1
|
Vinogradova TM, Lakatta EG. Ca 2+/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates Basal Cardiac Pacemaker Function: Pros and Cons. Cells 2024; 14:3. [PMID: 39791704 PMCID: PMC11719954 DOI: 10.3390/cells14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca2+ clock", sarcoplasmic reticulum-generated local submembrane Ca2+ releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain. This is a critical issue with respect to how cardiac pacemaker cells fire spontaneous action potentials. This review aspires to explain and unite apparently contradictory results of pharmacological studies in the literature that have demonstrated a fundamental role of basal CaMKII activation for basal cardiac pacemaker function, as well as studies in mice with genetic CaMKII inhibition which have been interpreted to indicate that basal spontaneous SANC firing is independent of CaMKII activation. The assessment of supporting and opposing data regarding CaMKII effects on phosphorylation of Ca2+-cycling proteins and spontaneous firing of SANC in the basal state leads to the necessary conclusion that CaMKII activity and CaMKII-dependent phosphorylation do regulate basal cardiac pacemaker function.
Collapse
Affiliation(s)
- Tatiana M. Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA;
| | | |
Collapse
|
2
|
Jia K, Cheng H, Ma W, Zhuang L, Li H, Li Z, Wang Z, Sun H, Cui Y, Zhang H, Xie H, Yi L, Chen Z, Sano M, Fukuda K, Lu L, Pu J, Zhang Y, Gao L, Zhang R, Yan X. RNA Helicase DDX5 Maintains Cardiac Function by Regulating CamkIIδ Alternative Splicing. Circulation 2024; 150:1121-1139. [PMID: 39056171 DOI: 10.1161/circulationaha.123.064774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Heart failure (HF) is a leading cause of morbidity and mortality worldwide. RNA-binding proteins are identified as regulators of cardiac disease; DDX5 (dead-box helicase 5) is a master regulator of many RNA processes, although its function in heart physiology remains unclear. METHODS We assessed DDX5 expression in human failing hearts and a mouse HF model. To study the function of DDX5 in heart, we engineered cardiomyocyte-specific Ddx5 knockout mice. We overexpressed DDX5 in cardiomyocytes using adeno-associated virus serotype 9 and performed transverse aortic constriction to establish the murine HF model. The mechanisms underlined were subsequently investigated using immunoprecipitation-mass spectrometry, RNA-sequencing, alternative splicing analysis, and RNA immunoprecipitation sequencing. RESULTS We screened transcriptome databases of murine HF and human dilated cardiomyopathy samples and found that DDX5 was significantly downregulated in both. Cardiomyocyte-specific deletion of Ddx5 resulted in HF with reduced cardiac function, an enlarged heart chamber, and increased fibrosis in mice. DDX5 overexpression improved cardiac function and protected against adverse cardiac remodeling in mice with transverse aortic constriction-induced HF. Furthermore, proteomics revealed that DDX5 is involved in RNA splicing in cardiomyocytes. We found that DDX5 regulated the aberrant splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CamkIIδ), thus preventing the production of CaMKIIδA, which phosphorylates L-type calcium channel by serine residues of Cacna1c, leading to impaired Ca2+ homeostasis. In line with this, we found increased intracellular Ca2+ transients and increased sarcoplasmic reticulum Ca2+ content in DDX5-depleted cardiomyocytes. Using adeno-associated virus serotype 9 knockdown of CaMKIIδA partially rescued the cardiac dysfunction and HF in Ddx5 knockout mice. CONCLUSIONS These findings reveal a role for DDX5 in maintaining calcium homeostasis and cardiac function by regulating alternative splicing in cardiomyocytes, identifying the DDX5 as a potential target for therapeutic intervention in HF.
Collapse
Affiliation(s)
- Kangni Jia
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Haomai Cheng
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Wenqi Ma
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hao Li
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (H.L., L.G.)
| | - Zhigang Li
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Ziyang Wang
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hang Sun
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Yuke Cui
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hang Zhang
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hongyang Xie
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (M.S., K.F.)
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (M.S., K.F.)
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Pu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (J.P.), School of Medicine, Shanghai Jiao Tong University, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing, China (Y.Z.)
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (H.L., L.G.)
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
3
|
Ednie AR, Paul-Onyia CD, Bennett ES. Reduced O-GlcNAcylation diminishes cardiomyocyte Ca 2+ dependent facilitation and frequency dependent acceleration of relaxation. J Mol Cell Cardiol 2023; 180:10-21. [PMID: 37120927 DOI: 10.1016/j.yjmcc.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Ca2+ dependent facilitation (CDF) and frequency dependent acceleration of relaxation (FDAR) are regulatory mechanisms that potentiate cardiomyocyte Ca2+ channel function and increase the rate of Ca2+ sequestration following a Ca2+-release event, respectively, when depolarization frequency increases. CDF and FDAR likely evolved to maintain EC coupling at increased heart rates. Ca2+/calmodulin-dependent kinase II (CaMKII) was shown to be indispensable to both; however, the mechanisms remain to be completely elucidated. CaMKII activity can be modulated by post-translational modifications but if and how these modifications impact CDF and FDAR is unknown. Intracellular O-linked glycosylation (O-GlcNAcylation) is a post-translational modification that acts as a signaling molecule and metabolic sensor. In hyperglycemic conditions, CaMKII was shown to be O-GlcNAcylated resulting in pathologic activity. Here we sought to investigate whether O-GlcNAcylation impacts CDF and FDAR through modulation of CaMKII activity in a pseudo-physiologic setting. Using voltage-clamp and Ca2+ photometry we show that cardiomyocyte CDF and FDAR are significantly diminished in conditions of reduced O-GlcNAcylation. Immunoblot showed that CaMKIIδ and calmodulin expression are increased but the autophosphorylation of CaMKIIδ and the muscle cell-specific CaMKIIβ isoform are reduced by 75% or more when O-GlcNAcylation is inhibited. We also show that the enzyme responsible for O-GlcNAcylation (OGT) can likely be localized in the dyad space and/or at the cardiac sarcoplasmic reticulum and is precipitated by calmodulin in a Ca2+ dependent manner. These findings will have important implications for our understanding of how CaMKII and OGT interact to impact cardiomyocyte EC coupling in normal physiologic settings as well as in disease states where CaMKII and OGT may be aberrantly regulated.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology & Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA.
| | - Chiagozie D Paul-Onyia
- Department of Neuroscience, Cell Biology & Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology & Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| |
Collapse
|
4
|
Martinez‐Hernandez E, Blatter LA, Kanaporis G. L-type Ca 2+ channel recovery from inactivation in rabbit atrial myocytes. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 2022; 10:e15222. [PMID: 35274829 PMCID: PMC8915713 DOI: 10.14814/phy2.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Adaptation of the myocardium to varying workloads critically depends on the recovery from inactivation (RFI) of L-type Ca2+ channels (LCCs) which provide the trigger for cardiac contraction. The goal of the present study was a comprehensive investigation of LCC RFI in atrial myocytes. The study was performed on voltage-clamped rabbit atrial myocytes using a double pulse protocol with variable diastolic intervals in cells held at physiological holding potentials, with intact intracellular Ca2+ release, and preserved Na+ current and Na+ /Ca2+ exchanger (NCX) activity. We demonstrate that the kinetics of RFI of LCCs are co-regulated by several factors including resting membrane potential, [Ca2+ ]i , Na+ influx, and activity of CaMKII. In addition, activation of CaMKII resulted in increased ICa amplitude at higher pacing rates. Pharmacological inhibition of NCX failed to have any significant effect on RFI, indicating that impaired removal of Ca2+ by NCX has little effect on LCC recovery. Finally, RFI of intracellular Ca2+ release was substantially slower than LCC RFI, suggesting that inactivation kinetics of LCC do not significantly contribute to the beat-to-beat refractoriness of SR Ca2+ release. The study demonstrates that CaMKII and intracellular Ca2+ dynamics play a central role in modulation of LCC activity in atrial myocytes during increased workloads that could have important consequences under pathological conditions such as atrial fibrillations, where Ca2+ cycling and CaMKII activity are altered.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| | - Giedrius Kanaporis
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
5
|
Tao B, Liu Z, Wei F, Fan S, Cui S, Xia H, Xu L. Over-expression of Kv4.3 gene reverses cardiac remodeling and transient-outward K + current (Ito) reduction via CaMKII inhibition in myocardial infarction. Biomed Pharmacother 2020; 132:110896. [PMID: 33254430 DOI: 10.1016/j.biopha.2020.110896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Previous study has shown that Kv4.3, a main coding subunit generating cardiac transient-outward K+ current (Ito), can inhibit Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity. Based on these observations, we speculate that over-expression of Kv4.3 gene could reverse not only Ito reduction but also cardiac remodeling in the rat myocardial infarction (MI) model. METHODS AND RESULTS Healthy male Sprague-Dawley (SD) rats were used to establish MI model by ligation of left anterior descending coronary artery, and adenovirus integrated with Kv4.3 gene (AD-Kv4.3) was delivered in infarct border zone by intramyocardial injection. The hearts were harvested for histological analysis (HE or Masson trichrome staining), western blot or patch clamp 4 weeks after MI. Our data showed that the application of AD-Kv4.3 could reduce myocardial infarct size and fibrosis, and its cardioprotective effects were similar with medicine therapy (combination of metoprolol and captopril). Moreover, Kv4.3 over-expression significantly improved MI-induced cardiac dysfunction and enhanced Ito density while decreasing corrected QT (QTc) intervals and cardiac electrophysiological instability. Western blot showed that Kv4.3 transfection reduced CaMKII, PLB-17 and ryanodine receptor2 (RyR2 Ser2814) phosphorylation level, at same time increased SERCA2 expression dramatically. CONCLUSION Over-expression of Kv4.3 can not only attenuate cardiac electrophysiological instability and cardiac performance, but also reduce myocardial infarct area and cardiac fibrosis. Like traditional anti-remodeling therapy-angiotensin converting enzyme inhibitor (ACEI) combined with β-adrenergic receptor blocker, over-expression of Kv4.3 seems to be an effective and safe therapy for both structural and electrical remodeling induced by MI via CaMKII inhibition.
Collapse
Affiliation(s)
- Bo Tao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Zhebo Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, PR China
| | - Fang Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Suzhen Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China.
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China.
| |
Collapse
|
6
|
Liu Z, Tao B, Fan S, Cui S, Pu Y, Qiu L, Xia H, Xu L. Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction. Aging (Albany NY) 2020; 12:11603-11622. [PMID: 32554856 PMCID: PMC7343449 DOI: 10.18632/aging.103320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background: Numerous studies have highlighted the crucial role of microRNA-145 (miR-145) in coronary atherosclerosis and myocardial ischemia reperfusion injury. However, effects of miR-145 on β-adrenergic signaling and cardiac remodeling in heart failure (HF) remains unclarified. Methods and Results: We established HF model in rats with left anterior descending coronary artery (LAD) occlusion. Four weeks after LAD ligation, rats showed substantial aggravation of cardiac dilation and electrophysiological instability. Up-regulation of miR-145 ameliorated HF-induced myocardial fibrosis and prolonged action potential duration. Echocardiography revealed increased basal contractility and decreased left ventricular inner-diameter in miR-145 over-expressed heart, while cardiac response to β-adrenergic receptor (βAR) stimulation was reduced. Furthermore, miR-145 increased L-type calcium current (ICa) density while decreased ICa response to β-adrenergic stimulation with isoproterenol. The alterations in βAR signaling might be predominant due to miR-145-mediated activation of Akt/CREB cascades. At high frequency pacing, Ca2+ transient, cell shortening and frequency of Ca2+ waves were significantly improved in AD-miR-145 group. Western blotting revealed that increased expression of Cav1.2, Ca2+-ATPase, β2AR, GNAI3 and decreased level of CaMKII might be attributed to the cardioprotective effects of miR-145. Conclusion: miR-145 effectively alleviates HF-related cardiac remodeling by improving cardiac dilation, fibrosis, intracellular Ca2+ mishandling and electrophysiological instability.
Collapse
Affiliation(s)
- Zhebo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Bo Tao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Suzhen Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Yong Pu
- Renmin Hospital of Hannan, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
7
|
Xu B, Li M, Wang Y, Zhao M, Morotti S, Shi Q, Wang Q, Barbagallo F, Teoh JP, Reddy GR, Bayne EF, Liu Y, Shen A, Puglisi JL, Ge Y, Li J, Grandi E, Nieves-Cintron M, Xiang YK. GRK5 Controls SAP97-Dependent Cardiotoxic β 1 Adrenergic Receptor-CaMKII Signaling in Heart Failure. Circ Res 2020; 127:796-810. [PMID: 32507058 DOI: 10.1161/circresaha.119.316319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Cardiotoxic β1 adrenergic receptor (β1AR)-CaMKII (calmodulin-dependent kinase II) signaling is a major and critical feature associated with development of heart failure. SAP97 (synapse-associated protein 97) is a multifunctional scaffold protein that binds directly to the C-terminus of β1AR and organizes a receptor signalosome. OBJECTIVE We aim to elucidate the dynamics of β1AR-SAP97 signalosome and its potential role in chronic cardiotoxic β1AR-CaMKII signaling that contributes to development of heart failure. METHODS AND RESULTS The integrity of cardiac β1AR-SAP97 complex was examined in heart failure. Cardiac-specific deletion of SAP97 was developed to examine β1AR signaling in aging mice, after chronic adrenergic stimulation, and in pressure overload hypertrophic heart failure. We show that the β1AR-SAP97 signaling complex is reduced in heart failure. Cardiac-specific deletion of SAP97 yields an aging-dependent cardiomyopathy and exacerbates cardiac dysfunction induced by chronic adrenergic stimulation and pressure overload, which are associated with elevated CaMKII activity. Loss of SAP97 promotes PKA (protein kinase A)-dependent association of β1AR with arrestin2 and CaMKII and turns on an Epac (exchange protein directly activated by cAMP)-dependent activation of CaMKII, which drives detrimental functional and structural remodeling in myocardium. Moreover, we have identified that GRK5 (G-protein receptor kinase-5) is necessary to promote agonist-induced dissociation of SAP97 from β1AR. Cardiac deletion of GRK5 prevents adrenergic-induced dissociation of β1AR-SAP97 complex and increases in CaMKII activity in hearts. CONCLUSIONS These data reveal a critical role of SAP97 in maintaining the integrity of cardiac β1AR signaling and a detrimental cardiac GRK5-CaMKII axis that can be potentially targeted in heart failure therapy. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Bing Xu
- From the VA Northern California Health Care System, Mather, CA (B.X., Y.K.X.).,Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Minghui Li
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.).,Nanjing First Hospital, Nanjing Medical University, China (M.L.)
| | - Ying Wang
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Meimi Zhao
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Stefano Morotti
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Qian Shi
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Qingtong Wang
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.).,Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China (Q.W.)
| | - Federica Barbagallo
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Jian-Peng Teoh
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison (E.F.B., Y.G.)
| | - Yongming Liu
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.).,Shuguang Hospital, Shanghai University of Traditional Medicine, China (Y.L.)
| | - Ao Shen
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.).,School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, China (A.S.)
| | - Jose L Puglisi
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison (E.F.B., Y.G.)
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa (J.L.)
| | - Eleonora Grandi
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Madeline Nieves-Cintron
- Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| | - Yang K Xiang
- From the VA Northern California Health Care System, Mather, CA (B.X., Y.K.X.).,Department of Pharmacology, University of California at Davis (B.X., M.L., Y.W., M.Z., S.M., Q.S., Q.W., F.B., J.-P.T., G.R.R., Y.L., A.S., J.L.P., E.G., M.N.-C., Y.K.X.)
| |
Collapse
|
8
|
Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflugers Arch 2020; 472:653-667. [PMID: 32435990 DOI: 10.1007/s00424-020-02398-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Voltage-gated calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alterations of calcium channel function have been implicated in multiple cardiovascular diseases, such as hypertension, atrial fibrillation, and long QT syndrome. Post-translational modifications do expand cardiovascular calcium channel structure and function to affect processes such as channel trafficking or polyubiquitination by two E3 ubiquitin ligases, Ret finger protein 2 (Rfp2) or murine double minute 2 protein (Mdm2). Additionally, biophysical property such as Ca2+-dependent inactivation (CDI) could be altered through binding of calmodulin, or channel activity could be modulated via S-nitrosylation by nitric oxide and phosphorylation by protein kinases or by interacting protein partners, such as galectin-1 and Rem. Understanding how cardiovascular calcium channel function is post-translationally remodeled under distinctive disease conditions will provide better information about calcium channel-related disease mechanisms and improve the development of more selective therapeutic agents for cardiovascular diseases.
Collapse
|
9
|
Wang S, Li J, Liu Y, Zhang J, Zheng X, Sun X, Lei S, Kang Z, Chen X, Lei M, Hu H, Zeng X, Hao L. Distinct roles of calmodulin and Ca 2+/calmodulin-dependent protein kinase II in isopreterenol-induced cardiac hypertrophy. Biochem Biophys Res Commun 2020; 526:960-966. [PMID: 32303334 DOI: 10.1016/j.bbrc.2020.03.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
Intracellular calcium is related to cardiac hypertrophy. The CaV1.2 channel and Ca2+/calmodulin-dependent protein kinase II (CaMKII) and CaM regulate the intracellular calcium content. However, the differences in CaMKII and CaM in cardiac hypertrophy are still conflicting and are worthy of studying as drug targets. Therefore, in this study, we aim to investigate the roles and mechanism of CaM and CaMKII on CaV1.2 in pathological myocardial hypertrophy. The results showed that ISO stimulation caused SD rat heart and cardiomyocyte hypertrophy. In vivo, the HW/BW, LVW/BW, cross-sectional area, fibrosis ratio and ANP expression were all increased. There were no differences in CaV1.2 channel expression in the in vivo model or the in vitro model, but the ISO stimulation induced channel activity, and the [Ca2+]i increased. The protein expression levels of CaMKII and p-CaMKII were all increased in the ISO group, but the CaM expression level decreased. AIP inhibited ANP, CaMKII and p-CaMKII expression, and ISO-induced [Ca2+]i increased. AIP also reduced HDAC4, p-HDAC and MEF2C expression. However, CMZ did not play a cardiac hypertrophy reversal role in vitro. In conclusion, we considered that compared with CaM, CaMKII may be a much more important drug target in cardiac hypertrophy reversal.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jingyuan Li
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jie Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xi Zheng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shuai Lei
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ze Kang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xiye Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Huiyuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xiaorong Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
10
|
Abstract
The aim of this chapter is to discuss evidence concerning the many roles of calcium ions, Ca2+, in cell signaling pathways that control heart function. Before considering details of these signaling pathways, the control of contraction in ventricular muscle by Ca2+ transients accompanying cardiac action potentials is first summarized, together with a discussion of how myocytes from the atrial and pacemaker regions of the heart diverge from this basic scheme. Cell signaling pathways regulate the size and timing of the Ca2+ transients in the different heart regions to influence function. The simplest Ca2+ signaling elements involve enzymes that are regulated by cytosolic Ca2+. Particularly important examples to be discussed are those that are stimulated by Ca2+, including Ca2+-calmodulin-dependent kinase (CaMKII), Ca2+ stimulated adenylyl cyclases, Ca2+ stimulated phosphatase and NO synthases. Another major aspect of Ca2+ signaling in the heart concerns actions of the Ca2+ mobilizing agents, inositol trisphosphate (IP3), cADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, (NAADP). Evidence concerning roles of these Ca2+ mobilizing agents in different regions of the heart is discussed in detail. The focus of the review will be on short term regulation of Ca2+ transients and contractile function, although it is recognized that Ca2+ regulation of gene expression has important long term functional consequences which will also be briefly discussed.
Collapse
|
11
|
MicroRNA-145 Protects against Myocardial Ischemia Reperfusion Injury via CaMKII-Mediated Antiapoptotic and Anti-Inflammatory Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8948657. [PMID: 31583047 PMCID: PMC6754948 DOI: 10.1155/2019/8948657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
MicroRNA-145 (miR-145) has been shown to play an important role in cardiovascular system disorders; however, the underlying mechanism is not completely understood. The purpose of this study was aimed at elucidating the cardioprotective effects of miR-145 against myocardial ischemia/reperfusion (I/R) injury. We established a rat myocardial I/R model with 45 min left anterior descending coronary artery (LAD) occlusion and 2 h reperfusion. The levels of myocardial enzymes, apoptotic, inflammatory, and oxidative indices were determined. The arrhythmia score was assessed by programmed electrical stimulation (PES). Quantitative real-time PCR and western blot were applied to evaluate the expression levels of miR-145 and related target proteins, respectively. I/R injury decreased the expression of miR-145; however, upregulated miR-145 markedly reduced the elevation of ST segment, decreased corrected QT (QTc) intervals, and attenuated I/R-induced electrophysiological instability. Furthermore, miR-145 suppressed myocardium apoptotic, inflammatory, and oxidative response as well as the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), ryanodine receptor2 (RyR2 Ser2814), apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinases (JNK), and nuclear translocation of nuclear factor kappa-B (NF-κB) p65. In summary, overexpression of miR-145 alleviates I/R-induced myocardial electrophysiological instability and apoptotic and inflammatory response via inhibition of the CaMKII-mediated ASK1 antiapoptotic pathway and NF-κB p65 anti-inflammatory pathways.
Collapse
|
12
|
He Q, Cheng J, Wang Y. Chronic CaMKII inhibition reverses cardiac function and cardiac reserve in HF mice. Life Sci 2019; 219:122-128. [PMID: 30639281 DOI: 10.1016/j.lfs.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
AIMS The present study was to explore the impact of KN93 - a specific inhibitor of CaMKII - on cardiac function and cardiac reserve in HF mice. MAIN METHODS We have generated pressure-overload HF mice using modified transverse aortic constriction (TAC) method. For acute inhibition (AI) experiment, HF mice were randomly divided into HF group, HF + KN93 AI group and HF + KN92 AI group, using sham mice as control. Mice in HF + KN93 AI group and HF + KN92 AI group were injected with CaMKII inhibitor KN93 or its inactive analogue KN92 on post-TAC day 15, while mice in HF group and Sham group were treated with saline. For chronic inhibition (CI) experiment, mice were injected daily with KN93, KN92 or saline for one week. At baseline and after isoproterenol (Iso) injection, in vivo cardiac function was assessed by echocardiography and left ventricular pressure-volume catheter. KEY FINDINGS Acute inhibition of CaMKII leads to decreased -dP/dtmin, increased EF, FS, longitudinal strain, longitudinal strain rate, ESPVR, dP/dtmax-EDV, PRSW, Tau and EDPVR, and unaltered reactivity to Iso in HF mice. Chronic inhibition results in increased EF, FS, longitudinal strain, longitudinal strain rate, ESPVR, dP/dtmax-EDV and PRSW, without alteration in -dP/dtmin, Tau and EDPVR. In addition, chronic inhibition reverses the effect of Iso on HF mice. SIGNIFICANCE Although acute CaMKII inhibition can repair systolic function in HF mice, it also exacerbates the diastolic function, whereas chronic inhibition improves both systolic function and cardiac reserve to β-adrenergic stimulation without impairing diastolic function.
Collapse
Affiliation(s)
- Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
14
|
Coppini R, Ferrantini C, Mugelli A, Poggesi C, Cerbai E. Altered Ca 2+ and Na + Homeostasis in Human Hypertrophic Cardiomyopathy: Implications for Arrhythmogenesis. Front Physiol 2018; 9:1391. [PMID: 30420810 PMCID: PMC6215954 DOI: 10.3389/fphys.2018.01391] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common mendelian heart disease, with a prevalence of 1/500. HCM is a primary cause of sudden death, due to an heightened risk of ventricular tachyarrhythmias that often occur in young asymptomatic patients. HCM can slowly progress toward heart failure, either with preserved or reduced ejection fraction, due to worsening of diastolic function. Accumulation of intra-myocardial fibrosis and replacement scars underlies heart failure progression and represents a substrate for sustained arrhythmias in end-stage patients. However, arrhythmias and mechanical abnormalities may occur in hearts with little or no fibrosis, prompting toward functional pathomechanisms. By studying viable cardiomyocytes and trabeculae isolated from inter-ventricular septum samples of non-failing HCM patients with symptomatic obstruction who underwent myectomy operations, we identified that specific abnormalities of intracellular Ca2+ handling are associated with increased cellular arrhytmogenesis and diastolic dysfunction. In HCM cardiomyocytes, diastolic Ca2+ concentration is increased both in the cytosol and in the sarcoplasmic reticulum and the rate of Ca2+ transient decay is slower, while the amplitude of Ca2+-release is preserved. Ca2+ overload is the consequence of an increased Ca2+ entry via L-type Ca2+-current [due to prolongation the action potential (AP) plateau], combined with a reduced rate of Ca2+-extrusion through the Na+/Ca2+ exchanger [due to increased cytosolic (Na+)] and a lower expression of SERCA. Increased late Na+ current (INaL) plays a major role, as it causes both AP prolongation and Na+ overload. Intracellular Ca2+ overload determines an higher frequency of Ca2+ waves leading to delayed-afterdepolarizations (DADs) and premature contractions, but is also linked with the increased diastolic tension and slower relaxation of HCM myocardium. Sustained increase of intracellular [Ca2+] goes hand-in-hand with the increased activation of Ca2+/calmodulin-dependent protein-kinase-II (CaMKII) and augmented phosphorylation of its targets, including Ca2+ handling proteins. In transgenic HCM mouse models, we found that Ca2+ overload, CaMKII and increased INaL drive myocardial remodeling since the earliest stages of disease and underlie the development of hypertrophy, diastolic dysfunction and the arrhythmogenic substrate. In conclusion, diastolic dysfunction and arrhythmogenesis in human HCM myocardium are driven by functional alterations at cellular and molecular level that may be targets of innovative therapies.
Collapse
Affiliation(s)
- Raffaele Coppini
- Department of Neuroscience, Psychology, Drug Sciences and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Mugelli
- Department of Neuroscience, Psychology, Drug Sciences and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neuroscience, Psychology, Drug Sciences and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
15
|
van den Hoogenhof MM, Beqqali A, Amin AS, van der Made I, Aufiero S, Khan MA, Schumacher CA, Jansweijer JA, van Spaendonck-Zwarts KY, Remme CA, Backs J, Verkerk AO, Baartscheer A, Pinto YM, Creemers EE. RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy Related to Disturbed Calcium Handling. Circulation 2018; 138:1330-1342. [DOI: 10.1161/circulationaha.117.031947] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Mutations in RBM20 (RNA-binding motif protein 20) cause a clinically aggressive form of dilated cardiomyopathy, with an increased risk of malignant ventricular arrhythmias. RBM20 is a splicing factor that targets multiple pivotal cardiac genes, such as Titin (TTN) and CAMK2D (calcium/calmodulin-dependent kinase II delta). Aberrant TTN splicing is thought to be the main determinant of RBM20-induced dilated cardiomyopathy, but is not likely to explain the increased risk of arrhythmias. Here, we investigated the extent to which RBM20 mutation carriers have an increased risk of arrhythmias and explore the underlying molecular mechanism.
Methods:
We compared clinical characteristics of RBM20 and TTN mutation carriers and used our previously generated Rbm20 knockout (KO) mice to investigate downstream effects of Rbm20-dependent splicing. Cellular electrophysiology and Ca
2+
measurements were performed on isolated cardiomyocytes from Rbm20 KO mice to determine the intracellular consequences of reduced Rbm20 levels.
Results:
Sustained ventricular arrhythmias were more frequent in human RBM20 mutation carriers than in TTN mutation carriers (44% versus 5%, respectively,
P
=0.006). Splicing events that affected Ca
2+
- and ion-handling genes were enriched in Rbm20 KO mice, most notably in the genes CamkIIδ and RyR2. Aberrant splicing of CamkIIδ in Rbm20 KO mice resulted in a remarkable shift of CamkIIδ toward the δ-A isoform that is known to activate the L-type Ca
2+
current (
I
Ca,L
). In line with this, we found an increased
I
Ca,L
, intracellular Ca
2+
overload and increased sarcoplasmic reticulum Ca
2+
content in Rbm20 KO myocytes. In addition, not only complete loss of Rbm20, but also heterozygous loss of Rbm20 increased spontaneous sarcoplasmic reticulum Ca
2+
releases, which could be attenuated by treatment with the
I
Ca,L
antagonist verapamil.
Conclusions:
We show that loss of Rbm20 disturbs Ca
2+
handling and leads to more proarrhythmic Ca
2+
releases from the sarcoplasmic reticulum. Patients that carry a pathogenic RBM20 mutation have more ventricular arrhythmias despite a similar left ventricular function, in comparison with patients with a TTN mutation. Our experimental data suggest that RBM20 mutation carriers may benefit from treatment with an
I
Ca,L
blocker to reduce their arrhythmia burden.
Collapse
Affiliation(s)
- Maarten M.G. van den Hoogenhof
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Abdelaziz Beqqali
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ahmad S. Amin
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Simona Aufiero
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (S.A., M.A.F.K.), Academic Medical Center, Amsterdam, The Netherlands
| | - Mohsin A.F. Khan
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (S.A., M.A.F.K.), Academic Medical Center, Amsterdam, The Netherlands
| | - Cees A. Schumacher
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Joeri A. Jansweijer
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | | | - Carol Ann Remme
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Germany (J.B.)
| | - Arie O. Verkerk
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology (A.o.V.), Academic Medical Center, Amsterdam, The Netherlands
| | - Antonius Baartscheer
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Vinogradova TM, Tagirova Sirenko S, Lakatta EG. Unique Ca 2+-Cycling Protein Abundance and Regulation Sustains Local Ca 2+ Releases and Spontaneous Firing of Rabbit Sinoatrial Node Cells. Int J Mol Sci 2018; 19:ijms19082173. [PMID: 30044420 PMCID: PMC6121616 DOI: 10.3390/ijms19082173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022] Open
Abstract
Spontaneous beating of the heart pacemaker, the sinoatrial node, is generated by sinoatrial node cells (SANC) and caused by gradual change of the membrane potential called diastolic depolarization (DD). Submembrane local Ca2+ releases (LCR) from sarcoplasmic reticulum (SR) occur during late DD and activate an inward Na+/Ca2+ exchange current, which accelerates the DD rate leading to earlier occurrence of an action potential. A comparison of intrinsic SR Ca2+ cycling revealed that, at similar physiological Ca2+ concentrations, LCRs are large and rhythmic in permeabilized SANC, but small and random in permeabilized ventricular myocytes (VM). Permeabilized SANC spontaneously released more Ca2+ from SR than VM, despite comparable SR Ca2+ content in both cell types. In this review we discuss specific patterns of expression and distribution of SR Ca2+ cycling proteins (SR Ca2+ ATPase (SERCA2), phospholamban (PLB) and ryanodine receptors (RyR)) in SANC and ventricular myocytes. We link ability of SANC to generate larger and rhythmic LCRs with increased abundance of SERCA2, reduced abundance of the SERCA inhibitor PLB. In addition, an increase in intracellular [Ca2+] increases phosphorylation of both PLB and RyR exclusively in SANC. The differences in SR Ca2+ cycling protein expression between SANC and VM provide insights into diverse regulation of intrinsic SR Ca2+ cycling that drives automaticity of SANC.
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd, Room 8B-123, Baltimore, MD 21224, USA.
| | - Syevda Tagirova Sirenko
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd, Room 8B-123, Baltimore, MD 21224, USA.
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd, Room 8B-123, Baltimore, MD 21224, USA.
| |
Collapse
|
17
|
Abstract
The transmural heterogeneity of the contractility in ventricular muscle has not been well-studied. Here, we investigated the calcium transient and sarcomere contraction/relaxation in the endocardial (Endo) and epicardial (Epi) myocytes. Endo and Epi myocytes were isolated from C57/BL6 mice by Langendorff perfusion. Ca2+ transient and sarcomere contraction/relaxation were recorded simultaneously at different stimulation frequencies using a dual excitation fluorescence photomultiplier system. We found that the Endo myocytes have higher baseline diastolic calcium, significantly larger calcium transient and stronger sarcomere shortening than Epi myocytes. However, both the rising and decline phases for calcium transient and sarcomere shortening were slower in Endo than in Epi myocytes. When simulation frequency was increased from 1 to 3 Hz, a greater percent increase in the diastole calcium level, Ca2+ transient and sarcomere shortening amplitude has been observed in the Endo myocytes. Accordingly, the frequency-dependent acceleration in the decay rate of calcium transient and sarcomere relaxation was more profound in the Endo than in Epi myocytes. Western blot analysis showed that CaMKII activity was significantly higher in Epi than in Endo myocardium before stimulation. However, this transmural heterogeneity was reversed by rapid pacing. CaMKII inhibition by KN93 diminished the frequency-dependent alterations of Ca2+ transient and sarcomere contraction. Our results suggest that the contractility of ventricular myocytes is heterogeneous. The Endo-myocardium is the major force generating layer in the heart, both at slow and fast heart rate, and the transmural heterogeneity of CaMKII activation plays an important role in the frequency-dependent alterations.
Collapse
Affiliation(s)
- Wen Pan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziqi Yang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Qian
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Ebenebe OV, Heather A, Erickson JR. CaMKII in Vascular Signalling: "Friend or Foe"? Heart Lung Circ 2017; 27:560-567. [PMID: 29409723 DOI: 10.1016/j.hlc.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Signalling mechanisms within and between cells of the vasculature enable function and maintain homeostasis. However, a number of these mechanisms also contribute to the pathophysiology of vascular disease states. The multifunctional signalling molecule calcium/calmodulin-dependent kinase II (CaMKII) has been shown to have critical functional effects in many tissue types. For example, CaMKII is known to have a dual role in cardiac physiology and pathology. The function of CaMKII within the vasculature is incompletely understood, but emerging evidence points to potential physiological and pathological roles. This review discusses the evidence for CaMKII signalling within the vasculature, with the aim to better understand both positive and potentially deleterious effects of CaMKII activation in vascular tissue.
Collapse
Affiliation(s)
- Obialunanma V Ebenebe
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Alison Heather
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand.
| |
Collapse
|
19
|
Semmler J, Kormann J, Srinivasan SP, Köster A, Sälzer D, Reppel M, Hescheler J, Plomann M, Nguemo F. Pacsin 2 is required for the maintenance of a normal cardiac function in the developing mouse heart. Pharmacol Res 2017; 128:200-210. [PMID: 29107716 DOI: 10.1016/j.phrs.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/26/2017] [Accepted: 10/15/2017] [Indexed: 11/27/2022]
Abstract
The Pacsin proteins (Pacsin 1, 2 and 3) play an important role in intracellular trafficking and thereby signal transduction in many cells types. This study was designed to examine the role of Pacsin 2 in cardiac development and function. We investigated the development and electrophysiological properties of Pacsin 2 knockout (P2KO) hearts and single cardiomyocytes isolated from 11.5 and 15.5days old fetal mice. Immunofluorescence experiments confirmed the lack of Pacsin 2 protein expression in P2KO cardiac myocytes in comparison to wildtype (WT). Western blotting demonstrates low expression levels of connexin 43 and T-box 3 proteins in P2KO compared to wildtype (WT). Electrophysiology measurements including online Multi-Electrode Array (MEA) based field potential (FP) recordings on isolated whole heart of P2KO mice showed a prolonged AV-conduction time. Patch clamp measurements of P2KO cardiomyocytes revealed differences in action potential (AP) parameters and decreased pacemaker funny channel (If), as well as L-type Ca2+ channel (ICaL), and sodium channel (INa). These findings demonstrate that Pacsin 2 is necessary for cardiac development and function in mouse embryos, which will enhance our knowledge to better understand the genesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Judith Semmler
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Jan Kormann
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | | | - Annette Köster
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Daniel Sälzer
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Michael Reppel
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany; Department of Cardiology, University of Lübeck, Lübeck, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Markus Plomann
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
20
|
Gao J, Shi X, He H, Zhang J, Lin D, Fu G, Lai D. Assessment of Sarcoplasmic Reticulum Calcium Reserve and Intracellular Diastolic Calcium Removal in Isolated Ventricular Cardiomyocytes. J Vis Exp 2017. [PMID: 28994760 DOI: 10.3791/55797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intracellular calcium recycling plays a critical role in regulation of systolic and diastolic function in cardiomyocytes. Cardiac sarcoplasmic reticulum (SR) serves as a Ca2+ reservoir for contraction, which reuptakes intracellular Ca2+ during relaxation. The SR Ca2+ reserve available for beats is determinate for cardiac contractibility, and the removal of intracellular Ca2+ is critical for cardiac diastolic function. Under some pathophysiological conditions, such as diabetes and heart failure, impaired calcium clearance and SR Ca2+ store in cardiomyocytes may be involved in the progress of cardiac dysfunction. Here, we describe a protocol to evaluate SRCa2+ reserve and diastolic Ca2+ removal. Briefly, a single cardiomyocyte was enzymatically isolated, and the intracellular Ca2+ fluorescence indicated by Fura-2 was recorded by a calcium imaging system. To employ caffeine for inducing total SR Ca2+ release, we preset an automatic perfusion switch program by interlinking the stimulation system and the perfusion system. Then, the mono-exponential curve fitting was used for analyzing decay time constants of calcium transients and caffeine-induced calcium pulses. Accordingly, the contribution of the SR Ca2+-ATPase (SERCA) and Na+-Ca2+ exchanger (NCX) to diastolic calcium removal was evaluated.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Xiaolu Shi
- Experimental Research Center, China Academy of Chinese Medical Sciences
| | - Hong He
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Juhong Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Ding Lin
- Department of Cardiology, The Third Hospital of Hangzhou City
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Dongwu Lai
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine;
| |
Collapse
|
21
|
Rozier K, Bondarenko VE. Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: insights from a compartmentalized mathematical model. Am J Physiol Cell Physiol 2017; 312:C595-C623. [DOI: 10.1152/ajpcell.00273.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
Abstract
The β1- and β2-adrenergic signaling systems play different roles in the functioning of cardiac cells. Experimental data show that the activation of the β1-adrenergic signaling system produces significant inotropic, lusitropic, and chronotropic effects in the heart, whereas the effects of the β2-adrenergic signaling system is less apparent. In this paper, a comprehensive compartmentalized experimentally based mathematical model of the combined β1- and β2-adrenergic signaling systems in mouse ventricular myocytes is developed to simulate the experimental findings and make testable predictions of the behavior of the cardiac cells under different physiological conditions. Simulations describe the dynamics of major signaling molecules in different subcellular compartments; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca2+ handling proteins; modifications of action potential shape and duration; and [Ca2+]i and [Na+]i dynamics upon stimulation of β1- and β2-adrenergic receptors (β1- and β2-ARs). The model reveals physiological conditions when β2-ARs do not produce significant physiological effects and when their effects can be measured experimentally. Simulations demonstrated that stimulation of β2-ARs with isoproterenol caused a marked increase in the magnitude of the L-type Ca2+ current, [Ca2+]i transient, and phosphorylation of phospholamban only upon additional application of pertussis toxin or inhibition of phosphodiesterases of type 3 and 4. The model also made testable predictions of the changes in magnitudes of [Ca2+]i and [Na+]i fluxes, the rate of decay of [Na+]i concentration upon both combined and separate stimulation of β1- and β2-ARs, and the contribution of phosphorylation of PKA targets to the changes in the action potential and [Ca2+]i transient.
Collapse
Affiliation(s)
- Kelvin Rozier
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia; and
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia; and
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
22
|
Abstract
The aim of this review is to provide the reader with a synopsis of some of the emerging ideas and experimental findings in cardiac physiology and pathophysiology that were published in 2015. To provide context for the non-specialist, a brief summary of cardiac contraction and calcium (Ca) regulation in the heart in health and disease is provided. Thereafter, some recently published articles are introduced that indicate the current thinking on (1) the Ca regulatory pathways modulated by Ca/calmodulin-dependent protein kinase II, (2) the potential influences of nitrosylation by nitric oxide or S-nitrosated proteins, (3) newly observed effects of reactive oxygen species (ROS) on contraction and Ca regulation following myocardial infarction and a possible link with changes in mitochondrial Ca, and (4) the effects of some of these signaling pathways on late Na current and pro-arrhythmic afterdepolarizations as well as the effects of transverse tubule disturbances.
Collapse
Affiliation(s)
- Ken T MacLeod
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
23
|
Li Y, Sirenko S, Riordon DR, Yang D, Spurgeon H, Lakatta EG, Vinogradova TM. CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases. Am J Physiol Heart Circ Physiol 2016; 311:H532-44. [PMID: 27402669 DOI: 10.1152/ajpheart.00765.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/22/2016] [Indexed: 11/22/2022]
Abstract
Spontaneous beating of the heart pacemaker, the sinoatrial node, is generated by sinoatrial node cells (SANC) due to gradual change of the membrane potential called diastolic depolarization (DD). Spontaneous, submembrane local Ca(2+) releases (LCR) from ryanodine receptors (RyR) occur during late DD and activate an inward Na(+)/Ca(2+)exchange current to boost the DD rate and fire an action potential (AP). Here we studied the extent of basal Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation and the role of basal CaMKII-dependent protein phosphorylation in generation of LCRs and regulation of normal automaticity of intact rabbit SANC. The basal level of activated (autophosphorylated) CaMKII in rabbit SANC surpassed that in ventricular myocytes (VM) by approximately twofold, and this was accompanied by high basal level of protein phosphorylation. Specifically, phosphorylation of phospholamban (PLB) at the CaMKII-dependent Thr(17) site was approximately threefold greater in SANC compared with VM, and RyR phosphorylation at CaMKII-dependent Ser(2815) site was ∼10-fold greater in the SA node, compared with that in ventricle. CaMKII inhibition reduced phosphorylation of PLB and RyR, decreased LCR size, increased LCR periods (time from AP-induced Ca(2+) transient to subsequent LCR), and suppressed spontaneous SANC firing. Graded changes in CaMKII-dependent phosphorylation (indexed by PLB phosphorylation at the Thr(17)site) produced by CaMKII inhibition, β-AR stimulation or phosphodiesterase inhibition were highly correlated with changes in SR Ca(2+) replenishment times and LCR periods and concomitant changes in spontaneous SANC cycle lengths (R(2) = 0.96). Thus high basal CaMKII activation modifies the phosphorylation state of Ca(2+) cycling proteins PLB, RyR, L-type Ca(2+) channels (and likely others), adjusting LCR period and characteristics, and ultimately regulates both normal and reserve cardiac pacemaker function.
Collapse
Affiliation(s)
- Yue Li
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Syevda Sirenko
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Daniel R Riordon
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Harold Spurgeon
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
24
|
Jung G, Fajardo G, Ribeiro AJS, Kooiker KB, Coronado M, Zhao M, Hu DQ, Reddy S, Kodo K, Sriram K, Insel PA, Wu JC, Pruitt BL, Bernstein D. Time-dependent evolution of functional vs. remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation. FASEB J 2015; 30:1464-79. [PMID: 26675706 DOI: 10.1096/fj.15-280982] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for uncovering disease mechanisms and assessing drugs for efficacy/toxicity. However, the accuracy with which hiPSC-CMs recapitulate the contractile and remodeling signaling of adult cardiomyocytes is not fully known. We used β-adrenergic receptor (β-AR) signaling as a prototype to determine the evolution of signaling component expression and function during hiPSC-CM maturation. In "early" hiPSC-CMs (less than or equal to d 30), β2-ARs are a primary source of cAMP/PKA signaling. With longer culture, β1-AR signaling increases: from 0% of cAMP generation at d 30 to 56.8 ± 6.6% by d 60. PKA signaling shows a similar increase: 15.7 ± 5.2% (d 30), 49.8 ± 0.5% (d 60), and 71.0 ± 6.1% (d 90). cAMP generation increases 9-fold from d 30 to 60, with enhanced coupling to remodeling pathways (e.g., Akt and Ca(2+)/calmodulin-dependent protein kinase type II) and development of caveolin-mediated signaling compartmentalization. By contrast, cardiotoxicity induced by chronic β-AR stimulation, a major component of heart failure, develops much later: 5% cell death at d 30vs 55% at d 90. Moreover, β-AR maturation can be accelerated by biomechanical stimulation. The differential maturation of β-AR functionalvs remodeling signaling in hiPSC-CMs has important implications for their use in disease modeling and drug testing. We propose that assessment of signaling be added to the indices of phenotypic maturation of hiPSC-CMs.-Jung, G., Fajardo, G., Ribeiro, A. J. S., Kooiker, K. B., Coronado, M., Zhao, M., Hu, D.-Q., Reddy, S., Kodo, K., Sriram, K., Insel, P. A., Wu, J. C., Pruitt, B. L., Bernstein, D. Time-dependent evolution of functionalvs remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation.
Collapse
Affiliation(s)
- Gwanghyun Jung
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Giovanni Fajardo
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Alexandre J S Ribeiro
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Kristina Bezold Kooiker
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Michael Coronado
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Mingming Zhao
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Dong-Qing Hu
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Sushma Reddy
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Kazuki Kodo
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Krishna Sriram
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Paul A Insel
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Joseph C Wu
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Beth L Pruitt
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Daniel Bernstein
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
25
|
Guilbert A, Lim HJ, Cheng J, Wang Y. CaMKII-dependent myofilament Ca2+ desensitization contributes to the frequency-dependent acceleration of relaxation. Cell Calcium 2015; 58:489-99. [PMID: 26297240 DOI: 10.1016/j.ceca.2015.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/06/2015] [Accepted: 08/04/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies suggest that CaMKII activity is required for frequency-dependent acceleration of relaxation (FDAR) in ventricular myocytes. We propose that the underlying mechanism involves CaMKII-dependent regulation of myofilament Ca(2+) sensitivity. METHODS AND RESULTS Cardiac function was measured in mice using murine echo machine. [Ca(2+)]i and sarcomere length were measured by IonOptix Ca(2+) image system. Increasing pacing rate from 0.5 to 4 Hz in left ventricular myocytes induced frequency-dependent myofilament Ca(2+) desensitization (FDMCD) and FDAR. Acute inhibition of PKA or PKC had no effect, whereas CaMKII inhibition abolished both FDMCD and FDAR. Co-immunoprecipitation of CaMKII and troponin I (TnI) has been detected and CaMKII inhibition significantly reduced serine residue phosphorylation of TnI. Finally, chronic inhibition of CaMKII in vivo reduced TnI phosphorylation and abolished both FDAR and FDMCD, leading to impaired diastolic function. CONCLUSIONS Our results suggest that CaMKII-dependent TnI phosphorylation is involved in FDMCD and the consequent FDAR and that CaMKII inhibition removes this mechanism and thus induces diastolic dysfunction.
Collapse
Affiliation(s)
| | - Hyun Joung Lim
- Department of Pediatrics, Emory University, Atlanta, USA
| | - Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, China; Department of Pediatrics, Emory University, Atlanta, USA
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, China; Department of Pediatrics, Emory University, Atlanta, USA.
| |
Collapse
|
26
|
Grimm M, Ling H, Willeford A, Pereira L, Gray CBB, Erickson JR, Sarma S, Respress JL, Wehrens XHT, Bers DM, Brown JH. CaMKIIδ mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca(2+) leak and the pathophysiological response to chronic β-adrenergic stimulation. J Mol Cell Cardiol 2015; 85:282-91. [PMID: 26080362 PMCID: PMC4530053 DOI: 10.1016/j.yjmcc.2015.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022]
Abstract
Chronic activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the deleterious effects of β-adrenergic receptor (β-AR) signaling on the heart, in part, by enhancing RyR2-mediated sarcoplasmic reticulum (SR) Ca(2+) leak. We used CaMKIIδ knockout (CaMKIIδ-KO) mice and knock-in mice with an inactivated CaMKII site S2814 on the ryanodine receptor type 2 (S2814A) to investigate the involvement of these processes in β-AR signaling and cardiac remodeling. Langendorff-perfused hearts from CaMKIIδ-KO mice showed inotropic and chronotropic responses to isoproterenol (ISO) that were similar to those of wild type (WT) mice; however, in CaMKIIδ-KO mice, CaMKII phosphorylation of phospholamban and RyR2 was decreased and isolated myocytes from CaMKIIδ-KO mice had reduced SR Ca(2+) leak in response to isoproterenol (ISO). Chronic catecholamine stress with ISO induced comparable increases in relative heart weight and other measures of hypertrophy from day 9 through week 4 in WT and CaMKIIδ-KO mice, but the development of cardiac fibrosis was prevented in CaMKIIδ-KO animals. A 4-week challenge with ISO resulted in reduced cardiac function and pulmonary congestion in WT, but not in CaMKIIδ-KO or S2814A mice, implicating CaMKIIδ-dependent phosphorylation of RyR2-S2814 in the cardiomyopathy, independent of hypertrophy, induced by prolonged β-AR stimulation.
Collapse
Affiliation(s)
- Michael Grimm
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Haiyun Ling
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Andrew Willeford
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Laetitia Pereira
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Charles B B Gray
- Department of Pharmacology, University of California, San Diego, CA, USA
| | | | - Satyam Sarma
- Department of Molecular Physiology & Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan L Respress
- Department of Molecular Physiology & Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology & Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, CA, USA.
| |
Collapse
|
27
|
Bers DM, Morotti S. Ca(2+) current facilitation is CaMKII-dependent and has arrhythmogenic consequences. Front Pharmacol 2014; 5:144. [PMID: 24987371 PMCID: PMC4060732 DOI: 10.3389/fphar.2014.00144] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
The cardiac voltage gated Ca2+ current (ICa) is critical to the electrophysiological properties, excitation-contraction coupling, mitochondrial energetics, and transcriptional regulation in heart. Thus, it is not surprising that cardiac ICa is regulated by numerous pathways. This review will focus on changes in ICa that occur during the cardiac action potential (AP), with particular attention to Ca2+-dependent inactivation (CDI), Ca2+-dependent facilitation (CDF) and how calmodulin (CaM) and Ca2+-CaM dependent protein kinase (CaMKII) participate in the regulation of Ca2+ current during the cardiac AP. CDI depends on CaM pre-bound to the C-terminal of the L-type Ca2+ channel, such that Ca2+ influx and Ca2+ released from the sarcoplasmic reticulum bind to that CaM and cause CDI. In cardiac myocytes CDI normally pre-dominates over voltage-dependent inactivation. The decrease in ICa via CDI provides direct negative feedback on the overall Ca2+ influx during a single beat, when myocyte Ca2+ loading is high. CDF builds up over several beats, depends on CaMKII-dependent Ca2+ channel phosphorylation, and results in a staircase of increasing ICa peak, with progressively slower inactivation. CDF and CDI co-exist and in combination may fine-tune the ICa waveform during the cardiac AP. CDF may partially compensate for the tendency for Ca2+ channel availability to decrease at higher heart rates because of accumulating inactivation. CDF may also allow some reactivation of ICa during long duration cardiac APs, and contribute to early afterdepolarizations, a form of triggered arrhythmias.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California Davis Davis, CA, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis Davis, CA, USA
| |
Collapse
|
28
|
Wu Y, Anderson ME. CaMKII in sinoatrial node physiology and dysfunction. Front Pharmacol 2014; 5:48. [PMID: 24672485 PMCID: PMC3957193 DOI: 10.3389/fphar.2014.00048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
The calcium and calmodulin-dependent protein kinase II (CaMKII) is present in sinoatrial node (SAN) pacemaker cells and is required for physiological “fight or flight” SAN beating rate responses. Inhibition of CaMKII in SAN does not affect baseline heart rate, but reduces heart rate increases in response to physiological stress. CaMKII senses intracellular calcium (Ca2+) changes, oxidation status, and hyperglycemia to phosphorylate substrates that regulate Ca2+-sensitive proteins, such as L-type Ca2+ channels, phospholamban, and cardiac ryanodine receptors (RyR2). All of these substrates are involved in the SAN pacemaking mechanism. Excessive CaMKII activity, as occurs under pathological conditions such as heart failure, ischemia, and diabetes, can promote intracellular Ca2+ overload and reactive oxygen species production. Oxidation of CaMKII (ox-CaMKII) locks CaMKII into a constitutively active configuration that contributes to SAN cell apoptosis and fibrosis. This ox-CaMKII-mediated loss of functional SAN cells contributes to SAN dysfunction (SND) and sudden death. Thus, CaMKII has emerged as a central regulator of physiological SAN responses and a key determinant of SND.
Collapse
Affiliation(s)
- Yuejin Wu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Mark E Anderson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
29
|
Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 2014; 94:303-26. [PMID: 24382889 DOI: 10.1152/physrev.00016.2013] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The L-type Cav1.2 calcium channel is present throughout the animal kingdom and is essential for some aspects of CNS function, cardiac and smooth muscle contractility, neuroendocrine regulation, and multiple other processes. The L-type CaV1.2 channel is built by up to four subunits; all subunits exist in various splice variants that potentially affect the biophysical and biological functions of the channel. Many of the CaV1.2 channel properties have been analyzed in heterologous expression systems including regulation of the L-type CaV1.2 channel by Ca(2+) itself and protein kinases. However, targeted mutations of the calcium channel genes confirmed only some of these in vitro findings. Substitution of the respective serines by alanine showed that β-adrenergic upregulation of the cardiac CaV1.2 channel did not depend on the phosphorylation of the in vitro specified amino acids. Moreover, well-established in vitro phosphorylation sites of the CaVβ2 subunit of the cardiac L-type CaV1.2 channel were found to be irrelevant for the in vivo regulation of the channel. However, the molecular basis of some kinetic properties, such as Ca(2+)-dependent inactivation and facilitation, has been approved by in vivo mutagenesis of the CaV1.2α1 gene. This article summarizes recent findings on the in vivo relevance of well-established in vitro results.
Collapse
|
30
|
Turczyńska KM, Hellstrand P, Swärd K, Albinsson S. Regulation of vascular smooth muscle mechanotransduction by microRNAs and L-type calcium channels. Commun Integr Biol 2013; 6:e22278. [PMID: 23802033 PMCID: PMC3689564 DOI: 10.4161/cib.22278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
The phenotype of smooth muscle cells is regulated by multiple environmental factors including mechanical forces. Mechanical stretch of mouse portal veins ex vivo has been shown to promote contractile differentiation by activation of the Rho-pathway, an effect that is dependent on the influx of calcium via L-type calcium channels. MicroRNAs have recently been demonstrated to play a significant role in the control of smooth muscle phenotype and in a recent report we investigated their role in vascular mechanosensing. By smooth muscle specific deletion of Dicer, we found that microRNAs are essential for smooth muscle differentiation in response to stretch by regulating CamKIIδ and L-type calcium channel expression. Furthermore, we suggest that loss of L-type calcium channels in Dicer KO is due to reduced expression of the smooth muscle-enriched microRNA, miR-145, which targets CamKIIδ. These results unveil a novel mechanism for miR-145 dependent regulation of smooth muscle phenotype.
Collapse
|
31
|
While systolic cardiomyocyte function is preserved, diastolic myocyte function and recovery from acidosis are impaired in CaMKIIδ-KO mice. J Mol Cell Cardiol 2013; 59:107-16. [PMID: 23473775 DOI: 10.1016/j.yjmcc.2013.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/18/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE CaMKII contributes to impaired contractility in heart failure by inducing SR Ca(2+)-leak. CaMKII-inhibition in the heart was suggested to be a novel therapeutic principle. Different CaMKII isoforms exist. Specifically targeting CaMKIIδ, the dominant isoform in the heart, could be of therapeutic potential without impairing other CaMKII isoforms. RATIONALE We investigated whether cardiomyocyte function is affected by isoform-specific knockout (KO) of CaMKIIδ under basal conditions and upon stress, i.e. upon ß-adrenergic stimulation and during acidosis. RESULTS Systolic cardiac function was largely preserved in the KO in vivo (echocardiography) corresponding to unchanged Ca(2+)-transient amplitudes and isolated myocyte contractility in vitro. CaMKII activity was dramatically reduced while phosphatase-1 inhibitor-1 was significantly increased. Surprisingly, while diastolic Ca(2+)-elimination was slower in KO most likely due to decreased phospholamban Thr-17 phosphorylation, frequency-dependent acceleration of relaxation was still present. Despite decreased SR Ca(2+)-reuptake at lower frequencies, SR Ca(2+)-content was not diminished, which might be due to reduced diastolic SR Ca(2+)-loss in the KO as a consequence of lower RyR Ser-2815 phosphorylation. Challenging KO myocytes with isoproterenol showed intact inotropic and lusitropic responses. During acidosis, SR Ca(2+)-reuptake and SR Ca(2+)-loading were significantly impaired in KO, resulting in an inability to maintain systolic Ca(2+)-transients during acidosis and impaired recovery. CONCLUSIONS Inhibition of CaMKIIδ appears to be safe under basal physiologic conditions. Specific conditions exist (e.g. during acidosis) under which CaMKII-inhibition might not be helpful or even detrimental. These conditions will have to be more clearly defined before CaMKII inhibition is used therapeutically.
Collapse
|
32
|
Lai D, Xu L, Cheng J, Guilbert AB, Lim HJ, Fu G, Wang Y. Stretch current-induced abnormal impulses in CaMKIIδ knockout mouse ventricular myocytes. J Cardiovasc Electrophysiol 2012; 24:457-63. [PMID: 23279377 DOI: 10.1111/jce.12060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND CaMKII activation is proarrhythmic in heart failure where myocardium is stretched. However, the arrhythmogenic role of CaMKII in stretched ventricle has not been well understood. OBJECTIVE We tested abnormal impulse inducibility by stretch current in myocytes isolated from CaMKIIδ knockout (KO) mouse left ventricle (LV) where CaMKII activity is reduced by ≈ 62%. METHODS AND RESULTS Action potentials were recorded by whole-cell patch clamp, and abnormal impulses were induced in LV myocytes by a simulation of stretch-activated channel (SAC) current. SAC activation failed to induce abnormal impulses in wild type (WT) myocytes but steadily produced early after-depolarizations and automaticity in KO myocytes in which an increase in L-type calcium channel (LTCC) current (I(Ca)) and a reduction of sarcoplasmic reticulum Ca(2+) leak and action potential duration (APD) were observed. The abnormal impulses were not suppressed by CaMKII inhibitor AIP whereas a low concentration of nifedipine eliminated abnormal impulses without shortening APD, implicating I(Ca) in promoting stretch-induced abnormal impulses. In addition, APD prolongation by LTCC opener S(-)Bay K 8644 or isoproterenol facilitated abnormal impulse induction in WT ventricular myocytes even in the presence of CaMKII inhibitor AIP, whereas APD prolongation by K(+) channel blocker 4-aminopyridine promoted abnormal impulses in KO myocytes but not in WT myocytes. CONCLUSION I(Ca) activation plays a central role in stretch-induced abnormal impulses and APD prolongation is arrhythmogenic only when I(Ca) is highly activated. At increased I(Ca) activation, CaMKII inhibition cannot suppress abnormal impulse induction.
Collapse
Affiliation(s)
- Dongwu Lai
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Circulation Research
Thematic Synopsis. Circ Res 2012. [DOI: 10.1161/circresaha.112.280024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 2012; 287:31674-80. [PMID: 22822058 DOI: 10.1074/jbc.r112.384982] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular free Ca(2+) ions regulate many cellular functions, and in turn, the cell devotes many genes/proteins to keep tight control of the level of intracellular free Ca(2+). Here, we review recent work on Ca(2+)-dependent mechanisms and effectors that regulate the transcription of genes encoding proteins involved in the maintenance of the homeostasis of Ca(2+) in the cell.
Collapse
Affiliation(s)
- Jose R Naranjo
- National Center of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC) and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
| | | |
Collapse
|
35
|
Turczyńska KM, Sadegh MK, Hellstrand P, Swärd K, Albinsson S. MicroRNAs are essential for stretch-induced vascular smooth muscle contractile differentiation via microRNA (miR)-145-dependent expression of L-type calcium channels. J Biol Chem 2012; 287:19199-206. [PMID: 22474293 PMCID: PMC3365952 DOI: 10.1074/jbc.m112.341073] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/26/2012] [Indexed: 11/06/2022] Open
Abstract
Stretch of the vascular wall is an important stimulus to maintain smooth muscle contractile differentiation that is known to depend on L-type calcium influx, Rho-activation, and actin polymerization. The role of microRNAs in this response was investigated using tamoxifen-inducible and smooth muscle-specific Dicer KO mice. In the absence of Dicer, which is required for microRNA maturation, smooth muscle microRNAs were completely ablated. Stretch-induced contractile differentiation and Rho-dependent cofilin-2 phosphorylation were dramatically reduced in Dicer KO vessels. On the other hand, acute stretch-sensitive growth signaling, which is independent of influx through L-type calcium channels, was not affected by Dicer KO. Contractile differentiation induced by the actin polymerizing agent jasplakinolide was not altered by deletion of Dicer, suggesting an effect upstream of actin polymerization. Basal and stretch-induced L-type calcium channel expressions were both decreased in Dicer KO portal veins, and inhibition of L-type channels in control vessels mimicked the effects of Dicer deletion. Furthermore, inhibition of miR-145, a highly expressed microRNA in smooth muscle, resulted in a similar reduction of L-type calcium channel expression. This was abolished by the Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN93, suggesting that Ca(2+)/calmodulin-dependent protein kinase IIδ, a target of miR-145 and up-regulated in Dicer KO, plays a role in the regulation of L-type channel expression. These results show that microRNAs play a crucial role in stretch-induced contractile differentiation in the vascular wall in part via miR-145-dependent regulation of L-type calcium channels.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Male
- Mice
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Protein Kinase Inhibitors/pharmacology
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Karolina M. Turczyńska
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | | | - Per Hellstrand
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Karl Swärd
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Sebastian Albinsson
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
36
|
Blaich A, Pahlavan S, Tian Q, Oberhofer M, Poomvanicha M, Lenhardt P, Domes K, Wegener JW, Moosmang S, Ruppenthal S, Scholz A, Lipp P, Hofmann F. Mutation of the calmodulin binding motif IQ of the L-type Ca(v)1.2 Ca2+ channel to EQ induces dilated cardiomyopathy and death. J Biol Chem 2012; 287:22616-25. [PMID: 22589547 DOI: 10.1074/jbc.m112.357921] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac excitation-contraction coupling (EC coupling) links the electrical excitation of the cell membrane to the mechanical contractile machinery of the heart. Calcium channels are major players of EC coupling and are regulated by voltage and Ca(2+)/calmodulin (CaM). CaM binds to the IQ motif located in the C terminus of the Ca(v)1.2 channel and induces Ca(2+)-dependent inactivation (CDI) and facilitation (CDF). Mutation of Ile to Glu (Ile1624Glu) in the IQ motif abolished regulation of the channel by CDI and CDF. Here, we addressed the physiological consequences of such a mutation in the heart. Murine hearts expressing the Ca(v)1.2(I1624E) mutation were generated in adult heterozygous mice through inactivation of the floxed WT Ca(v)1.2(L2) allele by tamoxifen-induced cardiac-specific activation of the MerCreMer Cre recombinase. Within 10 days after the first tamoxifen injection these mice developed dilated cardiomyopathy (DCM) accompanied by apoptosis of cardiac myocytes (CM) and fibrosis. In Ca(v)1.2(I1624E) hearts, the activity of phospho-CaM kinase II and phospho-MAPK was increased. CMs expressed reduced levels of Ca(v)1.2(I1624E) channel protein and I(Ca). The Ca(v)1.2(I1624E) channel showed "CDI" kinetics. Despite a lower sarcoplasmic reticulum Ca(2+) content, cellular contractility and global Ca(2+) transients remained unchanged because the EC coupling gain was up-regulated by an increased neuroendocrine activity. Treatment of mice with metoprolol and captopril reduced DCM in Ca(v)1.2(I1624E) hearts at day 10. We conclude that mutation of the IQ motif to IE leads to dilated cardiomyopathy and death.
Collapse
Affiliation(s)
- Anne Blaich
- Forschergruppe, Institut für Pharmakologie und Toxikologie, Technische Universität München, 80802 München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hamlaoui-Gasmi S, Mokni M, Limam N, N’guessan P, Carrier A, Limam F, Amri M, Aouani E, Marzouki L. Grape seed and skin extract mitigates garlic-induced oxidative stress in rat liver. Can J Physiol Pharmacol 2012; 90:547-56. [DOI: 10.1139/y2012-025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Garlic is a commonly used spice in folk medicine that can exert adverse health effects when given at a high dose. Grape seed and skin extract (GSSE) exhibits a variety of beneficial effects even at a high dose. In the present study we evaluated the toxicity of high-dose garlic treatment on liver and the protective effect of GSSE. Rats were intraperitoneally administered either with garlic extract (5 g·(kg body weight)–1) or GSSE (500 mg·(kg body weight)–1) or a combination of garlic and GSSE at the same doses daily for 1 month. Plasma and hepatic levels of cholesterol, triacylglycerol, and transaminases and liver antioxidant status were evaluated. Data showed that a high garlic dose induced liver toxicity and a pro-oxidative status characterized by increased malondialdehyde and decreased antioxidant enzyme activities as catalase, peroxidase, and superoxide dismutase. Garlic increased intracellular H2O2but decreased free iron and Ca2+. GSSE alone or in co-treatment with garlic had the reverse effect and counteracted almost all garlic-induced deleterious impacts to near control levels. In conclusion, a high garlic dose induced a pro-oxidative state characterized by the Fenton reaction between H2O2and free iron, inducing Ca2+depletion, while GSSE exerted antioxidant properties and Ca2+repletion.
Collapse
Affiliation(s)
- Sonia Hamlaoui-Gasmi
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| | - Meherzia Mokni
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| | - Nadia Limam
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| | - Prudence N’guessan
- INSERM, U624 « Stress cellulaire », Case 915 Parc Scientifique de Luminy, 13288 Marseille CEDEX 9, France
| | - Alice Carrier
- INSERM, U624 « Stress cellulaire », Case 915 Parc Scientifique de Luminy, 13288 Marseille CEDEX 9, France
| | - Ferid Limam
- Laboratoire des substances bioactives, Centre de biotechnologie, Technopole Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunisie
| | - Mohamed Amri
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| | - Ezzedine Aouani
- Laboratoire des substances bioactives, Centre de biotechnologie, Technopole Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunisie
| | - Lamjed Marzouki
- Laboratoire de neurophysiologie fonctionnelle et pathologies, Département des sciences biologiques, Faculté des sciences de Tunis, Campus Universitaire El Manar II-2092 Tunis, Tunisie
| |
Collapse
|
38
|
Sadegh MK, Ekman M, Rippe C, Uvelius B, Swärd K, Albinsson S. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission. PLoS One 2012; 7:e35882. [PMID: 22558254 PMCID: PMC3338793 DOI: 10.1371/journal.pone.0035882] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO) mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c). It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+) channels in the detrusor.
Collapse
Affiliation(s)
| | - Mari Ekman
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Cheng J, Xu L, Lai D, Guilbert A, Lim HJ, Keskanokwong T, Wang Y. CaMKII inhibition in heart failure, beneficial, harmful, or both. Am J Physiol Heart Circ Physiol 2012; 302:H1454-65. [PMID: 22287581 DOI: 10.1152/ajpheart.00812.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calmodulin-dependent protein kinase II (CaMKII) has been proposed to be a therapeutic target for heart failure (HF). However, the cardiac effect of chronic CaMKII inhibition in HF has not been well understood. We have tested alterations of Ca(2+) handling, excitation-contraction coupling, and in vivo β-adrenergic regulation in pressure-overload HF mice with CaMKIIδ knockout (KO). HF was produced in wild-type (WT) and KO mice 1 wk after severe thoracic aortic banding (sTAB) with a continuous left ventricle (LV) dilation and reduction of ejection fraction for up to 3 wk postbanding. Cardiac hypertrophy was similar between WT HF and KO HF mice. However, KO HF mice manifested exacerbation of diastolic function and reduction in cardiac reserve to β-adrenergic stimulation. Compared with WT HF, L-type calcium channel current (I(Ca)) density in KO HF LV was decreased without changes in I(Ca) activation and inactivation kinetics, whereas I(Ca) recovery from inactivation was accelerated and Ca(2+)-dependent I(Ca) facilitation, a positive staircase blunted in WT HF, was recovered. However, I(Ca) response to isoproterenol was reduced. KO HF myocytes manifested dramatic decrease in sarcoplasmic reticulum (SR) Ca(2+) leak and slowed cytostolic Ca(2+) concentration decline. Sarcomere shortening was increased, but relaxation was slowed. In addition, an increase in myofilament sensitivity to Ca(2+) and the slow skeletal muscle troponin I-to-cardiac troponin I ratio and interstitial fibrosis and a decrease in Na/Ca exchange function and myocyte apoptosis were observed in KO HF LV. CaMKIIδ KO cannot suppress severe pressure-overload-induced HF. Although cellular contractility is improved, it reduces in vivo cardiac reserve to β-adrenergic regulation and deteriorates diastolic function. Our findings challenge the strategy of CaMKII inhibition in HF.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Fares E, Parks RJ, MacDonald JK, Egar JM, Howlett SE. Ovariectomy enhances SR Ca2+ release and increases Ca2+ spark amplitudes in isolated ventricular myocytes. J Mol Cell Cardiol 2012; 52:32-42. [DOI: 10.1016/j.yjmcc.2011.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 11/24/2022]
|
41
|
Two candidates at the heart of dysfunction: The ryanodine receptor and calcium/calmodulin protein kinase II as potential targets for therapeutic intervention—An in vivo perspective. Pharmacol Ther 2011; 131:204-20. [DOI: 10.1016/j.pharmthera.2011.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/19/2022]
|
42
|
Poomvanicha M, Wegener JW, Blaich A, Fischer S, Domes K, Moosmang S, Hofmann F. Facilitation and Ca2+-dependent inactivation are modified by mutation of the Ca(v)1.2 channel IQ motif. J Biol Chem 2011; 286:26702-7. [PMID: 21665954 DOI: 10.1074/jbc.m111.247841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heart muscle responds to physiological needs with a short-term modulation of cardiac contractility. This process is determined mainly by properties of the cardiac L-type Ca(2+) channel (Ca(v)1.2), including facilitation and Ca(2+)-dependent inactivation (CDI). Both facilitation and CDI involve the interaction of calmodulin with the IQ motif of the Ca(v)1.2 channel, especially with Ile-1624. To verify this hypothesis, we created a mouse line in which Ile-1624 was mutated to Glu (Ca(v)1.2(I1624E) mice). Homozygous Ca(v)1.2(I1624E) mice were not viable. Therefore, we inactivated the floxed Ca(v)1.2 gene of heterozygous Ca(v)1.2(I1624E) mice by the α-myosin heavy chain-MerCreMer system. The resulting I/E mice were studied at day 10 after treatment with tamoxifen. Electrophysiological recordings in ventricular cardiomyocytes revealed a reduced Ca(v)1.2 current (I(Ca)) density in I/E mice. Steady-state inactivation and recovery from inactivation were modified in I/E versus control mice. In addition, voltage-dependent facilitation was almost abolished in I/E mice. The time course of I(Ca) inactivation in I/E mice was not influenced by the use of Ba(2+) as a charge carrier. Using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid as a chelating agent for intracellular Ca(2+), inactivation of I(Ca) was slowed down in control but not I/E mice. The results show that the I/E mutation abolishes Ca(2+)/calmodulin-dependent regulation of Ca(v)1.2. The Ca(v)1.2(I1624E) mutation transforms the channel to a phenotype mimicking CDI.
Collapse
Affiliation(s)
- Montatip Poomvanicha
- Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, 80802 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Ca2+ disorder caused by rapid electrical field stimulation can be modulated by CaMKIIδ expression in primary rat atrial myocytes. Biochem Biophys Res Commun 2011; 409:287-92. [DOI: 10.1016/j.bbrc.2011.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/02/2011] [Indexed: 11/19/2022]
|
44
|
Ronkainen JJ, Hänninen SL, Korhonen T, Koivumäki JT, Skoumal R, Rautio S, Ronkainen VP, Tavi P. Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation. J Physiol 2011; 589:2669-86. [PMID: 21486818 DOI: 10.1113/jphysiol.2010.201400] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have demonstrated that changes in the activity of calcium-calmodulin-dependent protein kinase II (CaMKII) induce a unique cardiomyocyte phenotype through the regulation of specific genes involved in excitation-contraction (E-C)-coupling. To explain the transcriptional effects of CaMKII we identified a novel CaMKII-dependent pathway for controlling the expression of the pore-forming α-subunit (Cav1.2) of the L-type calcium channel (LTCC) in cardiac myocytes. We show that overexpression of either cytosolic (δC) or nuclear (δB) CaMKII isoforms selectively downregulate the expression of the Cav1.2. Pharmacological inhibition of CaMKII activity induced measurable changes in LTCC current density and subsequent changes in cardiomyocyte calcium signalling in less than 24 h. The effect of CaMKII on the α1C-subunit gene (Cacna1c) promoter was abolished by deletion of the downstream regulatory element (DRE), which binds transcriptional repressor DREAM/calsenilin/KChIP3. Imaging DREAM-GFP (green fluorescent protein)-expressing cardiomyocytes showed that CaMKII potentiates the calcium-induced nuclear translocation of DREAM. Thereby CaMKII increases DREAM binding to the DRE consensus sequence of the endogenous Cacna1c gene. By mathematical modelling we demonstrate that the LTCC downregulation through the Ca2+-CaMKII-DREAM cascade constitutes a physiological feedback mechanism enabling cardiomyocytes to adjust the calcium intrusion through LTCCs to the amount of intracellular calcium detected by CaMKII.
Collapse
Affiliation(s)
- Jarkko J Ronkainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, Neulaniementie 2, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
The mechanisms underlying ICa heterogeneity across murine left ventricle. Mol Cell Biochem 2011; 352:239-46. [PMID: 21373807 DOI: 10.1007/s11010-011-0759-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
L-type calcium current (I(Ca)) plays a critical role in excitation-contraction coupling (ECC). Unlike transient outward K(+) current (I(to)), it is controversial whether I(Ca) transmural gradient exists in left ventricle. Although previous studies have shown some evidences for I(Ca) heterogeneity, the mechanism is still unknown. In this study, the authors recorded I(Ca) from epicardial (EPI) and endocardial (ENDO) myocytes isolated from murine left ventricle using patch-clamp technique. It was found that I(Ca) density was obviously larger in EPI than in ENDO (7.3 ± 0.3 pA/pF vs. 6.2 ± 0.2 pA/pF, at test potential of +10 mV, P < 0.05). The characteristics of I(Ca) showed no difference between these two regions except for the fast inactivation time constants (9.9 ± 0.9 ms in EPI vs. 13.5 ± 0.9 ms in ENDO, at test potential of +10 mV, P < 0.05). In addition, it was explored the molecular mechanism underlying I(Ca) transmural gradient by Western blot. The authors demonstrated that a higher activity of CaMKII in ENDO cells induced more nuclear translocation of p65, a component of nuclear factor-kappa B (NF-kB). Consequently, p65 in ENDO inhibited more transcription of Cav1.2, the main encoding gene for L-type calcium channels (LTCCs). These results reveal a difference in CaMKII/p65 signal pathway between EPI and ENDO that underlies this mechanism of I(Ca) heterogeneity in murine left ventricle.
Collapse
|