1
|
Szeremeta A, Jura-Półtorak A, Zoń-Giebel A, Olczyk K, Komosińska-Vassev K. TNF-α Inhibitors in Combination with MTX Reduce Circulating Levels of Heparan Sulfate/Heparin and Endothelial Dysfunction Biomarkers (sVCAM-1, MCP-1, MMP-9 and ADMA) in Women with Rheumatoid Arthritis. J Clin Med 2022; 11:jcm11144213. [PMID: 35887981 PMCID: PMC9320287 DOI: 10.3390/jcm11144213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfated glycosaminoglycans (sGAGs) are likely to play an important role in the development and progression of rheumatoid arthritis (RA)-associated atherosclerosis. The present study investigated the effect of anti-tumor necrosis factor-α (anti-TNF-α) therapy in combination with methotrexate on plasma sGAG levels and serum markers of endothelial dysfunction. Among sGAG types, plasma chondroitin/dermatan sulfate (CS/DS) and heparan sulfate/heparin (HS/H) were characterized using electrophoretic fractionation. Serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) and asymmetric dimethylarginine (ADMA) were measured by immunoassays. The measurements were carried out four times: at baseline and after 3, 9 and 15 months of anti-TNF-α therapy. All analyzed parameters, excluding ADMA, were significantly elevated in patients with RA before the implementation of biological therapy compared to healthy subjects. Performed anti-TNF-α treatment led to a successive decrease in HS/H levels toward normal values, without any effect on CS/DS levels in female RA patients. The treatment was also effective at lowering the serum levels of sVCAM-1, MCP-1, MMP-9 and ADMA. Moreover, a significant positive correlation was found between the circulating HS/H and the 28 joint disease activity score based on the erythrocyte sedimentation rate (DAS28-ESR, r = 0.408; p <0.05), MCP-1 (r = 0.398; p <0.05) and ADMA (r = 0.396; p <0.05) in patients before the first dose of TNF-α inhibitor. In conclusion, a beneficial effect of anti-TNF-α therapy on cell-surface heparan sulfate proteoglycans (HSPGs)/HS turnover and endothelial dysfunction was observed in this study. This was manifested by a decrease in blood HS/H levels and markers of endothelial activation, respectively. Moreover, the decrease in the concentration of HS/H in the blood of patients during treatment, progressing with the decline in disease activity, indicates that the plasma HS/H profile may be useful for monitoring the efficacy of anti-TNF-α treatment in patients with RA.
Collapse
Affiliation(s)
- Anna Szeremeta
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
- Correspondence: ; Tel.: +48-32-364-11-50
| | - Agnieszka Jura-Półtorak
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| | - Aleksandra Zoń-Giebel
- Department of Rheumatology and Rehabilitation, Specialty Hospital No. 1, Żeromskiego 7, 41-902 Bytom, Poland;
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| |
Collapse
|
2
|
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. Int J Mol Sci 2022; 23:ijms23031338. [PMID: 35163259 PMCID: PMC8836004 DOI: 10.3390/ijms23031338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.
Collapse
Affiliation(s)
- Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
3
|
du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID-19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB J 2021; 36:e22052. [PMID: 34862979 DOI: 10.1096/fj.202101100rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
The glycocalyx surrounds every eukaryotic cell and is a complex mesh of proteins and carbohydrates. It consists of proteoglycans with glycosaminoglycan side chains, which are highly sulfated under normal physiological conditions. The degree of sulfation and the position of the sulfate groups mainly determine biological function. The intact highly sulfated glycocalyx of the epithelium may repel severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) through electrostatic forces. However, if the glycocalyx is undersulfated and 3-O-sulfotransferase 3B (3OST-3B) is overexpressed, as is the case during chronic inflammatory conditions, SARS-CoV-2 entry may be facilitated by the glycocalyx. The degree of sulfation and position of the sulfate groups will also affect functions such as immune modulation, the inflammatory response, vascular permeability and tone, coagulation, mediation of sheer stress, and protection against oxidative stress. The rate-limiting factor to sulfation is the availability of inorganic sulfate. Various genetic and epigenetic factors will affect sulfur metabolism and inorganic sulfate availability, such as various dietary factors, and exposure to drugs, environmental toxins, and biotoxins, which will deplete inorganic sulfate. The role that undersulfation plays in the various comorbid conditions that predispose to coronavirus disease 2019 (COVID-19), is also considered. The undersulfated glycocalyx may not only increase susceptibility to SARS-CoV-2 infection, but would also result in a hyperinflammatory response, vascular permeability, and shedding of the glycocalyx components, giving rise to a procoagulant and antifibrinolytic state and eventual multiple organ failure. These symptoms relate to a diagnosis of systemic septic shock seen in almost all COVID-19 deaths. The focus of prevention and treatment protocols proposed is the preservation of epithelial and endothelial glycocalyx integrity.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Melvin R Hayden
- Division of Endocrinology Diabetes and Metabolism, Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA.,Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Grijalva-Guiza RE, Jiménez-Garduño AM, Hernández LR. Potential Benefits of Flavonoids on the Progression of Atherosclerosis by Their Effect on Vascular Smooth Muscle Excitability. Molecules 2021; 26:3557. [PMID: 34200914 PMCID: PMC8230563 DOI: 10.3390/molecules26123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022] Open
Abstract
Flavonoids are a group of secondary metabolites derived from plant-based foods, and they offer many health benefits in different stages of several diseases. This review will focus on their effects on ion channels expressed in vascular smooth muscle during atherosclerosis. Since ion channels can be regulated by redox potential, it is expected that during the onset of oxidative stress-related diseases, ion channels present changes in their conductive activity, impacting the progression of the disease. A typical oxidative stress-related condition is atherosclerosis, which involves the dysfunction of vascular smooth muscle. We aim to present the state of the art on how redox potential affects vascular smooth muscle ion channel function and summarize if the benefits observed in this disease by using flavonoids involve restoring the ion channel activity.
Collapse
Affiliation(s)
- Rosa Edith Grijalva-Guiza
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | | | - Luis Ricardo Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| |
Collapse
|
5
|
Sobenin IA, Markin AM, Glanz VY, Markina YV, Wu WK, Myasoedova VA, Orekhov AN. Prospects for the Use of Sialidase Inhibitors in Anti-atherosclerotic Therapy. Curr Med Chem 2021; 28:2438-2450. [PMID: 32867633 DOI: 10.2174/0929867327666200831133912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022]
Abstract
The most typical feature of atherogenesis in humans at its early stage is the formation of foam cells in subendothelial arterial intima, which occurs as the consequence of intracellular cholesterol deposition. The main source of lipids accumulating in the arterial wall is circulating low-density lipoprotein (LDL). However, LDL particles should undergo proatherogenic modification to acquire atherogenic properties. One of the known types of atherogenic modification of LDL is enzymatic deglycosilation, namely, desialylation, which is the earliest change in the cascade of following multiple LDL modifications. The accumulating data make sialidases an intriguing and plausible therapeutic target, since pharmacological modulation of activity of these enzymes may have beneficial effects in several pathologies, including atherosclerosis. The hypothesis exists that decreasing LDL enzymatic desialylation may result in the prevention of lipid accumulation in arterial wall, thus breaking down one of the key players in atherogenesis at the cellular level. Several drugs acting as glycomimetics and inhibiting sialidase enzymatic activity already exist, but the concept of sialidase inhibition as an anti-atherosclerosis strategy remains unexplored to date. This review is focused on the potential possibilities of the repurposing of sialidase inhibitors for pathogenetic anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Igor A Sobenin
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Alexander M Markin
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Victor Y Glanz
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Yuliya V Markina
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei- Hu Branch, Taipei, Taiwan
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
6
|
Trout AL, Rutkai I, Biose IJ, Bix GJ. Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia. Int J Mol Sci 2020; 21:E679. [PMID: 31968632 PMCID: PMC7013765 DOI: 10.3390/ijms21020679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023] Open
Abstract
Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan's influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer's disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan's role in health and in cerebrovascular disease.
Collapse
Affiliation(s)
- Amanda L. Trout
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Ibolya Rutkai
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Ifechukwude J. Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
7
|
Yamashita Y, Nakada S, Yoshihara T, Nara T, Furuya N, Miida T, Hattori N, Arikawa-Hirasawa E. Perlecan, a heparan sulfate proteoglycan, regulates systemic metabolism with dynamic changes in adipose tissue and skeletal muscle. Sci Rep 2018; 8:7766. [PMID: 29773865 PMCID: PMC5958100 DOI: 10.1038/s41598-018-25635-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Perlecan (HSPG2), a heparan sulfate proteoglycan, is a component of basement membranes and participates in a variety of biological activities. Here, we show physiological roles of perlecan in both obesity and the onset of metabolic syndrome. The perinatal lethality-rescued perlecan knockout (Hspg2−/−-Tg) mice showed a smaller mass and cell size of white adipose tissues than control (WT-Tg) mice. Abnormal lipid deposition, such as fatty liver, was not detected in the Hspg2−/−-Tg mice, and those mice also consumed more fat as an energy source, likely due to their activated fatty acid oxidation. In addition, the Hspg2−/−-Tg mice demonstrated increased insulin sensitivity. Molecular analysis revealed the significantly relatively increased amount of the muscle fiber type IIA (X) isoform and a larger quantity of mitochondria in the skeletal muscle of Hspg2−/−-Tg mice. Furthermore, the perlecan-deficient skeletal muscle also had elevated levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) protein. PGC1α expression is activated by exercise, and induces mitochondrial biosynthesis. Thus, perlecan may act as a mechano-regulator of catabolism of both lipids and glucose by shifting the muscle fiber composition to oxidative fibers. Our data suggest that downregulation of perlecan is a promising strategy to control metabolic syndrome.
Collapse
Affiliation(s)
- Yuri Yamashita
- Aging Biology in Health and Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Satoshi Nakada
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba, 270-1695, Japan
| | - Toshinori Yoshihara
- Department of Exercise Physiology, Juntendo University Graduate School of Health and Sports Science, Chiba, 270-1695, Japan
| | - Takeshi Nara
- Faculty of Pharmacy, Iwaki Meisei University, Fukushima, 970-8551, Japan
| | - Norihiko Furuya
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takashi Miida
- Department of Clinical Laboratory medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.,Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Eri Arikawa-Hirasawa
- Aging Biology in Health and Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan. .,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan. .,Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba, 270-1695, Japan. .,Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
8
|
Lord MS, Tang F, Rnjak-Kovacina J, Smith JGW, Melrose J, Whitelock JM. The multifaceted roles of perlecan in fibrosis. Matrix Biol 2018; 68-69:150-166. [PMID: 29475023 DOI: 10.1016/j.matbio.2018.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Perlecan, or heparan sulfate proteoglycan 2 (HSPG2), is a ubiquitous heparan sulfate proteoglycan that has major roles in tissue and organ development and wound healing by orchestrating the binding and signaling of mitogens and morphogens to cells in a temporal and dynamic fashion. In this review, its roles in fibrosis are reviewed by drawing upon evidence from tissue and organ systems that undergo fibrosis as a result of an uncontrolled response to either inflammation or traumatic cellular injury leading to an over production of a collagen-rich extracellular matrix. This review focuses on examples of fibrosis that occurs in lung, liver, kidney, skin, kidney, neural tissues and blood vessels and its link to the expression of perlecan in that particular organ system.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Fengying Tang
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | | | - James G W Smith
- University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia; Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol 2016; 27:473-83. [PMID: 27472409 DOI: 10.1097/mol.0000000000000330] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Today, it is no longer a hypothesis, but an established fact, that increased plasma concentrations of cholesterol-rich apolipoprotein-B (apoB)-containing lipoproteins are causatively linked to atherosclerotic cardiovascular disease (ASCVD) and that lowering plasma LDL concentrations reduces cardiovascular events in humans. Here, we review evidence behind this assertion, with an emphasis on recent studies supporting the 'response-to-retention' model - namely, that the key initiating event in atherogenesis is the retention, or trapping, of cholesterol-rich apoB-containing lipoproteins within the arterial wall. RECENT FINDINGS New clinical trials have shown that ezetimibe and anti-PCSK9 antibodies - both nonstatins - lower ASCVD events, and they do so to the same extent as would be expected from comparable plasma LDL lowering by a statin. These studies demonstrate beyond any doubt the causal role of apoB-containing lipoproteins in atherogenesis. In addition, recent laboratory experimentation and human Mendelian randomization studies have revealed novel information about the critical role of apoB-containing lipoproteins in atherogenesis. New information has also emerged on mechanisms for the accumulation in plasma of harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoproteins in states of overnutrition. Like LDL, these harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoprotein remnants become retained and modified within the arterial wall, causing atherosclerosis. SUMMARY LDL and other cholesterol-rich, apoB-containing lipoproteins, once they become retained and modified within the arterial wall, cause atherosclerosis. This simple, robust pathophysiologic understanding may finally allow us to eradicate ASCVD, the leading killer in the world.
Collapse
Affiliation(s)
- Jan Borén
- aDepartment of Molecular and Clinical Medicine, University of Gothenburg bSahlgrenska University Hospital, Gothenburg, Sweden cSection of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
10
|
Melgar-Lesmes P, Garcia-Polite F, Del-Rey-Puech P, Rosas E, Dreyfuss JL, Montell E, Vergés J, Edelman ER, Balcells M. Treatment with chondroitin sulfate to modulate inflammation and atherogenesis in obesity. Atherosclerosis 2015; 245:82-7. [PMID: 26714044 DOI: 10.1016/j.atherosclerosis.2015.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Osteoarthritic patients treated with high doses of chondroitin sulfate (CS) have a lower incidence of coronary heart disease--but the mechanistic aspects of these beneficial effects of CS remain undefined. We examined how CS treatment affects the formation of atheroma via interaction with endothelial cells and monocytes. METHODS We characterized arterial atheromatous plaques by multiphoton microscopy and serum pro-inflammatory cytokines by immunoenzymatic techniques in obese mice receiving CS (1 g/kg/day, i.p.) or vehicle for 6 days. Effects of CS on signaling pathways, cytokine secretion and macrophage migration were evaluated in cultures of human coronary endothelial cells and in a monocyte cell line stimulated with TNF-α by Western blot, immunoenzymatic techniques and transwell migration assays. RESULTS Treatment of obese mice with CS reduced the extension of foam cell coverage in atheromatous plaques of arterial bifurcations by 62.5%, the serum concentration of IL1β by 70%, TNF-α by 82% and selected chemokines by 25-35%. Cultures of coronary endothelial cells and monocytes stimulated with TNF-α secreted less pro-inflammatory cytokines in the presence of CS (P < 0.01). CS reduced the activation of the TNF-α signaling pathway in endothelial cells (pErk 36% of reduction, and NFκB 33% of reduction), and the migration of activated monocytes to inflamed endothelial cells in transwells (81 ± 6 vs. 13 ± 2, P < 0.001). CONCLUSIONS CS interferes with the pro-inflammatory activation of monocytes and endothelial cells driven by TNF-α thus reducing the propagation of inflammation and preventing the formation of atherosclerotic plaques.
Collapse
Affiliation(s)
- Pedro Melgar-Lesmes
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Fernando Garcia-Polite
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Bioengineering Department, Institut Químic de Sarrià, Ramon Llull Univ, Barcelona, Spain
| | - Paula Del-Rey-Puech
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Bioengineering Department, Institut Químic de Sarrià, Ramon Llull Univ, Barcelona, Spain
| | - Elisabet Rosas
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Bioengineering Department, Institut Químic de Sarrià, Ramon Llull Univ, Barcelona, Spain
| | - Juliana L Dreyfuss
- Federal University of São Paulo, Escola Paulista de Medicina, Department of Health Informatics, São Paulo, Brazil
| | - Eulàlia Montell
- Pre-Clinical R&D Area, Pharmascience Division, Bioibérica SA, Barcelona, Spain
| | - Josep Vergés
- Pre-Clinical R&D Area, Pharmascience Division, Bioibérica SA, Barcelona, Spain
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Bioengineering Department, Institut Químic de Sarrià, Ramon Llull Univ, Barcelona, Spain
| |
Collapse
|
11
|
She ZG, Chang Y, Pang HB, Han W, Chen HZ, Smith JW, Stallcup WB. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2015; 36:49-59. [PMID: 26543095 DOI: 10.1161/atvbaha.115.306074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/24/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. APPROACH AND RESULTS Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. CONCLUSIONS These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Gang She
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.).
| | - Yunchao Chang
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Hong-Bo Pang
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Wenlong Han
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Hou-Zao Chen
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Jeffrey W Smith
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - William B Stallcup
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| |
Collapse
|
12
|
Steffensen LB, Mortensen MB, Kjolby M, Hagensen MK, Oxvig C, Bentzon JF. Disturbed Laminar Blood Flow Vastly Augments Lipoprotein Retention in the Artery Wall. Arterioscler Thromb Vasc Biol 2015; 35:1928-35. [DOI: 10.1161/atvbaha.115.305874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/06/2015] [Indexed: 01/21/2023]
Abstract
Objective—
Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins.
Approach and Results—
Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation.
Conclusions—
Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins.
Collapse
Affiliation(s)
- Lasse Bach Steffensen
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Martin Bødtker Mortensen
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Mads Kjolby
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Mette Kallestrup Hagensen
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Claus Oxvig
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Jacob Fog Bentzon
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| |
Collapse
|
13
|
Du J, Wang Y, Jia L. ECM and Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
|
15
|
Dunér P, Gonçalves I, Grufman H, Edsfeldt A, To F, Nitulescu M, Nilsson J, Bengtsson E. Increased aldehyde-modification of collagen type IV in symptomatic plaques--a possible cause of endothelial dysfunction. Atherosclerosis 2015; 240:26-32. [PMID: 25746374 DOI: 10.1016/j.atherosclerosis.2015.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/13/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Subendothelial LDL-adhesion and its subsequent oxidation are considered as key events in the development of atherosclerotic lesions. During oxidation of LDL, reactive aldehydes such as malondialdehyde (MDA) are formed, which modify apolipoprotein B100. However, the possibility that these reactive aldehydes could leak out of the LDL-particle and modify surrounding extracellular matrix proteins has been largely unexplored. We have investigated if aldehyde-modification of collagen type IV, one of the major basement membrane components, in plaques is associated with cardiovascular events. METHODS The amount of MDA-modified collagen type IV and native collagen type IV were determined in homogenates from 155 carotid artery lesions, removed by endarterectomy from patients with or without previous cerebrovascular events. RESULTS Plaque MDA-collagen type IV, but not native collagen type IV, correlated with oxidized LDL (r=0.31, P<0.001) and lipoprotein-associated phospholipase A2 (r=0.44, P<0.001). MDA-collagen type IV was increased in lesions from symptomatic patients compared to lesions from asymptomatic patients. Auto-antibodies against MDA-collagen type IV in plasma correlated with the amount of MDA-collagen type IV in lesions. MDA-modification of collagen type IV decreased endothelial cell attachment. In addition, culture of endothelial cells with MDA-modified collagen type IV increased vascular cell adhesion molecule expression and reduced the anti-coagulant proteins thrombomodulin and endothelial protein C receptor. In the lesions native collagen type IV, but not MDA-collagen type IV, was positively associated with thrombomodulin. CONCLUSION The present observations imply that aldehyde-modification of collagen type IV, associated with LDL oxidation, in atherosclerotic plaques may cause endothelial dysfunction and increase the risk of clinical events.
Collapse
Affiliation(s)
- Pontus Dunér
- Experimental Cardiovascular Research Unit, Clinical Research Center, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden.
| | - Isabel Gonçalves
- Experimental Cardiovascular Research Unit, Clinical Research Center, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden; Department of Cardiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Helena Grufman
- Experimental Cardiovascular Research Unit, Clinical Research Center, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden; Department of Cardiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Andreas Edsfeldt
- Experimental Cardiovascular Research Unit, Clinical Research Center, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden; Department of Cardiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Fong To
- Experimental Cardiovascular Research Unit, Clinical Research Center, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Mihaela Nitulescu
- Experimental Cardiovascular Research Unit, Clinical Research Center, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Jan Nilsson
- Experimental Cardiovascular Research Unit, Clinical Research Center, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Eva Bengtsson
- Experimental Cardiovascular Research Unit, Clinical Research Center, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
16
|
Nonaka R, Iesaki T, de Vega S, Daida H, Okada T, Sasaki T, Arikawa-Hirasawa E. Perlecan deficiency causes endothelial dysfunction by reducing the expression of endothelial nitric oxide synthase. Physiol Rep 2015; 3:3/1/e12272. [PMID: 25626871 PMCID: PMC4387761 DOI: 10.14814/phy2.12272] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Perlecan is a major heparan sulfate proteoglycan found in the subendothelial extracellular matrix of the vascular wall. The aim of this study was to investigate the role of perlecan in the regulation of vascular tone. A previously developed conditional perlecan‐deficient mouse model was used to measure changes in the isometric force of isolated aortic rings. The vessels were first precontracted with phenylephrine, and then treated with increasing concentrations of vasorelaxants. Endothelium‐dependent relaxation, elicited by acetylcholine, was significantly reduced in the perlecan‐deficient aortas, whereas endothelium‐independent relaxation caused by the exogenous nitric oxide donor sodium nitroprusside remained well preserved. The expression of the endothelial nitric oxide synthase (eNOS) gene, detected by real‐time polymerase chain reaction, was significantly decreased in the perlecan‐deficient aortas. The expression of eNOS protein detected using Western blotting was also significantly decreased in the perlecan‐deficient aortas. We examined the role of perlecan in eNOS gene expression by creating perlecan knockdown human aortic endothelial cells using small interfering RNA (siRNA) for perlecan. Perlecan gene expression was significantly reduced in the perlecan siRNA‐treated cells, resulting in a significant decrease in eNOS gene expression. Perlecan deficiency induced endothelial dysfunction, as indicated by a reduction in endothelium‐dependent relaxation due, at least partly, to a reduction in eNOS expression. These findings suggest that perlecan plays a role in the activation of eNOS gene expression during normal growth processes. Perlecan deficiency induced endothelial dysfunction at least partly, to a reduction in eNOS expression. These findings suggest that perlecan plays a role in the activation of the eNOS expression during normal growth processes.
Collapse
Affiliation(s)
- Risa Nonaka
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takafumi Iesaki
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susana de Vega
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takako Sasaki
- Department of Biochemistry, Faculty of Medicine, Oita University, Oita, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Reducing macrophage proteoglycan sulfation increases atherosclerosis and obesity through enhanced type I interferon signaling. Cell Metab 2014; 20:813-826. [PMID: 25440058 PMCID: PMC4254584 DOI: 10.1016/j.cmet.2014.09.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/30/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are an important constituent of the macrophage glycocalyx and extracellular microenvironment. To examine their role in atherogenesis, we inactivated the biosynthetic gene N-acetylglucosamine N-deacetylase-N-sulfotransferase 1 (Ndst1) in macrophages and crossbred the strain to Ldlr(-/-) mice. When placed on an atherogenic diet, Ldlr(-/-)Ndst1(f/f)LysMCre(+) mice had increased atherosclerotic plaque area and volume compared to Ldlr(-/-) mice. Diminished sulfation of heparan sulfate resulted in enhanced chemokine expression; increased macrophages in plaques; increased expression of ACAT2, a key enzyme in cholesterol ester storage; and increased foam cell conversion. Motif analysis of promoters of upregulated genes suggested increased type I interferon signaling, which was confirmed by elevation of STAT1 phosphorylation induced by IFN-β. The proinflammatory macrophages derived from Ndst1(f/f)LysMCre(+) mice also sensitized the animals to diet-induced obesity. We propose that macrophage HSPGs control basal activation of macrophages by maintaining type I interferon reception in a quiescent state through sequestration of IFN-β.
Collapse
|
18
|
Reprint of “Potential roles of vessel wall heparan sulfate proteoglycans in atherosclerosis”. Vascul Pharmacol 2014. [DOI: 10.1016/j.vph.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Tang T, Thompson JC, Wilson PG, Yoder MH, Müeller J, Fischer JW, Williams KJ, Tannock LR. Biglycan deficiency: increased aortic aneurysm formation and lack of atheroprotection. J Mol Cell Cardiol 2014; 75:174-80. [PMID: 25093698 DOI: 10.1016/j.yjmcc.2014.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Proteoglycans of the arterial wall play a critical role in vascular integrity and the development of atherosclerosis owing to their ability to organize extracellular matrix molecules and to bind and retain atherogenic apolipoprotein (apo)-B containing lipoproteins. Prior studies have suggested a role for biglycan in aneurysms and in atherosclerosis. Angiotensin II (angII) infusions into mice have been shown to induce abdominal aortic aneurysm development, increase vascular biglycan content, increase arterial retention of lipoproteins, and accelerate atherosclerosis. The goal of this study was to determine the role of biglycan in angII-induced vascular diseases. Biglycan-deficient or biglycan wildtype mice crossed to LDL receptor deficient (Ldlr-/-) mice (C57BL/6 background) were infused with angII (500 or 1000ng/kg/min) or saline for 28days while fed on normal chow, then pumps were removed, and mice were switched to an atherogenic Western diet for 6weeks. During angII infusions, biglycan-deficient mice developed abdominal aortic aneurysms, unusual descending thoracic aneurysms, and a striking mortality caused by aortic rupture (76% for males and 48% for females at angII 1000ng/kg/min). Histological analyses of non-aneurysmal aortic segments from biglycan-deficient mice revealed a deficiency of dense collagen fibers and the aneurysms demonstrated conspicuous elastin breaks. AngII infusion increased subsequent atherosclerotic lesion development in both biglycan-deficient and biglycan wildtype mice. However, the biglycan genotype did not affect the atherosclerotic lesion area induced by the Western diet after treatment with angII. Biglycan-deficient mice exhibited significantly increased vascular perlecan content compared to biglycan wildtype mice. Analyses of the atherosclerotic lesions demonstrated that vascular perlecan co-localized with apoB, suggesting that increased perlecan compensated for biglycan deficiency in terms of lipoprotein retention. Biglycan deficiency increases aortic aneurysm development and is not protective against the development of atherosclerosis. Biglycan deficiency leads to loosely packed aortic collagen fibers, increased susceptibility of aortic elastin fibers to angII-induced stress, and up-regulation of vascular perlecan content.
Collapse
Affiliation(s)
- Tao Tang
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Joel C Thompson
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Meghan H Yoder
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Julia Müeller
- Institute of Pharmacology and Clinical Pharmacology, University Clinics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens W Fischer
- Institute of Pharmacology and Clinical Pharmacology, University Clinics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kevin Jon Williams
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, Temple University, Philadelphia, PA, USA; Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Göteborg, Sweden
| | - Lisa R Tannock
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Veterans Affairs, Lexington, KY, USA.
| |
Collapse
|
20
|
Chuang CY, Degendorfer G, Davies MJ. Oxidation and modification of extracellular matrix and its role in disease. Free Radic Res 2014; 48:970-89. [DOI: 10.3109/10715762.2014.920087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Potential roles of vessel wall heparan sulfate proteoglycans in atherosclerosis. Vascul Pharmacol 2014; 60:49-51. [DOI: 10.1016/j.vph.2013.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022]
|
22
|
|
23
|
Adhikari N, Billaud M, Carlson M, Lake SP, Montaniel KRC, Staggs R, Guan W, Walek D, Desir S, Isakson BE, Barocas VH, Hall JL. Vascular biomechanical properties in mice with smooth muscle specific deletion of Ndst1. Mol Cell Biochem 2014; 385:225-38. [PMID: 24101444 PMCID: PMC4853023 DOI: 10.1007/s11010-013-1831-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/26/2013] [Indexed: 12/19/2022]
Abstract
Heparan sulfate proteoglycans act as co-receptors for many chemokines and growth factors. The sulfation pattern of the heparan sulfate chains is a critical regulatory step affecting the binding of chemokines and growth factors. N-deacetylase-N-sulfotransferase1 (Ndst1) is one of the first enzymes to catalyze sulfation. Previously published work has shown that HSPGs alter tangent moduli and stiffness of tissues and cells. We hypothesized that loss of Ndst1 in smooth muscle would lead to significant changes in heparan sulfate modification and the elastic properties of arteries. In line with this hypothesis, the axial tangent modulus was significantly decreased in aorta from mice lacking Ndst1 in smooth muscle (SM22αcre(+)Ndst1(-/-), p < 0.05, n = 5). The decrease in axial tangent modulus was associated with a significant switch in myosin and actin types and isoforms expressed in aorta and isolated aortic vascular smooth muscle cells. In contrast, no changes were found in the compliance of smaller thoracodorsal arteries of SM22αcre(+)Ndst1(-/-) mice. In summary, the major findings of this study were that targeted ablation of Ndst1 in smooth muscle cells results in altered biomechanical properties of aorta and differential expression of myosin and actin types and isoforms.
Collapse
Affiliation(s)
- Neeta Adhikari
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Marie Billaud
- Robert M Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Marjorie Carlson
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Spencer P. Lake
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, MN 55455
| | - Kim Ramil C. Montaniel
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Rod Staggs
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455
| | - Dinesha Walek
- Biomedical Genomics Center, University of Minnesota, Minneapolis, MN 55455
| | - Snider Desir
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Brant E. Isakson
- Robert M Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, MN 55455
| | - Jennifer L. Hall
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
24
|
Lopez-Quintero SV, Cancel LM, Pierides A, Antonetti D, Spray DC, Tarbell JM. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx. PLoS One 2013; 8:e78954. [PMID: 24260138 PMCID: PMC3832508 DOI: 10.1371/journal.pone.0078954] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC). After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.
Collapse
Affiliation(s)
- Sandra V. Lopez-Quintero
- Department of Biomedical Engineering, The City College of The City University of New York, New York, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United States of America
| | - Limary M. Cancel
- Department of Biomedical Engineering, The City College of The City University of New York, New York, New York, United States of America
| | - Alexis Pierides
- Department of Biomedical Engineering, The City College of The City University of New York, New York, New York, United States of America
| | - David Antonetti
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United States of America
| | - John M. Tarbell
- Department of Biomedical Engineering, The City College of The City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
26
|
Purnomo E, Emoto N, Nugrahaningsih DAA, Nakayama K, Yagi K, Heiden S, Nadanaka S, Kitagawa H, Hirata KI. Glycosaminoglycan overproduction in the aorta increases aortic calcification in murine chronic kidney disease. J Am Heart Assoc 2013; 2:e000405. [PMID: 23985378 PMCID: PMC3835254 DOI: 10.1161/jaha.113.000405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Vascular calcification accompanying chronic kidney disease increases the mortality and morbidity associated with cardiovascular disorders, but no effective therapy is available. We hypothesized that glycosaminoglycans may contribute to osteoblastic differentiation of vascular smooth muscle cells during vascular calcification. Methods and Results We used exostosin‐like glycosyltranferase 2–deficient (EXTL2 knockout) mice expressing high levels of glycosaminoglycans in several organs including the aorta. We performed 5/6 subtotal nephrectomy and fed the mice a high‐phosphate diet to induce chronic kidney disease. Overexpression of glycosaminoglycans in the aorta enhanced aortic calcification in chronic kidney disease in EXTL2 knockout mice. Ex vivo and in vitro, matrix mineralization in aortic rings and vascular smooth muscle cells of EXTL2 knockout mice was augmented. Furthermore, removal of glycosaminoglycans in EXTL2 knockout and wild‐type mice‐derived vascular smooth muscle cells effectively suppressed calcium deposition in a high‐phosphate environment. Conclusions These results illustrate an important role for glycosaminoglycans in the development of vascular calcification. Manipulation of glycosaminoglycan expression may have beneficial effects on the progression of vascular calcification in chronic kidney disease patients.
Collapse
Affiliation(s)
- Eko Purnomo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Perisic L, Hedin E, Razuvaev A, Lengquist M, Osterholm C, Folkersen L, Gillgren P, Paulsson-Berne G, Ponten F, Odeberg J, Hedin U. Profiling of atherosclerotic lesions by gene and tissue microarrays reveals PCSK6 as a novel protease in unstable carotid atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33:2432-43. [PMID: 23908247 DOI: 10.1161/atvbaha.113.301743] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Carotid plaque instability is a major cause of ischemic stroke, but detailed knowledge about underlying molecular pathways is still lacking. Here, we evaluated large-scale transcriptomic and protein expression profiling in a biobank of carotid endarterectomies followed by characterization of identified candidates, as a platform for discovery of novel proteins differentially regulated in unstable carotid lesions. APPROACH AND RESULTS Genes highly upregulated in symptomatic versus asymptomatic plaques were selected from Affymetrix microarray analyses (n=127 plaques), and tissue microarrays constructed from 34 lesions were assayed for 21 corresponding proteins by immunohistochemistry. Quantification of stainings demonstrated differential expression of CD36, CD137, and DOCK7 (P<0.05) in unstable versus stable lesions and the most significant upregulation of a proprotein convertase, PCSK6 (P<0.0001). Increased expression of PCSK6 in symptomatic lesions was verified by quantitative real-time polymerase chain reaction (n=233), and the protein was localized to smooth muscle α-actin positive cells and extracellular matrix of the fibrous cap by immunohistochemistry. PCSK6 expression positively correlated to genes associated with inflammation, matrix degradation, and mitogens in microarrays. Stimulation of human carotid smooth muscle cells in vitro with cytokines caused rapid induction of PCSK6 mRNA. CONCLUSIONS Using a combination of transcriptomic and tissue microarray profiling, we demonstrate a novel approach to identify proteins differentially expressed in unstable carotid atherosclerosis. The proprotein convertase PCSK6 was detected at increased levels in the fibrous cap of symptomatic carotid plaques, possibly associated with key processes in plaque rupture such as inflammation and extracellular matrix remodeling. Further studies are needed to clarify the role of PCSK6 in atherosclerosis.
Collapse
Affiliation(s)
- Ljubica Perisic
- From the Department of Molecular Medicine and Surgery (L.P., E.H., A.R., M.L., C.O., U.H.), and Department of Medicine (G.P.-B., J.O.), Karolinska Institute, Stockholm, Sweden; Department of Molecular Genetics, Novo Nordisk, Copenhagen, Denmark (L.F.); Department of Surgery, Södersjukhuset, Stockholm, Sweden (P.G.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (F.P.); and Department of Proteomics, Royal Institute of Technology, Stockholm, Sweden (J.O.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Blich M, Golan A, Arvatz G, Sebbag A, Shafat I, Sabo E, Cohen-Kaplan V, Petcherski S, Avniel-Polak S, Eitan A, Hammerman H, Aronson D, Axelman E, Ilan N, Nussbaum G, Vlodavsky I. Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol 2013; 33:e56-65. [PMID: 23162016 PMCID: PMC3548034 DOI: 10.1161/atvbaha.112.254961] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Factors and mechanisms that activate macrophages in atherosclerotic plaques are incompletely understood. We examined the capacity of heparanase to activate macrophages. METHODS AND RESULTS Highly purified heparanase was added to mouse peritoneal macrophages and macrophage-like J774 cells, and the levels of tumor necrosis factor-α, matrix metalloproteinase-9, interlukin-1, and monocyte chemotactic protein-1 were evaluated by ELISA. Gene expression was determined by RT-PCR. Cells collected from Toll-like receptor-2 and Toll-like receptor-4 knockout mice were evaluated similarly. Heparanase levels in the plasma of patients with acute myocardial infarction, stable angina, and healthy subjects were determined by ELISA. Immunohistochemistry was applied to detect the expression of heparanase in control specimens and specimens of patients with stable angina or acute myocardial infarction. Addition or overexpression of heparanase variants resulted in marked increase in tumor necrosis factor-α, matrix metalloproteinase-9, interlukin-1, and monocyte chemotactic protein-1 levels. Mouse peritoneal macrophages harvested from Toll-like receptor-2 or Toll-like receptor-4 knockout mice were not activated by heparanase. Plasma heparanase level was higher in patients with acute myocardial infarction, compared with patients with stable angina and healthy subjects. Pathologic coronary specimens obtained from vulnerable plaques showed increased heparanase staining compared with specimens of stable plaque and controls. CONCLUSIONS Heparanase activates macrophages, resulting in marked induction of cytokine expression associated with plaque progression toward vulnerability.
Collapse
Affiliation(s)
- Miry Blich
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Amnon Golan
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Gil Arvatz
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Anat Sebbag
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Itay Shafat
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Victoria Cohen-Kaplan
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Shani Avniel-Polak
- Institute of Dental Science, Hadassah Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Amnon Eitan
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Haim Hammerman
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Elena Axelman
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Gabriel Nussbaum
- Institute of Dental Science, Hadassah Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
29
|
Fibromodulin Deficiency Reduces Low-Density Lipoprotein Accumulation in Atherosclerotic Plaques in Apolipoprotein E–Null Mice. Arterioscler Thromb Vasc Biol 2013. [DOI: 10.1161/atvbaha.112.300723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Mangat R, Warnakula S, Borthwick F, Hassanali Z, Uwiera RRE, Russell JC, Cheeseman CI, Vine DF, Proctor SD. Arterial retention of remnant lipoproteins ex vivo is increased in insulin resistance because of increased arterial biglycan and production of cholesterol-rich atherogenic particles that can be improved by ezetimibe in the JCR:LA-cp rat. J Am Heart Assoc 2012; 1:e003434. [PMID: 23316299 PMCID: PMC3541624 DOI: 10.1161/jaha.112.003434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Literature supports the "response-to-retention" hypothesis-that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance. METHODS AND RESULTS Arteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls. CONCLUSIONS Increased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS.
Collapse
Affiliation(s)
- Rabban Mangat
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Osterholm C, Folkersen L, Lengquist M, Pontén F, Renné T, Li J, Hedin U. Increased expression of heparanase in symptomatic carotid atherosclerosis. Atherosclerosis 2012; 226:67-73. [PMID: 23137827 DOI: 10.1016/j.atherosclerosis.2012.09.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Proliferation of smooth muscle cells (SMCs) can stabilize atherosclerotic lesions but the molecular mechanisms that regulate this process in humans are largely unknown. We have previously shown that heparan sulfate proteoglycans (HSPGs), such as perlecan, regulate SMC growth in animal models by modulating heparin-binding mitogens. Since perlecan is expressed at low levels in human atherosclerosis, we speculated that the effect of heparan sulfate (HS) in human disease was rather influenced by HS degradation and investigated the expression of heparanase (HPSE) in human carotid endarterectomies. METHODS AND RESULTS Gene expression analysis from 127 endarterectomies in the BiKE database revealed increased expression of HPSE in carotid plaques compared with normal arteries, and a further elevation in symptomatic lesions. Increased HPSE protein expression in symptomatic plaque tissue was verified by tissue microarrays. HPSE mRNA levels correlated positively with expression of inflammatory markers IL-18, RANTES and IL-1β, and also T-cell co-stimulatory molecules, such as B7.2, CD28, LFA-1 and 4-1BB. Previously reported single nucleotide polymorphisms within HPSE were associated with differential mRNA expression in plaques. Immunohistochemistry revealed that inflammatory cells were major producers of HPSE in plaque tissue. HPSE immunoreactivity was also observed in SMCs adjacent to the necrotic core and was co-localized to deposits of fibrin. CONCLUSIONS This study demonstrates increased expression of HPSE in human atherosclerosis associated with inflammation, coagulation and plaque instability. Since HS can regulate SMC proliferation and influence plaque stability, the findings suggest that HPSE degradation of HS take part in the regulation of SMC function in human atherosclerosis.
Collapse
Affiliation(s)
- C Osterholm
- Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
32
|
Fogelstrand P, Borén J. Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr Metab Cardiovasc Dis 2012; 22:1-7. [PMID: 22176921 DOI: 10.1016/j.numecd.2011.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/27/2011] [Indexed: 02/07/2023]
Abstract
AIMS In this review, we discuss the mechanisms behind the binding of low-density lipoproteins (LDL) to the arterial wall and how this interaction might be targeted to prevent atherosclerosis. DATA SYNTHESIS An increasing body of evidence shows that accumulation of LDL in the vessel wall is a critical step in the development of atherosclerosis. The retained lipoproteins subsequently provoke an inflammatory response that ultimately leads to atherosclerosis. In the arterial wall, LDL binds ionically to proteoglycans in the extracellular matrix. In particular, proteoglycans with elongated glycosaminoglycan (GAG) chains seem to play a crucial role in this process. CONCLUSIONS The LDL-proteoglycan interaction is a highly regulated process that might provide new therapeutic targets against cardiovascular disease.
Collapse
Affiliation(s)
- P Fogelstrand
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, 41345 Gothenburg, Sweden.
| | | |
Collapse
|
33
|
Walters MJ, Wrenn SP. Mechanistic roles of lipoprotein lipase and sphingomyelinase in low density lipoprotein aggregation. J Colloid Interface Sci 2011; 363:268-74. [PMID: 21839462 PMCID: PMC3175813 DOI: 10.1016/j.jcis.2011.07.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 02/02/2023]
Abstract
The initiation of atherosclerosis involves retention of colloidal atherogenic lipoproteins, primarily low density lipoprotein (LDL), in the arterial intima. This retention occurs when LDL binds to smooth muscle cell extracellular matrix (SMC ECM), and is enhanced by lipoprotein lipase (LpL) and sphingomyelinase (Smase). Here we use a fluorescence assay and dynamic light scattering to study the individual and combined effects of these two enzymes on LDL aggregation. Our results show: (1) LpL is self-sufficient to induce LDL aggregation with aggregate sizes up to ~400 nm; (2) Smase induces LDL aggregation due to generation of ceramide and subsequent hydrophobic interactions; (3) Smase hydrolysis of LpL-induced LDL aggregates does not cause further aggregation and results in a ~3-fold diminished production of ceramide, while LpL treatment of Smase-induced aggregates does enhance aggregation; (4) The simultaneous addition of LpL and Smase causes increased variability in aggregation with final sizes ranging from 50 to 110 nm. Our data suggest a new proatherogenic function for LpL, namely, bridging between LDL particles causing their aggregation and consequently enhanced retention by SMC ECM. The mechanism of LpL-and-Smase-mediated LDL aggregation and binding to SMC ECM provides specific points of intervention to design novel effective antiatherogenic therapeutics.
Collapse
Affiliation(s)
- Michael J Walters
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
34
|
Ichimaru Y, Krimmer DI, Burgess JK, Black JL, Oliver BGG. TGF-β enhances deposition of perlecan from COPD airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 302:L325-33. [PMID: 22003087 DOI: 10.1152/ajplung.00453.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are characterized by irreversible remodeling of the airway walls, including thickening of the airway smooth muscle layer. Perlecan is a large, multidomain, proteoglycan that is expressed in the lungs, and in other organ systems, and has been described to have a role in cell adhesion, angiogenesis, and proliferation. This study aimed to investigate functional properties of the different perlecan domains in relation to airway smooth muscle cells (ASMC). Primary human ASMC obtained from donors with asthma (n = 13), COPD (n = 12), or other lung disease (n = 20) were stimulated in vitro with 1 ng/ml transforming growth factor-β(1) (TGF-β(1)) before perlecan deposition and cytokine release were analyzed. In some experiments, inhibitors of signaling molecules were added. Perlecan domains I-V were seeded on tissue culture plates at 10 μg/ml with 1 μg/ml collagen I as a control. ASM was incubated on top of the peptides before being analyzed for attachment, proliferation, and wound healing. TGF-β(1) upregulated deposition of perlecan by ASMC from COPD subjects only. TGF-β(1) upregulated release of IL-6 into the supernatant of ASMC from all subjects. Inhibitors of SMAD and JNK signaling molecules decreased TGF-β(1)-induced perlecan deposition by COPD ASMC. Attachment of COPD ASMC was upregulated by collagen I and perlecan domains IV and V, while perlecan domain II upregulated attachment only of asthmatic ASMC. Seeding on perlecan domains did not increase proliferation of any ASMC type. TGF-β(1)-induced perlecan deposition may enhance attachment of migrating ASMC in vivo and thus may be a mechanism for ASMC layer hypertrophy in COPD.
Collapse
Affiliation(s)
- Yukikazu Ichimaru
- Cell Biology group, Woolcock Institute of Medical Research, NSW, Australia
| | | | | | | | | |
Collapse
|
35
|
Monaco C, Terrando N, Midwood KS. Toll-like receptor signaling: common pathways that drive cardiovascular disease and rheumatoid arthritis. Arthritis Care Res (Hoboken) 2011; 63:500-11. [PMID: 21452263 DOI: 10.1002/acr.20382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Claudia Monaco
- Kennedy Institute of Rheumatology, Imperial College, London, UK.
| | | | | |
Collapse
|
36
|
Adhikari N, Carlson M, Lerman B, Hall JL. Changes in expression of proteoglycan core proteins and heparan sulfate enzymes in the developing and adult murine aorta. J Cardiovasc Transl Res 2011; 4:313-20. [PMID: 21468773 DOI: 10.1007/s12265-011-9261-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/09/2011] [Indexed: 12/13/2022]
Abstract
Proteoglycan core proteins are linked to four different classes of linear sugar chains referred to as glycosaminoglycans. Heparan sulfate constitutes one of these classes of glycosaminoglycans, and has been shown to be important in developmental processes as well as disease. We designed a low-density gene expression array to identify expression levels of heparan sulfate biosynthetic enzymes and proteoglycan core proteins in the aorta of late stage embryos (E18.5) and adult mice (12 weeks). Significant changes were found in mRNA expression of proteoglycan core proteins syndecan, glypican, decorin, perlecan, and versican from development to adulthood (n = 8, p < 0.05). Immunohistochemistry revealed a striking localization of both decorin and perlecan staining to the subendothelium in adult vessels, which differed from consistent staining of the endothelium, smooth muscle, and adventitia in development. Significant differences were also identified in the expression of the heparan sulfate modifying enzymes, glururonyl C5 epimerase, 2-O and 6-O sulfotransferases, and N-deacetylase/N sulfotransferases 1-3 (n = 8, p < 0.05). In conclusion, proteoglycan core proteins and heparan sulfate biosynthetic enzymes in the aorta undergo significant changes in their expression from development to adulthood. These findings may have important biological significance in the specific cell-defined roles of proteoglycan and heparan sulfate related targets in vascular development, maintenance, and response to various perturbations.
Collapse
Affiliation(s)
- Neeta Adhikari
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, USA
| | | | | | | |
Collapse
|
37
|
Yan J, Stringer SE, Hamilton A, Charlton-Menys V, Götting C, Müller B, Aeschlimann D, Alexander MY. Decorin GAG synthesis and TGF-β signaling mediate Ox-LDL-induced mineralization of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2011; 31:608-15. [PMID: 21205989 DOI: 10.1161/atvbaha.110.220749] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Decorin and oxidized low-density lipoprotein (Ox-LDL) independently induce osteogenic differentiation of vascular smooth muscle cells (VSMCs). We aimed to determine whether decorin glycosaminoglycan (GAG) chain synthesis contributes to Ox-LDL-induced differentiation and calcification of human VSMCs in vitro. METHODS AND RESULTS Human VSMCs treated with Ox-LDL to induce oxidative stress showed increased alkaline phosphatase (ALP) activity, accelerated mineralization, and a difference in both decorin GAG chain biosynthesis and CS/DS structure compared with untreated controls. Ox-LDL increased mRNA abundance of both xylosyltransferase (XT)-I, the key enzyme responsible for GAG chain biosynthesis and Msx2, a marker of osteogenic differentiation. Furthermore, downregulation of XT-I expression using small interfering RNA blocked Ox-LDL-induced VSMC mineralization. Adenoviral-mediated overexpression of decorin, but not a mutated unglycanated form, accelerated mineralization of VSMCs, suggesting GAG chain addition on decorin is crucial for the process of differentiation. The decorin-induced VSMC osteogenic differentiation involved activation of the transforming growth factor (TGF)-β pathway, because it was attenuated by blocking of TGF-β receptor signaling and because decorin overexpression potentiated phosphorylation of the downstream signaling molecule smad2. CONCLUSIONS These studies provide direct evidence that oxidative stress-mediated decorin GAG chain synthesis triggers TGF-β signaling and mineralization of VSMCs in vitro.
Collapse
Affiliation(s)
- Jianyun Yan
- Cardiovascular Research Group, University of Manchester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Deletion of the basement membrane heparan sulfate proteoglycan type XVIII collagen causes hypertriglyceridemia in mice and humans. PLoS One 2010; 5:e13919. [PMID: 21085708 PMCID: PMC2978080 DOI: 10.1371/journal.pone.0013919] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/15/2010] [Indexed: 01/15/2023] Open
Abstract
Background Lipoprotein lipase (Lpl) acts on triglyceride-rich lipoproteins in the peripheral circulation, liberating free fatty acids for energy metabolism or storage. This essential enzyme is synthesized in parenchymal cells of adipose tissue, heart, and skeletal muscle and migrates to the luminal side of the vascular endothelium where it acts upon circulating lipoproteins. Prior studies suggested that Lpl is immobilized by way of heparan sulfate proteoglycans on the endothelium, but genetically altering endothelial cell heparan sulfate had no effect on Lpl localization or lipolysis. The objective of this study was to determine if extracellular matrix proteoglycans affect Lpl distribution and triglyceride metabolism. Methods and Findings We examined mutant mice defective in collagen XVIII (Col18), a heparan sulfate proteoglycan present in vascular basement membranes. Loss of Col18 reduces plasma levels of Lpl enzyme and activity, which results in mild fasting hypertriglyceridemia and diet-induced hyperchylomicronemia. Humans with Knobloch Syndrome caused by a null mutation in the vascular form of Col18 also present lower than normal plasma Lpl mass and activity and exhibit fasting hypertriglyceridemia. Conclusions This is the first report demonstrating that Lpl presentation on the lumenal side of the endothelium depends on a basement membrane proteoglycan and demonstrates a previously unrecognized phenotype in patients lacking Col18.
Collapse
|
39
|
Baker AB, Chatzizisis YS, Beigel R, Jonas M, Stone BV, Coskun AU, Maynard C, Rogers C, Koskinas KC, Feldman CL, Stone PH, Edelman ER. Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine. Atherosclerosis 2010; 213:436-42. [PMID: 20950809 DOI: 10.1016/j.atherosclerosis.2010.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 08/12/2010] [Accepted: 09/03/2010] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Enzymatic degradation of the extracellular matrix is known to be powerful regulator of atherosclerosis. However, little is known about the enzymatic regulation of heparan sulfate proteoglycans (HSPGs) during the formation and progression of atherosclerotic plaques. METHODS AND RESULTS Swine were rendered diabetic through streptozotocin injection and hyperlipidemic through a high fat diet. Arterial remodeling and local endothelial shear stress (ESS) were assessed using intravascular ultrasound, coronary angiography and computational fluid dynamics at weeks 23 and 30. Coronary arteries were harvested and 142 arterial subsegments were analyzed using histomorphologic staining, immunostaining and real time PCR. Heparanase staining and activity was increased in arterial segments with low ESS, in lesions with thin cap fibroatheroma (TCFA) morphology and in lesions with severely degraded internal elastic laminae. In addition, heparanase staining co-localized with staining for CD45 and MMP-2 within atherosclerotic plaques. Dual staining with gelatinase zymography and heparanase immunohistochemical staining demonstrated co-localization of matrix metalloprotease activity with heparanase staining. A heparanase enzymatic activity assay demonstrated increased activity in TCFA lesions, subsegments with low ESS and in macrophages treated with oxidized LDL or angiotensin II. CONCLUSIONS Taken together, our results support a critical role for heparanase in the development of vulnerable plaques and suggest a novel therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Kirn-Safran C, Farach-Carson MC, Carson DD. Multifunctionality of extracellular and cell surface heparan sulfate proteoglycans. Cell Mol Life Sci 2009; 66:3421-34. [PMID: 19629389 PMCID: PMC11115568 DOI: 10.1007/s00018-009-0096-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 02/06/2023]
Abstract
Heparan sulfate proteoglycans are a remarkably diverse family of glycosaminoglycan-bearing protein cores that include the syndecans, the glypicans, perlecan, agrin, and collagen XVIII. Members of this protein class play key roles during normal processes that occur during development, tissue morphogenesis, and wound healing. As key components of basement membranes in organs and tissues, they also participate in selective filtration of biological fluids, in establishing cellular barriers, and in modulation of angiogenesis. The ability to perform these functions is provided both by the features of the protein cores as well as by the unique properties of heparan sulfate, which is assembled as a polymer of N-acetylglucosamine and glucuronic acid and modified by specific enzymes to generate specialized biologically active structures. This article discusses the structures and functions of this amazing family of proteoglycans and provides a platform for further study of the individual members.
Collapse
Affiliation(s)
| | - Mary C. Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19707 USA
- Present Address: Department of Biochemistry and Cell Biology, Weiss School of Natural Sciences, Rice University, MS-102, P.O. Box 1892, Houston, TX 77251-1892 USA
| | - Daniel D. Carson
- Present Address: Department of Biochemistry and Cell Biology, Weiss School of Natural Sciences, Rice University, MS-102, P.O. Box 1892, Houston, TX 77251-1892 USA
| |
Collapse
|
42
|
Stanford KI, Bishop JR, Foley EM, Gonzales JC, Niesman IR, Witztum JL, Esko JD. Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest 2009; 119:3236-45. [PMID: 19805913 DOI: 10.1172/jci38251] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/29/2009] [Indexed: 12/20/2022] Open
Abstract
Elevated plasma triglyceride levels represent a risk factor for premature atherosclerosis. In mice, accumulation of triglyceride-rich lipoproteins can occur if sulfation of heparan sulfate in hepatocytes is diminished, as this alters hepatic lipoprotein clearance via heparan sulfate proteoglycans (HSPGs). However, the relevant HSPG has not been determined. In this study, we found by RT-PCR analysis that mouse hepatocytes expressed the membrane proteoglycans syndecan-1, -2, and -4 and glypican-1 and -4. Analysis of available proteoglycan-deficient mice showed that only syndecan-1 mutants (Sdc1-/- mice) accumulated plasma triglycerides. Sdc1-/- mice also exhibited prolonged circulation of injected human VLDL and intestinally derived chylomicrons. We found that mice lacking both syndecan-1 and hepatocyte heparan sulfate did not display accentuated triglyceride accumulation compared with single mutants, suggesting that syndecan-1 is the primary HSPG mediating hepatic triglyceride clearance. Immunoelectron microscopy showed that syndecan-1 was expressed specifically on the microvilli of hepatocyte basal membranes, facing the space of Disse, where lipoprotein uptake occurs. Abundant syndecan-1 on wild-type murine hepatocytes exhibited saturable binding of VLDL and inhibition by heparin and facilitated degradation of VLDL. Furthermore, adenovirus-encoded syndecan-1 restored binding, uptake, and degradation of VLDL in isolated Sdc1-/- hepatocytes and the lipoprotein clearance defect in Sdc1-/- mice. These findings provide the first in vivo genetic evidence that syndecan-1 is the primary hepatocyte HSPG receptor mediating the clearance of both hepatic and intestinally derived triglyceride-rich lipoproteins.
Collapse
Affiliation(s)
- Kristin I Stanford
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0687,USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Long-term treatment with the AT1-receptor antagonist telmisartan inhibits biglycan accumulation in murine atherosclerosis. Basic Res Cardiol 2009; 105:29-38. [DOI: 10.1007/s00395-009-0051-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/06/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
|
44
|
Kirn-Safran C, Farach-Carson MC, Carson DD. Multifunctionality of extracellular and cell surface heparan sulfate proteoglycans. Cell Mol Life Sci 2009. [DOI: 10.1007/s00018-009-0096-1 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
45
|
Zoeller JJ, Whitelock JM, Iozzo RV. Perlecan regulates developmental angiogenesis by modulating the VEGF-VEGFR2 axis. Matrix Biol 2009; 28:284-91. [PMID: 19422911 DOI: 10.1016/j.matbio.2009.04.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/22/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Using the zebrafish, we previously identified a central function for perlecan during angiogenic blood vessel development. Here, we explored the nature of perlecan function during developmental angiogenesis. A close examination of individual endothelial cell behavior revealed that perlecan is required for proper endothelial cell migration and proliferation. Because these events are largely mediated by VEGF-VEGFR2 signaling, we investigated the relationship between perlecan and the VEGF pathway. We discovered that perlecan knockdown caused an abnormal increase and redistribution of total VEGF-A protein suggesting that perlecan is required for the appropriate localization of VEGF-A. Importantly, we linked perlecan function to the VEGF pathway by efficiently rescuing the perlecan morphant phenotype by microinjecting VEGF-A(165) protein or mRNA. Combining the strategic localization of perlecan throughout the vascular basement membrane along with its growth factor-binding ability, we hypothesized a major role for perlecan during the establishment of the VEGF gradient which provides the instructive cues to endothelial cells during angiogenesis. In support of this hypothesis we demonstrated that human perlecan bound in a heparan sulfate-dependent fashion to VEGF-A(165). Moreover, perlecan enhanced VEGF mediated VEGFR2 activation of human endothelial cells. Collectively, our results indicate that perlecan coordinates developmental angiogenesis through modulation of VEGF-VEGFR2 signaling events. The identification of angiogenic factors, such as perlecan, and their role in vertebrate development will not only enhance overall understanding of the molecular basis of angiogenesis, but may also provide new insight into angiogenesis-based therapeutic approaches.
Collapse
Affiliation(s)
- Jason J Zoeller
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
46
|
Wilson PG, Thompson JC, Webb NR, de Beer FC, King VL, Tannock LR. Serum amyloid A, but not C-reactive protein, stimulates vascular proteoglycan synthesis in a pro-atherogenic manner. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1902-10. [PMID: 18974302 DOI: 10.2353/ajpath.2008.080201] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inflammatory markers serum amyloid A (SAA) and C-reactive protein (CRP) are predictive of cardiac disease and are proposed to play causal roles in the development of atherosclerosis, in which the retention of lipoproteins by vascular wall proteoglycans is critical. The purpose of this study was to determine whether SAA and/or CRP alters vascular proteoglycan synthesis and lipoprotein retention in a pro-atherogenic manner. Vascular smooth muscle cells were stimulated with either SAA or CRP (1 to 100 mg/L) and proteoglycans were then isolated and characterized. SAA, but not CRP, increased proteoglycan sulfate incorporation by 50 to 100% in a dose-dependent manner (P < 0.0001), increased glycosaminoglycan chain length, and increased low-density lipoprotein (LDL) binding affinity (K(d), 29 microg/ml LDL versus 90 microg/ml LDL for SAA versus control proteoglycans; P < 0.005). Furthermore, SAA up-regulated biglycan via the induction of endogenous transforming growth factor (TGF)-beta. To determine whether SAA stimulated proteoglycan synthesis in vivo, ApoE(-/-) mice were injected with an adenovirus expressing human SAA-1, a null virus, or saline. Mice that received adenovirus expressing SAA had increased TGF-beta concentrations in plasma and increased aortic biglycan content compared with mice that received either null virus or saline. Thus, SAA alters vascular proteoglycans in a pro-atherogenic manner via the stimulation of TGF-beta and may play a causal role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | | | | | | | |
Collapse
|