1
|
Dong Q, Dong M, Liu X, Zhou J, Wu S, Liu Z, Niu W, Liu T. Salivary adenoid cystic carcinoma-derived α2,6-sialylated extracellular vesicles increase vascular permeability by triggering ER-stress in endothelial cells and promote lung metastasis. Cancer Lett 2024; 611:217407. [PMID: 39710056 DOI: 10.1016/j.canlet.2024.217407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Salivary adenoid cystic carcinoma (SACC) tends to metastasize to the lungs in the early stages of the disease. Factors secreted by the primary tumor can induce the formation of a supportive microenvironment in distant organs prior to metastasis, a process known as pre-metastatic niche (PMN) formation. Extracellular vesicles (EVs) participate in PMN formation. In this study, α2,6-sialylation of EVs derived from SACC cells with high metastatic potential increased vascular permeability, thereby facilitating tumor metastasis to the lungs. Mechanistic studies indicated that EV α2,6-sialylation triggers protein kinase R-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (eIF2α)-dependent activation of endoplasmic reticulum (ER) stress in the endothelium, leading to the disruption of vascular endothelial cadherin membrane expression. Sialidase or an ER stress inhibitor rescued vascular permeability induced by SACC EVs, which decreased the number of SACC cells extravasating into the lungs both in vitro and in vivo. This study identified a critical role of α2,6-sialylation of SACC EVs in lung metastasis. The findings indicate that EV α2,6-sialylation-induced ER stress in endothelial cells might be a therapeutic target for preventing SACC lung metastasis.
Collapse
Affiliation(s)
- Qi Dong
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Xue Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Jiasheng Zhou
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Saixuan Wu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ziyao Liu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
2
|
Zhang X, Wang Y, Wang J, Zhang Y, Li R, Wang X, Ge X, Ye Q, Ji J, Fei D, Wang Q. Impaired stemness in aging periodontal ligament stem cells is mediated by the progerin/endoplasmic reticulum stress/p53 axis. J Adv Res 2024:S2090-1232(24)00484-3. [PMID: 39490613 DOI: 10.1016/j.jare.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Decreased periodontal ligament stem cells (PDLSCs) stemness is a key factor in age-related alveolar bone loss. Endoplasmic reticulum (ER) stress is closely related to age-related diseases and the mesenchymal stem cell (MSC) stemness. However, the role of ER stress in regulating the stemness of senescent PDLSCs and its potential mechanism remain unclear. OBJECTIVES To investigate the detailed effect and mechanism of ER stress on impaired stemness in old periodontal ligament stem cells (OPDLSCs). METHODS The level of ER stress of Young PDLSCs (YPDLSCs) and OPDLSCs were detected, and ER stress was regulated to observe its effect on PDLSCs stemness. The expression levels of ER stress sensors (protein kinase R-like ER kinase (PERK), activating transcription factor 6 (ATF6), inositol requiring enzyme 1 (IRE1)) were upregulated in YPDLSCs and downregulated in OPDLSCs by transfection experiments to verify the detailed unfolded protein response (UPR) pathway. Mechanismly, the regulatory effect of UPR pathway on p53/p21 pathway was explored. Further study was performed to investigated the important role of progerin accumulation during aging process on ER stress, UPR and p53/p21 pathway. RESULTS Decreased stemness and ER stress activation were found in OPDLSCs. ER stress activation resulted in decreased stemness of YPDLSCs, while ER stress inhibition rescued compromised stemness of OPDLSCs. Mechanismly, ATF6 pathway regulated the OPDLSC stemness via the p53/p21 signaling as confirmed by transfection assay. Further study showed that progerin was accumulated in PDLSCs and progerin overexpression could resulted in ER stress activation, activating the ATF6/p53/p21 axis, leading to decreased stemness of aging PDLSCs. CONCLUSIONS Progerin accumulation during the aging process can lead to ER stress activation, which can suppress OPDLSC stemness via the ATF6/p53/p21 axis.
Collapse
Affiliation(s)
- Xige Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Yazheng Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Jinjin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Yang Zhang
- Department of Stomatology, the Air Force Hospital from Eastern Theater, Nanjing, 210001, China
| | - Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Xiaoyu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Xiaotong Ge
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Qingyuan Ye
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases& Shaanxi Clinical Research Center for Oral Diseases, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiyun Ji
- Department of Stomatology, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572000, Hainan, China
| | - Dongdong Fei
- Department of Stomatology, the Seventh Medical Center of PLA General Hospital, Beijing, 100700, China.
| | - Qintao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University.
| |
Collapse
|
3
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
4
|
Bobek JM, Stuttgen GM, Sahoo D. A comprehensive analysis of the role of native and modified HDL in ER stress in primary macrophages. Front Cardiovasc Med 2024; 11:1448607. [PMID: 39328237 PMCID: PMC11424405 DOI: 10.3389/fcvm.2024.1448607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Recent findings demonstrate that high density lipoprotein (HDL) function rather than HDL-cholesterol levels themselves may be a better indicator of cardiovascular disease risk. One mechanism by which HDL can become dysfunctional is through oxidative modification by reactive aldehydes. Previous studies from our group demonstrated that HDL modified by reactive aldehydes alters select cardioprotective functions of HDL in macrophages. To identify mechanisms by which dysfunctional HDL contributes to atherosclerosis progression, we designed experiments to test the hypothesis that HDL modified by reactive aldehydes triggers endoplasmic reticulum (ER) stress in primary murine macrophages. Methods and results Peritoneal macrophages were harvested from wild-type C57BL/6J mice and treated with thapsigargin, oxLDL, and/or HDL for up to 48 hours. Immunoblot analysis and semi-quantitative PCR were used to measure expression of BiP, p-eIF2α, ATF6, and XBP1 to assess activation of the unfolded protein response (UPR). Through an extensive set of comprehensive experiments, and contrary to some published studies, our findings led us to three novel discoveries in primary murine macrophages: (i) oxLDL alone was unable to induce ER stress; (ii) co-incubation with oxLDL or HDL in the presence of thapsigargin had an additive effect in which expression of ER stress markers were significantly increased and prolonged as compared to cells treated with thapsigargin alone; and (iii) HDL, in the presence or absence of reactive aldehydes, was unable blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Conclusions Our systematic approach to assess the role of native and modified HDL in mediating primary macrophage ER stress led to the discovery that lipoproteins on their own require the presence of thapsigargin to synergistically increase expression of ER stress markers. We further demonstrated that HDL, in the presence or absence of reactive aldehydes, was unable to blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Together, our findings suggest the need for more detailed investigations to better understand the role of native and modified lipoproteins in mediating ER stress pathways.
Collapse
Affiliation(s)
- Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gage M. Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology & Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Li D, Li X, Zhang X, Chen J, Wang Z, Yu Z, Wu M, Liu L. Geniposide for treating atherosclerotic cardiovascular disease: a systematic review on its biological characteristics, pharmacology, pharmacokinetics, and toxicology. Chin Med 2024; 19:111. [PMID: 39164773 PMCID: PMC11334348 DOI: 10.1186/s13020-024-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, the prevalence and fatality rates of atherosclerotic cardiovascular disease have not only shown a consistent rise that cannot be ignored, but have also become a pressing social health problem that requires urgent attention. While interventional surgery and drug therapy offer significant therapeutic results, they often come with common side effects. Geniposide, an active component extracted from the Chinese medicine Gardenia jasminoides Ellis, shows promise in the management of cardiac conditions. This review comprehensively outlines the underlying pharmacological mechanisms by which geniposide exerts its effects on atherosclerosis. Geniposide exhibits a range of beneficial effects including alleviating inflammation, inhibiting the development of macrophage foam cells, improving lipid metabolism, and preventing platelet aggregation and thrombosis. It also demonstrates mitochondrial preservation, anti-apoptotic effects, and modulation of autophagy. Moreover, geniposide shows potential in improving oxidative stress and endoplasmic reticulum stress by maintaining the body's antioxidant and oxidative balance. Additionally, this review comprehensively details the biological properties of geniposide, including methods of extraction and purification, as well as its pharmacokinetics and toxicological characteristics. It further discusses the clinical applications of related biopharmaceuticals, emphasizing the potential of geniposide in the prevention and treatment of atherosclerotic cardiovascular diseases. Furthermore, it highlights the limitations of current research, aiming to provide insights for future studies.
Collapse
Affiliation(s)
- Dexiu Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zeping Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zongliang Yu
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
6
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Zhu G, Li Y, Gao H, Li X, Fan H, Fan L. Mzb1 Attenuates Atherosclerotic Plaque Vulnerability in ApoE-/- Mice by Alleviating Apoptosis and Modulating Mitochondrial Function. J Cardiovasc Transl Res 2024; 17:782-794. [PMID: 38294627 DOI: 10.1007/s12265-024-10483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
In this study, we investigated the protective role of Mzb1 in atherosclerotic plaque vulnerability. To explore the impact of Mzb1, we analyzed Mzb1 expression, assessed apoptosis, and evaluated mitochondrial function in atherosclerosis (AS) mouse models and human vascular smooth muscle cells (HVSMCs). We observed a significant decrease in Mzb1 expression in AS mouse models and ox-LDL-treated HVSMCs. Downregulation of Mzb1 increased ox-LDL-induced apoptosis and cholesterol levels of HVSMCs, while Mzb1 overexpression alleviated these effect. Mzb1 was found to enhance mitochondrial function, as evidenced by restored ATP synthesis, mitochondrial membrane potential, and reduced mtROS production. Moreover, Mzb1 overexpression attenuated atherosclerotic plaque vulnerability in ApoE-/- mice. Our findings suggest that Mzb1 overexpression regulates the AMPK/SIRT1 signaling pathway, leading to the attenuation of atherosclerotic plaque vulnerability. This study provides compelling evidence for the protective effect of Mzb1 on atherosclerotic plaques by alleviating apoptosis and modulating mitochondrial function in ApoE-/- mice.
Collapse
MESH Headings
- Animals
- Apoptosis
- Plaque, Atherosclerotic
- Disease Models, Animal
- Mice, Knockout, ApoE
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Atherosclerosis/prevention & control
- Sirtuin 1/metabolism
- Sirtuin 1/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- AMP-Activated Protein Kinases/metabolism
- Mice, Inbred C57BL
- Cells, Cultured
- Male
- Lipoproteins, LDL/metabolism
- Mitochondria/metabolism
- Mitochondria/pathology
- Rupture, Spontaneous
- Membrane Potential, Mitochondrial
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/prevention & control
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Adenosine Triphosphate/metabolism
- Aorta/metabolism
- Aorta/pathology
Collapse
Affiliation(s)
- Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China
| | - Yang Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongxia Gao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China
| | - Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China
| | - Heyu Fan
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China.
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Ni L, Yang L, Lin Y. Recent progress of endoplasmic reticulum stress in the mechanism of atherosclerosis. Front Cardiovasc Med 2024; 11:1413441. [PMID: 39070554 PMCID: PMC11282489 DOI: 10.3389/fcvm.2024.1413441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
The research progress of endoplasmic reticulum (ER) stress in atherosclerosis (AS) is of great concern. The ER, a critical cellular organelle, plays a role in important biological processes including protein synthesis, folding, and modification. Various pathological factors may cause ER stress, and sustained or excessive ER stress triggers the unfolded protein response, ultimately resulting in apoptosis and disease. Recently, researchers have discovered the importance of ER stress in the onset and advancement of AS. ER stress contributes to the occurrence of AS through different pathways such as apoptosis, inflammatory response, oxidative stress, and autophagy. Therefore, this review focuses on the mechanisms of ER stress in the development of AS and related therapeutic targets, which will contribute to a deeper understanding of the disease's pathogenesis and provide novel strategies for preventing and treating AS.
Collapse
Affiliation(s)
| | | | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
9
|
Huang X, Jiang F, Ma Y, Zhu K, Wang Z, Hua Z, Yu J, Zhang L. A bibliometric analysis of endoplasmic reticulum stress and atherosclerosis. Front Physiol 2024; 15:1392454. [PMID: 38938744 PMCID: PMC11210825 DOI: 10.3389/fphys.2024.1392454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The mechanisms underlying the occurrence and development of atherosclerosis (AS) are diverse, among which endoplasmic reticulum stress (ERS) is an important mechanism that should not be overlooked. However, up to now, there has been no bibliometric study on the relationship between ERS and AS. To understand the research progress in ERS and AS, this paper conducted a statistical analysis of publications in this field using bibliometrics. A total of 1,035 records were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and the R package "bibliometric" were used to analyze the spatiotemporal distribution, countries, authors, institutions, journals, references, and keywords of the literature, and to present the basic information of this field through visualized maps, as well as determine the collaboration relationships among researchers in this field. This field has gradually developed and stabilized over the past 20 years. The current research hotspots in this field mainly include the relationship between ERS and AS-related cells, the mechanisms by which ERS promotes AS, related diseases, and associated cytokines, etc. Vascular calcification, endothelial dysfunction, NLRP3 inflammasome, and heart failure represent the frontier research in this field and are becoming new research hotspots. It is hoped that this study will provide new insights for research and clinical work in the field of ERS and AS.
Collapse
Affiliation(s)
- Xinyu Huang
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Feng Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Yongbo Ma
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Kunpeng Zhu
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhenyuan Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhen Hua
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| |
Collapse
|
10
|
Guo Y, Zhao T, Yao X, Ji H, Luo Y, Okeke ES, Mao G, Feng W, Chen Y, Ding Y, Wu X, Yang L. Acrylamide-Aggravated Liver Injury by Activating Endoplasmic Reticulum Stress in Female Mice with Diabetes. Chem Res Toxicol 2024; 37:731-743. [PMID: 38634348 DOI: 10.1021/acs.chemrestox.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Acrylamide (ACR) is a common industrial contaminant with endocrine-disrupting toxicity. Numerous studies have indicated that females and diabetics are more sensitive to environmental contaminants. However, it remains unknown whether female diabetics are susceptible to ACR-induced toxicity and its potential mechanisms. Thus, the female ACR-exposure diabetic Balb/c mice model was established to address these issues. Results showed that ACR could induce liver injury in normal mice and cause more serious inflammatory cell infiltration, hepatocyte volume increase, and fusion in diabetic mice liver. Meanwhile, ACR could lead to exacerbation of diabetic symptoms in diabetic mice by disturbing the glucose and lipid metabolism in the liver, which mainly manifests as the accumulation of liver glycogen and liver lipids, the reduction of the activity/content of glycolytic and metabolizing enzyme as well as pentose phosphatase, upregulation of the gene expression in fatty acid transporter and gluconeogenesis, and downregulation of the gene expression in fatty acid synthesis and metabolism. Moreover, ACR exposure could induce oxidative stress, inflammation, and endoplasmic reticulum stress in the liver by a decrease in hepatic antioxidant enzyme activity and antioxidant content, an increase in inflammatory factor levels, and a change in the related protein expression of endoplasmic reticulum stress (ERS) and apoptosis-related pathways in diabetic mice. Statistical analysis results revealed that ACR-induced liver injury was highly correlated with inflammation and oxidative stress, and ERS and diabetic mice had a higher risk of liver injury than normal mice. Overall results suggested that female diabetic mice easily suffer from ACR-induced toxicity, and the reason was that ACR could induce further damage to the liver by worsening the condition of inflammation, oxidative stress, and ERS in the liver.
Collapse
Affiliation(s)
- Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xiongyi Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Hongchen Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yingbiao Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Yangyang Ding
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| |
Collapse
|
11
|
Deng J, Liu J, Chen W, Liang Q, He Y, Sun G. Effects of Natural Products through Inhibiting Endoplasmic Reticulum Stress on Attenuation of Idiopathic Pulmonary Fibrosis. Drug Des Devel Ther 2024; 18:1627-1650. [PMID: 38774483 PMCID: PMC11108075 DOI: 10.2147/dddt.s388920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes herbal preparations and bioactive compounds which protect against IPF through regulating ERS.
Collapse
Affiliation(s)
- JiuLing Deng
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - WanSheng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - YuQiong He
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - GuangChun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
12
|
Zhou ZY, Wu L, Liu YF, Tang MY, Tang JY, Deng YQ, Liu L, Nie BB, Zou ZK, Huang L. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 2024; 479:1079-1092. [PMID: 37310588 DOI: 10.1007/s11010-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Li Wu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yi-Fan Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mu-Yao Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jing-Yi Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anaesthesiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya-Qian Deng
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lei Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bin-Bin Nie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zi-Kai Zou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Liang Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Guo Y, Mao H, Gong D, Zhang N, Gu D, Okeke ES, Feng W, Chen Y, Mao G, Zhao T, Yang L. Differential susceptibility of BRL cells with/without insulin resistance and the role of endoplasmic reticulum stress signaling pathway in response to acrylamide-exposure toxicity effects in vitro. Toxicology 2024; 504:153800. [PMID: 38604440 DOI: 10.1016/j.tox.2024.153800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Acrylamide (ACR) is an endogenous food contaminant, high levels of ACR have been detected in a large number of foods, causing widespread concern. Since different organism states respond differently to the toxic effects of pollutants, this study establishes an insulin-resistant BRL cell model to explore the differential susceptibility of BRL cells with/without insulin resistance in response to acrylamide-exposure (0.0002, 0.02, or 1 mM) toxicity effects and its mechanism. The results showed that ACR exposure decreased glucose uptake and increased intracellular lipid levels by promoting the expression of fatty acid synthesis, transport, and gluconeogenesis genes and inhibiting the expression of fatty acid metabolism genes, thereby further exacerbating disorders of gluconeogenesis and lipid metabolism in insulin-resistant BRL cells. Simultaneously, its exposure also exacerbated BRL cells with/without insulin-resistant damage. Meanwhile, insulin resistance significantly raised susceptibility to BRL cell response to ACR-induced toxicity. Furthermore, ACR exposure further activated the endoplasmic reticulum stress (ERS) signaling pathway (promoting phosphorylation of PERK, eIF-2α, and IRE-1α) and the apoptosis signaling pathway (activating Caspase-3 and increasing the Bax/Bcl-2 ratio) in BRL cells with insulin-resistant, which were also attenuated after ROS scavenging or ERS signaling pathway blockade. Overall results suggested that ACR evokes a severer toxicity effect on BRL cells with insulin resistance through the overactivation of the ERS signaling pathway.
Collapse
Affiliation(s)
- Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Houlin Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Danni Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Nuo Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Dandan Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu 410001, Nigeria
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Zhang C, Huang X, Xie B, Lian D, Chen J, Li W, Lin Y, Cai X, Li J. The multi-protective effect of IL-37-Smad3 against ox-LDL induced dysfunction of endothelial cells. Biomed Pharmacother 2024; 172:116268. [PMID: 38359489 DOI: 10.1016/j.biopha.2024.116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Atherosclerosis is a lipid-driven inflammatory arterial disease, with one crucial factor is oxidized low-density lipoprotein (ox-LDL), which can induce endothelial dysfunction through endoplasmic reticulum stress (ERS). Interleukin-37 (IL-37) exerts vascular protective functions. This study aims to investigates whether IL-37 can alleviate ERS and autophagy induced by ox-LDL, therely potentialy treating atherosclerosis. We found that ox-LDL enhances the wound healing rate in Rat Coronary Artery Endothelial Cells (RCAECs) and IL-37 reduce the ox-LDL-induced pro-osteogenic response, ERS, and autophagy by binding to Smad3. In RCAECs treated with ox-LDL and recombinant human IL-37, the wound healing rate was mitigated. The expression of osteogenic transcription factors and proteins involved in the ERS pathway was reduced in the group pretreated with IL-37 and ox-LDL. However, these responses were not alleviated when Smads silenced. Electron microscopy revealed that the IL-37/Smad3 complex could suppress endoplasmic reticulum autophagy under ox-LDL stimulation. Thus, IL-37 might treat atherosclerosis through its multi-protective effect by binding Smad3.
Collapse
Affiliation(s)
- Changyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou City, Guangdong province, China
| | - Xiaojun Huang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou City, Guangdong province, China
| | - Bin Xie
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou City, Guangdong province, China
| | - Danchun Lian
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou City, Guangdong province, China
| | - Jinhao Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou City, Guangdong province, China
| | - Weiwen Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou City, Guangdong province, China
| | - Ying Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou City, Guangdong province, China
| | - Xiangna Cai
- Department of Plastic Surgeon, First Affiliated Hospital of Shantou University Medical College, Shantou City, Guangdong province, China.
| | - Jilin Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou City, Guangdong province, China.
| |
Collapse
|
15
|
Saaoud F, Lu Y, Xu K, Shao Y, Praticò D, Vazquez-Padron RI, Wang H, Yang X. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers - Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer. Pharmacol Ther 2024; 255:108604. [PMID: 38360205 PMCID: PMC10917129 DOI: 10.1016/j.pharmthera.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Tang C, Shi F, Ji Y, Zhu J, Gu X. Aldehyde Dehydrogenase 2 (ALDH2) rs671 Polymorphism is a Predictor of Pulmonary Hypertension Due to Left Heart Disease. Heart Lung Circ 2024; 33:230-239. [PMID: 38177014 DOI: 10.1016/j.hlc.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
AIM Pulmonary hypertension due to left heart disease (PH-LHD) is commonly seen in patients with heart failure (HF), but there are limited treatment options. Recent studies have shown an association between aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphisms and pulmonary hypertension (PH). Therefore, this study aimed to investigate the occurrence of ALDH2 rs671 polymorphisms, and the association between ALDH2 and risk of PH-LHD in patients with HF. It also investigated different ALDH2 genotypes and examined their association with cardiac structure and function in HF patients with PH-LHD. METHODS A total of 178 HF patients were consecutively enrolled in this study: 102 without PH-LHD and 76 with PH-LHD. Clinical data, parameters of echocardiography, and relevant biochemical indexes were recorded in both groups. Differences in data obtained between groups were compared, and the risk of variant ALDH2 polymorphisms with PH-LHD in HF patients was analysed using univariate and multivariate logistic regression. RESULTS The prevalence of ALDH2 rs671 GA/AA polymorphisms (variant ALDH2) was 24 of 102 patients (23.53%) in the HF without PH-LHD group, and 32 of 76 patients (42.10%) in the HF with PH-LHD group, with a statistically significant difference. Univariate and multivariate logistical regression showed that variant ALDH2 is an independent risk factor for HF combined with PH-LHD. A higher proportion of patients with variant ALDH2 in the HF with PH-LHD group had a tricuspid regurgitation velocity >2.8 m/s, and they had higher values of peak early diastolic velocity of the mitral orifice/peak velocity of the early diastolic wave of the mitral orifice, maximum frequency shift of pulmonary valve flow, and pulmonary artery stiffness. CONCLUSIONS Variant ALDH2 may be an independent risk factor for HF combined with PH-LHD. Variant ALDH2 may also be involved in pulmonary artery remodelling and is a potential new target for clinical treatment of PH-LHD.
Collapse
Affiliation(s)
- Chao Tang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Shi
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanjing Ji
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Zhu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xiaosong Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Bai X, Wang Y, Luo X, Bao X, Weng X, Chen Y, Zhang S, Lv Y, Dai X, Zeng M, Yang D, Hu S, Li J, Ji Y, Jia H, Yu B. Cigarette tar accelerates atherosclerosis progression via RIPK3-dependent necroptosis mediated by endoplasmic reticulum stress in vascular smooth muscle cells. Cell Commun Signal 2024; 22:41. [PMID: 38229167 PMCID: PMC10790416 DOI: 10.1186/s12964-024-01480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Tar is the main toxic of cigarettes, and its effect on atherosclerosis progression and the underlying mechanisms remain largely unknown. Vascular smooth muscle cells (VSMCs) play a key role in atherogenesis and plaque vulnerability. The present study sought to investigate the mechanism of atherosclerosis progression through tar-induced VSMC necroptosis, a recently described form of necrosis. METHODS The effect of tar on atherosclerosis progression and VSMC necroptosis was examined in ApoE-/- mice and cultured VSMCs. The role of necroptosis in tar-induced plaque development was evaluated in RIPK3-deletion mice (ApoE-/-RIPK3-/-). The key proteins of necroptosis in carotid plaques of smokers and non-smokers were also examined. Quantitative proteomics of mice aortas was conducted to further investigate the underlying mechanism. Pharmacological approaches were then applied to modulate the expression of targets to verify the regulatory process of tar-induced necroptosis. RESULTS Tar administration led to increased atherosclerotic plaque area and reduced collagen and VSMCs in ApoE-/- mice. The expression of RIPK1、RIPK3、and MLKL in VSMCs of plaques were all increased in tar-exposed mice and smokers. RIPK3 deletion protected against VSMC loss and plaque progression stimulated by tar. In mechanistic studies, quantitative proteomics analysis of ApoE-/- mice aortas suggested that tar triggered endoplasmic reticulum (ER) stress. PERK-eIF2α-CHOP axis was activated in tar-treated VSMCs and atherosclerotic plaque. Inhibition of ER stress using 4PBA significantly reduced plaque progression and VSMC necroptosis. Further study revealed that ER stress resulted in calcium (Ca2+) release into mitochondria and cytoplasm. Elevated Ca2+ levels lead to mitochondrial dysfunction and excessive reactive oxygen species (ROS) production, which consequently promote RIPK3-dependent necroptosis. In addition, Ca2+/calmodulin-dependent protein kinase II (CaMKII) activated by cytosolic Ca2+ overload binds to RIPK3, accounting for necroptosis. CONCLUSION The findings revealed that cigarette tar promoted atherosclerosis progression by inducing RIPK3-dependent VSMC necroptosis and identified novel avenues of ER stress and Ca2+ overload.
Collapse
Affiliation(s)
- Xiaoxuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xing Luo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xiaoyi Bao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xiuzhu Weng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Yuwu Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Shan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Ying Lv
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xinyu Dai
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Ming Zeng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Dan Yang
- Department of Forensic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Sining Hu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Ji Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Yong Ji
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Key Laboratory of Cardiovascular Medicine Research and NHC Key Laboratory of Cell Transplantation, Harbin, 150001, China
| | - Haibo Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
18
|
Yu SS, Du JL. Current views on selenoprotein S in the pathophysiological processes of diabetes-induced atherosclerosis: potential therapeutics and underlying biomarkers. Diabetol Metab Syndr 2024; 16:5. [PMID: 38172976 PMCID: PMC10763436 DOI: 10.1186/s13098-023-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) consistently ranks as the primary mortality factor among diabetic people. A thorough comprehension of the pathophysiological routes and processes activated by atherosclerosis (AS) caused by diabetes mellitus (DM), together with the recognition of new contributing factors, could lead to the discovery of crucial biomarkers and the development of innovative drugs against atherosclerosis. Selenoprotein S (SELENOS) has been implicated in the pathology and progression of numerous conditions, including diabetes, dyslipidemia, obesity, and insulin resistance (IR)-all recognized contributors to endothelial dysfunction (ED), a precursor event to diabetes-induced AS. Hepatic-specific deletion of SELENOS accelerated the onset and progression of obesity, impaired glucose tolerance and insulin sensitivity, and increased hepatic triglycerides (TG) and diacylglycerol (DAG) accumulation; SELENOS expression in subcutaneous and omental adipose tissue was elevated in obese human subjects, and act as a positive regulator for adipogenesis in 3T3-L1 preadipocytes; knockdown of SELENOS in Min6 β-cells induced β-cell apoptosis and reduced cell proliferation. SELENOS also participates in the early stages of AS, notably by enhancing endothelial function, curbing the expression of adhesion molecules, and lessening leukocyte recruitment-actions that collectively reduce the formation of foam cells. Furthermore, SELENOS forestalls the apoptosis of vascular smooth muscle cells (VSMCs) and macrophages, mitigates vascular calcification, and alleviates inflammation in macrophages and CD4+ T cells. These actions help stifle the creation of unstable plaque characterized by thinner fibrous caps, larger necrotic cores, heightened inflammation, and more extensive vascular calcification-features seen in advanced atherosclerotic lesion development. Additionally, serum SELENOS could function as a potential biomarker, and SELENOS single nucleotide polymorphisms (SNPs) rs4965814, rs28628459, and rs9806366, might be effective gene markers for atherosclerosis-related diseases in diabetes. This review accentuates the pathophysiological processes of atherosclerosis in diabetes and amasses current evidence on SELENOS's potential therapeutic benefits or as predictive biomarkers in the various stages of diabetes-induced atherosclerosis.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China
| | - Jian-Ling Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China.
| |
Collapse
|
19
|
Zhu G, Gao H, Li Y, Li X, Yang X, Wang C, Guo Z, Fan H, Fan L. Suppression of endoplasmic reticulum stress by 4-PBA enhanced atherosclerotic plaque stability via up-regulating CLOCK expression. Pathol Res Pract 2024; 253:154969. [PMID: 38029715 DOI: 10.1016/j.prp.2023.154969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Endoplasmic reticulum (ER) stress refers to a condition where the normal functioning of the ER is disrupted due to a variety of cellular stress factors. As a result, there is an accumulation of unfolded and misfolded proteins within the ER. Numerous studies have shown that ER stress can exacerbate inflammatory reactions and contribute to the development of various inflammatory diseases. However, the role of ER stress in the stability of atherosclerotic plaques remains poorly understood. In this study, we aimed to explore the potential impact of a specific ER stress inhibitor known as 4-phenyl butyric acid (4-PBA) on atherosclerosis in mice. The mice were fed a high-fat diet, and treatment with 4-PBA significantly improved the stability of the atherosclerotic plaques. This was evidenced by a reduction in oxidative stress and an increase in circadian locomotor output cycles kaput (CLOCK) protein and mRNA expression within the plaques. Additionally, 4-PBA reduced the expression of ER stress-related proteins and decreased apoptosis in the atherosclerotic plaques. In vitro investigation, we observed the effect of 4-PBA on vascular smooth muscle cells (VSMCs) that were exposed to oxidized low-density lipoprotein (ox-LDL), a significant contributor to the development of atherosclerosis. 4-PBA reduced reactive oxygen species (ROS) production and attenuated apoptosis, GRP78 and CHOP protein expression in ox-LDL-Induced VSMCs via up-regulating CLOCK expression. However, when the short hairpin RNA against CLOCK (sh-CLOCK) was introduced to the VSMCs, the protective effect of 4-PBA was abolished. This suggests that the up-regulation of CLOCK expression is crucial for the beneficial effects of 4-PBA on atherosclerotic plaque stability. This finding suggests that targeting ER stress and modulating CLOCK protein levels might be a promising way to enhance the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongxia Gao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heyu Fan
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Yogendran V, Mele L, Prysyazhna O, Budhram-Mahadeo VS. Vascular dysfunction caused by loss of Brn-3b/POU4F2 transcription factor in aortic vascular smooth muscle cells is linked to deregulation of calcium signalling pathways. Cell Death Dis 2023; 14:770. [PMID: 38007517 PMCID: PMC10676411 DOI: 10.1038/s41419-023-06306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Phenotypic and functional changes in vascular smooth muscle cells (VSMCs) contribute significantly to cardiovascular diseases (CVD) but factors driving early adverse vascular changes are poorly understood. We report on novel and important roles for the Brn-3b/POU4F2 (Brn-3b) transcription factor (TF) in controlling VSMC integrity and function. Brn-3b protein is expressed in mouse aorta with localisation to VSMCs. Male Brn-3b knock-out (KO) aortas displayed extensive remodelling with increased extracellular matrix (ECM) deposition, elastin fibre disruption and small but consistent narrowing/coarctation in the descending aortas. RNA sequencing analysis showed that these effects were linked to deregulation of genes required for calcium (Ca2+) signalling, vascular contractility, sarco-endoplasmic reticulum (S/ER) stress responses and immune function in Brn-3b KO aortas and validation studies confirmed changes in Ca2+ signalling genes linked to increased intracellular Ca2+ and S/ER Ca2+ depletion [e.g. increased, Cacna1d Ca2+ channels; ryanodine receptor 2, (RyR2) and phospholamban (PLN) but reduced ATP2a1, encoding SERCA1 pump] and chaperone proteins, Hspb1, HspA8, DnaJa1 linked to increased S/ER stress, which also contributes to contractile dysfunction. Accordingly, vascular rings from Brn-3b KO aortas displayed attenuated contractility in response to KCl or phenylephrine (PE) while Brn-3b KO-derived VSMC displayed abnormal Ca2+ signalling following ATP stimulation. This data suggests that Brn-3b target genes are necessary to maintain vascular integrity /contractile function and deregulation upon loss of Brn-3b will contribute to contractile dysfunction linked to CVD.
Collapse
Affiliation(s)
- Vaishaali Yogendran
- Molecular Biology Development and Disease, UCL Institute of Cardiovascular Science, London, UK
| | - Laura Mele
- Molecular Biology Development and Disease, UCL Institute of Cardiovascular Science, London, UK
| | - Oleksandra Prysyazhna
- Clinical Pharmacology Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
21
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
22
|
Xu S, Xi J, Wu T, Wang Z. The Role of Adipocyte Endoplasmic Reticulum Stress in Obese Adipose Tissue Dysfunction: A Review. Int J Gen Med 2023; 16:4405-4418. [PMID: 37789878 PMCID: PMC10543758 DOI: 10.2147/ijgm.s428482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Adipose tissue dysfunction plays an important role in metabolic diseases associated with chronic inflammation, insulin resistance and lipid ectopic deposition in obese patients. In recent years, it has been found that under the stimulation of adipocyte endoplasmic reticulum stress (ERS), the over-activated ER unfolded protein response (UPR) exacerbates the inflammatory response of adipose tissue by interfering with the normal metabolism of adipose tissue, promotes the secretion of adipokines, and affects the browning and thermogenic pathways of adipose tissue, ultimately leading to the manifestation of metabolic syndrome such as ectopic lipid deposition and disorders of glucolipid metabolism in obese patients. This paper mainly summarizes the relationship between adipocyte ERS and obese adipose tissue dysfunction and provides an overview of the mechanisms by which ERS induces metabolic disorders such as catabolism, thermogenesis and inflammation in obese adipose tissue through the regulation of molecules and pathways such as NF-κB, ADPN, STAMP2, LPIN1, TRIP-Br2, NF-Y and SIRT2 and briefly describes the current mechanisms targeting adipocyte endoplasmic reticulum stress to improve obesity and provide ideas for intervention and treatment of obese adipose tissue dysfunction.
Collapse
Affiliation(s)
- Shengjie Xu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Jiaqiu Xi
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Tao Wu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Zhonglin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| |
Collapse
|
23
|
Di Conza G, Ho PC, Cubillos-Ruiz JR, Huang SCC. Control of immune cell function by the unfolded protein response. Nat Rev Immunol 2023; 23:546-562. [PMID: 36755160 DOI: 10.1038/s41577-023-00838-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Initiating and maintaining optimal immune responses requires high levels of protein synthesis, folding, modification and trafficking in leukocytes, which are processes orchestrated by the endoplasmic reticulum. Importantly, diverse extracellular and intracellular conditions can compromise the protein-handling capacity of this organelle, inducing a state of 'endoplasmic reticulum stress' that activates the unfolded protein response (UPR). Emerging evidence shows that physiological or pathological activation of the UPR can have effects on immune cell survival, metabolism, function and fate. In this Review, we discuss the canonical role of the adaptive UPR in immune cells and how dysregulation of this pathway in leukocytes contributes to diverse pathologies such as cancer, autoimmunity and metabolic disorders. Furthermore, we provide an overview as to how pharmacological approaches that modulate the UPR could be harnessed to control or activate immune cell function in disease.
Collapse
Affiliation(s)
- Giusy Di Conza
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
24
|
Lien CF, Lin CS, Shyue SK, Hsieh PS, Chen SJ, Lin YT, Chien S, Tsai MC. Peroxisome proliferator-activated receptor δ improves the features of atherosclerotic plaque vulnerability by regulating smooth muscle cell phenotypic switching. Br J Pharmacol 2023; 180:2085-2101. [PMID: 36942453 DOI: 10.1111/bph.16074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular smooth muscle cells (SMCs) undergo phenotypic switching during sustained inflammation, contributing to an unfavourable atherosclerotic plaque phenotype. PPARδ plays an important role in regulating SMC functions; however, its role in atherosclerotic plaque vulnerability remains unclear. Here, we explored the pathological roles of PPARδ in atherosclerotic plaque vulnerability in severe atherosclerosis and elucidated the underlying mechanisms. EXPERIMENTAL APPROACH Plasma levels of PPARδ were measured in patients with acute coronary syndrome (ACS) and stable angina (SA). SMC contractile and synthetic phenotypic markers, endoplasmic reticulum (ER) stress, and features of atherosclerotic plaque vulnerability were analysed for the brachiocephalic artery of apolipoprotein E-knockout (ApoE-/- ) mice, fed a high-cholesterol diet (HCD) and treated with or without the PPARδ agonist GW501516. In vitro, the role of PPARδ was elucidated using human aortic SMCs (HASMCs). KEY RESULTS Patients with ACS had significantly lower plasma PPARδ levels than those with SA. GW501516 reduced atherosclerotic plaque vulnerability, a synthetic SMC phenotype, ER stress markers, and NLRP3 inflammasome expression in HCD-fed ApoE-/- mice. ER stress suppressed PPARδ expression in HASMCs. PPARδ activation inhibited ER stress-induced synthetic phenotype development, ER stress-NLRP3 inflammasome axis activation and matrix metalloproteinase 2 (MMP2) expression in HASMCs. PPARδ inhibited NFκB signalling and alleviated ER stress-induced SMC phenotypic switching. CONCLUSIONS AND IMPLICATIONS Low plasma PPARδ levels may be associated with atherosclerotic plaque vulnerability. Our findings provide new insights into the mechanisms underlying the protective effect of PPARδ on SMC phenotypic switching and improvement the features of atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Chih-Feng Lien
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Song-Kun Shyue
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Tan Lin
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Shu Chien
- Department of Bioengineering and Medicine, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
25
|
Chen Z, Zhang SL. Endoplasmic Reticulum Stress: A Key Regulator of Cardiovascular Disease. DNA Cell Biol 2023. [PMID: 37140435 DOI: 10.1089/dna.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The problems associated with economic development and social progress have led to an increase in the occurrence of cardiovascular diseases (CVDs), which affect the health of an increasing number of people and are a leading cause of disease and population mortality worldwide. Endoplasmic reticulum stress (ERS), a hot topic of interest for scholars in recent years, has been confirmed in numerous studies to be an important pathogenetic basis for many metabolic diseases and play an important role in maintaining physiological processes. The endoplasmic reticulum (ER) is a major organelle that is involved in protein folding and modification synthesis, and ERS occurs when several physiological and pathological factors allow excessive amounts of unfolded/misfolded proteins to accumulate. ERS often leads to initiation of the unfolded protein response (UPR) in a bid to re-establish tissue homeostasis; however, UPR has been documented to induce vascular remodeling and cardiomyocyte damage under various pathological conditions, leading to or accelerating the development of CVDs such as hypertension, atherosclerosis, and heart failure. In this review, we summarize the latest knowledge gained concerning ERS in terms of cardiovascular system pathophysiology, and discuss the feasibility of targeting ERS as a novel therapeutic target for the treatment of CVDs. Investigation of ERS has immense potential as a new direction for future research involving lifestyle intervention, the use of existing drugs, and the development of novel drugs that target and inhibit ERS.
Collapse
Affiliation(s)
- Zhao Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Liang Zhang
- Section 4, Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
26
|
Modulation of the endoplasmic reticulum stress and unfolded protein response mitigates the behavioral effects of early-life stress. Pharmacol Rep 2023; 75:293-319. [PMID: 36843201 PMCID: PMC10060333 DOI: 10.1007/s43440-023-00456-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Early-life stress (ELS) affects brain development and increases the risk of mental disorders associated with the dysfunction of the medial prefrontal cortex (mPFC). The mechanisms of ELS action are not well understood. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are cellular processes involved in brain maturation through the regulation of pro-survival or proapoptotic processes. We hypothesized that ER stress and the UPR in the mPFC are involved in the neurobiology of ELS. METHODS We performed a maternal separation (MS) procedure from postnatal days 1 to 14 in rats. Before each MS, pups were injected with an inhibitor of ER stress, salubrinal or a vehicle. The mRNA and protein expression of UPR and apoptotic markers were evaluated in the mPFC using RT-qPCR and Western blot methods, respectively. We also estimated the numbers of neurons and glial cells using stereological methods. Additionally, we assessed behavioral phenotypes related to fear, anhedonia and response to psychostimulants. RESULTS MS slightly enhanced the activation of the UPR in juveniles and modulated the expression of apoptotic markers in juveniles and preadolescents but not in adults. Additionally, MS did not affect the numbers of neurons and glial cells at any age. Both salubrinal and vehicle blunted the expression of UPR markers in juvenile and preadolescent MS rats, often in a treatment-specific manner. Moreover, salubrinal and vehicle generally alleviated the behavioral effects of MS in preadolescent and adult rats. CONCLUSIONS Modulation of ER stress and UPR processes may potentially underlie susceptibility or resilience to ELS.
Collapse
|
27
|
Choi HY, Choi S, Iatan I, Ruel I, Genest J. Biomedical Advances in ABCA1 Transporter: From Bench to Bedside. Biomedicines 2023; 11:561. [PMID: 36831097 PMCID: PMC9953649 DOI: 10.3390/biomedicines11020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) has been identified as the molecular defect in Tangier disease. It is biochemically characterized by absence of high-density lipoprotein cholesterol (HDL-C) in the circulation, resulting in the accumulation of cholesterol in lymphoid tissues. Accumulation of cholesterol in arteries is an underlying cause of atherosclerosis, and HDL-C levels are inversely associated with the presence of atherosclerotic cardiovascular disease (ASCVD). ABCA1 increases HDL-C levels by driving the generation of new HDL particles in cells, and cellular cholesterol is removed in the process of HDL generation. Therefore, pharmacological strategies that promote the HDL biogenic process by increasing ABCA1 expression and activity have been intensively studied to reduce ASCVD. Many ABCA1-upregulating agents have been developed, and some have shown promising effects in pre-clinical studies, but no clinical trials have met success yet. ABCA1 has long been an attractive drug target, but the failed clinical trials have indicated the difficulty of therapeutic upregulation of ABCA1, as well as driving us to: improve our understanding of the ABCA1 regulatory system; to develop more specific and sophisticated strategies to upregulate ABCA1 expression; and to search for novel druggable targets in the ABCA1-dependent HDL biogenic process. In this review, we discuss the beginning, recent advances, challenges and future directions in ABCA1 research aimed at developing ABCA1-directed therapies for ASCVD.
Collapse
Affiliation(s)
- Hong Y. Choi
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Senna Choi
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Iulia Iatan
- Centre for Heart Lung Innovation, Department of Medicine, St. Paul’s Hospital, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Isabelle Ruel
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
28
|
CHIP Haploinsufficiency Exacerbates Hepatic Steatosis via Enhanced TXNIP Expression and Endoplasmic Reticulum Stress Responses. Antioxidants (Basel) 2023; 12:antiox12020458. [PMID: 36830016 PMCID: PMC9951908 DOI: 10.3390/antiox12020458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
TXNIP is a critical regulator of glucose homeostasis, fatty acid synthesis, and cholesterol accumulation in the liver, and it has been reported that metabolic diseases, such as obesity, atherosclerosis, hyperlipidemia, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD), are associated with endoplasmic reticulum (ER) stress. Because CHIP, an E3 ligase, was known to be involved in regulating tissue injury and inflammation in liver, its role in regulating ER stress-induced NAFLD was investigated in two experimental NAFLD models, a tunicamycin (TM)-induced and other diet-induced NAFLD mice models. In the TM-induced NAFLD model, intraperitoneal injection of TM induced liver steatosis in both CHIP+/+ and CHIP+/- mice, but it was severely exacerbated in CHIP+/- mice compared to CHIP+/+ mice. Key regulators of ER stress and de novo lipogenesis were also enhanced in the livers of TM-inoculated CHIP+/- mice. Furthermore, in the diet-induced NAFLD models, CHIP+/- mice developed severely impaired glucose tolerance, insulin resistance and hepatic steatosis compared to CHIP+/+ mice. Interestingly, CHIP promoted ubiquitin-dependent degradation of TXNIP in vitro, and inhibition of TXNIP was further found to alleviate the inflammation and ER stress responses increased by CHIP inhibition. In addition, the expression of TXNIP was increased in mice deficient in CHIP in the TM- and diet-induced models. These findings suggest that CHIP modulates ER stress and inflammatory responses by inhibiting TXNIP, and that CHIP protects against TM- or HF-HS diet-induced NAFLD and serves as a potential therapeutic means for treating liver diseases.
Collapse
|
29
|
Zhong YX, Zhou CC, Zheng YF, Dai HK, Chen RY, Wang YR, Zhan CY, Luo JL, Xie AN. Endoplasmic Reticulum Stress-induced Endothelial Dysfunction Promotes Neointima Formation after Arteriovenous Grafts in Mice on High-fat Diet. Curr Med Sci 2023; 43:115-122. [PMID: 36640244 DOI: 10.1007/s11596-022-2663-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/03/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Endothelial dysfunction is one candidate for triggering neointima formation after arteriovenous grafts (AVGs), but the factors mediating this process are unclear. The purpose of this study was to investigate the role of endoplasmic reticulum stress (ERS)-induced endothelial dysfunction in neointima formation following AVGs in high-fat diet (HFD) mice. METHODS CCAAT-enhancer-binding protein-homologous protein (CHOP) knockout (KO) mice were created. Mice were fed with HFD to produce HFD model. AVGs model were applied in the groups of WT ND, WT HFD, and CHOP KO HFD. Human umbilical vein endothelial cells (HUVECs) were cultured with oxidized low density lipoprotein (ox-LDL) (40 mg/L) for the indicated time lengths (0, 6, 12, 24 h). ERS inhibitor tauroursodeoxycholic acid (TUDCA) was used to block ERS. Immunohistochemical staining was used to observe the changes of ICAM1. Changes of ERS were detected by real-time RT-PCR. Protein expression levels and ERS activation were detected by Western blotting. Endothellial cell function was determined by endothelial permeability assay and transendothelial migration assay. RESULTS HFD increased neointima formation in AVGs associated with endothelial dysfunction. At the same time, ERS was increased in endothelial cells (ECs) after AVGs in mice consuming the HFD. In vitro, ox-LDL was found to stimulate ERS, increase the permeability of the EC monolayer, and cause endothelial dysfunction. Blocking ERS with TUDCA or CHOP siRNA reversed the EC dysfunction caused by ox-LDL. In vivo, knockout of CHOP (CHOP KO) protected the function of ECs and decreased neointima formation after AVGs in HFD mice. CONCLUSION Inhibiting ERS in ECs could improve the function of AVGs.
Collapse
Affiliation(s)
- Yan-Xia Zhong
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen-Chen Zhou
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying-Fang Zheng
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Kai Dai
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ren-Yu Chen
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Rou Wang
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-Ye Zhan
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-Long Luo
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ai-Ni Xie
- Divison of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
30
|
Keylani K, Arbab Mojeni F, Khalaji A, Rasouli A, Aminzade D, Karimi MA, Sanaye PM, Khajevand N, Nemayandeh N, Poudineh M, Azizabadi Farahani M, Esfandiari MA, Haghshoar S, Kheirandish A, Amouei E, Abdi A, Azizinezhad A, Khani A, Deravi N. Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Front Pharmacol 2023; 13:1027633. [PMID: 36703744 PMCID: PMC9871646 DOI: 10.3389/fphar.2022.1027633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Flavonoids are found in natural health products and plant-based foods. The flavonoid molecules contain a 15-carbon skeleton with the particular structural construction of subclasses. The most flavonoid's critical subclasses with improved health properties are the catechins or flavonols (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavanones (e.g., naringenin from citrus), the flavanols (e.g., quercetin glycosides from berries, onion, and apples), the isoflavones (e.g., genistein from soya beans) and the anthocyanins (e.g., cyanidin-3-O-glucoside from berries). Scientific data conclusively demonstrates that frequent intake of efficient amounts of dietary flavonoids decreases chronic inflammation and the chance of oxidative stress expressing the pathogenesis of human diseases like cardiovascular diseases (CVDs). The endoplasmic reticulum (ER) is a critical organelle that plays a role in protein folding, post-transcriptional conversion, and transportation, which plays a critical part in maintaining cell homeostasis. Various stimuli can lead to the creation of unfolded or misfolded proteins in the endoplasmic reticulum and then arise in endoplasmic reticulum stress. Constant endoplasmic reticulum stress triggers unfolded protein response (UPR), which ultimately causes apoptosis. Research has shown that endoplasmic reticulum stress plays a critical part in the pathogenesis of several cardiovascular diseases, including diabetic cardiomyopathy, ischemic heart disease, heart failure, aortic aneurysm, and hypertension. Endoplasmic reticulum stress could be one of the crucial points in treating multiple cardiovascular diseases. In this review, we summarized findings on flavonoids' effects on the endoplasmic reticulum and their role in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Dlnya Aminzade
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Khajevand
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Nemayandeh
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Ali Esfandiari
- Student Research Committee, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sepehr Haghshoar
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Erfan Amouei
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Khani
- Department of Cardiovascular Disease, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Niloofar Deravi,
| |
Collapse
|
31
|
Schalkwijk CG, Micali LR, Wouters K. Advanced glycation endproducts in diabetes-related macrovascular complications: focus on methylglyoxal. Trends Endocrinol Metab 2023; 34:49-60. [PMID: 36446668 DOI: 10.1016/j.tem.2022.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
Diabetes is associated with vascular injury and the onset of macrovascular complications. Advanced glycation endproducts (AGEs) and the AGE precursor methylglyoxal (MGO) have been identified as key players in establishing the relationship between diabetes and vascular injury. While most research has focused on the link between AGEs and vascular injury, less is known about the effects of MGO on vasculature. In this review, we focus on the mechanisms linking AGEs and MGO to the development of atherosclerosis. AGEs and MGO are involved in many stages of atherosclerosis progression. However, more research is needed to determine the exact mechanisms underlying these effects. Nevertheless, AGEs and MGO could represent valid therapeutic targets for the macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, MUMC+, Maastricht, The Netherlands
| | | | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, MUMC+, Maastricht, The Netherlands.
| |
Collapse
|
32
|
Rico-Llanos G, Porras-Perales Ó, Escalante S, Vázquez-Calero DB, Valiente L, Castillo MI, Pérez-Tejeiro JM, Baglietto-Vargas D, Becerra J, Reguera JM, Duran I, Csukasi F. Cellular stress modulates severity of the inflammatory response in lungs via cell surface BiP. Front Immunol 2022; 13:1054962. [DOI: 10.3389/fimmu.2022.1054962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammation is a central pathogenic feature of the acute respiratory distress syndrome (ARDS) in COVID-19. Previous pathologies such as diabetes, autoimmune or cardiovascular diseases become risk factors for the severe hyperinflammatory syndrome. A common feature among these risk factors is the subclinical presence of cellular stress, a finding that has gained attention after the discovery that BiP (GRP78), a master regulator of stress, participates in the SARS-CoV-2 recognition. Here, we show that BiP serum levels are higher in COVID-19 patients who present certain risk factors. Moreover, early during the infection, BiP levels predict severe pneumonia, supporting the use of BiP as a prognosis biomarker. Using a mouse model of pulmonary inflammation, we observed increased levels of cell surface BiP (cs-BiP) in leukocytes during inflammation. This corresponds with a higher number of neutrophiles, which show naturally high levels of cs-BiP, whereas alveolar macrophages show a higher than usual exposure of BiP in their cell surface. The modulation of cellular stress with the use of a clinically approved drug, 4-PBA, resulted in the amelioration of the lung hyperinflammatory response, supporting the anti-stress therapy as a valid therapeutic strategy for patients developing ARDS. Finally, we identified stress-modulated proteins that shed light into the mechanism underlying the cellular stress-inflammation network in lungs.
Collapse
|
33
|
Jung SH, Lee KT. Atherosclerosis by Virus Infection—A Short Review. Biomedicines 2022; 10:biomedicines10102634. [PMID: 36289895 PMCID: PMC9599298 DOI: 10.3390/biomedicines10102634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Atherosclerosis manifests by the thickening of artery walls and their narrowed channels through the accumulation of plaque. It is one of the most important indicators of cardiovascular disease. It can be caused by various factors, such as smoking, a high cholesterol diet, hypertension, hyperglycemia, and genetic factors. However, atherosclerosis can also develop due to infection. It has been reported that some bacteria and viruses can cause the development of atherosclerosis. Examples of these viruses are influenza viruses, herpes viruses, hepatitis viruses, or papillomaviruses, which are all prevalent and eminent globally for infecting the population worldwide. Moreover, many patients with coronavirus disease 2019 (COVID-19) showed symptoms of cardiovascular disease. In this review paper, the viruses linked to the development of atherosclerosis are introduced, and their viral characteristics, the mechanisms of the development of atherosclerosis, and the current vaccines and antiviral treatment methods are summarized.
Collapse
Affiliation(s)
- Seang-Hwan Jung
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Korea
- Correspondence: (S.-H.J.); (K.-T.L.)
| | - Kyung-Tae Lee
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Korea
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02247, Korea
- Correspondence: (S.-H.J.); (K.-T.L.)
| |
Collapse
|
34
|
Jung S, Choi BH, Joo NS. Serum Homocysteine and Vascular Calcification: Advances in Mechanisms, Related Diseases, and Nutrition. Korean J Fam Med 2022; 43:277-289. [PMID: 36168899 PMCID: PMC9532189 DOI: 10.4082/kjfm.21.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Abstract
Identifying and preventing modifiable risk factors for cardiovascular disease is very important. Vascular calcification has been studied clinically as an asymptomatic preclinical marker of atherosclerosis and a risk factor for cardio-cerebrovascular disease. It is known that higher homocysteine levels are associated with calcified plaques and the higher the homocysteine level, the higher the prevalence and progression of vascular calcification. Homocysteine is a byproduct of methionine metabolism and is generally maintained at a physiological level. Moreover, it may increase if the patient has a genetic deficiency of metabolic enzymes, nutritional deficiencies of related cofactors (vitamins), chronic diseases, or a poor lifestyle. Homocysteine is an oxidative stress factor that can lead to calcified plaques and trigger vascular inflammation. Hyperhomocysteinemia causes endothelial dysfunction, transdifferentiation of vascular smooth muscle cells, and the induction of apoptosis. As a result of transdifferentiation and cell apoptosis, hydroxyapatite accumulates in the walls of blood vessels. Several studies have reported on the mechanisms of multiple cellular signaling pathways that cause inflammation and calcification in blood vessels. Therefore, in this review, we take a closer look at understanding the clinical consequences of hyperhomocysteinemia and apply clinical approaches to reduce its prevalence.
Collapse
Affiliation(s)
- Susie Jung
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| | | | - Nam-Seok Joo
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
- Corresponding Author: Nam-Seok Joo Tel: +82-31-219-5324, Fax: +82-31-219-5218, E-mail:
| |
Collapse
|
35
|
Zhu W, Liang W, Lu H, Chang L, Zhang J, Chen YE, Guo Y. Myeloid TM6SF2 Deficiency Inhibits Atherosclerosis. Cells 2022; 11:2877. [PMID: 36139452 PMCID: PMC9497156 DOI: 10.3390/cells11182877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic variants in transmembrane 6 superfamily member 2 (TM6SF2), such as E167K, are associated with atherosclerotic cardiovascular disease (ASCVD). Chronic inflammation and lipid-laden macrophage foam cell formation are the central pathogeneses in the development of atherosclerosis. This study was undertaken to illustrate the biological function of TM6SF2 in macrophages and its role during atherosclerosis development. We generated myeloid cell-specific Tm6sf2 knockout mice on ApoE-deficient background (LysM Cre+/Tm6sf2fl/fl/ApoE-/-, TM6 mKO) with littermate LysM Cre-/Tm6sf2fl/fl/ApoE-/- (Control) mice as controls. Mice were fed a Western diet for 12 weeks to induce atherosclerosis. Myeloid Tm6sf2 deficiency inhibited atherosclerosis and decreased foam cells in the plaques without changing the plasma lipid profile. RNA sequencing of bone marrow-derived macrophages (BMDMs) from TM6 mKO mice demonstrated the downregulation of genes associated with inflammation, cholesterol uptake, and endoplasmic reticulum (ER) stress. TM6SF2 was upregulated by oxidized low-density lipoprotein (oxLDL) in macrophages. Silencing TM6SF2 in THP-1-derived macrophages and Tm6sf2 deficiency in BMDMs reduced inflammatory responses and ER stress and attenuated cholesterol uptake and foam cell formation, while the overexpression of TM6SF2 showed opposite effects. In conclusion, myeloid TM6SF2 deficiency inhibits atherosclerosis development and is a potential therapeutic target for the treatment of atherogenesis.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Chang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Shi Y, Luo Z, You J. Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1803. [PMID: 35441489 DOI: 10.1002/wnan.1803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Primarily responsible for the biogenesis and metabolism of biomolecules, endoplasmic reticulum (ER) and mitochondria are gradually becoming the targets of therapeutic modulation, whose physiological activities and pathological manifestations determine the functional capacity and even the survival of cells. Drug delivery systems with specific physicochemical properties (passive targeting), or modified by small molecular compounds, polypeptides, and biomembranes demonstrating tropism for ER and mitochondria (active targeting) are able to reduce the nonselective accumulation of drugs, enhancing efficacy while reducing side effects. Lipid nanoparticles feature high biocompatibility, diverse cargo loading, and flexible structure modification, which are frequently used for subcellular organelle-targeted delivery of therapeutics. However, there is still a lack of systematic understanding of lipid nanoparticle-based ER and mitochondria targeting. Herein, we review the pathological significance of drug selectively delivered to the ER and mitochondria. We also summarize the molecular basis and application prospects of lipid nanoparticle-based ER and mitochondria targeting strategies, which may provide guidance for the prevention and treatment of associated diseases and disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Puppala S, Spradling-Reeves KD, Chan J, Birnbaum S, Newman DE, Comuzzie AG, Mahaney MC, VandeBerg JL, Olivier M, Cox LA. Hepatic transcript signatures predict atherosclerotic lesion burden prior to a 2-year high cholesterol, high fat diet challenge. PLoS One 2022; 17:e0271514. [PMID: 35925965 PMCID: PMC9352111 DOI: 10.1371/journal.pone.0271514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to identify molecular mechanisms by which the liver influences total lesion burden in a nonhuman primate model (NHP) of cardiovascular disease with acute and chronic feeding of a high cholesterol, high fat (HCHF) diet. Baboons (47 females, 64 males) were fed a HCHF diet for 2 years (y); liver biopsies were collected at baseline, 7 weeks (w) and 2y, and lesions were quantified in aortic arch, descending aorta, and common iliac at 2y. Unbiased weighted gene co-expression network analysis (WGCNA) revealed several modules of hepatic genes correlated with lesions at different time points of dietary challenge. Pathway and network analyses were performed to study the roles of hepatic module genes. More significant pathways were observed in males than females. In males, we found modules enriched for genes in oxidative phosphorylation at baseline, opioid signaling at 7w, and EIF2 signaling and HNF1A and HNF4A networks at baseline and 2y. One module enriched for fatty acid β oxidation pathway genes was found in males and females at 2y. To our knowledge, this is the first study of a large NHP cohort to identify hepatic genes that correlate with lesion burden. Correlations of baseline and 7w module genes with lesions at 2y were observed in males but not in females. Pathway analyses of baseline and 7w module genes indicate EIF2 signaling, oxidative phosphorylation, and μ-opioid signaling are possible mechanisms that predict lesion formation induced by HCHF diet consumption in males. Our findings of coordinated hepatic transcriptional response in male baboons but not female baboons indicate underlying molecular mechanisms differ between female and male primate atherosclerosis.
Collapse
Affiliation(s)
- Sobha Puppala
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Kimberly D. Spradling-Reeves
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Shifra Birnbaum
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Deborah E. Newman
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | | | - Michael C. Mahaney
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - John L. VandeBerg
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
38
|
Relationship between Brain Metabolic Disorders and Cognitive Impairment: LDL Receptor Defect. Int J Mol Sci 2022; 23:ijms23158384. [PMID: 35955522 PMCID: PMC9369234 DOI: 10.3390/ijms23158384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023] Open
Abstract
The low-density-lipoprotein receptor (LDLr) removes low-density lipoprotein (LDL), an endovascular transporter that carries cholesterol from the bloodstream to peripheral tissues. The maintenance of cholesterol content in the brain, which is important to protect brain function, is affected by LDLr. LDLr co-localizes with the insulin receptor and complements the internalization of LDL. In LDLr deficiency, LDL blood levels and insulin resistance increase, leading to abnormal cholesterol control and cognitive deficits in atherosclerosis. Defects in brain cholesterol metabolism lead to neuroinflammation and blood–brain-barrier (BBB) degradation. Moreover, interactions between endoplasmic reticulum stress (ER stress) and mitochondria are induced by ox-LDL accumulation, apolipoprotein E (ApoE) regulates the levels of amyloid beta (Aβ) in the brain, and hypoxia is induced by apoptosis induced by the LDLr defect. This review summarizes the association between neurodegenerative brain disease and typical cognitive deficits.
Collapse
|
39
|
Fatima S, Ambreen S, Mathew A, Elwakiel A, Gupta A, Singh K, Krishnan S, Rana R, Khawaja H, Gupta D, Manoharan J, Besler C, Laufs U, Kohli S, Isermann B, Shahzad K. ER-Stress and Senescence Coordinately Promote Endothelial Barrier Dysfunction in Diabetes-Induced Atherosclerosis. Nutrients 2022; 14:2786. [PMID: 35889743 PMCID: PMC9323824 DOI: 10.3390/nu14142786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus is hallmarked by accelerated atherosclerosis, a major cause of mortality among patients with diabetes. Efficient therapies for diabetes-associated atherosclerosis are absent. Accelerated atherosclerosis in diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we directly compared the effects of high glucose and oxidized LDL, revealing that high glucose induced more pronounced responses in regard to maladaptive unfolded protein response (UPR), senescence, and vascular endothelial cell barrier disruption. Ex vivo, diabetic ApoE-/- mice displayed increased levels of senescence and UPR markers within atherosclerotic lesions compared with nondiabetic ApoE-/- mice. Activated protein C pretreatment maintained barrier permeability and prevented glucose-induced expression of senescence and UPR markers in vitro. These data suggest that high glucose-induced maladaptive UPR and associated senescence promote vascular endothelial cell dysfunction, which-however-can be reversed by aPC. Taken together, current data suggest that reversal of glucose-induced vascular endothelial cell dysfunction is feasible.
Collapse
Affiliation(s)
- Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Shruthi Krishnan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Hamzah Khawaja
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Christian Besler
- Cardiology, Leipzig Heart Center, University of Leipzig, 04289 Leipzig, Germany;
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| |
Collapse
|
40
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
41
|
He L, Zhang CL, Chen Q, Wang L, Huang Y. Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics. Pharmacol Ther 2022; 235:108152. [PMID: 35122834 DOI: 10.1016/j.pharmthera.2022.108152] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Atherosclerotic vascular disease and its complications are among the top causes of mortality worldwide. In the vascular lumen, atherosclerotic plaques are not randomly distributed. Instead, they are preferentially localized at the curvature and bifurcations along the arterial tree, where shear stress is low or disturbed. Numerous studies demonstrate that endothelial cell phenotypic change (e.g., inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, endothelial-mesenchymal transition, endothelial permeability, epigenetic regulation, and endothelial metabolic adaptation) induced by oscillatory shear force play a fundamental role in the initiation and progression of atherosclerosis. Mechano-sensors, adaptor proteins, kinases, and transcriptional factors work closely at different layers to transduce the shear stress force from the plasma membrane to the nucleus in endothelial cells, thereby controlling the expression of genes that determine cell fate and phenotype. An in-depth understanding of these mechano-sensitive signaling cascades shall provide new translational strategies for therapeutic intervention of atherosclerotic vascular disease. This review updates the recent advances in endothelial mechano-transduction and its role in the pathogenesis of atherosclerosis, and highlights the perspective of new anti-atherosclerosis therapies through targeting these mechano-regulated signaling molecules.
Collapse
Affiliation(s)
- Lei He
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Su H, Mei Y, Luo S, Wu H, He Y, Shiraishi Y, Hu P, Cohen RA, Tong X. Substitution of the SERCA2 Cys 674 reactive thiol accelerates atherosclerosis by inducing endoplasmic reticulum stress and inflammation. Br J Pharmacol 2022; 179:4778-4791. [PMID: 35763220 DOI: 10.1111/bph.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The cysteine674 (C674) thiol of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 is easily and irreversibly oxidized under atherosclerotic conditions. However, the contribution of the C674 thiol redox status in the development of atherosclerosis remains unclear. Our goal was to elucidate the possible mechanism involved. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in mice in which half of the C674 was substituted by serine674 (S674) were used to mimic the removal of the reactive C674 thiol which occurs under pathological conditions. Bone marrow-derived macrophages (BMDMs) and cardiac endothelial cells (ECs) were used for intracellular Ca2+ , macrophage adhesion, and protein expression analysis. The whole aorta and aortic root were isolated for histological analysis. KEY RESULTS Cell culture studies suggest the partial substitution of SERCA2 C674 increased intracellular Ca2+ levels and induced ER stress in both BMDMs and ECs. The release of pro-inflammatory factors and macrophage adhesion increased in SKI BMDMs. In ECs, the overexpression of S674 induced endothelial inflammation and promoted macrophage recruitment. SKI mice developed more severe atherosclerotic plaque and macrophage accumulation. Additionally, 4-phenyl butyric acid (PBA), an ER stress inhibitor, suppressed ER stress and inflammatory responses in BMDMs and ECs, and alleviate atherosclerosis in SKI mice. CONCLUSIONS AND IMPLICATIONS The substitution of SERCA2 C674 thiol accelerates the development of atherosclerosis by inducing ER stress and inflammation. Our findings highlight the importance of SERCA2 C674 redox state in the context of atherosclerosis and open up a novel therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Hang Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Mei
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Shuangxue Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yan He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yasumasa Shiraishi
- Department of Internal Medicine, Division of Cardiovascular Medicine, National Defense Medical College, Saitama, Japan
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.,College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Richard A Cohen
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
43
|
Rao Z, Zheng Y, Xu L, Wang Z, Zhou Y, Chen M, Dong N, Cai Z, Li F. Endoplasmic Reticulum Stress and Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2022; 9:918056. [PMID: 35783850 PMCID: PMC9243238 DOI: 10.3389/fcvm.2022.918056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular calcification (VC) is characterized by calcium phosphate deposition in blood vessel walls and is associated with many diseases, as well as increased cardiovascular morbidity and mortality. However, the molecular mechanisms underlying of VC development and pathogenesis are not fully understood, thus impeding the design of molecular-targeted therapy for VC. Recently, several studies have shown that endoplasmic reticulum (ER) stress can exacerbate VC. The ER is an intracellular membranous organelle involved in the synthesis, folding, maturation, and post-translational modification of secretory and transmembrane proteins. ER stress (ERS) occurs when unfolded/misfolded proteins accumulate after a disturbance in the ER environment. Therefore, downregulation of pathological ERS may attenuate VC. This review summarizes the relationship between ERS and VC, focusing on how ERS regulates the development of VC by promoting osteogenic transformation, inflammation, autophagy, and apoptosis, with particular interest in the molecular mechanisms occurring in various vascular cells. We also discuss, the therapeutic effects of ERS inhibition on the progress of diseases associated with VC are detailed.
Collapse
Affiliation(s)
- Zhenqi Rao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Basic Medical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Liu W, Östberg NK, Yalcinkaya M, Dou H, Endo-Umeda K, Tang Y, Hou X, Xiao T, Filder T, Abramowicz S, Yang YG, Soehnlein O, Tall AR, Wang N. Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. J Clin Invest 2022; 132:155724. [PMID: 35587375 PMCID: PMC9246386 DOI: 10.1172/jci155724] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Elevated hematocrit is associated with cardiovascular risk; however, the causality and mechanisms are unclear. The JAK2V617F (Jak2VF) mutation increases cardiovascular risk in myeloproliferative disorders and in clonal hematopoiesis. Jak2VF mice with elevated WBCs, platelets, and RBCs display accelerated atherosclerosis and macrophage erythrophagocytosis. To investigate whether selective erythroid Jak2VF expression promotes atherosclerosis, we developed hyperlipidemic erythropoietin receptor Cre mice that express Jak2VF in the erythroid lineage (VFEpoR mice). VFEpoR mice without elevated blood cell counts showed increased atherosclerotic plaque necrosis, erythrophagocytosis, and ferroptosis. Selective induction of erythrocytosis with low-dose erythropoietin further exacerbated atherosclerosis with prominent ferroptosis, lipid peroxidation, and endothelial damage. VFEpoR RBCs had reduced antioxidant defenses and increased lipid hydroperoxides. Phagocytosis of human or murine WT or JAK2VF RBCs by WT macrophages induced ferroptosis, which was prevented by the ferroptosis inhibitor liproxstatin-1. Liproxstatin-1 reversed increased atherosclerosis, lipid peroxidation, ferroptosis, and endothelial damage in VFEpoR mice and in Jak2VF chimeric mice simulating clonal hematopoiesis, but had no impact in controls. Erythroid lineage Jak2VF expression led to qualitative and quantitative defects in RBCs that exacerbated atherosclerosis. Phagocytosis of RBCs by plaque macrophages promoted ferroptosis, suggesting a therapeutic target for reducing RBC-mediated cardiovascular risk.
Collapse
Affiliation(s)
- Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, United States of America
| | - Nataliya K Östberg
- Physiology and Pharmacology (FyFA), Karolinska Institute, Stockholm, Sweden
| | - Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia Unicersity, New York, United States of America
| | - Huijuan Dou
- Division of Molecular Medicine, Department of Medicine, Columbia Unicersity, New York, United States of America
| | - Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Yang Tang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Xintong Hou
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, United States of America
| | - Trevor Filder
- Division of Molecular Medicine, Department of Medicine, Columbia Unicersity, New York, United States of America
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, United States of America
| | - Yong-Guang Yang
- Institute of Immunology, The First Hospital of Jilin University, Changchun, China
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Munich, Germany
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, United States of America
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, United States of America
| |
Collapse
|
45
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
46
|
Yang J, Hao J, Lin Y, Guo Y, Liao K, Yang M, Cheng H, Yang M, Chen K. Profile and Functional Prediction of Plasma Exosome-Derived CircRNAs From Acute Ischemic Stroke Patients. Front Genet 2022; 13:810974. [PMID: 35360855 PMCID: PMC8963851 DOI: 10.3389/fgene.2022.810974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke is one of the major causes of death and long-term disability, of which acute ischemic stroke (AIS) is the most common type. Although circular RNA (circRNA) expression profiles of AIS patients have been reported to be significantly altered in blood and peripheral blood mononuclear cells, the role of exosome-containing circRNAs after AIS is still unknown. Plasma exosomes from 10 AIS patients and 10 controls were isolated, and through microarray and bioinformatics analysis, the profile and putative function of circRNAs in the plasma exosomes were studied. A total of 198 circRNAs were differentially quantified (|log2 fold change| ≥ 1.00, p < 0.05) between AIS patients and controls. The levels of 12 candidate circRNAs were verified by qRT-PCR, and the quantities of 10 of these circRNAs were consistent with the data of microarray. The functions of host genes of differentially quantified circRNAs, including RNA and protein process, focal adhesion, and leukocyte transendothelial migration, were associated with the development of AIS. As a miRNA sponge, differentially quantified circRNAs had the potential to regulate pathways related to AIS, like PI3K-Akt, AMPK, and chemokine pathways. Of 198 differentially quantified circRNAs, 96 circRNAs possessing a strong translational ability could affect cellular structure and activity, like focal adhesion, tight junction, and endocytosis. Most differentially quantified circRNAs were predicted to bind to EIF4A3 and AGO2—two RNA-binding proteins (RBPs)—and to play a role in AIS. Moreover, four of ten circRNAs with verified levels by qRT-PCR (hsa_circ_0112036, hsa_circ_0066867, hsa_circ_0093708, and hsa_circ_0041685) were predicted to participate in processes of AIS, including PI3K-Akt, AMPK, and chemokine pathways as well as endocytosis, and to be potentially useful as diagnostic biomarkers for AIS. In conclusion, plasma exosome-derived circRNAs were significantly differentially quantified between AIS patients and controls and participated in the occurrence and progression of AIS by sponging miRNA/RBPs or translating into proteins, indicating that circRNAs from plasma exosomes could be crucial molecules in the pathogenesis of AIS and promising candidates as diagnostic biomarkers and therapeutic targets for the condition.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junli Hao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yapeng Lin
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yijia Guo
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Ke Liao
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Min Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hang Cheng
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, China
- *Correspondence: Kejie Chen,
| |
Collapse
|
47
|
Su E, Yu P, Zhang B, Zhang A, Xie S, Zhang C, Li S, Zou Y, Liu M, Jiang H, Ge J. Endothelial Intracellular ANG (Angiogenin) Protects Against Atherosclerosis by Decreasing Endoplasmic Reticulum Stress. Arterioscler Thromb Vasc Biol 2022; 42:305-325. [PMID: 35045729 DOI: 10.1161/atvbaha.121.317339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND ANG (angiogenin) is essential for cellular adaptation to endoplasmic reticulum (ER) stress, a process closely associated with cardiovascular diseases, including atherosclerosis. We aimed to investigate the role of ANG in the progression of atherosclerosis and elucidate its underlying molecular mechanisms. METHODS We constructed adenoassociated virus 9 ANG overexpression vectors and endothelial ANG- and ApoE (apolipoprotein E)-deficient mice to determine the effects of ANG on ER stress and atherosclerotic lesions. RNA sequencing of endothelial ANG- and ApoE-deficient mice identified ANG-dependent downregulation of ST3GAL5 (ST3 beta-galactoside alpha-2,3-sialyltransferase 5) expression, and the direct regulation of ST3GAL5 by ANG was verified by chromatin immunoprecipitation sequencing and luciferase reporter assay results. RESULTS Reanalysis of expression profiling datasets indicated decreased ANG levels in patients' atherosclerotic lesions, and these data were validated in aortas from ApoE-/- mice. ER stress marker and adhesion molecule levels, aortic root lesions and macrophage deposition were substantially reduced in ApoE-/- mice injected with an adenoassociated virus 9 ANG without signal peptide (ANG-ΔSP) overexpression vector compared with empty and full-length ANG overexpression vectors. Endothelial ANG deficiency significantly elevated ER stress and increased adhesion molecule expression, which aggravated atherosclerotic lesions and enhanced THP-1 monocyte adhesion to endothelial cells in vivo and in vitro, respectively. Furthermore, ANG-ΔSP overexpression significantly attenuated oxidized low-density lipoprotein-induced ER stress and THP-1 monocyte adhesion to endothelial cells, which were reversed by ST3GAL5 inhibition. CONCLUSIONS These results suggest that endothelial intracellular ANG is a novel therapeutic against atherosclerosis and exerts atheroprotective effects via ST3GAL5-mediated ER stress suppression.
Collapse
Affiliation(s)
- Enyong Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Endocrinology and Metabolism (P.Y.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baoli Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Neurorehabilitation Medicine, Kongjiang Branch, the First Rehabilitation Hospital of Shanghai, China (A.Z.)
| | - Shiyao Xie
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyu Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Liu
- Department of Health Management Center (M.L.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Atherosclerosis in HIV Patients: What Do We Know so Far? Int J Mol Sci 2022; 23:ijms23052504. [PMID: 35269645 PMCID: PMC8910073 DOI: 10.3390/ijms23052504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
For the past several decades, humanity has been dealing with HIV. This disease is one of the biggest global health problems. Fortunately, modern antiretroviral therapy allows patients to manage the disease, improving their quality of life and their life expectancy. In addition, the use of these drugs makes it possible to reduce the risk of transmission of the virus to almost zero. Atherosclerosis is another serious pathology that leads to severe health problems, including disability and, often, the death of the patient. An effective treatment for atherosclerosis has not yet been developed. Both types of immune response, innate and adaptive, are important components of the pathogenesis of this disease. In this regard, the peculiarities of the development of atherosclerosis in HIV carriers are of particular scientific interest. In this review, we have tried to summarize the data on atherosclerosis and its development in HIV carriers. We also looked at the classic therapeutic methods and their features concerning the concomitant diagnosis.
Collapse
|
49
|
Yildirim Z, Baboo S, Hamid SM, Dogan AE, Tufanli O, Robichaud S, Emerton C, Diedrich JK, Vatandaslar H, Nikolos F, Gu Y, Iwawaki T, Tarling E, Ouimet M, Nelson DL, Yates JR, Walter P, Erbay E. Intercepting IRE1 kinase-FMRP signaling prevents atherosclerosis progression. EMBO Mol Med 2022; 14:e15344. [PMID: 35191199 PMCID: PMC8988208 DOI: 10.15252/emmm.202115344] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Fragile X Mental Retardation protein (FMRP), widely known for its role in hereditary intellectual disability, is an RNA‐binding protein (RBP) that controls translation of select mRNAs. We discovered that endoplasmic reticulum (ER) stress induces phosphorylation of FMRP on a site that is known to enhance translation inhibition of FMRP‐bound mRNAs. We show ER stress‐induced activation of Inositol requiring enzyme‐1 (IRE1), an ER‐resident stress‐sensing kinase/endoribonuclease, leads to FMRP phosphorylation and to suppression of macrophage cholesterol efflux and apoptotic cell clearance (efferocytosis). Conversely, FMRP deficiency and pharmacological inhibition of IRE1 kinase activity enhances cholesterol efflux and efferocytosis, reducing atherosclerosis in mice. Our results provide mechanistic insights into how ER stress‐induced IRE1 kinase activity contributes to macrophage cholesterol homeostasis and suggests IRE1 inhibition as a promising new way to counteract atherosclerosis.
Collapse
Affiliation(s)
- Zehra Yildirim
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Syed M Hamid
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asli E Dogan
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Ozlem Tufanli
- Lagone Medical Center, New York University, New York, NY, USA
| | - Sabrina Robichaud
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Christina Emerton
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Fotis Nikolos
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yanghong Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Takao Iwawaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Elizabeth Tarling
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Ebru Erbay
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
50
|
Wang T, Zhou J, Zhang X, Wu Y, Jin K, Wang Y, Xu R, Yang G, Li W, Jiao L. X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. Aging Dis 2022; 14:350-369. [PMID: 37008067 PMCID: PMC10017146 DOI: 10.14336/ad.2022.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis (AS), the formation of fibrofatty lesions in the vessel wall, is the primary cause of heart disease and stroke and is closely associated with aging. Disrupted metabolic homeostasis is a primary feature of AS and leads to endoplasmic reticulum (ER) stress, which is an abnormal accumulation of unfolded proteins. By orchestrating signaling cascades of the unfolded protein response (UPR), ER stress functions as a double-edged sword in AS, where adaptive UPR triggers synthetic metabolic processes to restore homeostasis, whereas the maladaptive response programs the cell to the apoptotic pathway. However, little is known regarding their precise coordination. Herein, an advanced understanding of the role of UPR in the pathological process of AS is reviewed. In particular, we focused on a critical mediator of the UPR, X-box binding protein 1 (XBP1), and its important role in balancing adaptive and maladaptive responses. The XBP1 mRNA is processed from the unspliced isoform (XBP1u) to the spliced isoform of XBP1 (XBP1s). Compared with XBP1u, XBP1s predominantly functions downstream of inositol-requiring enzyme-1α (IRE1α) and transcript genes involved in protein quality control, inflammation, lipid metabolism, carbohydrate metabolism, and calcification, which are critical for the pathogenesis of AS. Thus, the IRE1α/XBP1 axis is a promising pharmaceutical candidate against AS.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|