1
|
Chang DF, Court KA, Holgate R, Davis EA, Bush KA, Quick AP, Spiegel AJ, Rahimi M, Cooke JP, Godin B. Telomerase mRNA Enhances Human Skin Engraftment for Wound Healing. Adv Healthc Mater 2024; 13:e2302029. [PMID: 37619534 PMCID: PMC10840696 DOI: 10.1002/adhm.202302029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Deep skin wounds represent a serious condition and frequently require split-thickness skin grafts (STSG) to heal. The application of autologous human-skin-cell-suspension (hSCS) requires less donor skin than STSG without compromising the healing capacity. Impaired function and replicative ability of senescent cutaneous cells in the aging skin affects healing with autologous hSCS. Major determinants of senescence are telomere erosion and DNA damage. Human telomerase reverse transcriptase (hTERT) adds telomeric repeats to the DNA and can protect against DNA damage. Herein, hTERT mRNA lipid nanoparticles (LNP) are proposed and evaluated for enhancing cellular engraftment and proliferation of hSCS. Transfection with optimized hTERT mRNA LNP system enables delivery and expression of mRNA in vitro in keratinocytes, fibroblasts, and in hSCS prepared from donors' skin. Telomerase activity in hSCS is significantly increased. hTERT mRNA LNP enhance the generation of a partial-thickness human skin equivalent in the mouse model, increasing hSCS engraftment (Lamin) and proliferation (Ki67), while reducing cellular senescence (p21) and DNA damage (53BP1).
Collapse
Affiliation(s)
- David F. Chang
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | | | - Rhonda Holgate
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Elizabeth A. Davis
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | | | | | - Aldona J. Spiegel
- Center for Breast Restoration, Houston Methodist Institute for Reconstructive Surgery, Houston Methodist Hospital (HMH)
| | - Maham Rahimi
- Center of Cardiovascular Surgery, Institute of Academic Medicine, HMH
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
- Department of Cardiovascular Sciences, Institute of Academic Medicine, HMH
- Center for RNA Therapeutics, IAM, HMH
| | - Biana Godin
- Department of Nanomedicine, IAM, HMRI, Houston, TX, USA
- Center for RNA Therapeutics, IAM, HMH
- Department of Obstetrics and Gynecology, HMH
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College
- Department of Biomedical Engineering, Texas A&M University
| |
Collapse
|
2
|
El-Osta A. Transcriptional Control of Endothelial Senescence and Vascular Repair. Circ Res 2023; 133:858-860. [PMID: 37883591 DOI: 10.1161/circresaha.123.323716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Affiliation(s)
- Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Veschetti L, Treccani M, De Tomi E, Malerba G. Genomic Instability Evolutionary Footprints on Human Health: Driving Forces or Side Effects? Int J Mol Sci 2023; 24:11437. [PMID: 37511197 PMCID: PMC10380557 DOI: 10.3390/ijms241411437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
In this work, we propose a comprehensive perspective on genomic instability comprising not only the accumulation of mutations but also telomeric shortening, epigenetic alterations and other mechanisms that could contribute to genomic information conservation or corruption. First, we present mechanisms playing a role in genomic instability across the kingdoms of life. Then, we explore the impact of genomic instability on the human being across its evolutionary history and on present-day human health, with a particular focus on aging and complex disorders. Finally, we discuss the role of non-coding RNAs, highlighting future approaches for a better living and an expanded healthy lifespan.
Collapse
Affiliation(s)
| | | | | | - Giovanni Malerba
- GM Lab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (M.T.); (E.D.T.)
| |
Collapse
|
4
|
Bremner JD, Piccinelli M, Garcia EV, Moncayo VM, Elon L, Nye JA, Cooke CD, Washington BP, Ortega RA, Desai SR, Okoh AK, Cheung B, Soyebo BO, Shallenberger LH, Raggi P, Shah AJ, Daaboul O, Jajeh MN, Ziegler C, Driggers EG, Murrah N, De Cecco CN, van Assen M, Krafty RT, Quyyumi AA, Vaccarino V. A Pilot Study of Neurobiological Mechanisms of Stress and Cardiovascular Risk. MEDICAL RESEARCH ARCHIVES 2023; 11:3787. [PMID: 37484871 PMCID: PMC10361343 DOI: 10.18103/mra.v11i4.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Objective Coronary heart disease is a leading cause of death and disability. Although psychological stress has been identified as an important potential contributor, mechanisms by which stress increases risk of heart disease and mortality are not fully understood. The purpose of this study was to assess mechanisms by which stress acts through the brain and heart to confer increased CHD risk. Methods Coronary Heart Disease patients (N=10) underwent cardiac imaging with [Tc-99m] sestamibi single photon emission tomography at rest and during a public speaking mental stress task. Patients returned for a second day and underwent positron emission tomography imaging of the brain, heart, bone marrow, aorta (indicating inflammation) and subcutaneous adipose tissue, after injection of [18F]2-fluoro-2-deoxyglucose for assessment of glucose uptake followed mental stress. Patients with (N=4) and without (N=6) mental stress-induced myocardial ischemia were compared for glucose uptake in brain, heart, adipose tissue and aorta with mental stress. Results Patients with mental stress-induced ischemia showed a pattern of increased uptake in the heart, medial prefrontal cortex, and adipose tissue with stress. In the heart disease group as a whole, activity increase with stress in the medial prefrontal brain and amygdala correlated with stress-induced increases in spleen (r=0.69, p=0.038; and r=0.69, p=0.04 respectfully). Stress-induced frontal lobe increased uptake correlated with stress-induced aorta uptake (r=0.71, p=0.016). Activity in insula and medial prefrontal cortex was correlated with post-stress activity in bone marrow and adipose tissue. Activity in other brain areas not implicated in stress did not show similar correlations. Increases in medial prefrontal activity with stress correlated with increased cardiac glucose uptake with stress, suggestive of myocardial ischemia (r=0.85, p=0.004). Conclusions These findings suggest a link between brain response to stress in key areas mediating emotion and peripheral organs involved in inflammation and hematopoietic activity, as well as myocardial ischemia, in Coronary Heart Disease patients.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Marina Piccinelli
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Ernest V. Garcia
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Valeria M. Moncayo
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Lisa Elon
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Jonathon A. Nye
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - C. David Cooke
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Brianna P. Washington
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Rebeca Alvarado Ortega
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Shivang R. Desai
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Alexis K. Okoh
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Brian Cheung
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Britt O. Soyebo
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | | | - Paolo Raggi
- Mazankowski Alberta Heart Institute and the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Amit J. Shah
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Emory University, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Obada Daaboul
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | | | - Carrie Ziegler
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | | | - Nancy Murrah
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Carlo N. De Cecco
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Department Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
| | - Marly van Assen
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Robert T. Krafty
- Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Arshed A. Quyyumi
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Viola Vaccarino
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Park HS, Im K, Shin D, Yoon S, Kwon S, Kim SW, Lee DS. Telomere integrated scoring system of myelodysplastic syndrome. J Clin Lab Anal 2023; 37:e24839. [PMID: 36658792 PMCID: PMC9978071 DOI: 10.1002/jcla.24839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Recently, multigene target sequencing is widely performed for the purpose of prognostic prediction and application of targeted therapy. Here, we proposed a new scoring system that encompasses gene variations, telomere length, and Revised International Prognostic Scoring System (IPSS-R) together in Asian myelodysplastic syndrome. METHODS We developed a new scoring model of these variables: age ≥ 65 years + IPSS-R score + ASXL1 mutation + TP53 mutation + Telomere length (<5.37). According to this new scoring system, patients were divided into four groups: very good score cutoff (≤3.0), good (3.0-4.5), poor (4.5-7.0), and very poor (>7.0). RESULTS The median OS was 170.1, 100.4, 46.0, and 12.0 months for very good, good, poor, and very poor, retrospectively (p < 0.001). Meanwhile, according to the conventional IPSS-R scoring system, the median OS was 141.3, 50.2, 93.0, 36.0, and 16.2 months for very low, low, intermediate, high, and very high, retrospectively (p < 0.001). CONCLUSIONS The newly developed model incorporating molecular variations and TL yielded more clear separations of the survival curves. By adding the presence of gene mutation and telomere length to the existing IPSS-R, its predictive ability can be further improved in myelodysplastic syndrome.
Collapse
Affiliation(s)
- Hee Sue Park
- Department of Laboratory MedicineChungbuk National University HospitalCheongju‐siKorea,Department of Laboratory MedicineChungbuk National University College of MedicineCheongju‐siKorea
| | - Kyongok Im
- Institute of Reproductive Medicine and Population Medical Research CenterSeoul National UniversitySeoulKorea,School of Health and Environmental Science, College of Health ScienceKorea UniversitySeoulKorea
| | - Dong‐Yeop Shin
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
| | - Sung‐Soo Yoon
- Department of Internal MedicineSeoul National University HospitalSeoulKorea,Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
| | - Sunghoon Kwon
- Department of Electrical and Computer EngineeringSeoul National UniversitySeoulKorea,Bio‐MAX InstituteSeoul National UniversitySeoulKorea
| | - Suhng Wook Kim
- School of Health and Environmental Science, College of Health ScienceKorea UniversitySeoulKorea,BK21 FOUR R&E Center for Learning Health SystemsKorea UniversitySeoulKorea
| | - Dong Soon Lee
- Department of Laboratory MedicineSeoul National University College of MedicineSeoulKorea
| |
Collapse
|
6
|
Leukocyte Telomere Length as a Molecular Biomarker of Coronary Heart Disease. Genes (Basel) 2022; 13:genes13071234. [PMID: 35886017 PMCID: PMC9318544 DOI: 10.3390/genes13071234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Background. This work is a review of preclinical and clinical studies of the role of telomeres and telomerase in the development and progression of coronary heart disease (CHD). Materials and methods. A search for full-text publications (articles, reviews, meta-analyses, Cochrane reviews, and clinical cases) in English and Russian was carried out in the databases PubMed, Oxford University Press, Scopus, Web of Science, Springer, and E-library electronic library using keywords and their combinations. The search depth is 11 years (2010–2021). Results. The review suggests that the relative leukocyte telomere length (LTL) is associated with the development of socially significant and widespread cardiovascular diseases such as CHD and essential hypertension. At the same time, the interests of researchers are mainly focused on the study of the relative LTL in CHD. Conclusions. Despite the scientific and clinical significance of the analyzed studies of the relative length of human LTL as a biological marker of cardiovascular diseases, their implementation in real clinical practice is difficult due to differences in the design and methodology of the analyzed studies, as well as differences in the samples by gender, age, race, and ethnicity. The authors believe that clinical studies of the role of the relative length of leukocyte telomeres in adult patients with coronary heart disease are the most promising and require large multicenter studies with a unified design and methodology.
Collapse
|
7
|
Gori T. Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells 2022; 11:cells11132094. [PMID: 35805178 PMCID: PMC9265311 DOI: 10.3390/cells11132094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary stents are among the most common therapies worldwide. Despite significant improvements in the biocompatibility of these devices throughout the last decades, they are prone, in as many as 10–20% of cases, to short- or long-term failure. In-stent restenosis is a multifactorial process with a complex and incompletely understood pathophysiology in which inflammatory reactions are of central importance. This review provides a short overview for the clinician on the cellular types responsible for restenosis with a focus on the role of endothelial progenitor cells. The mechanisms of restenosis are described, along with the cell-based attempts made to prevent it. While the focus of this review is principally clinical, experimental evidence provides some insight into the potential implications for prevention and therapy of coronary stent restenosis.
Collapse
Affiliation(s)
- Tommaso Gori
- German Center for Cardiac and Vascular Research (DZHK) Standort Rhein-Main, Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
8
|
Pelliccia F, Zimarino M, De Luca G, Viceconte N, Tanzilli G, De Caterina R. Endothelial Progenitor Cells in Coronary Artery Disease: From Bench to Bedside. Stem Cells Transl Med 2022; 11:451-460. [PMID: 35365823 PMCID: PMC9154346 DOI: 10.1093/stcltm/szac010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a heterogeneous group of cells present in peripheral blood at various stages of endothelial differentiation. EPCs have been extensively investigated in patients with coronary artery disease (CAD), with controversial findings both on their role in atherosclerosis progression and in the process of neointimal growth after a percutaneous coronary intervention (PCI). Despite nearly 2 decades of experimental and clinical investigations, however, the significance of EPCs in clinical practice remains unclear and poorly understood. This review provides an update on the role of EPCs in the most common clinical scenarios that are experienced by cardiologists managing patients with CAD. We here summarize the main findings on the association of EPCs with cardiovascular risk factors, coronary atherosclerosis, and myocardial ischemia. We then discuss the potential effects of EPCs in post-PCI in-stent restenosis, as well as most recent findings with EPC-coated stents. Based on the mounting evidence of the relationship between levels of EPCs and several different adverse cardiovascular events, EPCs are emerging as novel predictive biomarkers of long-term outcomes in patients with CAD.
Collapse
Affiliation(s)
| | - Marco Zimarino
- Institute of Cardiology, “G. d’Annunzio” University, Chieti, Italy
- Cath Lab, SS. Annunziata Hospital, Chieti, Italy
| | - Giuseppe De Luca
- Division of Cardiology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Università del Piemonte Orientale, Novara, Italy
| | - Nicola Viceconte
- Department of Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Gaetano Tanzilli
- Department of Cardiovascular Sciences, Sapienza University, Rome, Italy
| | | |
Collapse
|
9
|
Jimenez-Quevedo P, Bernardo E, Del Trigo M, Otsuki S, Nombela-Franco L, Brugaletta S, Ortega-Pozi A, Herrera R, Salinas P, Nuñez-Gil I, Mejía-Rentería H, Alfonso F, Fernandez-Perez C, Fernandez-Ortiz A, Macaya C, Escaned J, Sabate M, Gonzalo N. Vascular Injury After Stenting - Insights of Systemic Mechanisms of Vascular Repair. Circ J 2022; 86:966-974. [PMID: 34853277 DOI: 10.1253/circj.cj-21-0649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The role of circulating progenitor cells (CPC) in vascular repair following everolimus-eluting stent (EES) implantation is largely unknown. The aim of the study was to investigate the relationship between temporal variation in CPC levels following EES implantation and the degree of peri-procedural vascular damage, and stent healing, as measured by optical coherence tomography (OCT). METHODS AND RESULTS CPC populations (CD133+/KDR+/CD45low) included patients with stable coronary artery disease undergoing stent implantation, and were evaluated using a flow cytometry technique both at baseline and at 1 week. OCT evaluation was performed immediately post-implantation to quantify the stent-related injury and at a 9-month follow up to assess the mid-term vascular response. Twenty patients (mean age 66±9 years; 80% male) with EES-treated stenoses (n=24) were included in this study. Vascular injury score was associated with the 1-week increase of CD133+/KDR+/CD45low (β 0.28 [95% CI 0.15; 0.41]; P<0.001) and with maximum neointimal thickness at a 9-month follow up (β 0.008 [95% CI 0.0004; 0.002]; P=0.04). Inverse relationships between numbers of uncoated and apposed struts for the 9-month and the 1-week delta values of CD133+/KDR+/CD45low (β -12.53 [95% CI -22.17; -2.90]; P=0.011), were also found. CONCLUSIONS The extent of vessel wall injury influences early changes in the levels of CPC and had an effect on mid-term vascular healing after EES implantation. Early CPC mobilisation was associated with mid-term strut coverage.
Collapse
Affiliation(s)
| | | | | | - Shuji Otsuki
- University Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
| | | | - Salvatore Brugaletta
- University Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
| | | | | | | | | | | | | | | | | | | | | | - Manel Sabate
- University Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
| | | |
Collapse
|
10
|
Almuwaqqat Z, Wittbrodt MT, Moazzami K, Nye JA, Lima BB, Shah AJ, Alkhalaf J, Pearce B, Sun YV, Quyyumi AA, Vaccarino V, Bremner JD. Neural correlates of stress and leucocyte telomere length in patients with coronary artery disease. J Psychosom Res 2022; 155:110760. [PMID: 35217318 PMCID: PMC8940678 DOI: 10.1016/j.jpsychores.2022.110760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accelerated biological aging, as indicated by telomere shortening, is associated with CAD pathogenesis. In a cross-sectional study, we investigated neural correlates of acute psychological stress and short telomeres in patients with CAD. METHODS Individuals with CAD (N = 168) underwent a validated mental stress protocol including public speaking and mental arithmetic. Imaging of the brain with [O-15] water and high-resolution positron emission tomography (HR-PET) was performed during mental stress and control conditions. Blood flow during stressful tasks (average of speech and arithmetic) and control tasks were assessed. Telomere length in peripheral leucocytes was measured by quantitative polymerase chain reaction and expressed as Telomere/Single Copy Gene (T/S) ratio. Voxel-wise regression models were constructed to assess the association between brain areas and activity during rest and mental stress after adjustments for demographic factors and clinical characteristics. RESULTS The mean (SD) age of the sample was 62 (8) years, and 69% were men. Increased activation with mental stress in the lingual gyrus, cerebellum and superior and inferior frontal gyri were associated with reduced telomere length; 1.6 higher voxel activation of these areas was associated with 0.1 T/S-units reduction in telomere length (P < 0.005). Additionally, during neutral counting and speaking tasks, brain activity in the precentral, middle and superior frontal and middle temporal gyri was inversely associated with telomere length. Results remained consistent after adjustment for demographic and clinical risk factors. CONCLUSION Increased stress-induced activity in brain areas mediating the stress response was associated with shortened telomere length in CAD patients.
Collapse
Affiliation(s)
- Zakaria Almuwaqqat
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States of America
| | - Kasra Moazzami
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Jonathan A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Bruno B Lima
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Amit J Shah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America; Atlanta VA Medical Center, Decatur, Georgia
| | - Jamil Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Brad Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Arshed A Quyyumi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Viola Vaccarino
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America; Atlanta VA Medical Center, Decatur, Georgia.
| |
Collapse
|
11
|
Sen A, Vincent V, Thakkar H, Abraham R, Ramakrishnan L. Beneficial Role of Vitamin D on Endothelial Progenitor Cells (EPCs) in Cardiovascular Diseases. J Lipid Atheroscler 2022; 11:229-249. [PMID: 36212746 PMCID: PMC9515729 DOI: 10.12997/jla.2022.11.3.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. Endothelial progenitor cells (EPCs) are currently being explored in the context of CVD risk. EPCs are bone marrow derived progenitor cells involved in postnatal endothelial repair and neovascularization. A large body of evidence from clinical, animal, and in vitro studies have shown that EPC numbers in circulation and their functionality reflect endogenous vascular regenerative capacity. Traditionally vitamin D is known to be beneficial for bone health and calcium metabolism and in the last two decades, its role in influencing CVD and cancer risk has generated significant interest. Observational studies have shown that low vitamin D levels are associated with an adverse cardiovascular risk profile. Still, Mendelian randomization studies and randomized control trials (RCTs) have not shown significant effects of vitamin D on cardiovascular events. The criticism regarding the RCTs on vitamin D and CVD is that they were not designed to investigate cardiovascular outcomes in vitamin D-deficient individuals. Overall, the association between vitamin D and CVD remains inconclusive. Recent clinical and experimental studies have demonstrated the beneficial role of vitamin D in increasing the circulatory level of EPC as well as their functionality. In this review we present evidence supporting the beneficial role of vitamin D in CVD through its modulation of EPC homeostasis.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ransi Abraham
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Almuwaqqat Z, Kim JH, Garcia M, Ko YA, Moazzami K, Lima B, Sullivan S, Alkhalaf J, Mehta A, Shah AJ, Hussain MS, Pearce BD, Bremner JD, Waller EK, Vaccarino V, Quyyumi AA. Associations Between Inflammation, Cardiovascular Regenerative Capacity, and Cardiovascular Events: A Cohort Study. Arterioscler Thromb Vasc Biol 2021; 41:2814-2822. [PMID: 34551591 PMCID: PMC8675629 DOI: 10.1161/atvbaha.121.316574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
Objective Circulating progenitor cells possess immune modulatory properties and might mitigate inflammation that is characteristic of patients with coronary artery disease. We hypothesized that patients with fewer circulating progenitor cells (CPCs) will have higher inflammatory markers and worse outcomes. Approach and Results Patients with stable coronary artery disease were enrolled in a prospective study enumerating CPCs as CD (cluster of differentiation)-34-expressing mononuclear cells (CD34+) and inflammation as levels of IL (interleukin)-6 and high-sensitivity CRP (C-reactive protein) levels. Patients were followed for 5 years for the end points of death and myocardial infarction with repeat inflammatory biomarkers measured after a median of 2 years. In the entire cohort of 392 patients, IL-6 and high-sensitivity CRP levels remained unchanged (0.3+/-2.4 pg/mL and 0.1+/-1.0 mg/L; P=0.45) after 2 years. CPC counts (log-transformed) were inversely correlated with the change in IL-6 levels (r, -0.17; P<0.001). Using linear regression, IL-6 and high-sensitivity CRP levels declined by -0.59 (95% CI, -0.90 to -0.20) pg/mL and -0.13 (-0.28 to 0.01) mg/L per 1 log higher CPC counts after adjustment for the demographic and clinical variables, as well as medications. Using Cox models adjusted for these risk factors, a rise in 1 pg/mL of IL-6 was associated with a 11% (95% CI, 9-13) greater risk of death/myocardial infarction. We found that the change in IL6 level partly (by 40%) mediated the higher risk of adverse events among those with low CPC counts. Conclusions Reduced cardiovascular regenerative capacity is independently associated with progressive inflammation in patients with coronary artery disease that in turn is associated with poor outcomes.
Collapse
Affiliation(s)
- Zakaria Almuwaqqat
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Jeong Hwan Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Mariana Garcia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Kasra Moazzami
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Bruno Lima
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Samaah Sullivan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Jamil Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Anurag Mehta
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Amit J. Shah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Atlanta VA Medical Center, Decatur, Georgia
| | - Mohammad S. Hussain
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Viola Vaccarino
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Arshed A. Quyyumi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
13
|
Influence of Age and Breed on Bovine Ovarian Capillary Blood Supply, Ovarian Mitochondria and Telomere Length. Cells 2021; 10:cells10102661. [PMID: 34685641 PMCID: PMC8534105 DOI: 10.3390/cells10102661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
Worldwide, dairy cows of the type of high-producing cattle (HPC) suffer from health and fertility problems at a young age and therefore lose productivity after an average of only three lactations. It is still contentious whether these problems are primarily due to genetics, management, feeding or other factors. Vascularization plays a fundamental role in the cyclic processes of reproductive organs, as well as in the regeneration of tissues. In a previous study, HPC were shown to have a greater ovarian corpus luteum vascularization compared to dual-purpose breeds. We hypothesize that this activated angiogenesis could likely lead to an early exhaustion of HPC′s regenerative capacity and thus to premature reproductive senescence. The objective of this study was to investigate if a HPC breed (Holstein-Friesian, HF) exhibits higher ovarian angiogenesis than a dual-purpose breed (Polish Red cow, PR) and if this is related to early ovarian aging and finally reproductive failure. For this purpose, we assessed the degree of vascularization by means of ovarian blood vessel characterization using light microscopy. As indicators for aging, we measured ovarian mitochondrial size and telomere length in peripheral leukocytes. We report in this study that in both breeds the distance between capillaries became smaller with increasing age and that the mean telomere length decreased with increasing age. The only difference between the two breeds was that PR developed larger capillaries than HF. Neither a relationship between telomere length, nor the morphology of the mitochondrial apparatus and nor angiogenesis in HF was proven. Although the data trends indicated that the proportion of shortened telomeres in HF was higher than in the PR, no significant difference between the two breeds was detected.
Collapse
|
14
|
Association between maternal urinary selenium during pregnancy and newborn telomere length: results from a birth cohort study. Eur J Clin Nutr 2021; 76:716-721. [PMID: 34531540 DOI: 10.1038/s41430-021-01004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Newborn telomere length is considered as an effective predictor of lifespan and health outcomes in later life. Selenium is an essential trace element for human health, and its antioxidation is of great significance for the prevention of telomere erosion. METHODS We recruited 746 mother-newborn pairs in Wuhan Children's Hospital between 2013 and 2015. Urine samples were repeatedly collected at three time points during pregnancy, and umbilical cord blood samples were collected right after parturition. Urinary selenium concentration was detected using inductively coupled plasma mass spectrometry, and newborn telomere length was measured using quantitative real-time polymerase chain reaction. We applied general estimating equations to examine the trimester-specific association between maternal urinary selenium during pregnancy and newborn telomere length. RESULTS The median of creatinine-corrected selenium concentrations during pregnancy were 16.29, 18.08, and 18.35 μg/g·creatinine in the first, second, and third trimesters, respectively. Selenium concentrations in all the three trimesters were significantly associated with newborn telomere length. Per doubling of maternal urinary selenium concentrations was associated with 6.44% (95% CI: 0.92, 12.25), 6.54% (95% CI: 0.17, 13.31), and 6.02% (95% CI: 0.29, 12.09) longer newborn telomere length in the first, second, and third trimesters, respectively, after adjusting for potential confounders. CONCLUSIONS This is the first study to provide evidence for the effect of maternal selenium levels on fetal telomere erosion. Findings from our study suggested that maternal urinary selenium was positively associated with newborn telomere length, indicating that intrauterine selenium exposure might have effect on initial setting of human telomere length.
Collapse
|
15
|
Moazzami K, Wittbrodt MT, Lima BB, Kim JH, Hammadah M, Ko YA, Obideen M, Abdelhadi N, Kaseer B, Gafeer MM, Nye JA, Shah AJ, Ward L, Raggi P, Waller EK, Bremner JD, Quyyumi AA, Vaccarino V. Circulating Progenitor Cells and Cognitive Impairment in Men and Women with Coronary Artery Disease. J Alzheimers Dis 2021; 74:659-668. [PMID: 32083582 DOI: 10.3233/jad-191063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Circulating progenitor cells (CPC) have been associated with memory function and cognitive impairment in healthy adults. However, it is unclear whether such associations also exist in patients with coronary artery disease (CAD). OBJECTIVE To assess the association between CPCs and memory performance among individuals with CAD. METHODS We assessed cognitive function in 509 patients with CAD using the verbal and visual Memory subtests of the Wechsler memory scale-IV and the Trail Making Test parts A and B. CPCs were enumerated with flow cytometry as CD45med/CD34+ blood mononuclear cells, those co-expressing other epitopes representing populations enriched for hematopoietic and endothelial progenitors. RESULTS After adjusting for demographic and cardiovascular risk factors, lower number of endothelial progenitor cell counts were independently associated with lower visual and verbal memory scores (p for all < 0.05). There was a significant interaction in the magnitude of this association with race (p < 0.01), such that the association of verbal memory scores with endothelial progenitor subsets was present in Black but not in non-Black participants. No associations were present with the hematopoietic progenitor-enriched cells or with the Trail Making Tests. CONCLUSION Lower numbers of circulating endothelial progenitor cells are associated with cognitive impairment in patients with CAD, suggesting a protective effect of repair/regeneration processes in the maintenance of cognitive status. Impairment of verbal memory function was more strongly associated with lower CPC counts in Black compared to non-Black participants with CAD. Whether strategies designed to improve regenerative capacity will improve cognition needs further study.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bruno B Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeong Hwan Kim
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Hammadah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Malik Obideen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Naser Abdelhadi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Belal Kaseer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - M Mazen Gafeer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Laura Ward
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Paolo Raggi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Atlanta, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Arshed A Quyyumi
- Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Wang S, Gao Y, Zhao L, Hu R, Yang X, Liu Y. Shortened leukocyte telomere length as a potential biomarker for predicting the progression of atrial fibrillation from paroxysm to persistence in the short-term. Medicine (Baltimore) 2021; 100:e26020. [PMID: 34114988 PMCID: PMC8202666 DOI: 10.1097/md.0000000000026020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to assess the role of leukocyte telomere length (LTL) in the development of atrial fibrillation (AF) among Chinese patients.This is a cross-sectional study. A total of 350 patients from June 2016 to December 2017 were retrospectively analyzed. These included 219 AF patients and 131 with sinus rhythm in the control group. Quantitative real-time PCR was used to measure relative LTL.The relative LTLs of all subjects (n = 350) ranged from 0.4 to 2.41 (0.98 ± 0.29), showing a significant negative correlation (P < .001) with age. The AF-group had significantly shorter LTLs (0.93 ± 0.26 vs 1.07 ± 0.33, P < .001) and were older (61.50 ± 6.49 vs 59.95 ± 6.17, P = .028) than controls. LTLs among patients with persistent AF (PsAF), paroxysmal AF (PAF), and controls were significantly different (P < .001), with LTLs of PsAF patients being the shortest and controls being the longest. After adjusting for possible confounding factors, the PsAF group still showed significantly shorter LTLs than the PAF and control groups (P = .013 and P = .001, respectively). After an 18-month follow-up, 20 out of 119 PAF patients had progressed into PsAF and a relative LTL of ≤0.73 was an independent predictor for progression of PAF into PsAF.LTL was found to be shorter in patients with AF than in age-matched individuals with sinus rhythm and positively correlated with severity of AF. LTL shortening could be an independent risk factor for progression from paroxysmal AF to persistent AF in the short term.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Yuanfeng Gao
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Lei Zhao
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Roumu Hu
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xinchun Yang
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Ye Liu
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University
- Beijing Key Laboratory of Hypertension, Beijing, China
| |
Collapse
|
17
|
Ghamar Talepoor A, Khosropanah S, Doroudchi M. Partial recovery of senescence in circulating follicular helper T cells after Dasatinib treatment. Int Immunopharmacol 2021; 94:107465. [PMID: 33631598 DOI: 10.1016/j.intimp.2021.107465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
Cellular senescence is an irreversible arrest of cell proliferation triggered by different stimuli, including DNA damage, telomere shortening and oncogenic stress. Senescent cells, by releasing the senescence-associated-secretory-phenotype (SASP), contribute to various diseases pathogenesis. Human atherosclerotic plaque contains cells with multiple markers of senescence that associate with disease severity. We characterized the frequency of senescent cTfh cells and genes expressions before and after treatment with Dasatinib in patients with different degrees of stenosis. Twelve high (≥50%), and twelve low (<50%) stenosis patients and six healthy controls were enrolled. The percentage of senescent CD3+CD4+CXCR5+CD153+CD57+ cells was significantly decreased in Dasatinib treated cells from individuals with low and high stenosis (P = 0.0007 and P = 0.0002, respectively). However, the frequency of total lymphocytes, CD3+ and CD4+ T cells were not significantly different between the groups before and after treatment. The expression levels of P53 (P = 0.0003 and P = 0.0001), P16 (P = 0.0005 and P = 0.0002), p21 (P = 0.0002 and P < 0.0001), SENEX (P = 0.0005 and P < 0.0001) and BCL-2 (P = 0.0005 and P = 0.0002) were decreased in PBMCs of low and high stenosis groups after treatment with Dasatinib, respectively. The percentage of senescent cTfh cells positively correlated with cholesterol (P = 0.034; r = 0.671), C-reactive protein (CRP) (P = 0.029; r = 0.707), Erythrocyte sedimentation rate (ESR) levels (P = 0.030; r = 0.598) and neutrophil counts (P = 0.021; r = 0.799) in patients with high stenosis. The decreased frequency of senescent cTfh cells and the expression levels of senescence genes after Dasatinib treatment in patients with atherosclerosis suggest a role for Dasatinib in partial clearance or rejuvenation of senescent cTfh cells, which may decrease inflammatory mediators and attenuate disease progression.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Joshi S, Montes de Oca I, Maghrabi A, Lopez-Yang C, Quiroz-Olvera J, Garcia CA, Jarajapu YPR. ACE2 gene transfer ameliorates vasoreparative dysfunction in CD34+ cells derived from diabetic older adults. Clin Sci (Lond) 2021; 135:367-385. [PMID: 33409538 PMCID: PMC7843404 DOI: 10.1042/cs20201133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023]
Abstract
Diabetes increases the risk for ischemic vascular diseases, which is further elevated in older adults. Bone marrow-derived hematopoietic CD34+ stem/progenitor cells have the potential of revascularization; however, diabetes attenuates vasoreparative functions. Angiotensin-converting enzyme 2 (ACE2) is the vasoprotective enzyme of renin-angiotensin system in contrast with the canonical angiotensin-converting enzyme (ACE). The present study tested the hypothesis that diabetic dysfunction is associated with ACE2/ACE imbalance in hematopoietic stem/progenitor cells (HSPCs) and that increasing ACE2 expression would restore reparative functions. Blood samples from male and female diabetic (n=71) or nondiabetic (n=62) individuals were obtained and CD34+ cells were enumerated by flow cytometry. ACE and ACE2 enzyme activities were determined in cell lysates. Lentiviral (LV) approach was used to increase the expression of soluble ACE2 protein. Cells from diabetic older adults (DB) or nondiabetic individuals (Control) were evaluated for their ability to stimulate revascularization in a mouse model of hindlimb ischemia (HLI). DB cells attenuated the recovery of blood flow to ischemic areas in nondiabetic mice compared with that observed with Control cells. Administration of DB cells modified with LV-ACE2 resulted in complete restoration of blood flow. HLI in diabetic mice resulted in poor recovery with amputations, which was not reversed by either Control or DB cells. LV-ACE2 modification of Control or DB cells resulted in blood flow recovery in diabetic mice. In vitro treatment with Ang-(1-7) modified paracrine profile in diabetic CD34+ cells. The present study suggests that vasoreparative dysfunction in CD34+ cells from diabetic older adults is associated with ACE2/ACE imbalance and that increased ACE2 expression enhances the revascularization potential.
Collapse
Affiliation(s)
- Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, U.S.A
| | | | | | | | | | | | - Yagna Prasada Rao Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
19
|
Moazzami K, Lima BB, Hammadah M, Ramadan R, Al Mheid I, Kim JH, Alkhoder A, Obideen M, Levantsevych O, Shah A, Liu C, Bremner JD, Kutner M, Sun YV, Waller EK, Hesaroieh IG, Raggi P, Vaccarino V, Quyyumi AA. Association Between Change in Circulating Progenitor Cells During Exercise Stress and Risk of Adverse Cardiovascular Events in Patients With Coronary Artery Disease. JAMA Cardiol 2021; 5:147-155. [PMID: 31799987 PMCID: PMC6902161 DOI: 10.1001/jamacardio.2019.4528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Stem and progenitor cells mobilize from the bone marrow in response to myocardial ischemia. However, the association between the change in circulating progenitor cell (CPC) counts and disease prognosis among patients with ischemia is unknown. Objective To investigate the association between the change in CPC counts during stress testing and the risk of adverse cardiovascular events in patients with stable coronary artery disease (CAD). Design, Setting, and Participants This prospective cohort study included a population-based sample of 454 patients with stable CAD who were recruited between June 1, 2011, and August 15, 2014, at Emory University-affiliated hospitals and followed up for 3 years. Data were analyzed from September 15, 2018, to October 15, 2018. Exposures Myocardial perfusion imaging with technetium Tc 99m sestamibi at rest and 30 to 60 minutes after conventional stress testing. Main Outcomes and Measures Circulating progenitor cells were enumerated with flow cytometry as CD34-expressing mononuclear cells (CD45med/CD34+), with additional quantification of subsets coexpressing the chemokine (C-X-C motif) receptor 4 (CD34+/CXCR4+). Changes in CPC counts were calculated as poststress minus resting CPC counts. Cox proportional hazards regression models were used to identify factors associated with the combined end point of cardiovascular death and myocardial infarction after adjusting for clinical covariates, including age, sex, race, smoking history, body mass index, and history of heart failure, hypertension, dyslipidemia, and diabetes. Results Of the 454 patients (mean [SD] age, 63 [9] years; 76% men) with stable CAD enrolled in the study, 142 (31.3%) had stress-induced ischemia and 312 (68.7%) did not, as measured by single-photon emission computed tomography. During stress testing, patients with stress-induced ischemia had a mean decrease of 20.2% (interquartile range [IQR], -45.3 to 5.5; P < .001) in their CD34+/CXCR4+ counts, and patients without stress-induced ischemia had a mean increase of 3.2% (IQR, -20.6 to 35.1; P < .001) in their CD34+/CXCR4+ counts. Twenty-four patients (5.2%) experienced adverse events. After adjustment, baseline CPC counts were associated with worse adverse outcomes, but this association was not present after stress-induced ischemia was included in the model. However, the change in CPC counts during exercise remained significantly associated with adverse events (hazard ratio, 2.59; 95% CI, 1.15-5.32, per 50% CD34+/CXCR4+ count decrease), even after adjustment for clinical variables and the presence of ischemia. The discrimination of risk factors associated with incident adverse events improved (increase in C statistic from 0.72 to 0.77; P = .003) with the addition of the change in CD34+/CXCR4+ counts to a model that included clinical characteristics, baseline CPC count, and ischemia. Conclusions and Relevance In this study of patients with CAD, a decrease in CPC counts during exercise is associated with a worse disease prognosis compared with the presence of stress-induced myocardial ischemia. Further studies are needed to evaluate whether strategies to improve CPC responses during exercise stress will be associated with improvements in the prognosis of patients with CAD.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Bruno B Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Mohammad Hammadah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Ronnie Ramadan
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Ibhar Al Mheid
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Jeong Hwan Kim
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Ayman Alkhoder
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Malik Obideen
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Oleksiy Levantsevych
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Amit Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Chang Liu
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - J Douglas Bremner
- Atlanta VA Medical Center, Decatur, Georgia.,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Michael Kutner
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Edmund K Waller
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Iraj Ghaini Hesaroieh
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
20
|
Fadini GP, Mehta A, Dhindsa DS, Bonora BM, Sreejit G, Nagareddy P, Quyyumi AA. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J 2020; 41:4271-4282. [PMID: 31891403 PMCID: PMC7825095 DOI: 10.1093/eurheartj/ehz923] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/19/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The cardiovascular and haematopoietic systems have fundamental inter-relationships during development, as well as in health and disease of the adult organism. Although haematopoietic stem cells (HSCs) emerge from a specialized haemogenic endothelium in the embryo, persistence of haemangioblasts in adulthood is debated. Rather, the vast majority of circulating stem cells (CSCs) is composed of bone marrow-derived HSCs and the downstream haematopoietic stem/progenitors (HSPCs). A fraction of these cells, known as endothelial progenitor cells (EPCs), has endothelial specification and vascular tropism. In general, the levels of HSCs, HSPCs, and EPCs are considered indicative of the endogenous regenerative capacity of the organism as a whole and, particularly, of the cardiovascular system. In the last two decades, the research on CSCs has focused on their physiologic role in tissue/organ homoeostasis, their potential application in cell therapies, and their use as clinical biomarkers. In this review, we provide background information on the biology of CSCs and discuss in detail the clinical implications of changing CSC levels in patients with cardiovascular risk factors or established cardiovascular disease. Of particular interest is the mounting evidence available in the literature on the close relationships between reduced levels of CSCs and adverse cardiovascular outcomes in different cohorts of patients. We also discuss potential mechanisms that explain this association. Beyond CSCs' ability to participate in cardiovascular repair, levels of CSCs need to be interpreted in the context of the broader connections between haematopoiesis and cardiovascular function, including the role of clonal haematopoiesis and inflammatory myelopoiesis.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Anurag Mehta
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Devinder Singh Dhindsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| | | | - Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Prabhakara Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Arshed Ali Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
Ambrosini S, Mohammed SA, Costantino S, Paneni F. Disentangling the epigenetic landscape in cardiovascular patients: a path toward personalized medicine. Minerva Cardiol Angiol 2020; 69:331-345. [PMID: 32996305 DOI: 10.23736/s2724-5683.20.05326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite significant advances in our understanding of cardiovascular disease (CVD) we are still far from having developed breakthrough strategies to combat coronary atherosclerosis and heart failure, which account for most of CV deaths worldwide. Available cardiovascular therapies have failed to show to be equally effective in all patients, suggesting that inter-individual diversity is an important factor when it comes to conceive and deliver effective personalized treatments. Genome mapping has proved useful in identifying patients who could benefit more from specific drugs depending on genetic variances; however, our genetic make-up determines only a limited part of an individual's risk profile. Recent studies have demonstrated that epigenetic changes - defined as dynamic changes of DNA and histones which do not affect DNA sequence - are key players in the pathophysiology of cardiovascular disease and may participate to delineate cardiovascular risk trajectories over the lifetime. Epigenetic modifications include changes in DNA methylation, histone modifications and non-coding RNAs and these epigenetic signals have shown to cooperate in modulating chromatin accessibility to transcription factors and gene expression. Environmental factors such as air pollution, smoking, psychosocial context, and unhealthy diet regimens have shown to significantly modify the epigenome thus leading to altered transcriptional programs and CVD phenotypes. Therefore, the integration of genetic and epigenetic information might be invaluable to build individual maps of cardiovascular risk and hence, could be employed for the design of customized diagnostic and therapeutic strategies. In the present review, we discuss the growing importance of epigenetic information and its putative implications in cardiovascular precision medicine.
Collapse
Affiliation(s)
- Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland - .,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Kachuri L, Helby J, Bojesen SE, Christiani DC, Su L, Wu X, Tardón A, Fernández-Tardón G, Field JK, Davies MP, Chen C, Goodman GE, Shepherd FA, Leighl NB, Tsao MS, Brhane Y, Brown MC, Boyd K, Shepshelovich D, Sun L, Amos CI, Liu G, Hung RJ. Investigation of Leukocyte Telomere Length and Genetic Variants in Chromosome 5p15.33 as Prognostic Markers in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2020; 28:1228-1237. [PMID: 31263055 DOI: 10.1158/1055-9965.epi-18-1215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/15/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer mortality with relatively few prognostic biomarkers. We investigated associations with overall survival for telomere length (TL) and genetic variation in chromosome 5p15.33, an established telomere maintenance locus. METHODS Leukocyte TL was measured after diagnosis in 807 patients with non-small cell lung cancer (NSCLC) from the Princess Margaret Cancer Center in Toronto and assessed prospectively in 767 NSCLC cases from the Copenhagen City Heart Study and the Copenhagen General Population Study. Associations with all-cause mortality were tested for 723 variants in 5p15.33, genotyped in 4,672 NSCLC cases. RESULTS Short telomeres (≤10th percentile) were associated with poor prognosis for adenocarcinoma in both populations: TL measured 6 months after diagnosis [HR = 1.65; 95% confidence intervals (CI), 1.04-2.64] and for those diagnosed within 5 years after blood sampling (HR = 2.42; 95% CI, 1.37-4.28). Short TL was associated with mortality in never smokers with NSCLC (HR = 10.29; 95% CI, 1.86-56.86) and adenocarcinoma (HR = 11.31; 95% CI, 1.96-65.24). Analyses in 5p15.33 identified statistically significant prognostic associations for rs56266421-G in LPCAT1 (HR = 1.86; 95% CI, 1.38-2.52; P = 4.5 × 10-5) in stage I-IIIA NSCLC, and for the SLC6A3 gene with OS in females with NSCLC (P = 1.6 × 10-3). CONCLUSIONS Our findings support the potential clinical utility of TL, particularly for adenocarcinoma patients, while associations in chromosome 5p15.33 warrant further exploration. IMPACT This is the largest lung cancer study of leukocyte TL and OS, and the first to examine the impact of the timing of TL measurement. Our findings suggest that extremely short telomeres are indicative of poor prognosis in NSCLC.
Collapse
Affiliation(s)
- Linda Kachuri
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Ontario, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California
| | - Jens Helby
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stig Egil Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David C Christiani
- Departments of Epidemiology and Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Li Su
- Departments of Epidemiology and Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adonina Tardón
- University of Oviedo and CIBERESP, Faculty of Medicine, Campus del Cristo, Oviedo, Spain
| | | | - John K Field
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael P Davies
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chu Chen
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gary E Goodman
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Frances A Shepherd
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Natasha B Leighl
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming S Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Ontario, Canada
| | - M Catherine Brown
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kevin Boyd
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Daniel Shepshelovich
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lei Sun
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Geoffrey Liu
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Ontario, Canada. .,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Davis SK, Xu R, Khan RJ, Gaye A. Modifiable mediators associated with the relationship between adiposity and leukocyte telomere length in US adults: The National Health and Nutrition Examination Survey. Prev Med 2020; 138:106133. [PMID: 32439486 PMCID: PMC7358114 DOI: 10.1016/j.ypmed.2020.106133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/24/2020] [Accepted: 05/10/2020] [Indexed: 01/17/2023]
Abstract
Obesity is associated with age-related health conditions and telomere attrition - a marker of cellular aging. Obesity is attributable to adverse modifiable lifestyle factors. Little is known about the mediation effect of lifestyle factors associated with the relationship between obesity and telomere length. Our objective was to examine this association in the US. Pack years smoked, drinking level per day, physical activity (PA) per week and diet based on Healthy Eating Index (HEI) were assessed as mediators associated with the relationship between adiposity measures and leukocyte telomere length (LTL); adiposity measures included body mass index (BMI), % total body fat (TBF) and waist circumference (WC). Separate adjusted linear regressions and mediation analysis were conducted on a total of 4919 respondents aged 20-84 years using cross-sectional 1999-2002 data from the US National Health and Nutrition Examination Survey. Inadequate PA correlated with 1.28% shorter LTL and was a factor accounting for 35% of the relationship between BMI and LTL (β = -0.0128, 95% CI = 0.0259, 0.0004, p = .05). Smoking 30-≥59 pack years correlated with 4% shorter LTL and accounted for 21% of the relationship between %TBF and LTL (β = -0.0386, 95% CI = -0.0742, -0.0030, p = .03). Improvement in diet correlated with 0.11% longer LTL and contributed 25% of the association between %TBF and LTL (β = 0.0011, 95%CI =0.0004, 0.0018, p = .01). Diet correlated with 0.11% longer LTL and correspond to 28% of the relationship between WC and LTL (β = 0.0011, 95%CI = 0.0004, 0.0018, p = .03). Interventions to improve modifiable behaviors may ameliorate cellular aging and aging related health conditions due to obesity among US adults.
Collapse
Affiliation(s)
- Sharon K Davis
- National Institutes of Health, National Human Genome Research Institute, Social Epidemiology Research Unit, 10 Center Drive, Room 7N320, MSC 1644, Bethesda, MD, United States of America.
| | - Ruihua Xu
- National Institutes of Health, National Human Genome Research Institute, Social Epidemiology Research Unit, Bethesda, MD, United States of America
| | - Rumana J Khan
- National Institutes of Health, National Human Genome Research Institute, Social Epidemiology Research Unit, Bethesda, MD, United States of America
| | - Amadou Gaye
- National Institutes of Health, National Human Genome Research Institute, Cardiovascular Section, Bethesda, MD, United States of America
| |
Collapse
|
24
|
Davis SK, Xu R, Khan RJ, Gaye A. Adiposity and Leukocyte Telomere Length in US Adults by Sex-Specific Race/Ethnicity: National Health and Nutrition Examination Survey. Ethn Dis 2020; 30:441-450. [PMID: 32742149 PMCID: PMC7360178 DOI: 10.18865/ed.30.3.441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective Little is known about the relationship between adiposity and telomere length in the United States population. The objective of our research was to examine this relationship in a representative, socioeconomically and sex-specific, diverse racial/ethnic population in the United States. Methods Body mass index (BMI), % total body fat (TBF) and waist circumference (WC) with leukocyte telomere length (LTL) were examined according to sex-specific race/ethnicity using separate adjusted multivariate linear regressions on a sample of 4,919 respondents aged 20-84 years from the National Health and Nutrition Examination Survey's 1999-2002 data. Results LTL was shortened .41%, .44%, and .16% in African American (AA) women and was associated with increasing BMI, %TBF, and WC, (β:-.0041, 95%CI: -.0070, -.0012; P=.007; β:-.0044, 95% CI: -.0081, -.0007; P=.02; β:-.0016, 95%CI: -.0031, -.0001; P=.04, respectively). LTL was shortened .29% in White women and was associated with increasing %TBF (β:-.0029, 95%CI: -.0048, -.0009; P=.006). There were no associations among AA men, White men or Mexican American men and women. Conclusions LTL is associated with an obesity phenotype in AA women. Tailored intervention is needed to ameliorate the burden of excess adiposity and subsequent cellular aging.
Collapse
Affiliation(s)
- Sharon K. Davis
- National Institutes of Health, National Human Genome Research Institute, Social Epidemiology Research Unit, Bethesda, MD
| | - Ruihua Xu
- National Institutes of Health, National Human Genome Research Institute, Social Epidemiology Research Unit, Bethesda, MD
| | - Rumana J. Khan
- National Institutes of Health, National Human Genome Research Institute, Social Epidemiology Research Unit, Bethesda, MD
| | - Amadou Gaye
- National Institutes of Health, National Human Genome Research Institute, Cardiovascular Section, Bethesda, MD
| |
Collapse
|
25
|
Li X, Ma X, Chen Y, Peng D, Wang H, Chen S, Xiao Y, Li L, Zhou H, Cheng F, Gao Y, Chang J, Cheng T, Liu L. Coinhibition of activated p38 MAPKα and mTORC1 potentiates stemness maintenance of HSCs from SR1-expanded human cord blood CD34 + cells via inhibition of senescence. Stem Cells Transl Med 2020; 9:1604-1616. [PMID: 32602209 PMCID: PMC7695631 DOI: 10.1002/sctm.20-0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/10/2023] Open
Abstract
The stemness of ex vivo expanded hematopoietic stem cells (HSCs) is usually compromised by current methods. To explore the failure mechanism of stemness maintenance of human HSCs, which were expanded from human umbilical cord blood (hUCB) CD34+ cells, by differentiation inhibitor Stem Regenin 1 (SR1), an antagonist of aryl hydrocarbon receptor, we investigated the activity of p38 mitogen‐activated protein kinase α (p38 MAPKα, p38α) and mammalian target of rapamycin complex 1 (mTORC1), and their effect on SR1‐expanded hUCB CD34+ cells. Our results showed that cellular senescence occurred in the SR1‐expanded hUCB CD34+ cells in which p38α and mTORC1 were successively activated. Furthermore, their coinhibition resulted in a further decrease in hUCB CD34+ cell senescence without an effect on apoptosis, promoted the maintenance of expanded phenotypic HSCs without differentiation inhibition, increased the hematopoietic reconstitution ability of multiple lineages, and potentiated the long‐term self‐renewal capability of HSCs from SR1‐expanded hUCB CD34+ cells in NOD/Shi‐scid/IL‐2Rγnull mice. Our mechanistic study revealed that senescence inhibition by our strategy was mainly attributed to downregulation of the splicesome, proteasome formation, and pyrimidine metabolism signaling pathways. These results suggest that coinhibition of activated p38α and mTORC1 potentiates stemness maintenance of HSCs from SR1‐expanded hUCB CD34+ cells via senescence inhibition. Thus, we established a new strategy to maintain the stemness of ex vivo differentiation inhibitor‐expanded human HSCs via coinhibition of multiple independent senescence initiating signal pathways. This senescence inhibition‐induced stemness maintenance of ex vivo expanded HSCs could also have an important role in other HSC expansion systems.
Collapse
Affiliation(s)
- Xiaoyi Li
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huifang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Suhua Chen
- Department of Gynaecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yin Xiao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Science, Tianjin, People's Republic of China
| | - Jiwei Chang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, People's Republic of China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Science, Tianjin, People's Republic of China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Semeraro MD, Smith C, Kaiser M, Levinger I, Duque G, Gruber HJ, Herrmann M. Physical activity, a modulator of aging through effects on telomere biology. Aging (Albany NY) 2020; 12:13803-13823. [PMID: 32575077 PMCID: PMC7377891 DOI: 10.18632/aging.103504] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Aging is a complex process that is not well understood but involves finite changes at the genetic and epigenetic level. Physical activity is a well-documented modulator of the physiological process of aging. It has been suggested that the beneficial health effects of regular exercise are at least partly mediated through its effects on telomeres and associated regulatory pathways. Telomeres, the region of repetitive nucleotide sequences functioning as a "cap" at the chromosomal ends, play an important role to protect genomic DNA from degradation. Telomeres of dividing cells progressively shorten with age. Leucocyte telomere length (TL) has been associated with age-related diseases. Epidemiologic evidence indicates a strong relationship between physical activity and TL. In addition, TL has also been shown to predict all-cause and cardiovascular mortality. Experimental studies support a functional link between aerobic exercise and telomere preservation through activation of telomerase, an enzyme that adds nucleotides to the telomeric ends. However, unresolved questions regarding exercise modalities, pathomechanistic aspects and analytical issues limit the interpretability of available data. This review provides an overview about the current knowledge in the area of telomere biology, aging and physical activity. Finally, the capabilities and limitations of available analytical methods are addressed.
Collapse
Affiliation(s)
- Maria Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Cassandra Smith
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Melanie Kaiser
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Hans-Juergen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
27
|
Vecoli C, Borghini A, Andreassi MG. The molecular biomarkers of vascular aging and atherosclerosis: telomere length and mitochondrial DNA 4977 common deletion. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108309. [PMID: 32430098 DOI: 10.1016/j.mrrev.2020.108309] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Age is the dominant risk factor for the most prevalent atherosclerotic vascular diseases, including coronary artery disease, myocardial infarction, cerebrovascular disease and stroke. In human, telomere erosion and mitochondrial DNA (mtDNA) damage play a central role in the mechanisms leading to cellular aging decline. This review summarizes the most relevant findings on the role of telomere shortening and the common mtDNA4977 deletion in the progression and evolution of atherosclerosis by combining insight from experimental models and human clinical studies. The current evidence shows a link between telomere erosion and compromised mitochondrial function and provides a new perspective regarding their potential role as clinical biomarkers and therapeutic targets.
Collapse
|
28
|
Ferrucci L, Gonzalez‐Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, Salimi S, Sierra F, de Cabo R. Measuring biological aging in humans: A quest. Aging Cell 2020; 19:e13080. [PMID: 31833194 PMCID: PMC6996955 DOI: 10.1111/acel.13080] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022] Open
Abstract
The global population of individuals over the age of 65 is growing at an unprecedented rate and is expected to reach 1.6 billion by 2050. Most older individuals are affected by multiple chronic diseases, leading to complex drug treatments and increased risk of physical and cognitive disability. Improving or preserving the health and quality of life of these individuals is challenging due to a lack of well-established clinical guidelines. Physicians are often forced to engage in cycles of "trial and error" that are centered on palliative treatment of symptoms rather than the root cause, often resulting in dubious outcomes. Recently, geroscience challenged this view, proposing that the underlying biological mechanisms of aging are central to the global increase in susceptibility to disease and disability that occurs with aging. In fact, strong correlations have recently been revealed between health dimensions and phenotypes that are typical of aging, especially with autophagy, mitochondrial function, cellular senescence, and DNA methylation. Current research focuses on measuring the pace of aging to identify individuals who are "aging faster" to test and develop interventions that could prevent or delay the progression of multimorbidity and disability with aging. Understanding how the underlying biological mechanisms of aging connect to and impact longitudinal changes in health trajectories offers a unique opportunity to identify resilience mechanisms, their dynamic changes, and their impact on stress responses. Harnessing how to evoke and control resilience mechanisms in individuals with successful aging could lead to writing a new chapter in human medicine.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Marta Gonzalez‐Freire
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Elisa Fabbri
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Eleanor Simonsick
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Toshiko Tanaka
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Zenobia Moore
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Shabnam Salimi
- Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Felipe Sierra
- Division of Aging BiologyNational Institute on AgingNIHBethesdaMDUSA
| | - Rafael de Cabo
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| |
Collapse
|
29
|
Chan D, Martin-Ruiz C, Saretzki G, Neely D, Qiu W, Kunadian V. The association of telomere length and telomerase activity with adverse outcomes in older patients with non-ST-elevation acute coronary syndrome. PLoS One 2020; 15:e0227616. [PMID: 31923255 PMCID: PMC6953865 DOI: 10.1371/journal.pone.0227616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background Non-ST elevation acute coronary syndrome (NSTEACS) occurs more frequently in older patients with an increased occurrence of recurrent cardiac events following the index presentation. Telomeres are structures consisting of repeated DNA sequences as associated shelterin proteins at the ends of chromosomes. We aim to determine whether telomere length (TL) and telomerase activity (TA) predicted poor outcomes in older patients presenting with NSTEACS undergoing invasive care. Method Older patients undergoing invasive management for NSTEACS were recruited to the ICON-1 biomarker study (NCT01933581). Peripheral blood mononuclear cells (PBMC) were recovered on 153 patients. DNA was isolated and mean TL was measured by quantitative PCR expressed as relative T (telomere repeat copy number) to S (single copy gene number) ratio (T/S ratio), and a telomere repeat amplification assay was used to assess TA during index presentation with NSTEACS. Primary clinical outcomes consisted of death, myocardial infarction (MI), unplanned revascularisation, stroke and significant bleeding recorded at 1 year. TL and TA were divided into tertile groups for analysis. Cox proportional hazards regression was performed. Ordinal regression was performed to evaluate the relationship between TL and TA and traditional cardiovascular risk factors at baseline. Results 298 patients were recruited in the ICON-1 study of which 153 had PBMC recovered. The mean age was 81.0 ± 4.0 years (64% male). Mean telomere length T/S ratio was 0.47 ± 0.25 and mean TA was 1.52 ± 0.61 units. The primary composite outcome occurred in 44 (28.8%) patients. There was no association between short TL or low TA and incidence of the primary composite outcome (Hazard Ratio [HR] 1.50, 95% Confidence Interval [CI] 0.68–3.34, p = 0.32 and HR 1.33, 95% CI 0.52–3.36, p = 0.51 respectively). Conclusion TL and TA are not found to be associated with the incidence of adverse outcomes in older patients presenting with NSTEACS undergoing invasive care. Clinical trial registration URL: https://www.clinicaltrials.gov Unique identifier: NCT01933581
Collapse
Affiliation(s)
- Danny Chan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Carmen Martin-Ruiz
- BioScreening Facility, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gabriele Saretzki
- Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dermot Neely
- Department of Biochemistry, Newcastle upon Tyne Hospitals NHS Foundations Trust, United Kingdom
| | - Weiliang Qiu
- Sanofi Genzyme, Framingham, MA, United States of America
| | - Vijay Kunadian
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Shimizu I, Minamino T. Cellular Senescence in Arterial Diseases. J Lipid Atheroscler 2020; 9:79-91. [PMID: 32821723 PMCID: PMC7379072 DOI: 10.12997/jla.2020.9.1.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-proliferation potency is limited, as cells cannot proceed through the cell cycle continually. Instead, they eventually show an irreversible arrest of proliferation, commonly referred to as cellular senescence. Following the initial discovery of this phenomenon by Hayflick et al., studies have indicated that cells are also destined to undergo aging. In addition to the irreversible termination of proliferation, senescent cells are characterized by a flattened and enlarged morphology. Senescent cells become pro-inflammatory and contribute to the initiation and maintenance of sustained chronic sterile inflammation. Aging is associated with the accumulation of senescent cells in the cardiovascular system, and in general these cells are considered to be pathogenic because they mediate vascular remodeling. Recently, genetic and pharmacological approaches have enabled researchers to eliminate senescent cells both in vitro and in vivo. The term “senolysis” is now used to refer to the depletion of senescent cells, and evidence indicates that senolysis contributes to the reversal of age-related pathogenic phenotypes without the risk of tumorigenesis. The concept of senolysis has opened new avenues in research on aging, and senolysis may be a promising therapeutic approach for combating age-related disorders, including arterial diseases.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
31
|
Sullivan S, Hammadah M, Wilmot K, Ramadan R, Pearce BD, Shah A, Kaseer B, Gafeer MM, Lima BB, Kim JH, Ward L, Ko YA, Lewis TT, Hankus A, Elon L, Li L, Bremner JD, Raggi P, Quyyumi A, Vaccarino V. Young Women With Coronary Artery Disease Exhibit Higher Concentrations of Interleukin-6 at Baseline and in Response to Mental Stress. J Am Heart Assoc 2019; 7:e010329. [PMID: 30571600 PMCID: PMC6405549 DOI: 10.1161/jaha.118.010329] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Young women with coronary artery disease (CAD), a group with high psychosocial burden, were previously shown to have higher levels of interleukin‐6 (IL‐6) compared with men of similar age. We sought to examine IL‐6 response to acute stress in CAD patients across sex and age, and contrast results to healthy controls and other biomarkers known to increase with mental stress (monocyte chemoattractant protein‐1 and matrix metallopeptidase‐9) and known limited stress‐reactivity (high‐sensitivity C‐reactive protein). Methods and Results Inflammatory biomarkers were measured at rest and 90 minutes after mental stress (speech task) among 819 patients with CAD and 89 healthy controls. Repeated‐measures models were used to investigate age (continuous) and sex differences across time, before and after adjusting for demographics, CAD risk factors, depressive symptoms, medication use, and CAD severity. Among patients with CAD, the mean age was 60 years (range, 25–79) and 31% were women. Younger women with CAD had significantly higher concentrations of IL‐6 at rest, 90 minutes after mental stress, as well as a higher response to stress, compared with similarly aged men (P<0.05 for sex by age interactions). In contrast, IL‐6 increased with age, and there were no sex differences in IL‐6 levels or response to stress among controls. Inflammatory responses to stress for high‐sensitivity C‐reactive protein, monocyte chemoattractant protein‐1, and matrix metallopeptidase‐9 among CAD patients were similar in women and men. Conclusions IL‐6 response to mental stress are higher in young women with CAD than men of similar age.
Collapse
Affiliation(s)
- Samaah Sullivan
- 1 Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Muhammad Hammadah
- 2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Kobina Wilmot
- 2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Ronnie Ramadan
- 2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Brad D Pearce
- 1 Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Amit Shah
- 1 Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA.,2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA.,3 Atlanta VA Medical Center Decatur GA
| | - Belal Kaseer
- 2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Mohamad Mazen Gafeer
- 2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Bruno B Lima
- 1 Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA.,2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Jeong Hwan Kim
- 2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Laura Ward
- 4 Department of Biostatistics and Bioinformatics Rollins School of Public Health Emory University Atlanta GA
| | - Yi-An Ko
- 4 Department of Biostatistics and Bioinformatics Rollins School of Public Health Emory University Atlanta GA
| | - Tené T Lewis
- 1 Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Allison Hankus
- 1 Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Lisa Elon
- 4 Department of Biostatistics and Bioinformatics Rollins School of Public Health Emory University Atlanta GA
| | - Lian Li
- 1 Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - J Douglas Bremner
- 3 Atlanta VA Medical Center Decatur GA.,5 Department of Psychiatry and Behavioral Sciences Emory University School of Medicine Atlanta GA
| | - Paolo Raggi
- 6 Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Arshed Quyyumi
- 2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Viola Vaccarino
- 1 Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA.,2 Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| |
Collapse
|
32
|
Vecoli C, Borghini A, Pulignani S, Mercuri A, Turchi S, Picano E, Andreassi MG. Independent and Combined Effects of Telomere Shortening and mtDNA 4977 Deletion on Long-term Outcomes of Patients with Coronary Artery Disease. Int J Mol Sci 2019; 20:ijms20215508. [PMID: 31694204 PMCID: PMC6862167 DOI: 10.3390/ijms20215508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Aging is one of the main risk factors for cardiovascular disease, resulting in a progressive organ and cell decline. This study evaluated a possible joint impact of two emerging hallmarks of aging, leucocyte telomere length (LTL) and common mitochondrial DNA deletion (mtDNA4977), on major adverse cardiovascular events (MACEs) and all-cause mortality in patients with coronary artery disease (CAD). We studied 770 patients (673 males, 64.8 ± 8.3 years) with known or suspected stable CAD. LTL and mtDNA4977 deletion were assessed in peripheral blood using qRT-PCR. During a median follow-up of 5.4 ± 1.2 years, MACEs were 140 while 86 deaths were recorded. After adjustments for confounding risk factors, short LTLs and high mtDNA4977 deletion levels acted independently as predictors of MACEs (HR: 2.2, 95% CI: 1.2-3.9, p = 0.01 and HR: 1.7, 95% CI: 1.1-2.9, p = 0.04; respectively) and all-cause mortality events (HR: 2.1, 95% CI: 1.1-4.6, p = 0.04 and HR: 2.3, 95% CI: 1.1-4.9, p = 0.02; respectively). Patients with both short LTLs and high mtDNA4977 deletion levels had an increased risk for MACEs (HR: 4.3; 95% CI: 1.9-9.6; p = 0.0006) and all-cause mortality (HR: 6.0; 95% CI: 2.0-18.4; p = 0.001). The addition of mtDNA4977 deletion to a clinical reference model was associated with a significant net reclassification improvement (NRI = 0.18, p = 0.01). Short LTL and high mtDNA4977 deletion showed independent and joint predictive value on adverse cardiovascular outcomes and all-cause mortality in patients with CAD. These findings strongly support the importance of evaluating biomarkers of physiological/biological age, which can predict disease risk and mortality more accurately than chronological age.
Collapse
Affiliation(s)
- Cecilia Vecoli
- Correspondence: (C.V.); (M.G.A.); Tel.: +39-050-3152688 (C.V.); +39-050-3152628 (M.G.A.); Fax: +39 050 3152166 (M.G.A.)
| | | | | | | | | | | | - Maria Grazia Andreassi
- Correspondence: (C.V.); (M.G.A.); Tel.: +39-050-3152688 (C.V.); +39-050-3152628 (M.G.A.); Fax: +39 050 3152166 (M.G.A.)
| |
Collapse
|
33
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
34
|
Sullivan S, Hammadah M, Al Mheid I, Shah A, Sun YV, Kutner M, Ward L, Blackburn E, Zhao J, Lin J, Bremner JD, Quyyumi AA, Vaccarino V, Lewis TT. An investigation of racial/ethnic and sex differences in the association between experiences of everyday discrimination and leukocyte telomere length among patients with coronary artery disease. Psychoneuroendocrinology 2019; 106:122-128. [PMID: 30978531 PMCID: PMC6655339 DOI: 10.1016/j.psyneuen.2019.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 01/14/2023]
Abstract
Leukocyte telomere length (LTL) may be sensitive to psychosocial stressors such as discrimination. An inclusive examination of experiences of discrimination on LTL across racial/ethnic and sex groups is currently lacking. Baseline data were obtained from 369 White and African American patients with coronary artery disease (CAD) in the Mental Stress Ischemia Mechanisms and Prognosis Study. LTL was measured from peripheral blood leukocytes by quantitative polymerase chain reaction and calculated in kilobase pairs. Discrimination was measured using the 10-item Everyday Discrimination Scale (EDS). Responses were rated using 4-point Likert scales ranging from never = 1 to often = 4 and summed. Regression models were stratified by race/ethnicity and sex to estimate associations between discrimination and LTL. Each 10-unit increase in experiences of everyday discrimination was associated with an average of .20 fewer kilobase pairs (or 200 base pairs) among both African American women (β = -0.19; 95% CI: -0.35, -0.04; p-value: 0.02) and White women (β = -0.19; 95% CI: -0.37, -0.01; p-value: 0.04), after adjusting for basic demographic factors. Results were similar after further adjusting for behavioral, disease, and psychosocial risk factors (depression and stress). There were no significant associations between experiences of everyday discrimination and LTL for White men or African American men. Overall, experiences of discrimination were associated with shorter LTL among women and not in men. Discrimination may be a potential source of stress associated with shorter LTL among women with CAD. Future studies should explore longitudinal associations between everyday experiences of discrimination and telomere length and also with adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Samaah Sullivan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Muhammad Hammadah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ibhar Al Mheid
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Michael Kutner
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Laura Ward
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth Blackburn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - J Douglas Bremner
- Atlanta VA Medical Center, Decatur, GA, USA; Departments of Psychiatry and Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tené T Lewis
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
35
|
Abstract
Replicative capacity of somatic cells is limited. It indicates that aging also develops at the cellular level, and this is described as "cellular senescence". Senescent cells become flattened, enlarged, and irreversibly lose capacity for proliferation. Lack of specific and conclusive markers for cellular senescence makes it difficult to comprehensively define and understand this biological process especially in vivo. Molecules including p53, p21, p16Ink4a, p38MAPK, and γH2AX, telomere attrition, enhanced signals for SA-β-gal, etc. are widely used to detect senescent cells, but these are indirect indicators of cellular senescence, and biological markers reflecting direct evidence need to be established. Genetic profiles are altered in senescent cells, letting these cells secrete pro-inflammatory molecules. Aging or age-related disorders including heart failure and atherosclerotic diseases link with an accumulation of cells undergoing cellular senescence in cardiovascular systems including heart and vessels. Senescent cells become pathogenic in most cases by mediating chronic sterile inflammation and tissue remodeling. A recent conceptual as well as technical breakthrough in this research area is "senolysis", meaning the specific elimination of senescent cells. Genetic as well as pharmacological models with senolysis contributed to reverse aging phenotypes and ameliorated pathologies in age-related disorders without enhancing the risk of tumorigenesis, and opened a new avenue for aging research. Several compounds are identified as senolytics, and some are already tested in clinical settings. It was recently reported that senolysis reverses aging phenotype in cardiovascular disorders. Generating therapies targeting suppression or elimination of senescent cells would inhibit the progression of undesirable aspects of aging, and become promising therapies for cardiac diseases.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
36
|
Gurel NZ, Carek AM, Inan OT, Levantsevych O, Abdelhadi N, Hammadah M, O’Neal WT, Kelli H, Wilmot K, Ward L, Rhodes S, Pearce BD, Mehta PK, Kutner M, Garcia E, Quyyumi A, Vaccarino V, Raggi P, Bremner JD, Shah AJ. Comparison of autonomic stress reactivity in young healthy versus aging subjects with heart disease. PLoS One 2019; 14:e0216278. [PMID: 31067240 PMCID: PMC6505888 DOI: 10.1371/journal.pone.0216278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/15/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The autonomic response to acute emotional stress can be highly variable, and pathological responses are associated with increased risk of adverse cardiovascular events. We evaluated the autonomic response to stress reactivity of young healthy subjects and aging subjects with coronary artery disease to understand how the autonomic stress response differs with aging. METHODS Physiologic reactivity to arithmetic stress in a cohort of 25 young, healthy subjects (< 30 years) and another cohort of 25 older subjects (> 55 years) with CAD was evaluated using electrocardiography, impedance cardiography, and arterial pressure recordings. Stress-related changes in the pre-ejection period (PEP), which measures sympathetic activity, and high frequency heart rate variability (HF HRV), which measures parasympathetic activity, were analyzed as primary outcomes. RESULTS Mental stress reduced PEP in both groups (p<0.01), although the decrease was 50% greater in the healthy group. Mean HF HRV decreased significantly in the aging group only (p = 0.01). DISCUSSION PEP decreases with stress regardless of health and age status, implying increased sympathetic function. Its decline with stress may be attenuated in CAD. The HF HRV (parasympathetic) stress reactivity is more variable and attenuated in younger individuals; perhaps this is related to a protective parasympathetic reflex. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02657382.
Collapse
Affiliation(s)
- Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Andrew M. Carek
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Oleksiy Levantsevych
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Naser Abdelhadi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Muhammad Hammadah
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Wesley T. O’Neal
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Heval Kelli
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kobina Wilmot
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Laura Ward
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Steven Rhodes
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Brad D. Pearce
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Puja K. Mehta
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Michael Kutner
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Ernest Garcia
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Arshed Quyyumi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Viola Vaccarino
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - J. Douglas Bremner
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amit J. Shah
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
37
|
Gremmels H, van Rhijn-Brouwer FCC, Papazova DA, Fledderus JO, Teraa M, Verhaar MC. Exhaustion of the bone marrow progenitor cell reserve is associated with major events in severe limb ischemia. Angiogenesis 2019; 22:411-420. [PMID: 30929097 PMCID: PMC6652783 DOI: 10.1007/s10456-019-09666-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
Lower numbers of progenitor cells (PCs) in peripheral blood (PB) have been associated with cardiovascular events in high-risk populations. Therapies aiming to increase the numbers of PCs in circulation have been developed, but clinical trials did not result in better outcomes. It is currently unknown what causes the reduction in PB PC numbers: whether it is primary depletion of the progenitor cell reserve, or a reduced mobilization of PCs from the bone marrow (BM). In this study, we examine if PB and BM PC numbers predict Amputation-Free Survival (AFS) in patients with Severe Limb Ischemia (SLI). We obtained PB and BM from 160 patients enrolled in a clinical trial investigating BM cell therapy for SLI. Samples were incubated with antibodies against CD34, KDR, CD133, CD184, CD14, CD105, CD140b, and CD31; PC populations were enumerated by flow cytometry. Higher PB CD34+ and CD133+ PC numbers were related to AFS (Both Hazard Ratio [HRevent] = 0.56, p = 0.003 and p = 0.0007, respectively). AFS was not associated with the other cell populations in PB. BM PC numbers correlated with PB PC numbers and showed similar HRs for AFS. A further subdivision based on relative BM and PB PC numbers showed that BM PC numbers, rather than mobilization, associated with AFS. Both PB and BM PC numbers are associated with AFS independently from traditional risk factor and show very similar risk profiles. Our data suggest that depletion of the progenitor cell reserve, rather than decreased PC mobilization, underlies the association between PB PC numbers and cardiovascular risk.
Collapse
Affiliation(s)
- Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Postal Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Femke C C van Rhijn-Brouwer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Postal Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Diana A Papazova
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Postal Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Joost O Fledderus
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Postal Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Martin Teraa
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Postal Box 85500, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Affiliation(s)
- Thomas R Cimato
- From the Department of Medicine/Division of Cardiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, NY.
| |
Collapse
|
39
|
Zhu FL, Zhang N, Ma XJ, Yang J, Sun WP, Shen YQ, Wen YM, Yuan SS, Zhao D, Zhang HB, Feng YM. Circulating Hematopoietic Stem/Progenitor Cells are Associated with Coronary Stenoses in Patients with Coronary Heart Disease. Sci Rep 2019; 9:1680. [PMID: 30737465 PMCID: PMC6368538 DOI: 10.1038/s41598-018-38298-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/20/2018] [Indexed: 11/09/2022] Open
Abstract
Inflammatory cells in atherosclerotic plaque exclusively originate from hematopoietic stem/progenitor cells (HSPCs). In this study, we investigated whether circulating HSPCs frequency related to coronary stenosis in patients with coronary heart disease (CHD). Coronary angiography was performed in 468 participants who were recruited at Cardiology Centre in LuHe Hospital from March 2016 to May 2017. Among these subjects, 344 underwent echocardiography. Mononuclear cells isolated from peripheral blood were stained with an antibody cocktail containing anti-human CD34, anti-human lineage, anti-human CD38, and anti-human CD45RA. Lineage-CD38-CD45RAdimCD34+HSPCs were quantified by flow cytometry. CHD was defined as coronary stenosis ≥50% and the extent of CHD was further categorised by coronary stenosis ≥70%. A p < 0.0031 was regarded statistically significant by the Bonferroni correction. Circulating HSPCs frequency was 1.8-fold higher in CHD patients than non-CHD participants (p = 0.047). Multivariate-adjusted logistic analysis demonstrated that HSPCs was the only marker that was associated with the odds ratio of having mild vs. severe coronary stenosis (2.08 (95% CI, 1.35-3.21), p = 0.0009). Left ventricular ejection fraction was inversely correlated with HSPCs frequency and CRP in CHD patients (p < 0.05 for both). In conclusion, HSPCs frequency in circulation is intimately related to coronary stenoses in CHD patients.
Collapse
Affiliation(s)
- Fu-Li Zhu
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Xiao-Juan Ma
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Jing Yang
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Wei-Ping Sun
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Yi-Qing Shen
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Yu-Mei Wen
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Sha-Sha Yuan
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Hai-Bin Zhang
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Ying-Mei Feng
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
40
|
Abstract
Telomere length measurement is increasingly recognized as a clinical gauge for age-related disease risk. There are several methods for studying blood telomere length (BTL) as a clinical biomarker. The first is an observational study approach, which directly measures telomere lengths using either cross-sectional or longitudinal patient cohorts and compares them to a population of age- and sex-matched individuals. These direct traceable measurements can be considered reflective of an individual's current health or disease state. Escalating interest in personalized medicine, access to high-throughput genotyping and resulting acquisition of large volumes of genetic data corroborates the second method, Mendelian randomization (MR). MR employs telomere length-associated genetic variants to indicate predisposition to disease risk based on the genomic composition of the individual. When assessed from cells in the bloodstream, telomeres can show variation from their genetically predisposed lengths due to environmental-induced changes. These alterations in telomere length act as an indicator of cellular health, which, in turn, can provide disease risk status. Overall, BTL measurement is a dynamic marker of biological health and well-being that together with genetically defined telomere lengths can provide insights into improved healthcare for the individual.
Collapse
|
41
|
Affiliation(s)
- A J Marian
- From the University of Texas Health Science Center, Houston (A.J.M.)
| | - Aruni Bhatnagar
- Division of Cardiology, University of Louisville, KY (A.B., R.B.)
| | - Roberto Bolli
- Division of Cardiology, University of Louisville, KY (A.B., R.B.)
| | | |
Collapse
|
42
|
Zhan Y, Clements MS, Roberts RO, Vassilaki M, Druliner BR, Boardman LA, Petersen RC, Reynolds CA, Pedersen NL, Hägg S. Association of telomere length with general cognitive trajectories: a meta-analysis of four prospective cohort studies. Neurobiol Aging 2018; 69:111-116. [PMID: 29870951 PMCID: PMC6064381 DOI: 10.1016/j.neurobiolaging.2018.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/06/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
To investigate the association of telomere length (TL) with trajectories of general cognitive abilities, we used data on 5955 participants from the Sex Differences in Health and Aging Study and the Swedish Adoption/Twin Study of Aging in Sweden, and the Mayo Clinic Study of Aging, and the Health and Retirement Study in the United States. TL was measured at baseline, while general cognitive ability was assessed repeatedly up to 7 occasions. Latent growth curve models were used to examine the associations. One standard deviation increase of TL was associated with 0.021 unit increase (95% confidence interval [CI]: 0.001, 0.042) of standardized mean general cognitive ability. After controlling for sex, the point estimate remained similar (0.019) with a wider CI (95% CI: -0.002, 0.039). The association was attenuated with adjustment for educational attainment (0.009, 95% CI: -0.009, 0.028). No strong evidence was observed for the association of TL and decline in general cognitive ability. Longer TL was associated with higher general cognitive ability levels in the age-adjusted models but not in the models including all covariates, nor with cognitive decline.
Collapse
Affiliation(s)
- Yiqiang Zhan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Mark S Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rosebud O Roberts
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Maria Vassilaki
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Lisa A Boardman
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ronald C Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Tahhan AS, Hammadah M, Mohamed-Kelli H, Kim JH, Sandesara PB, Alkhoder A, Kaseer B, Gafeer MM, Topel M, Hayek SS, O’Neal WT, Obideen M, Ko YA, Liu C, Hesaroieh I, Mahar E, Vaccarino V, Waller EK, Quyyumi AA. Circulating Progenitor Cells and Racial Differences. Circ Res 2018; 123:467-476. [PMID: 29930146 PMCID: PMC6202175 DOI: 10.1161/circresaha.118.313282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Blacks compared with whites have a greater risk of adverse cardiovascular outcomes. Impaired regenerative capacity, measured as lower levels of circulating progenitor cells (CPCs), is a novel determinant of adverse outcomes; however, little is known about racial differences in CPCs. OBJECTIVE To investigate the number of CPCs, PC-mobilizing factors, PC mobilization during acute myocardial infarction and the predictive value of CPC counts in blacks compared with whites. METHODS AND RESULTS CPCs were enumerated by flow cytometry as CD45med+ blood mononuclear cells expressing CD34+, CD133+, VEGF2R+, and CXCR4+ epitopes in 1747 subjects, mean age 58.4±13, 55% male, and 26% self-reported black. Patients presenting with acute myocardial infarction (n=91) were analyzed separately. Models were adjusted for relevant clinical variables. SDF-1α (stromal cell-derived factor-1α), VEGF (vascular endothelial growth factor), and MMP-9 (matrix metallopeptidase-9) levels were measured (n=561), and 623 patients were followed for median of 2.2 years for survival analysis. Blacks were younger, more often female, with a higher burden of cardiovascular risk, and lower CPC counts. Blacks had fewer CD34+ cells (-17.6%; [95% confidence interval (CI), -23.5% to -11.3%]; P<0.001), CD34+/CD133+ cells (-15.5%; [95% CI, -22.4% to -8.1%]; P<0.001), CD34+/CXCR4+ cells (-17.3%; [95% CI, -23.9% to -10.2%]; P<0.001), and CD34+/VEGF2R+ cells (-27.9%; [95% CI, -46.9% to -2.0%]; P=0.04) compared with whites. The association between lower CPC counts and black race was not affected by risk factors or cardiovascular disease. Results were validated in a separate cohort of 411 patients. Blacks with acute myocardial infarction had significantly fewer CPCs compared with whites ( P=0.02). Blacks had significantly lower plasma MMP-9 levels ( P<0.001) which attenuated the association between low CD34+ and black race by 19% (95% CI, 13%-33%). However, VEGF and SDF-1α levels were not significantly different between the races. Lower CD34+ counts were similarly predictive of mortality in blacks (hazard ratio, 2.83; [95% CI, 1.12-7.20]; P=0.03) and whites (hazard ratio, 1.79; [95% CI, 1.09-2.94]; P=0.02) without significant interaction. CONCLUSIONS Black subjects have lower levels of CPCs compared with whites which is partially dependent on lower circulating MMP-9 levels. Impaired regenerative capacity is predictive of adverse outcomes in blacks and may partly account for their increased risk of cardiovascular events.
Collapse
Affiliation(s)
- Ayman Samman Tahhan
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Muhammad Hammadah
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Heval Mohamed-Kelli
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Jeong Hwan Kim
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Pratik B Sandesara
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Ayman Alkhoder
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Belal Kaseer
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Mohamad Mazen Gafeer
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Matthew Topel
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Salim S Hayek
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Wesley T O’Neal
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Malik Obideen
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Chang Liu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Iraj Hesaroieh
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Ernestine Mahar
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Viola Vaccarino
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
44
|
Suchy-Dicey AM, Muller CJ, Madhyastha TM, Shibata D, Cole SA, Zhao J, Longstreth WT, Buchwald D. Telomere Length and Magnetic Resonance Imaging Findings of Vascular Brain Injury and Central Brain Atrophy: The Strong Heart Study. Am J Epidemiol 2018; 187:1231-1239. [PMID: 29860472 DOI: 10.1093/aje/kwx368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/01/2017] [Indexed: 12/27/2022] Open
Abstract
Telomeres are repeating regions of DNA that cap chromosomes. They shorten over the mammalian life span, especially in the presence of oxidative stress and inflammation. Telomeres may play a direct role in cell senescence, serving as markers of premature vascular aging. Leukocyte telomere length (LTL) may be associated with premature vascular brain injury and cerebral atrophy. However, reports have been inconsistent, especially among minority populations with a heavy burden of illness related to vascular aging. We examined associations between LTL and magnetic resonance imaging in 363 American Indians aged 64-93 years from the Strong Heart Study (1989-1991) and its ancillary study, Cerebrovascular Disease and Its Consequences in American Indians (2010-2013). Our results showed significant associations of LTL with ventricular enlargement and the presence of white matter hyperintensities. Secondary models indicated that renal function may mediate these associations, although small case numbers limited inference. Hypertension and diabetes showed little evidence of effect modification. Results were most extreme among participants who evinced the largest decline in LTL. Although this study was limited to cross-sectional comparisons, it represents (to our knowledge) the first consideration of associations between telomere length and brain aging in American Indians. Findings suggest a relationship between vascular aging by cell senescence and severity of brain disease.
Collapse
Affiliation(s)
- Astrid M Suchy-Dicey
- Initiative for Research and Education to Advance Community Health, Elson S. Floyd College of Medicine, Washington State University, Seattle, Washington
| | - Clemma J Muller
- Initiative for Research and Education to Advance Community Health, Elson S. Floyd College of Medicine, Washington State University, Seattle, Washington
| | - Tara M Madhyastha
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington
| | - Dean Shibata
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington
| | | | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - W T Longstreth
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Dedra Buchwald
- Initiative for Research and Education to Advance Community Health, Elson S. Floyd College of Medicine, Washington State University, Seattle, Washington
| |
Collapse
|
45
|
Samman Tahhan A, Hammadah M, Raad M, Almuwaqqat Z, Alkhoder A, Sandesara PB, Mohamed-Kelli H, Hayek SS, Kim JH, O'Neal WT, Topel ML, Grant AJ, Sabbak N, Heinl RE, Gafeer MM, Obideen M, Kaseer B, Abdelhadi N, Ko YA, Liu C, Hesaroieh I, Mahar EA, Vaccarino V, Waller EK, Quyyumi AA. Progenitor Cells and Clinical Outcomes in Patients With Acute Coronary Syndromes. Circ Res 2018; 122:1565-1575. [PMID: 29514830 PMCID: PMC5970041 DOI: 10.1161/circresaha.118.312821] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 11/16/2022]
Abstract
RATIONALE Circulating progenitor cells (CPCs) mobilize in response to ischemic injury, but their predictive value remains unknown in acute coronary syndrome (ACS). OBJECTIVE We aimed to investigate the number of CPCs in ACS compared with those with stable coronary artery disease (CAD), relationship between bone marrow PCs and CPCs, and whether CPC counts predict mortality in patients with ACS. METHODS AND RESULTS In 2028 patients, 346 had unstable angina, 183 had an acute myocardial infarction (AMI), and the remaining 1499 patients had stable CAD. Patients with ACS were followed for the primary end point of all-cause death. CPCs were enumerated by flow cytometry as mononuclear cells expressing a combination of CD34+, CD133+, vascular endothelial growth factor receptor 2+, or chemokine (C-X-C motif) receptor 4+. CPC counts were higher in subjects with AMI compared those with stable CAD even after adjustment for age, sex, race, body mass index, renal function, hypertension, diabetes mellitus, hyperlipidemia, and smoking; CD34+, CD34+/CD133+, CD34+/CXCR4+, and CD34+/VEGFR2+ CPC counts were 19%, 25%, 28%, and 142% higher in those with AMI, respectively, compared with stable CAD. There were strong correlations between the concentrations of CPCs and the PC counts in bone marrow aspirates in 20 patients with AMI. During a 2 (interquartile range, 1.31-2.86)-year follow-up period of 529 patients with ACS, 12.4% died. In Cox regression models adjusted for age, sex, body mass index, heart failure history, estimated glomerular filtration rate, and AMI, subjects with low CD34+ cell counts had a 2.46-fold (95% confidence interval, 1.18-5.13) increase in all-cause mortality, P=0.01. CD34+/CD133+ and CD34+/CXCR4+, but not CD34+/VEGFR2+ PC counts, had similar associations with mortality. Results were validated in a separate cohort of 238 patients with ACS. CONCLUSIONS CPC levels are significantly higher in patients after an AMI compared with those with stable CAD and reflect bone marrow PC content. Among patients with ACS, a lower number of hematopoietic-enriched CPCs are associated with a higher mortality.
Collapse
Affiliation(s)
- Ayman Samman Tahhan
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Muhammad Hammadah
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Mohamad Raad
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Zakaria Almuwaqqat
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Ayman Alkhoder
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Pratik B Sandesara
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Heval Mohamed-Kelli
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Salim S Hayek
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Jeong Hwan Kim
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Wesley T O'Neal
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Matthew L Topel
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Aubrey J Grant
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Nabil Sabbak
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Robert E Heinl
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Mohamad Mazen Gafeer
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Malik Obideen
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Belal Kaseer
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Nasser Abdelhadi
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Yi-An Ko
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Department of Biostatistics and Bioinformatics (Y.-A.K., C.L., E.A.M.)
| | - Chang Liu
- Department of Biostatistics and Bioinformatics (Y.-A.K., C.L., E.A.M.)
| | - Iraj Hesaroieh
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Ernestine A Mahar
- Department of Biostatistics and Bioinformatics (Y.-A.K., C.L., E.A.M.)
| | - Viola Vaccarino
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute (E.K.K.), Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- From the Emory Clinical Cardiovascular Research Institute Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., M.R., Z.A., A.A., P.B.S., H.M.-K., S.S.H., J.H.K., W.T.O., M.L.T., A.J.G., N.S., R.E.H., M.M.G., M.O., B.K., N.A., Y.-A.K., I.H., V.V., A.A.Q.)
| |
Collapse
|
46
|
Benetos A, Kark JD, Toupance S, Verhulst S, Aviv A. Response by Benetos et al to Letter Regarding Article, "Short Leukocyte Telomere Length Precedes Clinical Expression of Atherosclerosis: The Blood-and-Muscle Model". Circ Res 2018; 122:e73-e74. [PMID: 29650636 DOI: 10.1161/circresaha.118.312967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Jeremy D Kark
- Hadassah School of Public Health and Community Medicine, Hebrew University, Jerusalem, Israel
| | | | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark
| |
Collapse
|
47
|
Niemiro GM, Edwards T, Barfield JP, Beals JW, Broad EM, Motl RW, Burd NA, Pilutti LA, DE Lisio M. Circulating Progenitor Cell Response to Exercise in Wheelchair Racing Athletes. Med Sci Sports Exerc 2018; 50:88-97. [PMID: 28806276 DOI: 10.1249/mss.0000000000001402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Circulating progenitor cells (CPC) are a heterogeneous population of stem/progenitor cells in peripheral blood that participate in tissue repair. CPC mobilization has been well characterized in able-bodied persons but has not been previously investigated in wheelchair racing athletes. The purpose of this study was to characterize CPC and CPC subpopulation mobilization in elite wheelchair racing athletes in response to acute, upper-extremity aerobic exercise to determine whether CPC responses are similar to ambulatory populations. METHODS Eight participants (three females; age = 27.5 ± 4.0 yr, supine height = 162.5 ± 18.6 cm, weight = 53.5 ± 10.9 kg, V˙O2peak = 2.4 ± 0.62 L·min, years postinjury = 21.5 ± 6.2 yr) completed a 25-km time trial on a road course. Blood sampling occurred before and immediately after exercise for quantification of CPC (CD34), hematopoietic stem and progenitor cells (HSPC) (CD34/CD45), hematopoietic stem cells (HSC) (CD34/CD45/CD38), CD34 adipose tissue (AT)-derived mesenchymal stromal cells (MSC) (CD45/CD34/CD105/CD31), CD34 bone marrow (BM)-derived MSC (CD45/CD34/CD105/CD31), and endothelial progenitor cells (EPC) (CD45/CD34/VEGFR2) via flow cytometry. Blood lactate was measured before and after trial as an indicator of exercise intensity. RESULTS CPC concentration increased 5.7-fold postexercise (P = 0.10). HSPC, HSC, EPC, and both MSC populations were not increased postexercise. Baseline HSPC populations were significantly positively correlated to absolute V˙O2peak (rho = 0.71, P < 0.05) with HSC trending to positively correlate to V˙O2peak (rho = 0.62, P = 0.10). AT-MSC populations were trending to be negatively correlated to baseline V˙O2peak (rho = -0.62, P = 0.058). The change in CPC, EPC, and AT-MSC pre- and postexercise significantly positively correlated to the change in lactate concentrations (rho = 0.91 P = 0.002, 0.71 P = 0.047, 0.81 P = 0.02, respectively, all P < 0.05). CONCLUSION These data suggest that CPC content in wheelchair racing athletes is related to cardiorespiratory fitness, and responses to exercise are positively related to exercise intensity.
Collapse
Affiliation(s)
- Grace M Niemiro
- 1Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL; 2Department of Health and Human Performance, Radford University, Radford, VA; 3U.S. Paralympics, Colorado Springs, CO; 4Department of Physical Therapy, University of Alabama-Birmingham, Birmingham, AL; 5Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, CANADA; and 6School of Human Kinetics, Brain and Mind Research Institute, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, CANADA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zimetti F, Freitas WM, Campos AM, Daher M, Adorni MP, Bernini F, Sposito AC, Zanotti I. Cholesterol efflux capacity does not associate with coronary calcium, plaque vulnerability, and telomere length in healthy octogenarians. J Lipid Res 2018; 59:714-721. [PMID: 29436385 DOI: 10.1194/jlr.p079525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 01/19/2018] [Indexed: 12/23/2022] Open
Abstract
Several studies have revealed that traditional risk factors are less effective in predicting CVD risk in the elderly, suggesting the need to identify new biomarkers. Here, we evaluated the association between serum cholesterol efflux capacity (CEC), an atheroprotective property of HDL recently identified as a novel marker of CVD risk, and atherosclerotic burden in a cohort of very old, healthy individuals. Serum CEC values were not significantly correlated either with calcium score or with markers of vulnerable plaque, such as positive remodeling, hypodensity, spotty calcification, or napking-ring sign. In addition, no association was detected between CEC and telomere length, a marker of biological aging that has been linked to atherosclerosis extent. Interestingly, elderly subjects presented a remarkably higher CEC (+30.2%; P < 0.0001) compared with values obtained from a cohort of sex-matched, cardiovascular event-free, middle-aged individuals. In conclusion, serum CEC is not related to traditional risk factors in very old, cardiovascular event-free subjects, but has significantly higher values compared with a healthy, younger population. Whether this improved HDL functionality may represent a protective factor in CVD onset must be established in future studies.
Collapse
Affiliation(s)
| | - Wladimir M Freitas
- Cardiology Division, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Cidade Universitária, Campinas, Brazil
| | - Alessandra M Campos
- Cardiology Division, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Cidade Universitária, Campinas, Brazil
| | - Mauricio Daher
- Cardiology Division, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Cidade Universitária, Campinas, Brazil
| | | | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Andrei C Sposito
- Cardiology Division, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Cidade Universitária, Campinas, Brazil.
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
49
|
Topel ML, Hayek SS, Ko YA, Sandesara PB, Samman Tahhan A, Hesaroieh I, Mahar E, Martin GS, Waller EK, Quyyumi AA. Sex Differences in Circulating Progenitor Cells. J Am Heart Assoc 2017; 6:e006245. [PMID: 28974500 PMCID: PMC5721840 DOI: 10.1161/jaha.117.006245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lower levels of circulating progenitor cells (PCs) reflect impaired endogenous regenerative capacity and are associated with aging, vascular disease, and poor outcomes. Whether biologic sex and sex hormones influence PC numbers remains a subject of controversy. We sought to determine sex differences in circulating PCs in both healthy persons and patients with coronary artery disease, and to determine their association with sex hormone levels. METHODS AND RESULTS In 642 participants (mean age 48 years, 69% women, 23% black) free from cardiovascular disease, we measured circulating PC counts as CD45med+ mononuclear cells coexpressing CD34 and its subsets expressing CD133, chemokine (C-X-C motif) receptor 4, and vascular endothelial growth factor receptor 2 epitopes using flow cytometry. Testosterone and estradiol levels were measured. After adjustment for age, cardiovascular risk factors, and body mass, CD34+ (β=-23%, P<0.001), CD34+/CD133+ (β=-20%, P=0.001), CD34+/chemokine (C-X-C motif) receptor 4-positive (β=-24%, P<0.001), and CD34+/chemokine (C-X-C motif) receptor 4-positive/CD133+ (β=-21%, P=0.001) PC counts, but not vascular endothelial growth factor receptor 2-positive PC counts were lower in women compared with men. Estradiol levels positively correlated with hematopoietic, but not vascular endothelial growth factor receptor 2- positive PC counts in women (P<0.05). Testosterone levels and PC counts were not correlated in men. These findings were replicated in an independent cohort with prevalent coronary artery disease. CONCLUSIONS Women have lower circulating hematopoietic PC levels compared with men. Estrogen levels are modestly associated with PC levels in women. Since PCs are reflective of endogenous regenerative capacity, these findings may at least partly explain the rise in adverse cardiovascular events in women with aging and menopause.
Collapse
Affiliation(s)
- Matthew L Topel
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Salim S Hayek
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Pratik B Sandesara
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | | | - Iraj Hesaroieh
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Ernestine Mahar
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Greg S Martin
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
50
|
Cheng Z, Peng HL, Zhang R, Fu XM, Zhang GS. Rejuvenation of Cardiac Tissue Developed from Reprogrammed Aged Somatic Cells. Rejuvenation Res 2017; 20:389-400. [PMID: 28478705 DOI: 10.1089/rej.2017.1930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived via somatic cell reprogramming have been reported to reset aged somatic cells to a more youthful state, characterized by elongated telomeres, a rearranged mitochondrial network, reduced oxidative stress, and restored pluripotency. However, it is still unclear whether the reprogrammed aged somatic cells can function normally as embryonic stem cells (ESCs) during development and be rejuvenated. In the current study, we applied the aggregation technique to investigate whether iPSCs derived from aged somatic cells could develop normally and be rejuvenated. iPSCs derived from bone marrow myeloid cells of 2-month-old (2 M) and 18-month-old (18 M) C57BL/6-Tg (CAG-EGFP)1Osb/J mice were aggregated with embryos derived from wild-type ICR mice to produce chimeras (referred to as 2 M CA and 18 M CA, respectively). Our observations focused on comparing the ability of the iPSCs derived from 18 M and 2 M bone marrow cells to develop rejuvenated cardiac tissue (the heart is the most vital organ during aging). The results showed an absence of p16 and p53 upregulation, telomere length shortening, and mitochondrial gene expression and deletion in 18 M CA, whereas slight changes in mitochondrial ultrastructure, cytochrome C oxidase activity, ATP production, and reactive oxygen species production were observed in CA cardiac tissues. The data implied that all of the aging characteristics observed in the newborn cardiac tissue of 18 M CA were comparable with those of 2 M CA newborn cardiac tissue. This study provides the first direct evidence of the aging-related characteristics of cardiac tissue developed from aged iPSCs, and our observations demonstrate that partial rejuvenation can be achieved by reprogramming aged somatic cells to a pluripotent state.
Collapse
Affiliation(s)
- Zhao Cheng
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Hong-Ling Peng
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Rong Zhang
- 2 Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwanoha, Kashiwa, Japan
| | - Xian-Ming Fu
- 3 Department of Cardiac Surgery, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Guang-Sen Zhang
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| |
Collapse
|