second experiment, contralesional AT2R knockdown reduced the C21-mediated functional recovery after stroke. In conclusion, contralesional AT2R upregulation after stroke is blunted in diabetic rats which show reduced sensitivity to post-stroke candesartan treatment. Contralesional AT2R could be involved in C21-mediated functional recovery after stroke.
Collapse
Affiliation(s)
- Abdelrahman Y. Fouda
- University of Arkansas for Medical Sciences, Little Rock, AR, USA,Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,Corresponding author. University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR, USA. (A.Y. Fouda)
| | - Heba A. Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bindu Pillai
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Anna Kozak
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Trevor Hardigan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA,Ralph H. Jackson VA Medical Center, Charleston, SC, USA
| | - Susan C. Fagan
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA,Corresponding author. University of Tennessee Health Science Center, College of Medicine, Department of Anatomy and Neurobiology, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA. (T. Ishrat)
| |
Collapse
|
11
|
Tsai CH, Liao CW, Wu XM, Chen ZW, Pan CT, Chang YY, Lee BC, Shun CT, Wen WF, Chou CH, Wu VC, Hung CS, Lin YH. Autonomous cortisol secretion is associated with worse arterial stiffness and vascular fibrosis in primary aldosteronism: a cross-sectional study with follow-up data. Eur J Endocrinol 2022; 187:197-208. [PMID: 35551115 DOI: 10.1530/eje-21-1157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The presence of autonomous cortisol secretion (ACS) in patients with primary aldosteronism (PA) is common and potentially associated with poor outcomes. The aim of this study was to investigate the association between ACS and vascular remodeling in PA patients. DESIGN AND METHODS We prospectively enrolled 436 PA patients from October 2006 to November 2019. ACS (defined as a cortisol level >1.8 μg/dL after a 1 mg dexamethasone suppression test) was detected in 23% of the PA patients. Propensity score matching (PSM) with age, sex, systolic and diastolic blood pressure was performed. The brachial-ankle pulse wave velocity (baPWV) was examined at baseline and 1 year after targeted treatment. Small arteries of periadrenal fat in 46 patients were stained with Picro Sirus red to quantify the severity of vascular fibrosis. RESULTS After PSM, the PA patients with ACS had a significantly higher prevalence of diabetes mellitus, higher plasma aldosterone concentration and higher aldosterone-to-renin ratio. The baseline mean baPWV was also significantly higher in the PA patients with ACS. After multivariable regression analysis, the presence of ACS was a significant predictor of worse baseline mean baPWV (β: 235.745, 95% CI: 59.602-411.888, P = 0.010). In addition, the PA patients with ACS had worse vascular fibrosis (fibrosis area: 25.6 ± 8.4%) compared to those without ACS (fibrosis area: 19.8 ± 7.7%, P = 0.020). After 1 year of PA treatment, baPWV significantly improved in both groups. CONCLUSION The presence of ACS in PA patients is associated with worse arterial stiffness and vascular remodeling.
Collapse
Affiliation(s)
- Cheng-Hsuan Tsai
- National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Che-Wei Liao
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Xue-Ming Wu
- Department of Internal Medicine, Taoyuan General Hospital, Taoyuan, Taiwan
| | - Zheng-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Chien-Ting Pan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Yi-Yao Chang
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Fen Wen
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Sheng Hung
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Sankrityayan H, Kale A, Gaikwad AB. Inhibition of endoplasmic reticulum stress combined with activation of angiotensin-converting enzyme 2: novel approach for the prevention of endothelial dysfunction in type 1 diabetic rats. Can J Physiol Pharmacol 2022; 100:234-239. [PMID: 34587465 DOI: 10.1139/cjpp-2021-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Persistent hyperglycemia in type 1 diabetes triggers numerous signaling pathways, which may prove deleterious to the endothelium. As hyperglycemia damages the endothelial layer via multiple signaling pathways, including enhanced oxidative stress, downregulation of angiotensin-converting enzyme 2 signaling, and exacerbation of endoplasmic reticulum (ER) stress, it becomes difficult to prevent injury using monotherapy. Thus, the present study was conceived to evaluate the combined effect of ER stress inhibition along with angiotensin-converting enzyme 2 activation, two major contributors to hyperglycemia-induced endothelial dysfunction, in preventing endothelial dysfunction associated with type 1 diabetes. Streptozotocin-induced diabetic animals were treated with either diminazene aceturate (5 mg·kg-1 per day, p.o.) or tauroursodeoxycholic acid, sodium salt (200 mg·kg-1 per day i.p.), or both for 4 weeks. Endothelial dysfunction was evaluated using vasoreactivity assay, where acetylcholine-induced relaxation was assessed in phenylephrine pre-contracted rings. Combination therapy significantly improved vascular relaxation when compared with diabetic control as well as monotherapy. Restoration of nitrite levels along with prevention of collagen led to improved vasodilatation. Moreover, there was an overall reduction in aortic oxidative stress. We conclude that by simultaneously inhibiting ER stress and activating angiotensin-converting enzyme 2 deleterious effects of hyperglycemia on endothelium were significantly alleviated. This could serve as a novel strategy for the prevention of endothelial dysfunction.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
13
|
Tsai CH, Wu XM, Liao CW, Chen ZW, Pan CT, Chang YY, Lee BC, Chiu YW, Lai TS, Wu VC, Hung CS, Lin YH. Diabetes mellitus is associated with worse baseline and less post-treatment recovery of arterial stiffness in patients with primary aldosteronism. Ther Adv Chronic Dis 2022; 13:20406223211066727. [PMID: 35070251 PMCID: PMC8771743 DOI: 10.1177/20406223211066727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Aldosterone excess in primary aldosteronism (PA) has been linked to insulin resistance, and diabetes mellitus has been associated with increased arterial stiffness and worse cardiovascular outcomes. However, the impact of diabetes on baseline and post-treatment arterial stiffness in patients with PA is unknown. Methods: This study prospectively enrolled 1071 PA patients, of whom 177 had diabetes and 894 did not. Clinical, biochemical, and brachial-ankle pulse wave velocity (baPWV) data were analyzed at baseline and 1 year after PA-specific treatment. After propensity score matching of age, sex, body mass index, systolic and diastolic blood pressure, hypertension duration, and number of antihypertensive medications, 144 patients with diabetes and 320 without diabetes were included for further analysis. Results: After propensity score matching, the baseline characteristics were balanced between the diabetes and nondiabetes groups except for fasting glucose, HbA1c, and lipid profiles. The patients with diabetes had significantly worse baseline baPWV compared with those without diabetes. After multivariable linear regression, the presence of diabetes mellitus remained a significant predictor of worse baseline mean baPWV (β: 46.3, 95% confidence interval: 2.9–89.7, p = 0.037). After 1 year of PA-specific treatment, only the nondiabetes group had significant recovery of mean baPWV (1661.8 ± 332.3 to 1565.0 ± 329.2 cm/s, p < 0.001; Δ = −96.8 ± 254.6 cm/s). In contrast, the diabetes group had less improvement (1771.2 ± 353.8 cm/s to 1742.0 ± 377.2 cm/s, p = 0.259; Δ = −29.2 ± 263.2 cm/s) even though the systolic and diastolic blood pressure significantly improved in both groups. Conclusion: The presence of diabetes mellitus in PA patients was associated with worse baseline and less post-treatment recovery of arterial stiffness.
Collapse
Affiliation(s)
- Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, National Taiwan University Hospital, Taipei
| | - Xue-Ming Wu
- Department of Internal Medicine, Taoyuan General Hospital, Taoyuan
| | - Che-Wei Liao
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei; Cancer Center, Department of Medicine, National Taiwan University, Taipei
| | - Zheng-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei; Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin
| | - Chien-Ting Pan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei; Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin
| | - Yi-Yao Chang
- Cardiovascular Medical Center, Cardiology Division, Far Eastern Memorial Hospital, New Taipei City
| | - Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei
| | - Yu-Wei Chiu
- Cardiovascular Medical Center, Cardiology Division, Far Eastern Memorial Hospital, New Taipei City; Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City
| | - Tai-Shuan Lai
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei
| | - Chi-Shen Hung
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100 Cardiovascular Center, National Taiwan University Hospital, Taipei
| | | |
Collapse
|
14
|
Lage JGB, Bortolotto AL, Scanavacca MI, Bortolotto LA, Darrieux FCDC. Arterial stiffness and atrial fibrillation: A review. Clinics (Sao Paulo) 2022; 77:100014. [PMID: 35248986 PMCID: PMC8903742 DOI: 10.1016/j.clinsp.2022.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
Arterial stiffness has been investigated as part of the physiopathology of arterial hypertension since the 1970s. Its role in increasing the "pulsatile load" imposed over the Left Ventricle (LV) has been intensely studied recently and has helped in understanding the mechanisms of Atrial Fibrillation (AF) in hypertensive patients. This paper aims to review the main evidence on this issue and establish possible mechanisms involved in the development of AF in patients with arterial stiffness. A PubMed search was performed, and selected articles were searched for references focusing on this topic. In the long term, lower blood pressure levels allow for arterial wall remodeling, leading to a lower stiffness index. To this day, however, there are no available treatments that directly promote the lowering of arterial wall stiffness. Most classes of anti-hypertensive drugs ‒ with stronger evidence for beta-blockers and diuretics ‒ could be effective in reducing arterial stiffness. There is strong evidence demonstrating an association between arterial stiffness and AF. New studies focusing on arterial stiffness and pre-fibrillatory stages would strengthen this causality relation.
Collapse
Affiliation(s)
- João Gabriel Batista Lage
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| | - Alexandre Lemos Bortolotto
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Mauricio Ibrahim Scanavacca
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Luiz Aparecido Bortolotto
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | | |
Collapse
|
15
|
Khanh VC, Fukushige M, Chang YH, Hoang NN, Yamashita T, Obata-Yasuoka M, Hamada H, Osaka M, Hiramatsu Y, Ohneda O. Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles Reduce SARS-CoV2-Induced Inflammatory Cytokines Under High Glucose and Uremic Toxin Conditions. Stem Cells Dev 2021; 30:758-772. [PMID: 34074129 PMCID: PMC8356045 DOI: 10.1089/scd.2021.0065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokine storm is recognized as one of the factors contributing to organ failures and mortality in patients with COVID-19. Due to chronic inflammation, COVID-19 patients with diabetes mellitus (DM) or renal disease (RD) have more severe symptoms and higher mortality. However, the factors that contribute to severe outcomes of COVID-19 patients with DM and RD have received little attention. In an effort to investigate potential treatments for COVID-19, recent research has focused on the immunomodulation functions of mesenchymal stem cells (MSCs). In this study, the correlation between DM and RD and the severity of COVID-19 was examined by a combined approach with a meta-analysis and experimental research. The results of a systematic review and meta-analysis suggested that the odd of mortality in patients with both DM and RD was increased in comparison to those with a single comorbidity. In addition, in the experimental research, the data showed that high glucose and uremic toxins contributed to the induction of cytokine storm in human lung adenocarcinoma epithelial cells (Calu-3 cells) in response to SARS-CoV Peptide Pools. Of note, the incorporation of Wharton's jelly MSC-derived extracellular vesicles (WJ-EVs) into SARS-CoV peptide-induced Calu-3 resulted in a significant decrease in nuclear NF-κB p65 and the downregulation of the cytokine storm under high concentrations of glucose and uremic toxins. This clearly suggests the potential for WJ-EVs to reduce cytokine storm reactions in patients with both chronic inflammation diseases and viral infection.
Collapse
Affiliation(s)
- Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | - Mizuho Fukushige
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | - Yun Hsuan Chang
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | - Ngo Nhat Hoang
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | | | - Hiromi Hamada
- Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Motoo Osaka
- Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
16
|
The Mystery of Diabetic Cardiomyopathy: From Early Concepts and Underlying Mechanisms to Novel Therapeutic Possibilities. Int J Mol Sci 2021; 22:ijms22115973. [PMID: 34205870 PMCID: PMC8198766 DOI: 10.3390/ijms22115973] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic patients are predisposed to diabetic cardiomyopathy, a specific form of cardiomyopathy which is characterized by the development of myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis that develops independently of concomitant macrovascular and microvascular diabetic complications. Its pathophysiology is multifactorial and poorly understood and no specific therapeutic guideline has yet been established. Diabetic cardiomyopathy is a challenging diagnosis, made after excluding other potential entities, treated with different pharmacotherapeutic agents targeting various pathophysiological pathways that need yet to be unraveled. It has great clinical importance as diabetes is a disease with pandemic proportions. This review focuses on the potential mechanisms contributing to this entity, diagnostic options, as well as on potential therapeutic interventions taking in consideration their clinical feasibility and limitations in everyday practice. Besides conventional therapies, we discuss novel therapeutic possibilities that have not yet been translated into clinical practice.
Collapse
|
17
|
Stein R, Berger M, Santana de Cecco B, Mallmann LP, Terraciano PB, Driemeier D, Rodrigues E, Beys-da-Silva WO, Konrath EL. Chymase inhibition: A key factor in the anti-inflammatory activity of ethanolic extracts and spilanthol isolated from Acmella oleracea. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113610. [PMID: 33246121 DOI: 10.1016/j.jep.2020.113610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acmella oleracea (L.) R. K. Jansen (Asteraceae), known as jambú in Brazil, is used in traditional medicine as analgesic and for inflammatory conditions, characterized by the presence of N-alkylamides, mainly spilanthol. This bioactive compound is responsible for the above-described pharmacological properties, including sialagogue and anesthetic. AIM OF THE STUDY This study aimed to characterize the anti-inflammatory effects of A. oleracea leaves (AOEE-L) and flowers (AOEE-F) extracts, including an isolated alkylamide (spilanthol), using in vitro and in vivo models. The mechanism underlying this effect was also investigated. MATERIALS AND METHODS Extracts were analyzed by HPLC-ESI-MS/MS in order to characterize the N-alkylamides content. AOEE-L, AOEE-F (25-100 μg/mL) and spilanthol (50-200 μM) were tested in vitro on VSMC after stimulation with hyperglycemic medium (25 mM glucose). Their effects over nitric oxide (NO) generation, chymase inhibition and expression, catalase (CAT), superoxide anion (SOD) radical activity were evaluated. After an acute administration of extracts (10-100 mg/mL) and spilanthol (6.2 mg/mL), the anti-inflammatory effects were evaluated by applying the formalin test in rats. Blood was collected to measure serum aminotransferases activities, NO activity, creatinine and urea. RESULTS A number of distinct N-alkylamides were detected and quantified in AOEE-L and AOEE-F. Spilanthol was identified in both extracts and selected for experimental tests. Hyperglycemic stimulation in VSMC promoted the expression of inflammatory parameters, including chymase, NO, CAT and SOD activity and chymase expression, all of them attenuated by the presence of the extracts and spilanthol. The administration of extracts or spilanthol significantly inhibited edema formation, NO production and cell tissue infiltration in the formalin test, without causing kidney and liver toxicity. CONCLUSION Taken together, these results provide evidence for the anti-inflammatory activity of leaves and flowers extracts of jambú associated distinctly with their chemical profile. The effects appear to be associated with the inhibition of chymase activity, suppression of the proinflammatory cytokine NO and antioxidant activities.
Collapse
Affiliation(s)
- Renan Stein
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, 90610-000, Porto Alegre, RS, Brazil
| | - Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), CEP, 90035-007, Porto Alegre, RS, Brazil
| | - Bianca Santana de Cecco
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, 91540-000, Porto Alegre, RS, Brazil
| | - Luana Peixoto Mallmann
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, 91501-970, Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), CEP, 90035-007, Porto Alegre, RS, Brazil
| | - David Driemeier
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, 91540-000, Porto Alegre, RS, Brazil
| | - Eliseu Rodrigues
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, 91501-970, Porto Alegre, RS, Brazil
| | - Walter Orlando Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul- UFRGS, CEP, 90610-000, Porto Alegre, RS, Brazil
| | - Eduardo Luis Konrath
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Wang Y, Fu W, Xue Y, Lu Z, Li Y, Yu P, Yu X, Xu H, Sui D. Ginsenoside Rc Ameliorates Endothelial Insulin Resistance via Upregulation of Angiotensin-Converting Enzyme 2. Front Pharmacol 2021; 12:620524. [PMID: 33708129 PMCID: PMC7940763 DOI: 10.3389/fphar.2021.620524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major health concern which may cause cardiovascular complications. Insulin resistance (IR), regarded as a hallmark of T2DM, is characterized by endothelial dysfunction. Ginsenoside Rc is one of the main protopanaxadiol-type saponins with relatively less research on it. Despite researches confirming the potent anti-inflammatory and antioxidant activities of ginsenoside Rc, the potential benefits of ginsenoside Rc against vascular complications have not been explored. In the present study, we investigated the effects of ginsenoside Rc on endothelial IR and endothelial dysfunction with its underlying mechanisms using high glucose- (HG-) cultured human umbilical vein endothelial cells (HUVECs) in vitro and a type 2 diabetic model of db/db mice in vivo. The results showed that ginsenoside Rc corrected the imbalance of vasomotor factors, reduced the production of Ang (angiotensin) II, and activated angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas axis in HG-treated HUVECs. Besides, ginsenoside Rc improved the impaired insulin signaling pathway and repressed oxidative stress and inflammatory pathways which constitute key factors leading to IR. Interestingly, the effects of ginsenoside Rc on HG-induced HUVECs were abolished by the selective ACE2 inhibitor MLN-4760. Furthermore, ginsenoside Rc exhibited anti-inflammatory as well as antioxidant properties and ameliorated endothelial dysfunction via upregulation of ACE2 in db/db mice, which were confirmed by the application of MLN-4760. In conclusion, our findings reveal a novel action of ginsenoside Rc and demonstrate that ginsenoside Rc ameliorated endothelial IR and endothelial dysfunction, at least in part, via upregulation of ACE2 and holds promise for the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Yaozhen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yan Xue
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.,Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zeyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
19
|
Roy B, Palaniyandi SS. A role for aldehyde dehydrogenase (ALDH) 2 in angiotensin II-mediated decrease in angiogenesis of coronary endothelial cells. Microvasc Res 2021; 135:104133. [PMID: 33428883 DOI: 10.1016/j.mvr.2021.104133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Diabetes-induced coronary endothelial cell (CEC) dysfunction contributes to diabetic heart diseases. Angiotensin II (Ang II), a vasoactive hormone, is upregulated in diabetes, and is reported to increase oxidative stress in CECs. 4-hydroxy-2-nonenal (4HNE), a key lipid peroxidation product, causes cellular dysfunction by forming adducts with proteins. By detoxifying 4HNE, aldehyde dehydrogenase (ALDH) 2 reduces 4HNE mediated proteotoxicity and confers cytoprotection. Thus, we hypothesize that ALDH2 improves Ang II-mediated defective CEC angiogenesis by decreasing 4HNE-mediated cytotoxicity. To test our hypothesis, we treated the cultured mouse CECs (MCECs) with Ang II (0.1, 1 and 10 μM) for 2, 4 and 6 h. Next, we treated MCECs with Alda-1 (10 μM), an ALDH2 activator or disulfiram (2.5 μM)/ALDH2 siRNA (1.25 nM), the ALDH2 inhibitors, or blockers of angiotensin II type-1 and 2 receptors i.e. Losartan and PD0123319 respectively before challenging MCECs with 10 μM Ang II. We found that 10 μM Ang II decreased tube formation in MCECs with in vitro angiogenesis assay (P < .0005 vs control). 10 μM Ang II downregulated the levels of vascular endothelial growth factor receptor 1 (VEGFR1) (p < .005 for mRNA and P < .05 for protein) and VEGFR2 (p < .05 for mRNA and P < .005 for protein) as well as upregulated the levels of angiotensin II type-2 receptor (AT2R) (p < .05 for mRNA and P < .005 for protein) and 4HNE-adducts (P < .05 for protein) in cultured MCECs, compared to controls. ALDH2 inhibition with disulfiram/ALDH2 siRNA exacerbated 10 μM Ang II-induced decrease in coronary angiogenesis (P < .005) by decreasing the levels of VEGFR1 (P < .005 for mRNA and P < .05 for protein) and VEGFR2 (P < .05 for both mRNA and protein) and increasing the levels of AT2R (P < .05 for both mRNA and protein) and 4HNE-adducts (P < .05 for protein) relative to Ang II alone. AT2R inhibition per se improved angiogenesis in MCECs. Additionally, enhancing ALDH2 activity with Alda 1 rescued Ang II-induced decrease in angiogenesis by increasing the levels of VEGFR1, VEGFR2 and decreasing the levels of AT2R. In summary, ALDH2 can be an important target in reducing 4HNE-induced proteotoxicity and improving angiogenesis in MCECs. Finally, we conclude ALDH2 activation can be a therapeutic strategy to improve coronary angiogenesis to ameliorate cardiometabolic diseases.
Collapse
Affiliation(s)
- Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States of America; Department of Physiology, Wayne State University, Detroit, MI 48202, United States of America
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States of America; Department of Physiology, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
20
|
Berglund P, Akula S, Fu Z, Thorpe M, Hellman L. Extended Cleavage Specificity of the Rat Vascular Chymase, a Potential Blood Pressure Regulating Enzyme Expressed by Rat Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21228546. [PMID: 33198413 PMCID: PMC7697883 DOI: 10.3390/ijms21228546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Serine proteases constitute the major protein content of the cytoplasmic granules of several hematopoietic cell lineages. These proteases are encoded from four different loci in mammals. One of these loci, the chymase locus, has in rats experienced a massive expansion in the number of functional genes. The human chymase locus encodes 4 proteases, whereas the corresponding locus in rats contains 28 such genes. One of these new genes has changed tissue specificity and has been found to be expressed primarily in vascular smooth muscle cells, and therefore been named rat vascular chymase (RVC). This β-chymase has been claimed to be a potent angiotensin-converting enzyme by cleaving angiotensin (Ang) I into Ang II and thereby having the potential to regulate blood pressure. To further characterize this enzyme, we have used substrate phage display and a panel of recombinant substrates to obtain a detailed quantitative view of its extended cleavage specificity. RVC was found to show a strong preference for Phe and Tyr in the P1 position, but also to accept Leu and Trp in this position. A strong preference for Ser or Arg in the P1’ position, just C-terminally of the cleavage site, and a preference for aliphatic amino acids in most other positions surrounding the cleavage site was also seen. Interesting also was a relatively strict preference for Gly in positions P3’ and P4’. RVC thereby shares similarity in its specificity to the mouse mucosal mast cell chymase mMCP-1, which efficiently converts Ang I to Ang II. This similarity adds support for the role of β-chymases as potent angiotensin converters in rodents, as their α-chymases, which have the capacity to efficiently convert Ang I into Ang II in other mammalian lineages, have become elastases. However, interestingly we found that RVC cleaved both after Arg2 and Phe8 in Ang I. Furthermore this cleavage was more than two hundred times less efficient than the consensus site obtained from the phage display analysis, indicating that RVC has a very low ability to cleave Ang I, raising serious doubts about its role in Ang I conversion.
Collapse
Affiliation(s)
| | | | | | | | - Lars Hellman
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
21
|
Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol 2020; 199:101919. [PMID: 33039415 PMCID: PMC7543790 DOI: 10.1016/j.pneurobio.2020.101919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is one of the oldest hormone systems in vertebrate phylogeny. RAS was initially related to regulation of blood pressure and sodium and water homeostasis. However, local or paracrine RAS were later identified in many tissues, including brain, and play a major role in their physiology and pathophysiology. In addition, a major component, ACE2, is the entry receptor for SARS-CoV-2. Overactivation of tissue RAS leads several oxidative stress and inflammatory processes involved in aging-related degenerative changes. In addition, a third level of RAS, the intracellular or intracrine RAS (iRAS), with still unclear functions, has been observed. The possible interaction between the intracellular and extracellular RAS, and particularly the possible deleterious or beneficial effects of the iRAS activation are controversial. The dopaminergic system is particularly interesting to investigate the RAS as important functional interactions between dopamine and RAS have been observed in the brain and several peripheral tissues. Our recent observations in mitochondria and nucleus of dopaminergic neurons may clarify the role of the iRAS. This may be important for the developing of new therapeutic strategies, since the effects on both extracellular and intracellular RAS must be taken into account, and perhaps better understanding of COVID-19 cell mechanisms.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain.
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Begoña Villar-Cheda
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
22
|
Hoevenaar M, Goossens D, Roorda J. Angiotensin-converting enzyme 2, the complement system, the kallikrein-kinin system, type-2 diabetes, interleukin-6, and their interactions regarding the complex COVID-19 pathophysiological crossroads. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320979097. [PMID: 33283602 PMCID: PMC7724427 DOI: 10.1177/1470320320979097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Because of the current COVID-19-pandemic, the world is currently being held hostage in various lockdowns. ACE2 facilitates SARS-CoV-2 cell-entry, and is at the very center of several pathophysiological pathways regarding the RAAS, CS, KKS, T2DM, and IL-6. Their interactions with severe COVID-19 complications (e.g. ARDS and thrombosis), and potential therapeutic targets for pharmacological intervention, will be reviewed.
Collapse
Affiliation(s)
| | | | - Janne Roorda
- Medical Doctor, General Practice
van Dijk, Oisterwijk, The Netherlands
| |
Collapse
|
23
|
Dhurandhar NV, Akheruzzaman M, Hegde V. Potentially modifiable factors to reduce severity of COVID-19 in type 2 diabetes. Nutr Diabetes 2020; 10:30. [PMID: 32788586 PMCID: PMC7422666 DOI: 10.1038/s41387-020-00133-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Nikhil V Dhurandhar
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Md Akheruzzaman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vijay Hegde
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
24
|
Lacolley P, Regnault V, Laurent S. Mechanisms of Arterial Stiffening: From Mechanotransduction to Epigenetics. Arterioscler Thromb Vasc Biol 2020; 40:1055-1062. [PMID: 32075419 DOI: 10.1161/atvbaha.119.313129] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arterial stiffness is a major independent risk factor for cardiovascular complications causing isolated systolic hypertension and increased pulse pressure in the microvasculature of target organs. Stiffening of the arterial wall is determined by common mechanisms including reduced elastin/collagen ratio, production of elastin cross-linking, reactive oxygen species-induced inflammation, calcification, vascular smooth muscle cell stiffness, and endothelial dysfunction. This brief review will discuss current biological mechanisms by which other cardiovascular risk factors (eg, aging, hypertension, diabetes mellitus, and chronic kidney disease) cause arterial stiffness, with a particular focus on recent advances regarding nuclear mechanotransduction, mitochondrial oxidative stress, metabolism and dyslipidemia, genome mutations, and epigenetics. Targeting these different molecular pathways at different time of cardiovascular risk factor exposure may be a novel approach for discovering drugs to reduce arterial stiffening without affecting artery strength and normal remodeling.
Collapse
Affiliation(s)
- Patrick Lacolley
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (P.L., V.R.).,Université de Lorraine, Nancy, France (P.L., V.R.)
| | - Véronique Regnault
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (P.L., V.R.).,Université de Lorraine, Nancy, France (P.L., V.R.)
| | - Stéphane Laurent
- Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France (S.L.).,PARCC INSERM, UMR 970, Paris, France (S.L.).,University Paris Descartes, France (S.L.)
| |
Collapse
|
25
|
Ushakumary MG, Wang M, V H, Titus AS, Zhang J, Liu L, Monticone R, Wang Y, Mattison JA, de Cabo R, Lakatta EG, Kailasam S. Discoidin domain Receptor 2: A determinant of metabolic syndrome-associated arterial fibrosis in non-human primates. PLoS One 2019; 14:e0225911. [PMID: 31805124 PMCID: PMC6894805 DOI: 10.1371/journal.pone.0225911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/14/2019] [Indexed: 01/31/2023] Open
Abstract
Collagen accumulation and remodeling in the vascular wall is a cardinal feature of vascular fibrosis that exacerbates the complications of hypertension, aging, diabetes and atherosclerosis. With no specific therapy available to date, identification of mechanisms underlying vascular fibrogenesis is an important clinical goal. Here, we tested the hypothesis that Discoidin Domain Receptor 2 (DDR2), a collagen-specific receptor tyrosine kinase, is a determinant of arterial fibrosis. We report a significant increase in collagen type 1 levels along with collagen and ECM remodeling, degradation of elastic laminae, enhanced fat deposition and calcification in the abdominal aorta in a non-human primate model of high-fat, high-sucrose diet (HFS)-induced metabolic syndrome. These changes were associated with a marked increase in DDR2. Resveratrol attenuated collagen type I deposition and remodeling induced by the HFS diet, with a concomintant reduction in DDR2. Further, in isolated rat vascular adventitial fibroblasts and VSMCs, hyperglycemia increased DDR2 and collagen type I expression via TGF-β1/SMAD2/3, which was attenuated by resveratrol. Notably, gene knockdown and overexpression approaches demonstrated an obligate role for DDR2 in hyperglycemia-induced increase in collagen type I expression in these cells. Together, our observations point to DDR2 as a hitherto unrecognized molecular link between metabolic syndrome and arterial fibrosis, and hence a therapeutic target.
Collapse
Affiliation(s)
- Mereena George Ushakumary
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Harikrishnan V
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Lijuan Liu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Robert Monticone
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yushi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
26
|
Dell'Italia LJ, Collawn JF, Ferrario CM. Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res 2019; 122:319-336. [PMID: 29348253 DOI: 10.1161/circresaha.117.310978] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chymase is the most efficient Ang II (angiotensin II)-forming enzyme in the human body and has been implicated in a wide variety of human diseases that also implicate its many other protease actions. Largely thought to be the product of mast cells, the identification of other cellular sources including cardiac fibroblasts and vascular endothelial cells demonstrates a more widely dispersed production and distribution system in various tissues. Furthermore, newly emerging evidence for its intracellular presence in cardiomyocytes and smooth muscle cells opens an entirely new compartment of chymase-mediated actions that were previously thought to be limited to the extracellular space. This review illustrates how these multiple chymase-mediated mechanisms of action can explain the residual risk in clinical trials of cardiovascular disease using conventional renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Louis J Dell'Italia
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.).
| | - James F Collawn
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.)
| | - Carlos M Ferrario
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.)
| |
Collapse
|
27
|
A genetic risk score for fasting plasma glucose is independently associated with arterial stiffness: a Mendelian randomization study. J Hypertens 2019; 36:809-814. [PMID: 29215398 PMCID: PMC5861999 DOI: 10.1097/hjh.0000000000001646] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Arterial stiffness is known to be associated with a number of clinical conditions including hypertension, diabetes and dyslipidemia, and may predict cardiovascular events and mortality. However, causal links are hard to establish. Results from genome-wide association studies have identified only a few single nucleotide polymorphisms associated with arterial stiffness, the results have been inconsistent between studies and overlap with other clinical conditions is lacking. Our aim was to investigate a potential shared set of risk single nucleotide polymorphisms between relevant cardiometabolic traits and arterial stiffness. METHOD The study population consisted of 2853 individuals (mean age 72 years, 40% men) from the population-based Malmö Diet and Cancer study, Sweden. Carotid-femoral pulse wave velocity, a marker of arterial stiffness, was measured with Sphygmocor. Mendelian randomization analyses were performed using the two-stage least square regression and multivariate inverse-variance weighted methods. RESULTS There were positive associations between arterial stiffness and genetic risk scores for type 2 diabetes (β = 0.03, P = 0.04) and fasting plasma glucose (β = 0.03, P = 0.03), but not for systolic blood pressure, body mass index, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides. Multivariate inverse-variance weighted methods confirmed the significant positive association for fasting plasma glucose β coefficients (P = 0.006), but not for type 2 diabetes β coefficients (P = 0.88). CONCLUSION Genetically elevated fasting plasma glucose, but not genetically elevated risk of type 2 diabetes, was associated with arterial stiffness suggesting a causal stiffening effect of glycemia on the arterial wall, independently of type 2 diabetes.
Collapse
|
28
|
Escobales N, Nuñez RE, Javadov S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am J Physiol Heart Circ Physiol 2019; 316:H1426-H1438. [PMID: 30978131 PMCID: PMC6620675 DOI: 10.1152/ajpheart.00772.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
A growing body of data provides strong evidence that intracellular angiotensin II (ANG II) plays an important role in mammalian cell function and is involved in the pathogenesis of human diseases such as hypertension, diabetes, inflammation, fibrosis, arrhythmias, and kidney disease, among others. Recent studies also suggest that intracellular ANG II exerts protective effects in cells during high extracellular levels of the hormone or during chronic stimulation of the local tissue renin-angiotensin system (RAS). Notably, the intracellular RAS (iRAS) described in neurons, fibroblasts, renal cells, and cardiomyocytes provided new insights into regulatory mechanisms mediated by intracellular ANG II type 1 (AT1Rs) and 2 (AT2Rs) receptors, particularly, in mitochondria and nucleus. For instance, ANG II through nuclear AT1Rs promotes protective mechanisms by stimulating the AT2R signaling cascade, which involves mitochondrial AT2Rs and Mas receptors. The stimulation of nuclear ANG II receptors enhances mitochondrial biogenesis through peroxisome proliferator-activated receptor-γ coactivator-1α and increases sirtuins activity, thus protecting the cell against oxidative stress. Recent studies in ANG II-induced preconditioning suggest that plasma membrane AT2R stimulation exerts protective effects against cardiac ischemia-reperfusion by modulating mitochondrial AT1R and AT2R signaling. These studies indicate that iRAS promotes the protection of cells through nuclear AT1R signaling, which, in turn, promotes AT2R-dependent processes in mitochondria. Thus, despite abundant data on the deleterious effects of intracellular ANG II, a growing body of studies also supports a protective role for iRAS that could be of relevance to developing new therapeutic strategies. This review summarizes and discusses previous studies on the role of iRAS, particularly emphasizing the protective and counterbalancing actions of iRAS, mitochondrial ANG II receptors, and their implications for organ protection.
Collapse
Affiliation(s)
- Nelson Escobales
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Rebeca E Nuñez
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| |
Collapse
|
29
|
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis 2019. [PMID: 30934934 DOI: 10.3390/jcdd6020014.pmid:30934934;pmcid:pmc6617132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In its classical view, the renin angiotensin system (RAS) was defined as an endocrinesystem involved in blood pressure regulation and body electrolyte balance. However, the emergingconcept of tissue RAS, along with the discovery of new RAS components, increased thephysiological and clinical relevance of the system. Indeed, RAS has been shown to be expressed invarious tissues where alterations in its expression were shown to be involved in multiple diseasesincluding atherosclerosis, cardiac hypertrophy, type 2 diabetes (T2D) and renal fibrosis. In thischapter, we describe the new components of RAS, their tissue-specific expression, and theiralterations under pathological conditions, which will help achieve more tissue- and conditionspecifictreatments.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional genomics of arterial hypertension, Univeristy Claude Bernard Lyon-1 (UCBL-1),69008 Lyon, France.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Heart Repair Division, Faculty of Medicine,American University of Beirut, Beirut 11-0236, Lebanon.
| | - Zeinab Deris Zayeri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz JundishapurUniversity of Medical Sciences, Ahvaz, Iran.
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
30
|
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis 2019; 6:jcdd6020014. [PMID: 30934934 PMCID: PMC6617132 DOI: 10.3390/jcdd6020014] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
In its classical view, the renin angiotensin system (RAS) was defined as an endocrine system involved in blood pressure regulation and body electrolyte balance. However, the emerging concept of tissue RAS, along with the discovery of new RAS components, increased the physiological and clinical relevance of the system. Indeed, RAS has been shown to be expressed in various tissues where alterations in its expression were shown to be involved in multiple diseases including atherosclerosis, cardiac hypertrophy, type 2 diabetes (T2D) and renal fibrosis. In this chapter, we describe the new components of RAS, their tissue-specific expression, and their alterations under pathological conditions, which will help achieve more tissue- and condition-specific treatments.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional genomics of arterial hypertension, Univeristy Claude Bernard Lyon-1 (UCBL-1),69008 Lyon, France.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Heart Repair Division, Faculty of Medicine,American University of Beirut, Beirut 11-0236, Lebanon.
| | - Zeinab Deris Zayeri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz JundishapurUniversity of Medical Sciences, Ahvaz, Iran.
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
31
|
Jadhav AP, Sadaka FG. Angiotensin II in septic shock. Am J Emerg Med 2019; 37:1169-1174. [PMID: 30935784 DOI: 10.1016/j.ajem.2019.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023] Open
Abstract
Septic shock is a life threatening condition and a medical emergency. It is associated with organ dysfunction and hypotension despite optimal volume resuscitation. Refractory septic shock carries a very high rate of mortality and is associated with ischemic and arrhythmogenic complications from high dose vasopressors. Angiotensin II (AT-II) is a product of the renin-angiotensin-aldosterone system. It is a vasopressor agent that has been recently approved by FDA to be used in conjunction with other vasopressors (catecholamines) in refractory shock and to reduce catecholamine requirements. We have reviewed the physiology and current literature on AT-II in refractory septic/vasodilatory shock. Larger trials with longer duration of follow-up are warranted to address the questions which are unanswered by the ATHOS-3 trial, especially pertaining to its effects on lungs, brain, microcirculation, inflammation, and venous thromboembolism risk.
Collapse
Affiliation(s)
- Amar P Jadhav
- Intensivist, SSM St. Mary's Hospital, Richmond Heights, St. Louis, United States of America..
| | - Farid G Sadaka
- Clinical Associate Professor, Critical care/Neurocritical care, Mercy Hospital St.Louis, St. Louis University School of Medicine Program, United States of America
| |
Collapse
|
32
|
Nucleoligands-repurposing G Protein-coupled Receptor Ligands to Modulate Nuclear-localized G Protein-coupled Receptors in the Cardiovascular System. J Cardiovasc Pharmacol 2019; 71:193-204. [PMID: 28858907 DOI: 10.1097/fjc.0000000000000535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is significant evidence that internal pools of G protein-coupled receptors (GPCRs) exist and may be affected by both endogenous signaling molecules and hydrophobic pharmaceutical ligands, once assumed to only affect cell surface versions of these receptors. Here, we discuss evidence that the biology of nuclear GPCRs in particular is complex, rich, and highly interactive with GPCR signaling from the cell surface. Caging existing GPCR ligands may be an excellent means of further stratifying the phenotypic effects of known pharmacophores such as β-adrenergic, angiotensin II, and type B endothelin receptor ligands in the cardiovascular system. We describe some synthetic strategies we have used to design ligands to go from in cellulo to in vivo experiments. We also consider how surface and intracellular GPCR signaling might be integrated and ways to dissect this. If they could be selectively targeted, nuclear GPCRs and their associated nucleoligands would represent a completely novel area for exploration by Pharma.
Collapse
|
33
|
South AM, Shaltout HA, Washburn LK, Hendricks AS, Diz DI, Chappell MC. Fetal programming and the angiotensin-(1-7) axis: a review of the experimental and clinical data. Clin Sci (Lond) 2019; 133:55-74. [PMID: 30622158 PMCID: PMC6716381 DOI: 10.1042/cs20171550] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Hypertension is the primary risk factor for cardiovascular disease that constitutes a serious worldwide health concern and a significant healthcare burden. As the majority of hypertension has an unknown etiology, considerable research efforts in both experimental models and human cohorts has focused on the premise that alterations in the fetal and perinatal environment are key factors in the development of hypertension in children and adults. The exact mechanisms of how fetal programming events increase the risk of hypertension and cardiovascular disease are not fully elaborated; however, the focus on alterations in the biochemical components and functional aspects of the renin-angiotensin (Ang) system (RAS) has predominated, particularly activation of the Ang-converting enzyme (ACE)-Ang II-Ang type 1 receptor (AT1R) axis. The emerging view of alternative pathways within the RAS that may functionally antagonize the Ang II axis raise the possibility that programming events also target the non-classical components of the RAS as an additional mechanism contributing to the development and progression of hypertension. In the current review, we evaluate the potential role of the ACE2-Ang-(1-7)-Mas receptor (MasR) axis of the RAS in fetal programming events and cardiovascular and renal dysfunction. Specifically, the review examines the impact of fetal programming on the Ang-(1-7) axis within the circulation, kidney, and brain such that the loss of Ang-(1-7) expression or tone, contributes to the chronic dysregulation of blood pressure (BP) and cardiometabolic disease in the offspring, as well as the influence of sex on potential programming of this pathway.
Collapse
Affiliation(s)
- Andrew M South
- Department of Pediatrics, Section of Nephrology, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Hossam A Shaltout
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Alexandria, Egypt
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Surgery, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Lisa K Washburn
- Department of Pediatrics, Section of Nephrology, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Alexa S Hendricks
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Debra I Diz
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Surgery, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Mark C Chappell
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A.
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Surgery, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| |
Collapse
|
34
|
|
35
|
Ng HH, Leo CH, Parry LJ, Ritchie RH. Relaxin as a Therapeutic Target for the Cardiovascular Complications of Diabetes. Front Pharmacol 2018; 9:501. [PMID: 29867503 PMCID: PMC5962677 DOI: 10.3389/fphar.2018.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular complications are the major cause of mortality in patients with diabetes. This is closely associated with both macrovascular and microvascular complications of diabetes, which lead to organ injuries in diabetic patients. Previous studies have consistently demonstrated the beneficial effects of relaxin treatment for protection of the vasculature, with evidence of antioxidant and anti-remodeling actions. Relaxin enhances nitric oxide, prostacyclin and endothelium-derived hyperpolarization (EDH)-type-mediated relaxation in various vascular beds. These effects of relaxin on the systemic vasculature, coupled with its cardiac actions, reduce pulmonary capillary wedge pressure and pulmonary artery pressure. This results in an overall decrease in systemic and pulmonary vascular resistance in heart failure patients. The anti-fibrotic actions of relaxin are well established, a desirable property in the context of diabetes. Further, relaxin ameliorates diabetic wound healing, with accelerated angiogenesis and vasculogenesis. Relaxin-mediated stimulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1-α, as well as regulation of metalloproteinase expression, ameliorates cardiovascular fibrosis in diabetic mice. In the heart, relaxin is a cardioprotective molecule in several experimental animal models, exerting anti-fibrotic, anti-hypertrophy and anti-apoptotic effects in diabetic pathologies. Collectively, these studies provide a foundation to propose the therapeutic potential for relaxin as an adjunctive agent in the prevention or treatment of diabetes-induced cardiovascular complications. This review provides a comprehensive overview of the beneficial effects of relaxin, and identifies its therapeutic possibilities for alleviating diabetes-related cardiovascular injury.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Science and Math Cluster, Singapore University of Technology and Design, Singapore, Singapore
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology & Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev 2017; 97:1555-1617. [DOI: 10.1152/physrev.00003.2017] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Véronique Regnault
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Patrick Segers
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Stéphane Laurent
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| |
Collapse
|
37
|
Wysocki J, Goodling A, Burgaya M, Whitlock K, Ruzinski J, Batlle D, Afkarian M. Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F487-F494. [PMID: 28468961 DOI: 10.1152/ajprenal.00074.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
The pathways implicated in diabetic kidney disease (DKD) are largely derived from animal models. To examine if alterations in renin-angiotensin system (RAS) in humans are concordant with those in rodent models, we measured concentration of angiotensinogen (AOG), cathepsin D (CTSD), angiotensin-converting enzyme (ACE), and ACE2 and enzymatic activities of ACE, ACE2, and aminopeptidase-A in FVB mice 13-20 wk after treatment with streptozotocin (n = 9) or vehicle (n = 15) and people with long-standing type 1 diabetes, with (n = 37) or without (n = 81) DKD. In streptozotocin-treated mice, urine AOG and CTSD were 10.4- and 3.0-fold higher than in controls, respectively (P < 0.001). Enzymatic activities of ACE, ACE2, and APA were 6.2-, 3.2-, and 18.8-fold higher, respectively, in diabetic animals (P < 0.001). Angiotensin II was 2.4-fold higher in diabetic animals (P = 0.017). Compared with people without DKD, those with DKD had higher urine AOG (170 vs. 15 μg/g) and CTSD (147 vs. 31 μg/g). In people with DKD, urine ACE concentration was 1.8-fold higher (1.4 vs. 0.8 μg/g in those without DKD), while its enzymatic activity was 0.6-fold lower (1.0 vs. 1.6 × 109 RFU/g in those without DKD). Lower ACE activity, but not ACE protein concentration, was associated with ACE inhibitor (ACEI) treatment. After adjustment for clinical covariates, AOG, CTSD, ACE concentration, and ACE activity remained associated with DKD. In conclusion, in mice with streptozotocin-induced diabetes and in humans with DKD, urine concentrations and enzymatic activities of several RAS components are concordantly increased, consistent with enhanced RAS activity and greater angiotensin II formation. ACEI use was associated with a specific reduction in urine ACE activity, not ACE protein concentration, suggesting that it may be a marker of exposure to this widely-used therapy.
Collapse
Affiliation(s)
- Jan Wysocki
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Anne Goodling
- Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Mar Burgaya
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kathryn Whitlock
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington; and
| | - John Ruzinski
- Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois;
| | - Maryam Afkarian
- Division of Nephrology, Department of Medicine, University of California, Davis, California
| |
Collapse
|
38
|
Baudrand R, Gupta N, Garza AE, Vaidya A, Leopold JA, Hopkins PN, Jeunemaitre X, Ferri C, Romero JR, Williams J, Loscalzo J, Adler GK, Williams GH, Pojoga LH. Caveolin 1 Modulates Aldosterone-Mediated Pathways of Glucose and Lipid Homeostasis. J Am Heart Assoc 2016; 5:JAHA.116.003845. [PMID: 27680666 PMCID: PMC5121487 DOI: 10.1161/jaha.116.003845] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Overactivation of the aldosterone and mineralocorticoid receptor (MR) pathway is associated with hyperglycemia and dyslipidemia. Caveolin 1 (cav‐1) is involved in glucose/lipid homeostasis and may modulate MR signaling. We investigated the interplay between cav‐1 and aldosterone signaling in modulating insulin resistance and dyslipidemia in cav‐1–null mice and humans with a prevalent variant in the CAV1 gene. Methods and Results In mouse studies, cav‐1 knockout mice exhibited higher levels of homeostatic model assessment of insulin resistance, cholesterol, and resistin and lower ratios of high‐ to low‐density lipoprotein (all P<0.001 versus wild type). Moreover, cav‐1 knockout mice displayed hypertriglyceridemia and higher mRNA levels for resistin, retinol binding protein 4, NADPH oxidase 4, and aldose reductase in liver and/or fat tissues. MR blockade with eplerenone significantly decreased glycemia (P<0.01), total cholesterol (P<0.05), resistin (P<0.05), and described enzymes, with no effect on insulin or triglycerides. In the human study, we analyzed the CAV1 gene polymorphism rs926198 in 556 white participants; 58% were minor allele carriers and displayed higher odds of insulin resistance (odds ratio 2.26 [95% CI 1.40–3.64]) and low high‐density lipoprotein (odds ratio 1.54 [95% CI 1.01–3.37]). Aldosterone levels correlated with higher homeostatic model assessment of insulin resistance and resistin and lower high‐density lipoprotein only in minor allele carriers. CAV1 gene expression quantitative trait loci data revealed lower cav‐1 expression in adipose tissues by the rs926198 minor allele. Conclusions Our findings in mice and humans suggested that decreased cav‐1 expression may activate the effect of aldosterone/MR signaling on several pathways of glycemia, dyslipidemia, and resistin. In contrast, hyperinsulinemia and hypertriglyceridemia are likely mediated by MR‐independent mechanisms. Future human studies will elucidate the clinical relevance of MR blockade in patients with genotype‐mediated cav‐1 deficiency.
Collapse
Affiliation(s)
- Rene Baudrand
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica De Chile, Santiago, Chile
| | - Nidhi Gupta
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anand Vaidya
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Xavier Jeunemaitre
- Centre d'Investigation Clinique Inserm/AP, Departement de Genetique, Hȏpital European Georges Pompidou, Paris, France
| | - Claudio Ferri
- Department MeSVA, San Salvatore Hospital, University of L'Aquila, Italy
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jonathan Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Balia C, Scalise V, Cianchetti S, Faita F, Neri T, Carnicelli V, Zucchi R, Celi A, Pedrinelli R. The effect of high glucose on the inhibitory action of C21, a selective AT2R agonist, of LPS-stimulated tissue factor expression in human mononuclear cells. JOURNAL OF INFLAMMATION-LONDON 2016; 13:14. [PMID: 27152091 PMCID: PMC4857424 DOI: 10.1186/s12950-016-0123-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Background Intimate links connect tissue factor (TF), the principal initiator of the clotting cascade, to inflammation, a cross-talk amplified by locally generated Angiotensin (AT) II, the effector arm of the Renin Angiotensin System (RAS). C21, a selective AT2R agonist, downregulates the transcriptional expression of TF in LPS-activated peripheral blood mononuclear cell(PBMC)s implying the existence of ATII type 2 receptor (AT2R)s whose stimulation attenuates inflammation-mediated procoagulant responses. High glucose, by activating key signalling pathways and increasing the cellular content of RAS components, augments TF expression and potentiates the inhibitory effect of AT1R antagonists. It is unknown, however, the impact of that stimulus on AT2R-mediated TF inhibition, an information useful to understand more precisely the role of that signal transduction pathway in the inflammation-mediated coagulation process. TF antigen (ELISA), procoagulant activity (PCA, 1-stage clotting assay) and TF-mRNA (real-time polymerase chain reaction) were assessed in PBMCs activated by LPS, a pro-inflammatory and procoagulant stimulus, exposed to either normal (N) or HG concentrations (5.5 and 50 mM respectively). Results HG upregulated TF expression, an effect abolished by BAY 11-7082, a NFκB inhibitor. C21 inhibited LPS-stimulated PCA, TFAg and mRNA to an extent independent of glucose concentration but the response to Olmesartan, an AT1R antagonist, was quite evidently potentiated by HG. Conclusions HG stimulates LPS-induced TF expression through mechanisms completely dependent upon NFkB activation. Both AT2R-stimulation and AT1R-blockade downregulate inflammation-mediated procoagulant response in PBMCs but HG impacts differently on the two different signal transduction pathways.
Collapse
Affiliation(s)
- Cristina Balia
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Valentina Scalise
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Silvana Cianchetti
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Francesca Faita
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Tommaso Neri
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Vittoria Carnicelli
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Riccardo Zucchi
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Alessandro Celi
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Roberto Pedrinelli
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
40
|
Kozakova M, Palombo C. Diabetes Mellitus, Arterial Wall, and Cardiovascular Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:201. [PMID: 26861377 PMCID: PMC4772221 DOI: 10.3390/ijerph13020201] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is an independent risk factor for atherothrombotic cardiovascular disease. Adults with diabetes are two to four times more likely to develop heart disease or stroke than adults without diabetes. The two major features of diabetes, i.e., hyperglycemia and insulin-resistance, trigger arterial stiffening and increase the susceptibility of the arterial wall to atherosclerosis at any given age. These pathological changes in the arterial wall may provide a functional and structural background for cardiovascular events. The present paper provides a critical overview of the clinical evidence linking diabetes-related metabolic abnormalities to cardiovascular risk, debates the pathophysiologic mechanisms through which insulin resistance and hyperglycemia may affect the arterial wall, and discusses the associations between vascular biomarkers, metabolic abnormalities and cardiovascular events.
Collapse
Affiliation(s)
- Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56122, Italy.
| | - Carlo Palombo
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa 56122, Italy.
| |
Collapse
|
41
|
Abstract
G protein-coupled receptors (GPCRs) play key physiological roles and represent a significant target for drug development. However, historically, drugs were developed with the understanding that GPCRs as a therapeutic target exist solely on cell surface membranes. More recently, GPCRs have been detected on intracellular membranes, including the nuclear membrane, and the concept that intracellular GPCRs are functional is become more widely accepted. Nuclear GPCRs couple to effectors and regulate signaling pathways, analogous to their counterparts at the cell surface, but may serve distinct biological roles. Hence, the physiological responses mediated by GPCR ligands, or pharmacological agents, result from the integration of their actions at extracellular and intracellular receptors. The net effect depends on the ability of a given ligand or drug to access intracellular receptors, as dictated by its structure, lipophilic properties, and affinity for nuclear receptors. This review will discuss angiotensin II, endothelin, and β-adrenergic receptors located on the nuclear envelope in cardiac cells in terms of their origin, activation, and role in cardiovascular function and pathology.
Collapse
|
42
|
Tasevska I, Enhörning S, Persson M, Nilsson PM, Melander O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart 2015; 102:127-32. [PMID: 26661323 DOI: 10.1136/heartjnl-2015-308183] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/03/2015] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE In a middle-aged population, it was recently shown that the stable vasopressin marker plasma copeptin (copeptin) predicts development of diabetes mellitus, diabetic heart disease and death. Here, it was hypothesised whether copeptin predicts a risk of coronary artery disease (CAD), and cardiovascular mortality in an older population. METHODS Between 2002 and 2006, fasting plasma copeptin was examined and measured in 5386 participants of a population-based longitudinal study (mean age 69.4±6.2 years, 69.8% males) and related copeptin to risk of CAD (first myocardial infarction or coronary revascularisation), cardiovascular and total mortality during a mean follow-up time of 6.5 years using multivariate adjusted (age, gender, systolic blood pressure, antihypertensive therapy, smoking, diabetes, low-density lipoprotein and high-density lipoprotein cholesterol) Cox proportional hazards models. RESULTS Among subjects free from CAD at baseline, the multivariate adjusted HR (95% CI) per 1 SD increment of log-transformed copeptin for risk of CAD development was 1.20 (1.08 to 1.33) (p=0.001). There was a borderline significant interaction between diabetes and copeptin on CAD risk (p=0.08) with higher copeptin-associated risk in subjects with diabetes (1.49 (1.14 to 1.95); p=0.004) than in non-diabetic subjects (1.15 (1.02 to 1.50); p=0.02). Moreover, each SD increment of copeptin independently predicted total mortality (1.31 (1.21 to 1.41); p<0.001), an effect driven by the copeptin association with cardiovascular mortality (1.36 (1.21 to 1.53); p<0.001). The absolute risks for CAD were 4.9%, 9.3% and 2.9%, total and CV mortality were 4.9%, 9.3% and 2.9% in quartile 1, 7.1%, 9.4% and 3.5% in quartile 2, 8.3%, 14.2% and 5.6% in quartile 3, and 10.3%, 23.3% and 9.1% in quartile 4, respectively. CONCLUSIONS Copeptin predicts development of CAD and cardiovascular mortality both in diabetics and non-diabetics.
Collapse
Affiliation(s)
- Irina Tasevska
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Sofia Enhörning
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Margaretha Persson
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Peter M Nilsson
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Olle Melander
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
43
|
Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int J Mol Sci 2015; 16:25234-63. [PMID: 26512646 PMCID: PMC4632800 DOI: 10.3390/ijms161025234] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.
Collapse
Affiliation(s)
- Yosuke Kayama
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Uwe Raaz
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Ann Jagger
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Matti Adam
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Isabel N Schellinger
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Masaya Sakamoto
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minatoku, Tokyo 105-0003, Japan.
| | - Hirofumi Suzuki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minatoku, Tokyo 105-0003, Japan.
| | - Kensuke Toyama
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
44
|
Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 2015; 310:H137-52. [PMID: 26475588 DOI: 10.1152/ajpheart.00618.2015] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) constitutes a key hormonal system in the physiological regulation of blood pressure through peripheral and central mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, and pharmacological blockade of this system by the inhibition of angiotensin-converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) offers an effective therapeutic regimen. The RAS is now defined as a system composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS comprises the ACE-ANG II-AT1R axis that promotes vasoconstriction; water intake; sodium retention; and increased oxidative stress, fibrosis, cellular growth, and inflammation. In contrast, the nonclassical RAS composed primarily of the ANG II/ANG III-AT2R and the ACE2-ANG-(1-7)-AT7R pathways generally opposes the actions of a stimulated ANG II-AT1R axis. In lieu of the complex and multifunctional aspects of this system, as well as increased concerns on the reproducibility among laboratories, a critical assessment is provided on the current biochemical approaches to characterize and define the various components that ultimately reflect the status of the RAS.
Collapse
Affiliation(s)
- Mark C Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
45
|
Tadevosyan A, Villeneuve LR, Fournier A, Chatenet D, Nattel S, Allen BG. Caged ligands to study the role of intracellular GPCRs. Methods 2015. [PMID: 26196333 DOI: 10.1016/j.ymeth.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In addition to cell surface membranes, numerous G protein-coupled receptors (GPCRs) are located on intracellular membranes including the nuclear envelope. Although the role of numerous GPCRs at the cell surface has been well characterized, the physiological function of these same receptors located on intracellular membranes remains to be determined. Here, we employ a novel caged Ang-II analog, cAng-II, to compare the effects of the activation of cell surface versus intracellular angiotensin receptors in intact cardiomyocytes. When added extracellularly to HEK 293 cells, Ang-II and photolysed cAng-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R). In contrast unphotolysed cAng-II did not. Cellular uptake of cAng-II was 6-fold greater than that of Ang-II and comparable to the HIV TAT(48-60) peptide. Intracellular photolysis of cAng-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n) that was greater than that induced by extracellular application of Ang-II. We conclude that cell-permeable ligands that can access intracellular GPCRs may evoke responses distinct from those with access restricted to the same receptor located on the cell surface.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada
| | | | - Alain Fournier
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - Stanley Nattel
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| | - Bruce G Allen
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Canada.
| |
Collapse
|
46
|
Inhibition of TLR4 attenuates vascular dysfunction and oxidative stress in diabetic rats. J Mol Med (Berl) 2015; 93:1341-54. [DOI: 10.1007/s00109-015-1318-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
47
|
Zheng H, Pu SY, Fan XF, Li XS, Zhang Y, Yuan J, Zhang YF, Yang JL. Treatment with angiotensin-(1-9) alleviates the cardiomyopathy in streptozotocin-induced diabetic rats. Biochem Pharmacol 2015; 95:38-45. [DOI: 10.1016/j.bcp.2015.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
|
48
|
Ferrão FM, Lara LS, Lowe J. Renin-angiotensin system in the kidney: What is new? World J Nephrol 2014; 3:64-76. [PMID: 25332897 PMCID: PMC4202493 DOI: 10.5527/wjn.v3.i3.64] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) has been known for more than a century as a cascade that regulates body fluid balance and blood pressure. Angiotensin II(Ang II) has many functions in different tissues; however it is on the kidney that this peptide exerts its main functions. New enzymes, alternative routes for Ang IIformation or even active Ang II-derived peptides have now been described acting on Ang II AT1 or AT2 receptors, or in receptors which have recently been cloned, such as Mas and AT4. Another interesting observation was that old members of the RAS, such as angiotensin converting enzyme (ACE), renin and prorenin, well known by its enzymatic activity, can also activate intracellular signaling pathways, acting as an outside-in signal transduction molecule or on the renin/(Pro)renin receptor. Moreover, the endocrine RAS, now is also known to have paracrine, autocrine and intracrine action on different tissues, expressing necessary components for local Ang II formation. This in situ formation, especially in the kidney, increases Ang II levels to regulate blood pressure and renal functions. These discoveries, such as the ACE2/Ang-(1-7)/Mas axis and its antangonistic effect rather than classical deleterious Ang II effects, improves the development of new drugs for treating hypertension and cardiovascular diseases.
Collapse
|
49
|
Wang J, Sukhova GK, Liu J, Ozaki K, Lesner A, Libby P, Kovanen PT, Shi GP. Cathepsin G deficiency reduces periaortic calcium chloride injury-induced abdominal aortic aneurysms in mice. J Vasc Surg 2014; 62:1615-24. [PMID: 25037606 DOI: 10.1016/j.jvs.2014.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/10/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cathepsin G (CatG) is a serine protease that mediates angiotensin I to angiotensin II (Ang-II) conversion and is highly expressed in human abdominal aortic aneurysms (AAAs). However, it remains untested whether this protease participates in the pathogenesis of AAA. METHODS AND RESULTS Immunofluorescent double staining demonstrated the expression of CatG in smooth muscle cells (SMCs), macrophages, and endothelial cells in human AAA lesions (n = 12) but not in AAA-free aortas (n = 10). Whereas inflammatory cytokines induced CatG expression, high glucose concentration increased CatG activity in producing Ang-II and angiotensin-converting enzyme in SMCs, which could be fully blocked by a CatG-selective inhibitor or its small interfering RNA. To test whether CatG contributes to AAA development, we generated CatG and low-density lipoprotein receptor double deficient (Ldlr(-/-)Ctsg(-/-)) mice and their littermate controls (Ldlr(-/-)Ctsg(+/+)). Absence of CatG did not affect Ang-II infusion-induced AAAs. In contrast, in Ang-II-independent AAAs induced by periaortic CaCl2 injury (n = 12 per group), CatG deficiency significantly reduced aortic diameter increase (58.33% ± 6.83% vs 31.67% ± 5.75%; P = .007), aortic lesion area (0.35 ± 0.04 mm(2) vs 0.21 ± 0.02 mm(2); P = .005), and aortic wall elastin fragmentation grade (2.75 ± 0.18 vs 1.58 ± 0.17; P = .002) along with reduced lesion collagen content grade (2.80 ± 0.17 vs 2.12 ± 0.17; P = .009) without affecting indices of lesion inflammation, angiogenesis, cell proliferation, or apoptosis. In vitro elastin degradation assays demonstrated that CaCl2-induced AAA lesions from Ldlr(-/-)Ctsg(-/-) mice contained much lower elastinolytic activity than in those from littermate control mice. Gelatin gel zymogram assay suggested that absence of CatG in CaCl2-induced AAA lesions also reduced the activity of elastinolytic matrix metalloproteinases 2 and 9. CONCLUSIONS CatG may contribute to CaCl2-induced experimental AAAs directly through its elastinolytic activity and indirectly by regulating lesion matrix metalloproteinases 2 and 9 activities. Increased expression of CatG in vascular and inflammatory cells of human AAAs and its increased activity in producing Ang-II and angiotensin-converting enzyme by SMCs suggest an additional mechanism by which CatG contributes to AAA lesion progression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jian Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Keith Ozaki
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Adam Lesner
- Department of Chemistry, University of Gdansk, Gdansk, Poland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, Helsinki, Finland
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
50
|
Dhar I, Dhar A, Wu L, Desai KM. Methylglyoxal, a reactive glucose metabolite, increases renin angiotensin aldosterone and blood pressure in male Sprague-Dawley rats. Am J Hypertens 2014; 27:308-16. [PMID: 24436324 DOI: 10.1093/ajh/hpt281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The majority of people with diabetes develop hypertension along with increased activity of the renin-angiotensin system. Methylglyoxal, a reactive glucose metabolite, is elevated in diabetic patients. We investigated the effects of methylglyoxal on the renin-angiotensin system and blood pressure. METHODS Male Sprague-Dawley rats were treated with a continuous infusion of methylglyoxal with a minipump for 4 weeks. Organs/tissues and cultured vascular smooth muscle cells (VSMCs) were used for molecular studies. High-performance liquid chromatography, Western blotting, and quantitative real-time polymerase chain reaction were used to measure methylglyoxal, proteins, and mRNA, respectively. Small interfering RNA for angiotensinogen and the receptor for advanced glycation endproducts (RAGE) were used to study mechanisms. RESULTS Methylglyoxal-treated rats developed a significant increase in blood pressure and plasma levels of aldosterone, renin, angiotensin, and catecholamines. Methylglyoxal level and protein and mRNA for angiotensin, AT1 receptor, adrenergic α1D receptor, and renin were significantly increased in the aorta and/or kidney of methylglyoxal-treated rats, a novel finding. Alagebrium attenuated the above effects of methylgloyxal. Treatment of cultured VSMCs with methylglyoxal or high glucose (25 mM) significantly increased cellular methylglyoxal and protein and mRNA for nuclear factor kappa B (NF-κB), angiotensin, AT1 receptor, and α1D receptor, which were prevented by inhibition of NF-κB, and by alagebrium. Silencing of mRNA for RAGE prevented the increase in NF-kB induced by methylglyoxal. Silencing of mRNA for angiotensinogen prevented the increase in NF-κB, angiotensin, AT1 receptor, and α1D receptor. CONCLUSIONS Methylglyoxal activates NF-κB through RAGE and thereby increases renin-angiotensin levels, a novel finding, and a probable mechanism of increase in blood pressure.
Collapse
Affiliation(s)
- Indu Dhar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|