1
|
Zheng ZQ, Cai DH, Song YF. Identification of immune feature genes and intercellular profiles in diabetic cardiomyopathy. World J Diabetes 2024; 15:2093-2110. [DOI: 10.4239/wjd.v15.i10.2093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role. The immunological molecular mechanisms underlying DCM are poorly understood.
AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes (IFGs).
METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing (RNA-seq) datasets. Single-sample gene set enrichment analysis (ssGSEA) facilitated the analysis of immune cell infiltration. Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort. Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques. Additionally, single-cell RNA-seq data provided deeper insights into cellular profiles and interactions.
RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes. Four IFGs showed good diagnostic and prognostic values in the validation cohort: Proenkephalin (Penk) and retinol binding protein 7 (Rbp7), which were highly expressed, and glucagon receptor and inhibin subunit alpha, which were expressed at low levels in DCM patients (all area under the curves > 0.9). SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells. High expression of Penk (P < 0.0001) and Rbp7 (P = 0.001) was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro. Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM, especially between mesenchymal cells and macrophages.
CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers, and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis.
Collapse
Affiliation(s)
- Ze-Qun Zheng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Department of Cardiology, Clinical Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Di-Hui Cai
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Yong-Fei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| |
Collapse
|
2
|
Tuleta I, Hanna A, Humeres C, Aguilan JT, Sidoli S, Zhu F, Frangogiannis NG. Fibroblast-specific TGF-β signaling mediates cardiac dysfunction, fibrosis, and hypertrophy in obese diabetic mice. Cardiovasc Res 2024:cvae210. [PMID: 39373248 DOI: 10.1093/cvr/cvae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 10/08/2024] Open
Abstract
AIMS Transforming growth factor (TGF)-β is up-regulated in the diabetic myocardium and may mediate fibroblast activation. We aimed at examining the role of TGF-β-induced fibroblast activation in the pathogenesis of diabetic cardiomyopathy. METHODS AND RESULTS We generated lean and obese db/db mice with fibroblast-specific loss of TbR2, the Type 2 receptor-mediating signaling through all three TGF-β isoforms, and mice with fibroblast-specific Smad3 disruption. Systolic and diastolic function, myocardial fibrosis, and hypertrophy were assessed. Transcriptomic studies and in vitro experiments were used to dissect mechanisms of fibroblast activation. Fibroblast-specific TbR2 loss attenuated systolic and diastolic dysfunction in db/db mice. The protective effects of fibroblast TbR2 loss in db/db mice were associated with attenuated fibrosis and reduced cardiomyocyte hypertrophy, suggesting that in addition to their role in fibrous tissue deposition, TGF-β-stimulated fibroblasts may also exert paracrine actions on cardiomyocytes. Fibroblast-specific Smad3 loss phenocopied the protective effects of fibroblast TbR2 loss in db/db mice. Db/db fibroblasts had increased expression of genes associated with oxidative response (such as Fmo2, encoding flavin-containing monooxygenase 2), matricellular genes (such as Thbs4 and Fbln2), and Lox (encoding lysyl oxidase). Ingenuity pathway analysis (IPA) predicted that neurohumoral mediators, cytokines, and growth factors (such as AGT, TGFB1, and TNF) may serve as important upstream regulators of the transcriptomic profile of diabetic mouse fibroblasts. IPA of scRNA-seq data identified TGFB1, p53, MYC, PDGF-BB, EGFR, and WNT3A/CTNNB1 as important upstream regulators underlying fibroblast activation in db/db hearts. Comparison of the transcriptome of fibroblasts from db/db mice with fibroblast-specific Smad3 loss and db/db Smad3 fl/fl controls identified Thbs4 [encoding thrombospondin-4 (TSP-4), a marker of activated fibroblasts] as a candidate diabetes-induced fibrogenic mediator. However, in vitro experiments showed no significant activating effects of matricellular or intracellular TSP-4 on cardiac fibroblasts. CONCLUSION Fibroblast-specific TGF-β/Smad3 signaling mediates ventricular fibrosis, hypertrophy, and dysfunction in Type 2 diabetes.
Collapse
Affiliation(s)
- Izabela Tuleta
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Anis Hanna
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Claudio Humeres
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Jennifer T Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Fenglan Zhu
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Zhang K, Li Y, Ge X, Meng L, Kong J, Meng X. Regulatory T cells protect against diabetic cardiomyopathy in db/db mice. J Diabetes Investig 2024; 15:1191-1201. [PMID: 38943657 PMCID: PMC11363098 DOI: 10.1111/jdi.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/01/2024] Open
Abstract
AIMS/INTRODUCTION Regulatory T cells (Tregs) have protected against many cardiovascular diseases. This study was intended to explore the effect of Tregs on diabetic cardiomyopathy (DCM) using a db/db mouse model. MATERIALS AND METHODS Eight-week-old male db/db mice were randomly divided into four groups: the control group, administered 200 μL phosphate-buffered saline; the small-dose Treg group, administered 105 Tregs; the large-dose Treg group, administered 106 Tregs; and the PC group, administered 100 μg anti-CD25 specific antibody (PC61) and 106 Tregs. After 12 weeks, mice were euthanized. Transthoracic echocardiography was carried out at the beginning and end of the experiment. Relevant basic experiments to evaluate the effects of Tregs on DCM were carried out. RESULTS Echocardiography showed that the impaired diastolic and systolic functions were significantly improved in mice administered large-dose Tregs. Large-dose Tregs significantly ameliorated myocardial hypertrophy and fibrosis, and decreased hypertrophic gene expression and collagen deposition. The protective effects of Tregs on diabetic hearts were associated with decreased oxidative stress, inflammatory response and apoptosis. In addition, Tregs promoted the activation of the phosphatidylinositol 3-kinase-protein kinase B signaling pathway, whereas they inhibited extracellular signal-regulated kinase 1/2 and Jun N-terminal kinase phosphorylation, which might be responsible for the cardioprotective role of Tregs against DCM. CONCLUSIONS Tregs ameliorated myocardial hypertrophy and fibrosis, improved cardiac dysfunction, and protected against DCM progression in db/db mice. The mechanisms involved a decrease of inflammatory response, oxidative stress and apoptosis, which might be mediated by phosphatidylinositol 3-kinase-protein kinase B and mitogen-activated protein kinase pathways. Hence, Tregs might serve as a promising therapeutic approach for DCM treatment.
Collapse
Affiliation(s)
- Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yunyi Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiao Ge
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoChina
| | - Linlin Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
4
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
McCallinhart PE, Chade AR, Bender SB, Trask AJ. Expanding landscape of coronary microvascular disease in co-morbid conditions: Metabolic disease and beyond. J Mol Cell Cardiol 2024; 192:26-35. [PMID: 38734061 PMCID: PMC11340124 DOI: 10.1016/j.yjmcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Coronary microvascular disease (CMD) and impaired coronary blood flow control are defects that occur early in the pathogenesis of heart failure in cardiometabolic conditions, prior to the onset of atherosclerosis. In fact, recent studies have shown that CMD is an independent predictor of cardiac morbidity and mortality in patients with obesity and metabolic disease. CMD is comprised of functional, structural, and mechanical impairments that synergize and ultimately reduce coronary blood flow in metabolic disease and in other co-morbid conditions, including transplant, autoimmune disorders, chemotherapy-induced cardiotoxicity, and remote injury-induced CMD. This review summarizes the contemporary state-of-the-field related to CMD in metabolic and these other co-morbid conditions based on mechanistic data derived mostly from preclinical small- and large-animal models in light of available clinical evidence and given the limitations of studying these mechanisms in humans. In addition, we also discuss gaps in current understanding, emerging areas of interest, and opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, United States of America.
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
6
|
Ma YL, Xu M, Cen XF, Qiu HL, Guo YY, Tang QZ. Tectorigenin protects against cardiac fibrosis in diabetic mice heart via activating the adiponectin receptor 1-mediated AMPK pathway. Biomed Pharmacother 2024; 174:116589. [PMID: 38636400 DOI: 10.1016/j.biopha.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common severe complication of diabetes that occurs independently of hypertension, coronary artery disease, and valvular cardiomyopathy, eventually leading to heart failure. Previous studies have reported that Tectorigenin (TEC) possesses extensive anti-inflammatory and anti-oxidative stress properties. In this present study, the impact of TEC on diabetic cardiomyopathy was examined. The model of DCM in mice was established with the combination of a high-fat diet and STZ treatment. Remarkably, TEC treatment significantly attenuated cardiac fibrosis and improved cardiac dysfunction. Concurrently, TEC was also found to mitigate hyperglycemia and hyperlipidemia in the DCM mouse. At the molecular level, TEC is involved in the activation of AMPK, both in vitro and in vivo, by enhancing its phosphorylation. This is achieved through the regulation of endothelial-mesenchymal transition via the AMPK/TGFβ/Smad3 pathway. Furthermore, it was demonstrated that the level of ubiquitination of the adiponectin receptor 1 (AdipoR1) protein is associated with TEC-mediated improvement of cardiac dysfunction in DCM mice. Notably the substantial reduction of myocardial fibrosis. In conclusion, TEC improves cardiac fibrosis in DCM mice by modulating the AdipoR1/AMPK signaling pathway. These findings suggest that TEC could be an effective therapeutic agent for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xian-Feng Cen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ying-Ying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.
| |
Collapse
|
7
|
Li Z, Chen J, Huang H, Zhan Q, Wang F, Chen Z, Lu X, Sun G. Post-translational modifications in diabetic cardiomyopathy. J Cell Mol Med 2024; 28:e18158. [PMID: 38494853 PMCID: PMC10945092 DOI: 10.1111/jcmm.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zhi Li
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Jie Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hailong Huang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qianru Zhan
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning ProvincePeople's Hospital of China Medical UniversityShenyangChina
| | - Zihan Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xinwei Lu
- Department of CardiologySiping Central People's HospitalSipingChina
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
8
|
Lin X, Huang S, Gao S, Liu J, Tang J, Yu M. Integrin β5 subunit regulates hyperglycemia-induced vascular endothelial cell apoptosis through FoxO1-mediated macroautophagy. Chin Med J (Engl) 2024; 137:565-576. [PMID: 37500497 PMCID: PMC10932531 DOI: 10.1097/cm9.0000000000002769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Hyperglycemia frequently induces apoptosis in endothelial cells and ultimately contributes to microvascular dysfunction in patients with diabetes mellitus (DM). Previous research reported that the expression of integrins as well as their ligands was elevated in the diseased vessels of DM patients. However, the association between integrins and hyperglycemia-induced cell death is still unclear. This research was designed to investigate the role played by integrin subunit β5 (ITGB5) in hyperglycemia-induced endothelial cell apoptosis. METHODS We used leptin receptor knockout (Lepr-KO) ( db / db ) mice as spontaneous diabetes animal model. Selective deletion of ITGB5 in endothelial cell was achieved by injecting vascular targeted adeno-associated virus via tail vein. Besides, we also applied small interfering RNA in vitro to study the mechanism of ITGB5 in regulating high glucose-induced cell apoptosis. RESULTS ITGB5 and its ligand, fibronectin, were both upregulated after exposure to high glucose in vivo and in vitro . ITGB5 knockdown alleviated hyperglycemia-induced vascular endothelial cell apoptosis and microvascular rarefaction in vivo.In vitro analysis revealed that knockdown of either ITGB5 or fibronectin ameliorated high glucose-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). In addition, knockdown of ITGB5 inhibited fibronectin-induced HUVEC apoptosis, which indicated that the fibronectin-ITGB5 interaction participated in high glucose-induced endothelial cell apoptosis. By using RNA-sequencing technology and bioinformatic analysis, we identified Forkhead Box Protein O1 (FoxO1) as an important downstream target regulated by ITGB5. Moreover, we demonstrated that the excessive macroautophagy induced by high glucose can contribute to HUVEC apoptosis, which was regulated by the ITGB5-FoxO1 axis. CONCLUSION The study revealed that high glucose-induced endothelial cell apoptosis was positively regulated by ITGB5, which suggested that ITGB5 could potentially be used to predict and treat DM-related vascular complications.
Collapse
Affiliation(s)
- Xuze Lin
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Sizhuang Huang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Side Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Jinxing Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Jiong Tang
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan 650000, China
| | - Mengyue Yu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
9
|
Guo N, Yang L, Wan X, Qiu D, Sun W, Ma H. Relationship between elevated circulating thrombospondin-1 levels and vascular complications in diabetes mellitus. J Diabetes Investig 2024; 15:197-207. [PMID: 37822187 PMCID: PMC10804906 DOI: 10.1111/jdi.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
AIMS/INTRODUCTION Thrombospondin-1 (TSP-1) participates in a series of physiological and pathological processes by binding to various receptors regulating cell proliferation, adhesion and apoptosis. Elevated circulating TSP-1 is linked with diabetic vascular complications (DVC). This study aimed to determine the relationship between circulating TSP-1 levels and DVC. MATERIALS AND METHODS A comprehensive search of PubMed, Embase, Web of Science and CNKI databases was carried out. A meta-analysis was carried out to compare circulating TSP-1 levels between diabetes patients without vascular complications (DNVC), diabetes patients with DVC and non-diabetes patients. The correlation between TSP-1 and metabolic parameters was also analyzed. Subgroup analysis was carried out according to complication type, defined as diabetic retinopathy, diabetic nephropathy and diabetic cardiovascular disease (DCVD). RESULTS A total of eight studies were included. Compared with non-diabetes patients, diabetic patients, including DNVC and DVC, had significantly higher circulating TSP-1 levels (standardized mean difference [SMD] 2.660, 95% CI 1.17-4.145, P = 0.000). DNVC had significantly higher circulating TSP-1 levels than non-diabetes patients (SMD 3.613, 95% CI 1.607-5.619, P = 0.000). DVC had significantly higher TSP-1 levels than DNVC (SMD 0.568, 95% CI 0.100-1.036, P = 0.017). TSP-1 was significantly positively correlated with fasting plasma glucose (overall Fisher's z = 0.696, 95% CI 0.559-0.833) and HbA1c (overall Fisher's z = 0.849, 95% CI 0.776-0.923). CONCLUSIONS Elevated circulating TSP-1 levels are closely related to DVC, especially in diabetic nephropathy and diabetic cardiovascular disease. Circulating TSP-1 detection might be helpful in the timely diagnosis and treatment of DVC.
Collapse
Affiliation(s)
- Na Guo
- Graduate School of Hebei North UniversityZhangjiakouChina
| | - Linlin Yang
- Hebei Key Laboratory of Metabolic DiseasesHebei General HospitalShijiazhuangChina
| | - Xiaozheng Wan
- Graduate School of Hebei North UniversityZhangjiakouChina
- Department of EndocrinologyHebei General HospitalShijiazhuangChina
| | - Dongze Qiu
- Department of EndocrinologyHebei General HospitalShijiazhuangChina
- Graduate School of Hebei Medical UniversityShijiazhuangChina
| | - Wenwen Sun
- Department of EndocrinologyHebei General HospitalShijiazhuangChina
- Graduate School of North China University of Science and TechnologyTangshanChina
| | - Huijuan Ma
- Hebei Key Laboratory of Metabolic DiseasesHebei General HospitalShijiazhuangChina
- Department of EndocrinologyHebei General HospitalShijiazhuangChina
| |
Collapse
|
10
|
Ahmed B, Farb MG, Karki S, D'Alessandro S, Edwards NM, Gokce N. Pericardial Adipose Tissue Thrombospondin-1 Associates With Antiangiogenesis in Ischemic Heart Disease. Am J Cardiol 2024; 210:201-207. [PMID: 37863116 PMCID: PMC10842123 DOI: 10.1016/j.amjcard.2023.09.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Accumulation of ectopic pericardial adipose tissue has been associated with cardiovascular complications which, in part, may relate to adipose-derived factors that regulate vascular responses and angiogenesis. We sought to characterize adipose tissue microvascular angiogenic capacity in subjects who underwent elective cardiac surgeries including aortic, valvular, and coronary artery bypass grafting. Pericardial adipose tissue was collected intraoperatively and examined for angiogenic capacity. Capillary sprouting was significantly blunted (twofold, p <0.001) in subjects with coronary artery disease (CAD) (age 60 ± 9 years, body mass index [BMI] 32 ± 4 kg/m2, low-density lipoprotein cholesterol [LDL-C] 95 ± 46 mg/100 ml, n = 29) compared with age-, BMI-, and LDL-C matched subjects without angiographic obstructive CAD (age 59 ± 10 y, BMI 35 ± 9 kg/m2, LDL-C 101 ± 40 mg/100 ml, n = 12). For potential mechanistic insight, we performed mRNA expression analyses using quantitative real-time polymerase chain reaction and observed no significant differences in pericardial fat gene expression of proangiogenic mediators vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor-2 (FGF-2), and angiopoietin-1 (angpt1), or anti-angiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and endostatin. In contrast, mRNA expression of anti-angiogenic thrombospondin-1 (TSP-1) was significantly upregulated (twofold, p = 0.008) in CAD compared with non-CAD subjects, which was confirmed by protein western-immunoblot analysis. TSP-1 gene knockdown using short hairpin RNA lentiviral delivery significantly improved angiogenic deficiency in CAD (p <0.05). In conclusion, pericardial fat in subjects with CAD may be associated with an antiangiogenic profile linked to functional defects in vascularization capacity. Local paracrine actions of TSP-1 in adipose depots surrounding the heart may play a role in mechanisms of ischemic heart disease.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Melissa G Farb
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Shakun Karki
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Sophia D'Alessandro
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Niloo M Edwards
- Division of Cardiac Surgery, Boston Medical Center, Boston, Massachusetts
| | - Noyan Gokce
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
11
|
Frangogiannis NG. TGF-β as a therapeutic target in the infarcted and failing heart: cellular mechanisms, challenges, and opportunities. Expert Opin Ther Targets 2024; 28:45-56. [PMID: 38329809 DOI: 10.1080/14728222.2024.2316735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Myocardial fibrosis accompanies most cardiac conditions and can be reparative or maladaptive. Transforming Growth Factor (TGF)-β is a potent fibrogenic mediator, involved in repair, remodeling, and fibrosis of the injured heart. AREAS COVERED This review manuscript discusses the role of TGF-β in heart failure focusing on cellular mechanisms and therapeutic implications. TGF-β is activated in infarcted, remodeling and failing hearts. In addition to its fibrogenic actions, TGF-β has a broad range of effects on cardiomyocytes, immune, and vascular cells that may have both protective and detrimental consequences. TGF-β-mediated effects on macrophages promote anti-inflammatory transition, whereas actions on fibroblasts mediate reparative scar formation and effects on pericytes are involved in maturation of infarct neovessels. On the other hand, TGF-β actions on cardiomyocytes promote adverse remodeling, and prolonged activation of TGF-β signaling in fibroblasts stimulates progression of fibrosis and heart failure. EXPERT OPINION Understanding of the cell-specific actions of TGF-β is necessary to design therapeutic strategies in patients with myocardial disease. Moreover, to implement therapeutic interventions in the heterogeneous population of heart failure patients, mechanism-driven classification of both HFrEF and HFpEF patients is needed. Heart failure patients with prolonged or overactive fibrogenic TGF-β responses may benefit from cautious TGF-β inhibition.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
12
|
Tung LW, Groppa E, Soliman H, Lin B, Chang C, Cheung CW, Ritso M, Guo D, Rempel L, Sinha S, Eisner C, Brassard J, McNagny K, Biernaskie J, Rossi F. Spatiotemporal signaling underlies progressive vascular rarefaction in myocardial infarction. Nat Commun 2023; 14:8498. [PMID: 38129410 PMCID: PMC10739910 DOI: 10.1038/s41467-023-44227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Therapeutic angiogenesis represents a promising avenue to revascularize the ischemic heart. Its limited success is partly due to our poor understanding of the cardiac stroma, specifically mural cells, and their response to ischemic injury. Here, we combine single-cell and positional transcriptomics to assess the behavior of mural cells within the healing heart. In response to myocardial infarction, mural cells adopt an altered state closely associated with the infarct and retain a distinct lineage from fibroblasts. This response is concurrent with vascular rarefaction and reduced vascular coverage by mural cells. Positional transcriptomics reveals that the infarcted heart is governed by regional-dependent and temporally regulated programs. While the remote zone acts as an important source of pro-angiogenic signals, the infarct zone is accentuated by chronic activation of anti-angiogenic, pro-fibrotic, and inflammatory cues. Together, our work unveils the spatiotemporal programs underlying cardiac repair and establishes an association between vascular deterioration and mural cell dysfunction.
Collapse
Affiliation(s)
- Lin Wei Tung
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Elena Groppa
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Borea Therapeutics, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea, 265, 34136, Trieste, Italy
| | - Hesham Soliman
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Aspect Biosystems, 1781 W 75th Ave, Vancouver, BC, V6P 6P2, Canada
- Faculty of Pharmaceutical Sciences, Minia University, Minia, Egypt
| | - Bruce Lin
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Chihkai Chang
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Chun Wai Cheung
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Morten Ritso
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - David Guo
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lucas Rempel
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Sarthak Sinha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christine Eisner
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Julyanne Brassard
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kelly McNagny
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fabio Rossi
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
13
|
Trotta MC, Herman H, Ciceu A, Mladin B, Rosu M, Lepre CC, Russo M, Bácskay I, Fenyvesi F, Marfella R, Hermenean A, Balta C, D’Amico M. Chrysin-based supramolecular cyclodextrin-calixarene drug delivery system: a novel approach for attenuating cardiac fibrosis in chronic diabetes. Front Pharmacol 2023; 14:1332212. [PMID: 38169923 PMCID: PMC10759242 DOI: 10.3389/fphar.2023.1332212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Cardiac fibrosis is strongly induced by diabetic conditions. Both chrysin (CHR) and calixarene OTX008, a specific inhibitor of galectin 1 (Gal-1), seem able to reduce transforming growth factor beta (TGF-β)/SMAD pro-fibrotic pathways, but their use is limited to their low solubility. Therefore, we formulated a dual-action supramolecular system, combining CHR with sulfobutylated β-cyclodextrin (SBECD) and OTX008 (SBECD + OTX + CHR). Here we aimed to test the anti-fibrotic effects of SBECD + OTX + CHR in hyperglycemic H9c2 cardiomyocytes and in a mouse model of chronic diabetes. Methods: H9c2 cardiomyocytes were exposed to normal (NG, 5.5 mM) or high glucose (HG, 33 mM) for 48 h, then treated with SBECD + OTX + CHR (containing OTX008 0.75-1.25-2.5 µM) or the single compounds for 6 days. TGF-β/SMAD pathways, Mitogen-Activated Protein Kinases (MAPKs) and Gal-1 levels were assayed by Enzyme-Linked Immunosorbent Assays (ELISAs) or Real-Time Quantitative Reverse Transcription Polymerase chain reaction (qRT-PCR). Adult CD1 male mice received a single intraperitoneal (i.p.) administration of streptozotocin (STZ) at a dosage of 102 mg/kg body weight. From the second week of diabetes, mice received 2 times/week the following i.p. treatments: OTX (5 mg/kg)-SBECD; OTX (5 mg/kg)-SBECD-CHR, SBECD-CHR, SBECD. After a 22-week period of diabetes, mice were euthanized and cardiac tissue used for tissue staining, ELISA, qRT-PCR aimed to analyse TGF-β/SMAD, extracellular matrix (ECM) components and Gal-1. Results: In H9c2 cells exposed to HG, SBECD + OTX + CHR significantly ameliorated the damaged morphology and reduced TGF-β1, its receptors (TGFβR1 and TGFβR2), SMAD2/4, MAPKs and Gal-1. Accordingly, these markers were reduced also in cardiac tissue from chronic diabetes, in which an amelioration of cardiac remodeling and ECM was evident. In both settings, SBECD + OTX + CHR was the most effective treatment compared to the other ones. Conclusion: The CHR-based supramolecular SBECD-calixarene drug delivery system, by enhancing the solubility and the bioavailability of both CHR and calixarene OTX008, and by combining their effects, showed a strong anti-fibrotic activity in rat cardiomyocytes and in cardiac tissue from mice with chronic diabetes. Also an improved cardiac tissue remodeling was evident. Therefore, new drug delivery system, which could be considered as a novel putative therapeutic strategy for the treatment of diabetes-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Caterina Claudia Lepre
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ildikó Bácskay
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
14
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Agyekum JA, Yeboah K. Angiopoietin-2 Is Associated with Aortic Stiffness in Diabetes Patients in Ghana: A Case-Control Study. Int J Vasc Med 2023; 2023:3155982. [PMID: 37869582 PMCID: PMC10586911 DOI: 10.1155/2023/3155982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Objective Impaired angiogenesis, measured as serum levels of angiogenic growth factors, may be among the mechanisms underlining aortic stiffness in diabetes patients. We studied the association between aortic stiffness and circulating angiogenic growth factors in type 2 diabetes (T2DM) patients without any organ damage. Methods In a case-control design, aortic pulse wave velocity (PWV), augmentation index (AIx), and aortic blood pressures (BPs) were measured in 140 T2DM patients and 110 nondiabetic controls. Fasting blood samples were collected to measure the levels of angiopoietin- (Ang-) 1, Ang-2, and vascular endothelial growth factor-A (VEGF). Results Compared to nondiabetes participants, T2DM patients had increased PWV (8.7 ± 1.5 vs. 7.6 ± 1.3, p = 0.031), aortic pulse BP (58 ± 20 vs. 49 ± 17, p = 0.011), Ang-2 (838 (473-1241) vs. 597 (274-1005), p = 0.018), and VEGF (72.2 (28-201.8) vs. 48.4 (17.4-110.1), p = 0.025) but reduced levels of AIx (21.7 ± 13.8 vs. 34 ± 12.9, p < 0.001) and Ang-1 (33.1 (24.7-42.1) vs. 41.1 (30-57.3), p = 0.01). In all study participants, compared to those in the lower tertile, participants in the upper tertile of Ang-2 had increased odds of PWV (2.01 (1.17-3.84), p = 0.004), aortic systolic BP (1.24 (1.04-1.97), p = 0.011), and aortic pulse BP (1.19 (1.04-1.82), p = 0.041) but reduced odds of AIx (0.84 (0.71-0.96), p = 0.014) in multivariable-adjusted models. Conclusion In our study population, increased circulating Ang-2 was associated with increased levels of aortic stiffness parameters.
Collapse
Affiliation(s)
- Jennifer A. Agyekum
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
- Medical Laboratory Unit, Mamprobi Hospital, Ghana Health Service, Accra, Ghana
| | - Kwame Yeboah
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
16
|
Whitehead CA, Morokoff AP, Kaye AH, Drummond KJ, Mantamadiotis T, Stylli SS. Invadopodia associated Thrombospondin-1 contributes to a post-therapy pro-invasive response in glioblastoma cells. Exp Cell Res 2023; 431:113743. [PMID: 37591452 DOI: 10.1016/j.yexcr.2023.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
A critical challenge in the treatment of glioblastoma (GBM) is its highly invasive nature which promotes cell migration throughout the brain and hinders surgical resection and effective drug delivery. GBM cells demonstrate augmented invasive capabilities following exposure to the current gold standard treatment of radiotherapy (RT) and concomitant and adjuvant temozolomide (TMZ), resulting in rapid disease recurrence. Elucidating the mechanisms employed by post-treatment invasive GBM cells is critical to the development of more effective therapies. In this study, we utilized a Nanostring® Cancer Progression gene expression panel to identify candidate genes that may be involved in enhanced GBM cell invasion after treatment with clinically relevant doses of RT/TMZ. Our findings identified thrombospondin-1 (THBS1) as a pro-invasive gene that is upregulated in these cells. Immunofluorescence staining revealed that THBS1 localised within functional matrix-degrading invadopodia that formed on the surface of GBM cells. Furthermore, overexpression of THBS1 resulted in enhanced GBM cell migration and secretion of MMP-2, which was reduced with silencing of THBS1. The preliminary data demonstrates that THBS1 is associated with invadopodia in GBM cells and is likely involved in the invadopodia-mediated invasive process in GBM cells exposed to RT/TMZ treatment. Therapeutic inhibition of THBS1-mediated invadopodia activity, which facilitates GBM cell invasion, should be further investigated as a treatment for GBM.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrew H Kaye
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Katharine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
17
|
Preda A, Carbone F, Tirandi A, Montecucco F, Liberale L. Obesity phenotypes and cardiovascular risk: From pathophysiology to clinical management. Rev Endocr Metab Disord 2023; 24:901-919. [PMID: 37358728 PMCID: PMC10492705 DOI: 10.1007/s11154-023-09813-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/27/2023]
Abstract
Obesity epidemic reached the dimensions of a real global health crisis with more than one billion people worldwide living with obesity. Multiple obesity-related mechanisms cause structural, functional, humoral, and hemodynamic alterations with cardiovascular (CV) deleterious effects. A correct assessment of the cardiovascular risk in people with obesity is critical for reducing mortality and preserving quality of life. The correct identification of the obesity status remains difficult as recent evidence suggest that different phenotypes of obesity exist, each one associated with different degrees of CV risk. Diagnosis of obesity cannot depend only on anthropometric parameters but should include a precise assessment of the metabolic status. Recently, the World Heart Federation and World Obesity Federation provided an action plan for management of obesity-related CV risk and mortality, stressing for the instauration of comprehensive structured programs encompassing multidisciplinary teams. In this review we aim at providing an updated summary regarding the different obesity phenotypes, their specific effects on CV risk and differences in clinical management.
Collapse
Affiliation(s)
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
| | - Amedeo Tirandi
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy.
- Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy.
| | - Luca Liberale
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
| |
Collapse
|
18
|
Mo D, Liu J, Li H. The effects of Thrombospondin-1 on cardiovascular disease: Friend or foe? Int J Cardiol 2023; 377:19. [PMID: 36738842 DOI: 10.1016/j.ijcard.2023.01.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Affiliation(s)
- Degang Mo
- Department of Cardiology, Liaocheng People(')s Hospital Affiliated to Shandong First Medical University, Liaocheng 252000, PR China.
| | - Jiahui Liu
- Department of Cardiology, Liaocheng People(')s Hospital Affiliated to Shandong First Medical University, Liaocheng 252000, PR China
| | - Hongxu Li
- Department of Cardiology, Liaocheng People(')s Hospital Affiliated to Shandong First Medical University, Liaocheng 252000, PR China
| |
Collapse
|
19
|
Alex L, Tuleta I, Hanna A, Frangogiannis NG. Diabetes Induces Cardiac Fibroblast Activation, Promoting a Matrix-Preserving Nonmyofibroblast Phenotype, Without Stimulating Pericyte to Fibroblast Conversion. J Am Heart Assoc 2023; 12:e027463. [PMID: 36892073 PMCID: PMC10111546 DOI: 10.1161/jaha.122.027463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Background Interstitial and perivascular fibrosis may contribute to diabetes-associated heart failure. Pericytes can convert to fibroblasts under conditions of stress and have been implicated in the pathogenesis of fibrotic diseases. We hypothesized that in diabetic hearts, pericytes may convert to fibroblasts, contributing to fibrosis and to the development of diastolic dysfunction. Methods and Results Using pericyte:fibroblast dual reporter (NG2Dsred [neuron-glial antigen 2 red fluorescent protein variant]; PDGFRαEGFP [platelet-derived growth factor receptor alpha enhanced green fluorescent protein]) mice in a type 2 diabetic db/db background, we found that diabetes does not significantly affect pericyte density but reduces the myocardial pericyte:fibroblast ratio. Lineage tracing using the inducible NG2CreER driver, along with reliable labeling of fibroblasts with the PDGFRα reporter system, showed no significant pericyte to fibroblast conversion in lean and db/db hearts. In addition, db/db mouse cardiac fibroblasts did not undergo myofibroblast conversion and had no significant induction of structural collagens but exhibited a matrix-preserving phenotype, associated with increased expression of antiproteases, matricellular genes, matrix cross-linking enzymes, and the fibrogenic transcription factor cMyc. In contrast, db/db mouse cardiac pericytes had increased expression of Timp3, without any changes in expression of other fibrosis-associated genes. The matrix-preserving phenotype of diabetic fibroblasts was associated with induction of genes encoding oxidative (Ptgs2/cycloxygenase-2, and Fmo2) and antioxidant proteins (Hmox1, Sod1). In vitro, high glucose partially recapitulated the in vivo changes in diabetic fibroblasts. Conclusions Diabetic fibrosis is not mediated through pericyte to fibroblast conversion but involves acquisition of a matrix-preserving fibroblast program, which is independent of myofibroblast conversion and is only partially explained by the effects of the hyperglycemic environment.
Collapse
Affiliation(s)
- Linda Alex
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| |
Collapse
|
20
|
Kupatt C, Ziegler T, Bähr A, Le Noble F. Thymosin ß4 and MRTF-A mitigate vessel regression despite cardiovascular risk factors. Int Immunopharmacol 2023; 117:109786. [PMID: 36812671 DOI: 10.1016/j.intimp.2023.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/22/2023]
Abstract
Since clinical revascularization techniques of coronary or peripheral artery disease (CAD/PAD) focus on macrovessels of the heart, the microcirculatory compartment largely goes unnoticed. However, cardiovascular risk factors not only drive large vessel atherosclerosis, but also microcirculatory rarefaction, an instance unmet by current therapeutic schemes. Angiogenic gene therapy has the potential to reverse capillary rarefaction, but only if the disease-causing inflammation and vessel-destabilization are addressed. This review summarizes the current knowledge with regard to capillary rarefaction due to cardiovascular risk factors. Moreover, the potential of Thymosin ß4 (Tß4) and its downstream signal, myocardin-related transcription factor-A (MRTF-A), to counteract capillary rarefaction are discussed.
Collapse
Affiliation(s)
- Christian Kupatt
- Medizinische Klinik und Poliklinik I, Klinikum rechts der Isar, 81675 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (German Centre of Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Tilman Ziegler
- Medizinische Klinik und Poliklinik I, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Andrea Bähr
- Medizinische Klinik und Poliklinik I, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ferdinand Le Noble
- Karlsruhe Institute of Technology (KIT) Cell and Developmental Biology, Building 30.44 Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Yao Y, Xue J, Li B. Obesity and sudden cardiac death: Prevalence, pathogenesis, prevention and intervention. Front Cell Dev Biol 2022; 10:1044923. [PMID: 36531958 PMCID: PMC9757164 DOI: 10.3389/fcell.2022.1044923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2024] Open
Abstract
Obesity and sudden cardiac death (SCD) share common risk factors. Obesity, in and of itself, can result in the development of SCD. Numerous epidemiologic and clinical studies have demonstrated the close relationships between obesity and SCD, however, the underlying mechanisms remain incompletely understood. Various evidences support the significance of excess adiposity in determining the risk of SCD, including anatomical remodeling, electrical remodeling, metabolic dysfunction, autonomic imbalance. Weight reduction has improved obesity related comorbidities, and reversed abnormal cardiac remodeling. Indeed, it is still unknown whether weight loss contributes to decreased risk of SCD. Further high-quality, prospective trials are needed to strengthen our understanding on weight management and SCD.
Collapse
Affiliation(s)
- Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
22
|
Gupta S, Khanal S, Bhavnani N, Mathias A, Lallo J, Kiriakou A, Ferrell J, Raman P. Sex-specific differences in atherosclerosis, thrombospondin-1, and smooth muscle cell differentiation in metabolic syndrome versus non-metabolic syndrome mice. Front Cardiovasc Med 2022; 9:1020006. [PMID: 36505365 PMCID: PMC9727198 DOI: 10.3389/fcvm.2022.1020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Metabolic syndrome (MetS) amplifies the risks of atherosclerosis. Despite well-known sexual dimorphism in atherosclerosis, underlying mechanisms are poorly understood. Our previous findings highlight a proatherogenic protein, thrombospondin-1 (TSP-1), in hyperglycemia- or hyperleptinemia (mimicking obesity)-induced atherosclerosis. However, the role of TSP-1 in the development of atherosclerosis prompted by co-existing hyperglycemia and obesity, characteristic of MetS, is unknown. The goal of this study was to examine sex-specific differences in lesion progression in a model of combined MetS and atherosclerosis (KKAyApoE) and interrogate how these differences relate to TSP-1 expression. Methods Male and female KKAy+/-ApoE-/- (with ectopic agouti gene expression) and age-matched non-agouti KKAy-/-ApoE-/- littermates were placed on a standard laboratory diet from 4 to 24 weeks age followed by blood and tissue harvests for biochemical, molecular, and aortic root morphometric studies. Results Metabolic profiling confirmed MetS phenotype of KKAy+/-ApoE-/-; however, only male genotypes were glucose intolerant with elevated VLDL-cholesterol and VLDL-triglyceride levels. Aortic root morphometry demonstrated profound lipid-filled lesions, increased plaque area, and augmented inflammatory and SMC abundance in MetS vs non-MetS males. This increase in lesion burden was accompanied with elevated TSP-1 and attenuated LMOD-1 (SM contractile marker) and SRF (transcriptional activator of SM differentiation) expression in male MetS aortic vessels. In contrast, while lipid burden, plaque area, and TSP-1 expression increased in MetS and non-MetS female mice, there was no significant difference between these genotypes. Increased collagen content was noted in MetS and non-MetS genotypes, specific to female mice. Measurement of plasma testosterone revealed a link between the atherogenic phenotype and abnormally high or low testosterone levels. To interrogate whether TSP-1 plays a direct role in SMC de-differentiation in MetS, we generated KKAy+/- mice with and without global TSP-1 deletion. Immunoblotting showed increased SM contractile markers in male KKAy+/-TSP-1-/- aortic vessels vs male KKAy+/-TSP-1+/ +. In contrast, TSP-1 deletion had no effect on SM contractile marker expression in female genotypes. Conclusion Together, the current study implicates a role of plasma testosterone in sex-specific differences in atherosclerosis and TSP-1 expression in MetS vs non-MetS mice. Our data suggest a sex-dependent differential role of TSP-1 on SMC de-differentiation in MetS. Collectively, these findings underscore a fundamental link between TSP-1 and VSMC phenotypic transformation in MetS.
Collapse
Affiliation(s)
- Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Neha Bhavnani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ariana Kiriakou
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Jessica Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States,*Correspondence: Priya Raman,
| |
Collapse
|
23
|
Sarohi V, Chakraborty S, Basak T. Exploring the cardiac ECM during fibrosis: A new era with next-gen proteomics. Front Mol Biosci 2022; 9:1030226. [PMID: 36483540 PMCID: PMC9722982 DOI: 10.3389/fmolb.2022.1030226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
Extracellular matrix (ECM) plays a critical role in maintaining elasticity in cardiac tissues. Elasticity is required in the heart for properly pumping blood to the whole body. Dysregulated ECM remodeling causes fibrosis in the cardiac tissues. Cardiac fibrosis leads to stiffness in the heart tissues, resulting in heart failure. During cardiac fibrosis, ECM proteins get excessively deposited in the cardiac tissues. In the ECM, cardiac fibroblast proliferates into myofibroblast upon various kinds of stimulations. Fibroblast activation (myofibroblast) contributes majorly toward cardiac fibrosis. Other than cardiac fibroblasts, cardiomyocytes, epithelial/endothelial cells, and immune system cells can also contribute to cardiac fibrosis. Alteration in the expression of the ECM core and ECM-modifier proteins causes different types of cardiac fibrosis. These different components of ECM culminated into different pathways inducing transdifferentiation of cardiac fibroblast into myofibroblast. In this review, we summarize the role of different ECM components during cardiac fibrosis progression leading to heart failure. Furthermore, we highlight the importance of applying mass-spectrometry-based proteomics to understand the key changes occurring in the ECM during fibrotic progression. Next-gen proteomics studies will broaden the potential to identify key targets to combat cardiac fibrosis in order to achieve precise medicine-development in the future.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| |
Collapse
|
24
|
Chang FC, Liu CH, Luo AJ, Tao-Min Huang T, Tsai MH, Chen YJ, Lai CF, Chiang CK, Lin TH, Chiang WC, Chen YM, Chu TS, Lin SL. Angiopoietin-2 inhibition attenuates kidney fibrosis by hindering chemokine C-C motif ligand 2 expression and apoptosis of endothelial cells. Kidney Int 2022; 102:780-797. [DOI: 10.1016/j.kint.2022.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
|
25
|
Aminu AJ, Chen W, Yin Z, Kuniewicz M, Walocha J, Perde F, Molenaar P, Iaizzo PA, Dobrzynski H, Atkinson AJ. Novel micro-computed tomography contrast agents to visualise the human cardiac conduction system and surrounding structures in hearts from normal, aged, and obese individuals. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
26
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
27
|
Abstract
Transforming growth factor-β (TGFβ) isoforms are upregulated and activated in myocardial diseases and have an important role in cardiac repair and remodelling, regulating the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells. Cardiac injury triggers the generation of bioactive TGFβ from latent stores, through mechanisms involving proteases, integrins and specialized extracellular matrix (ECM) proteins. Activated TGFβ signals through the SMAD intracellular effectors or through non-SMAD cascades. In the infarcted heart, the anti-inflammatory and fibroblast-activating actions of TGFβ have an important role in repair; however, excessive or prolonged TGFβ signalling accentuates adverse remodelling, contributing to cardiac dysfunction. Cardiac pressure overload also activates TGFβ cascades, which initially can have a protective role, promoting an ECM-preserving phenotype in fibroblasts and preventing the generation of injurious, pro-inflammatory ECM fragments. However, prolonged and overactive TGFβ signalling in pressure-overloaded cardiomyocytes and fibroblasts can promote cardiac fibrosis and dysfunction. In the atria, TGFβ-mediated fibrosis can contribute to the pathogenic substrate for atrial fibrillation. Overactive or dysregulated TGFβ responses have also been implicated in cardiac ageing and in the pathogenesis of diabetic, genetic and inflammatory cardiomyopathies. This Review summarizes the current evidence on the role of TGFβ signalling in myocardial diseases, focusing on cellular targets and molecular mechanisms, and discussing challenges and opportunities for therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
28
|
Niknam Z, Samadi M, Ghalibafsabbaghi A, Chodari L. IGF-I combined with exercise improve diabetes-induced vascular dysfunction in heart of male Wistar rats. J Cardiovasc Thorac Res 2021; 14:34-41. [PMID: 35620752 PMCID: PMC9106942 DOI: 10.34172/jcvtr.2021.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction: This research investigates the impact of insulin-like growth factor-I (IGF -I)and exercise on mediators associated with angiogenesis (VEGF-A, TSP-1, and NF-кβ) and capillarization status of the diabetic rats’ hearts.
Methods: Splitting of forty Wistar male rats into five groups occurred as following: control,diabetes, diabetes+IGF-I, diabetes+exercise, and diabetes+exercise+IGF-I.Through intraperitoneal administration of 60 mg/kg streptozotocin, the condition of Type 1diabetes was escalated. After four weeks of treatment with IGF-I (2 mg/kg/day) or treadmill exercise (17 m/min, zero degrees slope, 30 min/day), in the heart, microvascular density and protein levels of VEGF-A, TSP-1, and NF-кβ were determined by H&E staining and ELISA,respectively.
Results: Within the diabetic group, observations present a significant decrease in VEGF-A and MVD levels, whereas an increase in the TSP-1 and NF-Κb levels. While these impacts were reversed by either IGF-I or exercise treatments, simultaneous treatment had synergistic effects. Moreover, among diabetic rats, undesirable histologic alterations of the heart were demonstrated, including myonecrosis, interstitial edema, hemorrhage, and mononuclear immune cell infiltration, whereas treatments improved these changes.
Conclusion: These data manifest that IGF-I and exercise can increase the cardiac angiogenesis of diabetic rats through increasing expression of VEGF-A, and decreasing TSP-1 and NF-кβproteins level, also can improve myocardial tissue damages.
Collapse
Affiliation(s)
- Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences , Urmia, Iran
| | | | - leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
29
|
Wenzl FA, Ambrosini S, Mohammed SA, Kraler S, Lüscher TF, Costantino S, Paneni F. Inflammation in Metabolic Cardiomyopathy. Front Cardiovasc Med 2021; 8:742178. [PMID: 34671656 PMCID: PMC8520939 DOI: 10.3389/fcvm.2021.742178] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Overlapping pandemics of lifestyle-related diseases pose a substantial threat to cardiovascular health. Apart from coronary artery disease, metabolic disturbances linked to obesity, insulin resistance and diabetes directly compromise myocardial structure and function through independent and shared mechanisms heavily involving inflammatory signals. Accumulating evidence indicates that metabolic dysregulation causes systemic inflammation, which in turn aggravates cardiovascular disease. Indeed, elevated systemic levels of pro-inflammatory cytokines and metabolic substrates induce an inflammatory state in different cardiac cells and lead to subcellular alterations thereby promoting maladaptive myocardial remodeling. At the cellular level, inflammation-induced oxidative stress, mitochondrial dysfunction, impaired calcium handling, and lipotoxicity contribute to cardiomyocyte hypertrophy and dysfunction, extracellular matrix accumulation and microvascular disease. In cardiometabolic patients, myocardial inflammation is maintained by innate immune cell activation mediated by pattern recognition receptors such as Toll-like receptor 4 (TLR4) and downstream activation of the NLRP3 inflammasome and NF-κB-dependent pathways. Chronic low-grade inflammation progressively alters metabolic processes in the heart, leading to a metabolic cardiomyopathy (MC) phenotype and eventually to heart failure with preserved ejection fraction (HFpEF). In accordance with preclinical data, observational studies consistently showed increased inflammatory markers and cardiometabolic features in patients with HFpEF. Future treatment approaches of MC may target inflammatory mediators as they are closely intertwined with cardiac nutrient metabolism. Here, we review current evidence on inflammatory processes involved in the development of MC and provide an overview of nutrient and cytokine-driven pro-inflammatory effects stratified by cell type.
Collapse
Affiliation(s)
- Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
31
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
32
|
Zhang J, Wu N, Shi D. The Involvement of the Mammalian Target of Rapamycin, Protein Tyrosine Phosphatase 1b and Dipeptidase 4 Signaling Pathways in Cancer and Diabetes: A Narrative Review. Mini Rev Med Chem 2021; 21:803-815. [PMID: 33185160 DOI: 10.2174/1389557520666201113110406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR), protein tyrosine phosphatase 1b (PTP1B) and dipeptidase 4 (DPP4) signaling pathways regulate eukaryotic cell proliferation and metabolism. Previous researches described different transduction mechanisms in the progression of cancer and diabetes. METHODOLOGY We reviewed recent advances in the signal transduction pathways of mTOR, PTP1B and DPP4 regulation and determined the crosstalk and common pathway in diabetes and cancer. RESULTS We showed that according to numerous past studies, the proteins participate in the signaling networks for both diseases. CONCLUSION There are common pathways and specific proteins involved in diabetes and cancer. This article demonstrates and explains the potential mechanisms of association and future prospects for targeting these proteins in pharmacological studies.
Collapse
Affiliation(s)
- Jiajia Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
33
|
Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22147650. [PMID: 34299270 PMCID: PMC8304780 DOI: 10.3390/ijms22147650] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome responsible for high mortality and morbidity rates. It has an ever growing social and economic impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal management of HFpEF patients. The association between HFpEF and traditional cardiovascular risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms involved are not completely defined. Under the definition of HFpEF there is a wide spectrum of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary microvascular dysfunction, oxidative stress and inflammation are only some of the main pathological detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve HFpEF patients' outcomes and risk factors control is the primary and unique approach to treat those patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting point to understand the genetic, molecular and pathophysiological mechanisms underlying this complex syndrome. The correlation between histopathological findings and imaging aspects may be the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and effective treatment able to modify the disease's natural course.
Collapse
|
34
|
Vanhoutte D, Schips TG, Vo A, Grimes KM, Baldwin TA, Brody MJ, Accornero F, Sargent MA, Molkentin JD. Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy. Nat Commun 2021; 12:3928. [PMID: 34168130 PMCID: PMC8225674 DOI: 10.1038/s41467-021-24215-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
The thrombospondin (Thbs) family of secreted matricellular proteins are stress- and injury-induced mediators of cellular attachment dynamics and extracellular matrix protein production. Here we show that Thbs1, but not Thbs2, Thbs3 or Thbs4, induces lethal cardiac atrophy when overexpressed. Mechanistically, Thbs1 binds and activates the endoplasmic reticulum stress effector PERK, inducing its downstream transcription factor ATF4 and causing lethal autophagy-mediated cardiac atrophy. Antithetically, Thbs1-/- mice develop greater cardiac hypertrophy with pressure overload stimulation and show reduced fasting-induced atrophy. Deletion of Thbs1 effectors/receptors, including ATF6α, CD36 or CD47 does not diminish Thbs1-dependent cardiac atrophy. However, deletion of the gene encoding PERK in Thbs1 transgenic mice blunts the induction of ATF4 and autophagy, and largely corrects the lethal cardiac atrophy. Finally, overexpression of PERK or ATF4 using AAV9 gene-transfer similarly promotes cardiac atrophy and lethality. Hence, we identified Thbs1-mediated PERK-eIF2α-ATF4-induced autophagy as a critical regulator of cardiomyocyte size in the stressed heart.
Collapse
Affiliation(s)
- Davy Vanhoutte
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tobias G Schips
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Janssen Pharmaceuticals, Spring House, PA, USA
| | - Alexander Vo
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly M Grimes
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tanya A Baldwin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew J Brody
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Federica Accornero
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Michelle A Sargent
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
35
|
Zhang X, Fan J, Li H, Chen C, Wang Y. CD36 Signaling in Diabetic Cardiomyopathy. Aging Dis 2021; 12:826-840. [PMID: 34094645 PMCID: PMC8139204 DOI: 10.14336/ad.2020.1217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cluster of differentiation 36 (CD36), also referred to as scavenger receptor B2, has been shown to serve multiple functions in lipid metabolism, inflammatory signaling, oxidative stress, and energy reprogramming. As a scavenger receptor, CD36 interacts with various ligands, such as oxidized low-density lipoprotein (oxLDL), thrombospondin 1 (TSP-1), and fatty acid (FA), thereby activating specific downstream signaling pathways. Cardiac CD36 is mostly expressed on the surface of cardiomyocytes and endothelial cells. The pathophysiological process of diabetic cardiomyopathy (DCM) encompasses diverse metabolic abnormalities, such as enhanced transfer of cardiac myocyte sarcolemmal FA, increased levels of advanced glycation end-products, elevation in oxidative stress, impaired insulin signaling cascade, disturbance in calcium handling, and microvascular rarefaction which are closely related to CD36 signaling. This review presents a summary of the CD36 signaling pathway that acts mainly as a long-chain FA transporter in cardiac myocytes and functions as a receptor to bind to numerous ligands in endothelial cells. Finally, we summarize the recent basic research and clinical findings regarding CD36 signaling in DCM, suggesting a promising strategy to treat this condition.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Hobohm L, Kölmel S, Niemann C, Kümpers P, Krieg VJ, Bochenek ML, Lukasz AH, Reiss Y, Plate KH, Liebetrau C, Wiedenroth CB, Guth S, Münzel T, Hasenfuß G, Wenzel P, Mayer E, Konstantinides SV, Schäfer K, Lankeit M. Role of angiopoietin-2 in venous thrombus resolution and chronic thromboembolic disease. Eur Respir J 2021; 58:13993003.04196-2020. [PMID: 33986029 DOI: 10.1183/13993003.04196-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/10/2021] [Indexed: 11/05/2022]
Abstract
Defective angiogenesis, incomplete thrombus revascularisation and fibrosis are considered critical pathomechanisms of chronic thromboembolic pulmonary hypertension (CTEPH) after pulmonary embolism (PE). Angiopoietin-2 (ANGPT2) has been shown to regulate angiogenesis, but its importance for thrombus resolution and remodelling is unknown.ANGPT2 plasma concentrations were measured in patients with CTEPH (n=68) and acute PE (n=84). Tissue removed during pulmonary endarterectomy (PEA) for CTEPH was analysed (immuno)histologically. A mouse model of inferior vena cava ligation was used to study the kinetics of venous thrombus resolution in wild-type mice receiving recombinant ANGPT2 via osmotic pumps, and in transgenic mice overexpressing ANGPT2 in endothelial cells.Circulating ANGPT2 levels were higher in CTEPH patients compared to patients with idiopathic pulmonary arterial hypertension and healthy controls, and decreased after PEA. Plasma ANGPT2 levels were also elevated in patients with PE and diagnosis of CTEPH during follow-up. Histological analysis of PEA specimens confirmed increased ANGPT2 expression, and low levels of phosphorylated TIE2 were observed in regions with early-organised pulmonary thrombi, myofibroblasts and fibrosis. Microarray and high-resolution microscopy analysis could localise ANGPT2 overexpression to endothelial cells, and hypoxia and TGF-β1 were identified as potential stimuli. Gain-of-function experiments in mice demonstrated that exogenous ANGPT2 administration and transgenic endothelial ANGPT2 overexpression resulted in delayed venous thrombus resolution, and thrombi were characterised by lower TIE2 phosphorylation and fewer microvessels.Our findings suggest that ANGPT2 delays venous thrombus resolution and that overexpression of ANGPT2 contributes to thrombofibrosis and may thus support the transition from PE to CTEPH.
Collapse
Affiliation(s)
- Lukas Hobohm
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Mainz, Germany.,Department of Cardiology, Cardiology I, University Medical Center, Mainz, Germany
| | - Sebastian Kölmel
- Internal Medicine & Endocrinology/Diabetes, Kantonsspital St.Gallen, Sankt Gallen, Switzerland
| | - Caroline Niemann
- Clinic of Gynaecology, St. Franziskus Hospital Münster, Münster, Germany
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital Münster, Münster, Germany
| | - Valentin J Krieg
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Mainz, Germany.,Department of Cardiology, Cardiology I, University Medical Center, Mainz, Germany.,German Cardiovascular Research Centre, partner site Rhine-Main, Germany
| | - Alexander H Lukasz
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital Münster, Münster, Germany
| | - Yvonne Reiss
- German Cardiovascular Research Centre, partner site Rhine-Main, Germany.,Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany
| | - Karl-Heinz Plate
- German Cardiovascular Research Centre, partner site Rhine-Main, Germany.,Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany
| | - Christoph Liebetrau
- German Cardiovascular Research Centre, partner site Rhine-Main, Germany.,Department of Cardiology, Kerckhoff Clinic, Bad Nauheim, Germany.,Department of Cardiology, Justus-Liebig University of Giessen, Giessen, Germany
| | | | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center, Mainz, Germany.,German Cardiovascular Research Centre, partner site Rhine-Main, Germany
| | - Gerd Hasenfuß
- Clinic of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Goettingen, Germany.,German Cardiovascular Research Centre, partner site Goettingen, Germany
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Mainz, Germany.,Department of Cardiology, Cardiology I, University Medical Center, Mainz, Germany.,German Cardiovascular Research Centre, partner site Rhine-Main, Germany
| | - Eckhard Mayer
- Department of Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Stavros V Konstantinides
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Mainz, Germany.,Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center, Mainz, Germany.,German Cardiovascular Research Centre, partner site Rhine-Main, Germany
| | - Mareike Lankeit
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Mainz, Germany .,Clinic of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Goettingen, Germany.,Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité - University Medicine, Berlin, Germany.,German Cardiovascular Research Centre, partner site Berlin, Germany
| |
Collapse
|
37
|
Ahmed U, Ashfaq UA, Qasim M, Ahmad I, Ahmad HU, Tariq M, Masoud MS, Khaliq S. Dysregulation of circulating miRNAs promotes the pathogenesis of diabetes-induced cardiomyopathy. PLoS One 2021; 16:e0250773. [PMID: 33909697 PMCID: PMC8081166 DOI: 10.1371/journal.pone.0250773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic Cardiomyopathy (DCM) is characterized by myocardial dysfunction caused by diabetes mellitus. After-effects of diabetic cardiomyopathy are far more lethal than non-diabetic cardiomyopathy. More than 300 million people suffer from diabetes and cardiovascular disorder which is expected to be elevated to an alarming figure of 450 million by 2030. Recent studies suggested that miRNA plays important role in the onset of diabetic cardiomyopathy. This study was designed to identify the miRNA that is responsible for the onset of diabetic cardiomyopathy using in silico and in vitro approaches. In this study, to identify the miRNA responsible for the onset of diabetic cardiomyopathy, in silico analysis was done to predict the role of these circulating miRNAs in type 2 diabetic cardiomyopathy. Shared miRNAs that are present in both diseases were selected for further analysis. Total RNA and miRNA were extracted from blood samples taken from type 2 diabetic patients as well as healthy controls to analyze the expression of important genes like AKT, VEGF, IGF, FGF1, ANGPT2 using Real-time PCR. The expression of ANGPT2 was up-regulated and AKT, VEGF, IGF, FGF1 were down-regulated in DCM patients as compared to healthy controls. The miRNA expression of miR-17 was up-regulated and miR-24, miR-150, miR-199a, miR-214, and miR-320a were down-regulated in the DCM patients as compared to healthy controls. This shows that dysregulation of target genes and miRNA may contribute towards the pathogenesis of DCM and more studies should be conducted to elucidate the role of circulating miRNAs to use them as therapeutic and diagnostic options.
Collapse
Affiliation(s)
- Uzair Ahmed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Imtiaz Ahmad
- Department of Cardiology, Punjab Institute of Cardiology, Lahore, Pakistan
| | - Hafiz Usman Ahmad
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Sciences and Technology, Mirpur, AJK, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
38
|
Thrombospondin-1 CD47 Signalling: From Mechanisms to Medicine. Int J Mol Sci 2021; 22:ijms22084062. [PMID: 33920030 PMCID: PMC8071034 DOI: 10.3390/ijms22084062] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances provide evidence that the cellular signalling pathway comprising the ligand-receptor duo of thrombospondin-1 (TSP1) and CD47 is involved in mediating a range of diseases affecting renal, vascular, and metabolic function, as well as cancer. In several instances, research has barely progressed past pre-clinical animal models of disease and early phase 1 clinical trials, while for cancers, anti-CD47 therapy has emerged from phase 2 clinical trials in humans as a crucial adjuvant therapeutic agent. This has important implications for interventions that seek to capitalize on targeting this pathway in diseases where TSP1 and/or CD47 play a role. Despite substantial progress made in our understanding of this pathway in malignant and cardiovascular disease, knowledge and translational gaps remain regarding the role of this pathway in kidney and metabolic diseases, limiting identification of putative drug targets and development of effective treatments. This review considers recent advances reported in the field of TSP1-CD47 signalling, focusing on several aspects including enzymatic production, receptor function, interacting partners, localization of signalling, matrix-cellular and cell-to-cell cross talk. The potential impact that these newly described mechanisms have on health, with a particular focus on renal and metabolic disease, is also discussed.
Collapse
|
39
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
40
|
Abstract
The thrombospondin family comprises of five multifunctional glycoproteins, whose best-studied member is thrombospondin 1 (TSP1). This matricellular protein is a potent antiangiogenic agent that inhibits endothelial migration and proliferation, and induces endothelial apoptosis. Studies have demonstrated a regulatory role of TSP1 in cell migration and in activation of the latent transforming growth factor beta 1 (TGFβ1). These functions of TSP1 translate into its broad modulation of immune processes. Further, imbalances in immune regulation have been increasingly linked to pathological conditions such as obesity and diabetes mellitus. While most studies in the past have focused on the role of TSP1 in cancer and inflammation, recently published data have revealed new insights about the role of TSP1 in physiological and metabolic disorders. Here, we highlight recent findings that associate TSP1 and its receptors to obesity, diabetes, and cardiovascular diseases. TSP1 regulates nitric oxide, activates latent TGFβ1, and interacts with receptors CD36 and CD47, to play an important role in cell metabolism. Thus, TSP1 and its major receptors may be considered a potential therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Linda S. Gutierrez
- Department of Biology, Wilkes University, Wilkes Barre, PA, United States
| | | |
Collapse
|
41
|
Ganguly R, Khanal S, Mathias A, Gupta S, Lallo J, Sahu S, Ohanyan V, Patel A, Storm K, Datta S, Raman P. TSP-1 (Thrombospondin-1) Deficiency Protects ApoE -/- Mice Against Leptin-Induced Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:e112-e127. [PMID: 33327743 PMCID: PMC8105272 DOI: 10.1161/atvbaha.120.314962] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Hyperleptinemia, hallmark of obesity, is a putative pathophysiologic trigger for atherosclerosis. We previously reported a stimulatory effect of leptin on TSP-1 (thrombospondin-1) expression, a proatherogenic matricellular protein implicated in atherogenesis. However, a causal role of TSP-1 in leptin-driven atherosclerosis remains unknown. Approach and Results: Seventeen-weeks-old ApoE-/- and TSP-1-/-/ApoE-/- double knockout mice, on normocholesterolemic diet, were treated with or without murine recombinant leptin (5 µg/g bwt, IP) once daily for 3 weeks. Using aortic root morphometry and en face lesion assay, we found that TSP-1 deletion abrogated leptin-stimulated lipid-filled lesion burden, plaque area, and collagen accumulation in aortic roots of ApoE-/- mice, shown via Oil red O, hematoxylin and eosin, and Masson trichrome staining, respectively. Immunofluorescence microscopy of aortic roots showed that TSP-1 deficiency blocked leptin-induced inflammatory and smooth muscle cell abundance as well as cellular proliferation in ApoE-/- mice. Moreover, these effects were concomitant to changes in VLDL (very low-density lipoprotein)-triglyceride and HDL (high-density lipoprotein)-cholesterol levels. Immunoblotting further revealed reduced vimentin and pCREB (phospho-cyclic AMP response element-binding protein) accompanied with augmented smooth muscle-myosin heavy chain expression in aortic vessels of leptin-treated double knockout versus leptin-treated ApoE-/-; also confirmed in aortic smooth muscle cells from the mice genotypes, incubated ± leptin in vitro. Finally, TSP-1 deletion impeded plaque burden in leptin-treated ApoE-/- on western diet, independent of plasma lipid alterations. CONCLUSIONS The present study provides evidence for a protective effect of TSP-1 deletion on leptin-stimulated atherogenesis. Our findings suggest a regulatory role of TSP-1 on leptin-induced vascular smooth muscle cell phenotypic transition and inflammatory lesion invasion. Collectively, these results underscore TSP-1 as a potential target of leptin-induced vasculopathy.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/chemically induced
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/chemically induced
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Collagen/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Leptin
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Signal Transduction
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Mice
Collapse
Affiliation(s)
- Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
- Current Address: Department of Diabetes Complications and Metabolism, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
- Current Address: National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| | - Aakaash Patel
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Kyle Storm
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Sujay Datta
- Department of Statistics, The University of Akron, Akron, OH
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| |
Collapse
|
42
|
Park MY, Krishna Vasamsetti BM, Kim WS, Kang HJ, Kim DY, Lim B, Cho K, Kim JS, Chee HK, Park JH, Yang HS, Rallabandi HR, Ock SA, Park MR, Lee H, Hwang IS, Kim JM, Oh KB, Yun IJ. Comprehensive Analysis of Cardiac Xeno-Graft Unveils Rejection Mechanisms. Int J Mol Sci 2021; 22:ijms22020751. [PMID: 33451076 PMCID: PMC7828557 DOI: 10.3390/ijms22020751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Porcine heart xenotransplantation is a potential treatment for patients with end-stage heart failure. To understand molecular mechanisms of graft rejection after heart transplantation, we transplanted a 31-day-old alpha-1,3-galactosyltransferase knockout (GTKO) porcine heart to a five-year-old cynomolgus monkey. Histological and transcriptome analyses were conducted on xenografted cardiac tissue at rejection (nine days after transplantation). The recipient monkey's blood parameters were analyzed on days -7, -3, 1, 4, and 7. Validation was conducted by quantitative real-time PCR (qPCR) with selected genes. A non-transplanted GTKO porcine heart from an age-matched litter was used as a control. The recipient monkey showed systemic inflammatory responses, and the rejected cardiac graft indicated myocardial infarction and cardiac fibrosis. The transplanted heart exhibited a total of 3748 differentially expressed genes compared to the non-transplanted heart transcriptome, with 2443 upregulated and 1305 downregulated genes. Key biological pathways involved at the terminal stage of graft rejection were cardiomyopathies, extracellular interactions, and ion channel activities. The results of qPCR evaluation were in agreement with the transcriptome data. Transcriptome analysis of porcine cardiac tissue at graft rejection reveals dysregulation of the key molecules and signaling pathways, which play relevant roles on structural and functional integrities of the heart.
Collapse
Affiliation(s)
- Min Young Park
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do 17546, Korea; (M.Y.P.); (D.-Y.K.); (B.L.)
| | - Bala Murali Krishna Vasamsetti
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Wan Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Dongan-gu, Anyang 14068, Korea;
| | - Do-Young Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do 17546, Korea; (M.Y.P.); (D.-Y.K.); (B.L.)
| | - Byeonghwi Lim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do 17546, Korea; (M.Y.P.); (D.-Y.K.); (B.L.)
| | - Kahee Cho
- Primate Organ Transplantation Centre, Genia Inc., Sungnam 13201, Korea;
| | - Jun Seok Kim
- Department of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea; (J.S.K.); (H.K.C.)
| | - Hyun Keun Chee
- Department of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea; (J.S.K.); (H.K.C.)
| | - Jung Hwan Park
- Department of Nephrology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Hyun Suk Yang
- Department of Cardiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Harikrishna Reddy Rallabandi
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Sun A. Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Heasun Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Jun-Mo Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do 17546, Korea; (M.Y.P.); (D.-Y.K.); (B.L.)
- Correspondence: (J.-M.K.); (K.B.O.); (I.J.Y.); Tel.: +82-2-2030-7583 (I.J.Y.); Fax: +82-2-2030-7749 (I.J.Y.)
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
- Correspondence: (J.-M.K.); (K.B.O.); (I.J.Y.); Tel.: +82-2-2030-7583 (I.J.Y.); Fax: +82-2-2030-7749 (I.J.Y.)
| | - Ik Jin Yun
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea
- Correspondence: (J.-M.K.); (K.B.O.); (I.J.Y.); Tel.: +82-2-2030-7583 (I.J.Y.); Fax: +82-2-2030-7749 (I.J.Y.)
| |
Collapse
|
43
|
Capillary Rarefaction in Obesity and Metabolic Diseases-Organ-Specificity and Possible Mechanisms. Cells 2020; 9:cells9122683. [PMID: 33327460 PMCID: PMC7764934 DOI: 10.3390/cells9122683] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its comorbidities like diabetes, hypertension and other cardiovascular disorders are the leading causes of death and disability worldwide. Metabolic diseases cause vascular dysfunction and loss of capillaries termed capillary rarefaction. Interestingly, obesity seems to affect capillary beds in an organ-specific manner, causing morphological and functional changes in some tissues but not in others. Accordingly, treatment strategies targeting capillary rarefaction result in distinct outcomes depending on the organ. In recent years, organ-specific vasculature and endothelial heterogeneity have been in the spotlight in the field of vascular biology since specialized vascular systems have been shown to contribute to organ function by secreting varying autocrine and paracrine factors and by providing niches for stem cells. This review summarizes the recent literature covering studies on organ-specific capillary rarefaction observed in obesity and metabolic diseases and explores the underlying mechanisms, with multiple modes of action proposed. It also provides a glimpse of the reported therapeutic perspectives targeting capillary rarefaction. Further studies should address the reasons for such organ-specificity of capillary rarefaction, investigate strategies for its prevention and reversibility and examine potential signaling pathways that can be exploited to target it.
Collapse
|
44
|
Yang H, Zhou T, Sorenson CM, Sheibani N, Liu B. Myeloid-Derived TSP1 (Thrombospondin-1) Contributes to Abdominal Aortic Aneurysm Through Suppressing Tissue Inhibitor of Metalloproteinases-1. Arterioscler Thromb Vasc Biol 2020; 40:e350-e366. [PMID: 33028100 PMCID: PMC7686278 DOI: 10.1161/atvbaha.120.314913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm is characterized by the progressive loss of aortic integrity and accumulation of inflammatory cells primarily macrophages. We previously reported that global deletion of matricellular protein TSP1 (thrombospondin-1) protects mice from aneurysm formation. The objective of the current study is to investigate the cellular and molecular mechanisms underlying TSP1's action in aneurysm. Approach and Results: Using RNA fluorescent in situ hybridization, we identified macrophages being the major source of TSP1 in human and mouse aneurysmal tissues, accounting for over 70% of cells that actively expressed Thbs1 mRNA. Lack of TSP1 in macrophages decreased solution-based gelatinase activities by elevating TIMP1 (tissue inhibitor of metalloproteinases-1) without affecting the major MMPs (matrix metalloproteinases). Knocking down Timp1 restored the ability of Thbs1-/- macrophages to invade matrix. Finally, we generated Thbs1flox/flox mice and crossed them with Lyz2-cre mice. In the CaCl2-induced model of abdominal aortic aneurysm, lacking TSP1 in myeloid cells was sufficient to protect mice from aneurysm by reducing macrophage accumulation and preserving aortic integrity. CONCLUSIONS TSP1 contributes to aneurysm pathogenesis, at least in part, by suppressing TIMP1 expression, which subsequently enables inflammatory macrophages to infiltrate vascular tissues.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Down-Regulation
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Matrix Metalloproteinases/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Signal Transduction
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Tissue Inhibitor of Metalloproteinase-1/genetics
- Tissue Inhibitor of Metalloproteinase-1/metabolism
Collapse
Affiliation(s)
- Huan Yang
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Ting Zhou
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Christine M. Sorenson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Bo Liu
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
45
|
Hanna A, Humeres C, Frangogiannis NG. The role of Smad signaling cascades in cardiac fibrosis. Cell Signal 2020; 77:109826. [PMID: 33160018 DOI: 10.1016/j.cellsig.2020.109826] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022]
Abstract
Most myocardial pathologic conditions are associated with cardiac fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix (ECM) proteins. Although replacement fibrosis plays a reparative role after myocardial infarction, excessive, unrestrained or dysregulated myocardial ECM deposition is associated with ventricular dysfunction, dysrhythmias and adverse prognosis in patients with heart failure. The members of the Transforming Growth Factor (TGF)-β superfamily are critical regulators of cardiac repair, remodeling and fibrosis. TGF-βs are released and activated in injured tissues, bind to their receptors and transduce signals in part through activation of cascades involving a family of intracellular effectors the receptor-activated Smads (R-Smads). This review manuscript summarizes our knowledge on the role of Smad signaling cascades in cardiac fibrosis. Smad3, the best-characterized member of the family plays a critical role in activation of a myofibroblast phenotype, stimulation of ECM synthesis, integrin expression and secretion of proteases and anti-proteases. In vivo, fibroblast Smad3 signaling is critically involved in scar organization and exerts matrix-preserving actions. Although Smad2 also regulates fibroblast function in vitro, its in vivo role in rodent models of cardiac fibrosis seems more limited. Very limited information is available on the potential involvement of the Smad1/5/8 cascade in cardiac fibrosis. Dissection of the cellular actions of Smads in cardiac fibrosis, and identification of patient subsets with overactive or dysregulated myocardial Smad-dependent fibrogenic responses are critical for design of successful therapeutic strategies in patients with fibrosis-associated heart failure.
Collapse
Affiliation(s)
- Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
46
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
47
|
Bissinger R, Petkova-Kirova P, Mykhailova O, Oldenborg PA, Novikova E, Donkor DA, Dietz T, Bhuyan AAM, Sheffield WP, Grau M, Artunc F, Kaestner L, Acker JP, Qadri SM. Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells. Cell Commun Signal 2020; 18:155. [PMID: 32948210 PMCID: PMC7502024 DOI: 10.1186/s12964-020-00651-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Thrombospondin-1 (TSP-1), a Ca2+-binding trimeric glycoprotein secreted by multiple cell types, has been implicated in the pathophysiology of several clinical conditions. Signaling involving TSP-1, through its cognate receptor CD47, orchestrates a wide array of cellular functions including cytoskeletal organization, migration, cell-cell interaction, cell proliferation, autophagy, and apoptosis. In the present study, we investigated the impact of TSP-1/CD47 signaling on Ca2+ dynamics, survival, and deformability of human red blood cells (RBCs). METHODS Whole-cell patch-clamp was employed to examine transmembrane cation conductance. RBC intracellular Ca2+ levels and multiple indices of RBC cell death were determined using cytofluorometry analysis. RBC morphology and microvesiculation were examined using imaging flow cytometry. RBC deformability was measured using laser-assisted optical rotational cell analyzer. RESULTS Exposure of RBCs to recombinant human TSP-1 significantly increased RBC intracellular Ca2+ levels. As judged by electrophysiology experiments, TSP-1 treatment elicited an amiloride-sensitive inward current alluding to a possible Ca2+ influx via non-selective cation channels. Exogenous TSP-1 promoted microparticle shedding as well as enhancing Ca2+- and nitric oxide-mediated RBC cell death. Monoclonal (mouse IgG1) antibody-mediated CD47 ligation using 1F7 recapitulated the cell death-inducing effects of TSP-1. Furthermore, TSP-1 treatment altered RBC cell shape and stiffness (maximum elongation index). CONCLUSIONS Taken together, our data unravel a new role for TSP-1/CD47 signaling in mediating Ca2+ influx into RBCs, a mechanism potentially contributing to their dysfunction in a variety of systemic diseases. Video abstract.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Olga Mykhailova
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Elena Novikova
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - David A Donkor
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Thomas Dietz
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | | | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Marijke Grau
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at Eberhard-Karls University, Tübingen, Germany.,German Center for Diabetes Research (DZD), Eberhard-Karls University, Tübingen, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Jason P Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Syed M Qadri
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada.
| |
Collapse
|
48
|
Xu X, Ruan L, Tian X, Pan F, Yang C, Liu G. Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells. Mol Med Rep 2020; 22:1783-1792. [PMID: 32705176 PMCID: PMC7411357 DOI: 10.3892/mmr.2020.11275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to explore whether the hypertrophy of H9C2 cardiomyocytes was induced by high glucose, to investigate whether the calcium channel inhibitor (Norvasc) could inhibit this process and to clarify the possible signaling pathways. The morphology of H9C2 cells was observed under an optical microscope, and the cell surface area was measured by Image Pro Plus 6.1 software. Furthermore, fluorescence spectrophotometry was used to detect intracellular calcium concentration ([Ca2+]i). ELISA was performed to detect calcineurin (CaN) activity; reverse transcription-quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of CaN Aβ subunit (CnAβ), nuclear factor of activated T cells 3 (NFAT3) and β type myosin heavy chain (β-MHC). Cell size was increased with the increase in glucose concentration of culture medium at 48 and 72 h, respectively, and decreased with the addition of Norvasc compared with those without Norvasc (P<0.05). There was no significant difference in cell size with the addition of Norvasc compared with cells cultured with 5 mM glucose (P>0.05). The average [Ca2+]i activity of single cells in the 48- and 72-h culture groups treated with 50 mM glucose was significantly higher than cells treated with 5 mM glucose (P<0.05); and the fluorescent value of average [Ca2+]i activity of single cells was lower, following the addition of Norvasc than that without Norvasc (P<0.05). CaN activity in the 48- and 72-h culture group treated with 50 mM glucose was markedly higher than that treated with 5 mM glucose, and the activity of CaN notably decreased with the addition of Norvasc compared with those without Norvasc. The mRNA and protein expression levels of CnAβ, NFAT3 and β-MHC in the 48- and 72-h culture groups treated with 50 mM glucose were all significantly higher than those treated with 5 mM glucose (P<0.05). The mRNA and protein expression of CnAβ, NFAT3 and β-MHC cultured with 50 mM glucose were significantly decreased following the addition of Norvasc (P<0.05). Thus, the calcium channel inhibitor Norvasc may inhibit high glucose-induced hypertrophy of H9C2 cardiomyocytes by inhibiting the Ca2+-CaN-NFAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China
| | - Luoyang Ruan
- Department of Anesthesiology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China
| | - Xiaohua Tian
- Department of Pediatrics, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong 524002, P.R. China
| | - Fengjuan Pan
- Department of Pediatrics, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong 524002, P.R. China
| | - Cailan Yang
- Department of Pediatrics, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong 524002, P.R. China
| | - Guosheng Liu
- Department of Pediatrics, The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
49
|
Zhang K, Li M, Yin L, Fu G, Liu Z. Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review). Int J Mol Med 2020; 45:1275-1293. [PMID: 32323748 PMCID: PMC7138268 DOI: 10.3892/ijmm.2020.4507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombospondin (TSP)-1 and TSP-2 are matricellular proteins in the extracellular matrix (ECM), which serve a significant role in the pathological processes of various cardiovascular diseases (CVDs). The multiple effects of TSP-1 and TSP-2 are due to their ability to interact with various ligands, such as structural components of the ECM, cytokines, cellular receptors, growth factors, proteases and other stromal cell proteins. TSP-1 and TSP-2 regulate the structure and activity of the aforementioned ligands by interacting directly or indirectly with them, thereby regulating the activity of different types of cells in response to environmental stimuli. The pathological processes of numerous CVDs are associated with the degradation and remodeling of ECM components, and with cell migration, dysfunction and apoptosis, which may be regulated by TSP-1 and TSP-2 through different mechanisms. Therefore, investigating the role of TSP-1 and TSP-2 in different CVDs and the potential signaling pathways they are associated with may provide a new perspective on potential therapies for the treatment of CVDs. In the present review, the current understanding of the roles TSP-1 and TSP-2 serve in various CVDs were summarized. In addition, the interacting ligands and the potential pathways associated with these thrombospondins in CVDs are also discussed.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Miaomiao Li
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
50
|
Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med 2020; 217:e20190103. [PMID: 32997468 PMCID: PMC7062524 DOI: 10.1084/jem.20190103] [Citation(s) in RCA: 549] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|