1
|
Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, Zhang WH, Jing ZC. Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. J Mol Cell Cardiol 2024; 197:61-77. [PMID: 39437884 DOI: 10.1016/j.yjmcc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.
Collapse
Affiliation(s)
- Ying-Huizi Shen
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong Ding
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Wen Wang
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Lin Z, Zhuang J, He L, Zhu S, Kong W, Lu W, Zhang Z. Exploring Smad5: a review to pave the way for a deeper understanding of the pathobiology of common respiratory diseases. Mol Med 2024; 30:225. [PMID: 39578779 PMCID: PMC11585160 DOI: 10.1186/s10020-024-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Smad5 (small mothers against decapentaplegic 5) protein is a receptor-regulated member of the Smad family proteins, mainly participating in the bone morphogenetic protein (BMP) signaling pathway in its phosphorylated form. This article will provide a detailed review of Smad5, focusing on its gene characteristics, protein structure, and subcellular localization properties. We will also explore the related signaling pathways and the mechanisms of Smad5 in respiratory diseases, including chronic obstructive pulmonary disease (COPD), bronchial asthma, pulmonary arterial hypertension(PAH), lung cancer, and idiopathic pulmonary fibrosis (IPF). Additionally, the review will cover aspects such as proliferation, differentiation, apoptosis, anti-fibrosis, and mitochondrial function metabolism. In addition, the review will cover aspects of proliferation, differentiation, apoptosis, anti-fibrosis and functional mitochondrial metabolism related to the above topics. Numerous studies suggest that Smad5 may play a unique and important role in the pathogenesis of respiratory system diseases. However, in previous research, Smad5 was mainly used to broadly determine the activation of the BMP signaling pathway, and its own function has not been given much attention. It is worth noting that Smad5 has distinct nuclear-cytoplasmic distribution characteristics different from Smad1 and Smad8. It can undergo significant nuclear-cytoplasmic shuttling when intracellular pH (pHi) changes, playing important roles in both the classical BMP signaling pathway and non-BMP signaling pathways. Given that Smad5 can move intracellularly in response to changes in physicochemical properties, its cellular localization may play a crucial role in the development of respiratory diseases. This article will explore the possibility that its distribution characteristics may be an important factor that is easily overlooked and not adequately considered in disease research.
Collapse
Affiliation(s)
- Zeqiang Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayu Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyuan Zhu
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiguo Kong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zili Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Feriel B, Alessandra C, Deborah GJ, Corinne N, Raphaël T, Mina O, Ali A, Jean-Baptiste M, Guillaume F, Julien G, Maria-Rosa G, Elie F, Laurent S, Olaf M, Ly T, Marc H, Christophe G. Exploring the Endothelin-1 pathway in chronic thromboembolic pulmonary hypertension microvasculopathy. Sci Rep 2024; 14:28308. [PMID: 39550495 PMCID: PMC11569243 DOI: 10.1038/s41598-024-79623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024] Open
Abstract
Targeted vasopeptide therapies have significantly advanced the management of pulmonary arterial hypertension (PAH). However, due to insufficient preclinical evidence regarding the involvement of the endothelin-1 (ET-1) pathway in chronic thromboembolic pulmonary hypertension (CTEPH) pathophysiology, the potential of ET-1 receptor antagonism in treating CTEPH remains uncertain. In this study, we investigated the role of the ET-1 pathway in CTEPH microvasculopathy using a multifaceted approach. Plasma ET-1 levels were measured in a cohort of 59 CTEPH patients and 41 healthy controls. Additionally, we evaluated the expression of key ET-1 pathway members in pulmonary explants from CTEPH, idiopathic PAH, and control patients. We used an in vitro system to test the hypothesis that the turbulent flow, observed near the vascular obstructions pathognomonic of CTEPH, enhances ET-1 expression. Our findings were further validated in vivo using a CTEPH piglet model that contains distinct regions representing pre- and post-thrombus lung territories. We found a twofold increase in circulating ET-1 levels in CTEPH patients compared to healthy subjects. Pulmonary explants from CTEPH patients exhibited pronounced overexpression of ET-1, endothelin receptor A (ETA), and phosphorylated myosin light chain (p-MLC) in muscularized pulmonary microvessels, suggesting heightened vascular contraction. In vitro experiments showed that turbulent flow facilitates ET-1 secretion compared to laminar flow regions. Additionally, in the CTEPH piglet model, elevated plasma ET-1 levels were observed compared to controls. Immunofluorescence and confocal microscopy analyses confirmed increased ETA and p-MLC in remodeled arteries from both pulmonary territories. However, ET-1 protein elevation was exclusively observed in the obstructed territory. These findings collectively indicate impaired vascular tone in microvessels of CTEPH patients and the CTEPH piglet model. Furthermore, our data implicates the ET-1 pathway in microvasculopathy, with turbulent flow playing a pathological role. These insights underscore the potential utility of ET-1 receptor antagonists as a promising therapeutic approach for CTEPH treatment.
Collapse
Affiliation(s)
- Benchenouf Feriel
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
| | - Cuomo Alessandra
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
| | - Gorth J Deborah
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
| | - Normand Corinne
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
| | - Thuillet Raphaël
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
| | - Ottaviani Mina
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
| | - Akamkam Ali
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
- Department of Thoracic Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital -Groupe Hospitalier Paris Saint Joseph, Le Plessis-Robinson, France
| | - Menager Jean-Baptiste
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
- Department of Thoracic Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital -Groupe Hospitalier Paris Saint Joseph, Le Plessis-Robinson, France
| | - Fadel Guillaume
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
- Department of Thoracic Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital -Groupe Hospitalier Paris Saint Joseph, Le Plessis-Robinson, France
| | - Grynblat Julien
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
| | - Ghigna Maria-Rosa
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
| | - Fadel Elie
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
- Department of Thoracic Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital -Groupe Hospitalier Paris Saint Joseph, Le Plessis-Robinson, France
| | - Savale Laurent
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique - Hôpitaux de Paris (AP-HP), Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Mercier Olaf
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique - Hôpitaux de Paris (AP-HP), Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Tu Ly
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
| | - Humbert Marc
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique - Hôpitaux de Paris (AP-HP), Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Guignabert Christophe
- UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies" (HPPIT), INSERM, Hôpital Marie Lannelongue Et Hôpital Bicêtre, Le Plessis-Robinson Et Le Kremlin-Bicêtre, France.
- School of Medicine, University of Paris-Saclay, HPPIT, Le Kremlin-Bicêtre, France.
| |
Collapse
|
4
|
Zeder K, Siew ED, Kovacs G, Brittain EL, Maron BA. Pulmonary hypertension and chronic kidney disease: prevalence, pathophysiology and outcomes. Nat Rev Nephrol 2024; 20:742-754. [PMID: 38890546 DOI: 10.1038/s41581-024-00857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Pulmonary hypertension (PH) is common in patients with chronic kidney disease (CKD) or kidney failure, with an estimated prevalence of up to 78% in those referred for right-heart catheterization. PH is independently associated with adverse outcomes in CKD, raising the possibility that early detection and appropriate management of PH might improve outcomes in at-risk patients. Among patients with PH, the prevalence of CKD stages 3 and 4 is estimated to be as high as 36%, and CKD is also independently associated with adverse outcomes. However, the complex, heterogenous pathophysiology and clinical profile of CKD-PH requires further characterization. CKD is often associated with elevated left ventricular filling pressure and volume overload, which presumably leads to pulmonary vascular stiffening and post-capillary PH. By contrast, a distinct subgroup of patients at high risk is characterized by elevated pulmonary vascular resistance and right ventricular dysfunction in the absence of pulmonary venous hypertension, which may represent a right-sided cardiorenal syndrome defined in principle by hypervolaemia, salt avidity, low cardiac output and normal left ventricular function. Current understanding of CKD-PH is limited, despite its potentially important ramifications for clinical decision making. In particular, whether PH should be considered when determining the suitability and timing of kidney replacement therapy or kidney transplantation is unclear. More research is urgently needed to address these knowledge gaps and improve the outcomes of patients with or at risk of CKD-PH.
Collapse
Affiliation(s)
- Katarina Zeder
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury, Nashville, TN, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Evan L Brittain
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA.
| |
Collapse
|
5
|
Stump B, Waxman AB. Pulmonary Arterial Hypertension and TGF-β Superfamily Signaling: Focus on Sotatercept. BioDrugs 2024; 38:743-753. [PMID: 39292393 DOI: 10.1007/s40259-024-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease that continues to remain highly morbid despite multiple advances in medical therapies. There remains a persistent and desperate need to identify novel methods of treating and, ideally, reversing the pathologic vasculopathy that results in PAH development and progression. Sotatercept is a first-in-class fusion protein that is believed to primarily inhibit activin signaling resulting in decreased cell proliferation and differentiation, though the exact mechanism remains uncertain. Here, we review the currently available PAH therapies, data highlighting the importance of transforming growth factor-β (TGF-β) superfamily signaling in the development of PAH, and the published and on-going clinical trials evaluating sotatercept in the treatment of PAH. We will also discuss preclinical data supporting the potential use of the fusion protein KER-012 in the inhibition of aberrant TGF-β superfamily signaling to ameliorate the obstructive vasculopathy of PAH.
Collapse
|
6
|
Savale L, Tu L, Normand C, Boucly A, Sitbon O, Montani D, Olsson KM, Park DH, Fuge J, Kamp JC, Humbert M, Hoeper MM, Guignabert C. Effect of sotatercept on circulating proteomics in pulmonary arterial hypertension. Eur Respir J 2024; 64:2401483. [PMID: 39227073 PMCID: PMC11525346 DOI: 10.1183/13993003.01483-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Alterations in specific signalling pathways within the bone morphogenetic protein/transforming growth factor-β (BMP/TGF-β) family, involving several precisely regulated activator or inhibitor ligands, have been identified as pathogenic drivers of pulmonary arterial hypertension (PAH). These alterations, particularly affecting BMPRII and activin-dependent pathways, have led to innovative therapies, notably the development of sotatercept [1, 2]. Sotatercept, a fusion protein of the extracellular domain of human ACTRIIA and the Fc domain of human IgG1, has shown promising results in improving key clinical, functional, and haemodynamic parameters in PAH patients, as evidenced by positive results in the phase 2 PULSAR and phase 3 STELLAR trials [3, 4]. This progress was partly based on preclinical studies showing that reducing activin-induced Smad2/3 phosphorylation levels, by suppressing activin production in mice [5] or using soluble receptors in rats [6, 7], can attenuate pulmonary vascular remodelling. Despite these advancements, the precise mechanisms of action of these approaches in humans and rodents need to be better understood to enhance these valuable tools. Sotatercept raises several critical questions regarding its mechanism of action, and a deeper understanding could reveal the pathophysiological mechanisms of PAH, leading to more effective therapeutic approaches. Proteomic analysis of circulating biomarkers reveals that sotatercept's impact extends beyond activins to influence BMP-9 and BMP-10, along with essential metabolic and inflammatory factors https://bit.ly/3Z5AZJ3
Collapse
Affiliation(s)
- Laurent Savale
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Ly Tu
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
| | - Corinne Normand
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
| | - Athénaïs Boucly
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Karen M Olsson
- Department for Respiratory Medicine and Infectious Diseases and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Da-Hee Park
- Department for Respiratory Medicine and Infectious Diseases and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Jan Fuge
- Department for Respiratory Medicine and Infectious Diseases and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Jan C Kamp
- Department for Respiratory Medicine and Infectious Diseases and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Marc Humbert
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Marius M Hoeper
- Department for Respiratory Medicine and Infectious Diseases and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Christophe Guignabert
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Guignabert C, Aman J, Bonnet S, Dorfmüller P, Olschewski AJ, Pullamsetti S, Rabinovitch M, Schermuly RT, Humbert M, Stenmark KR. Pathology and pathobiology of pulmonary hypertension: current insights and future directions. Eur Respir J 2024; 64:2401095. [PMID: 39209474 PMCID: PMC11533988 DOI: 10.1183/13993003.01095-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
In recent years, major advances have been made in the understanding of the cellular and molecular mechanisms driving pulmonary vascular remodelling in various forms of pulmonary hypertension, including pulmonary arterial hypertension, pulmonary hypertension associated with left heart disease, pulmonary hypertension associated with chronic lung disease and hypoxia, and chronic thromboembolic pulmonary hypertension. However, the survival rates for these different forms of pulmonary hypertension remain unsatisfactory, underscoring the crucial need to more effectively translate innovative scientific knowledge into healthcare interventions. In these proceedings of the 7th World Symposium on Pulmonary Hypertension, we delve into recent developments in the field of pathology and pathophysiology, prioritising them while questioning their relevance to different subsets of pulmonary hypertension. In addition, we explore how the latest omics and other technological advances can help us better and more rapidly understand the myriad basic mechanisms contributing to the initiation and progression of pulmonary vascular remodelling. Finally, we discuss strategies aimed at improving patient care, optimising drug development, and providing essential support to advance research in this field.
Collapse
Affiliation(s)
- Christophe Guignabert
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Sébastien Bonnet
- Pulmonary Hypertension research group, Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Peter Dorfmüller
- Department of Pathology, University Hospital Giessen/Marburg, Giessen, Germany
| | - Andrea J Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Soni Pullamsetti
- Max Planck Institute for Heart and Lung Research Bad Nauheim, Bad Nauheim, Germany
- Department of Internal Medicine, German Center for Lung Research (DZL) Cardio-Pulmonary Institute (CPI)
- Universities of Giessen and Marburg Lung Centre, Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Marlene Rabinovitch
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ralph T Schermuly
- Department of Internal Medicine, German Center for Lung Research (DZL) Cardio-Pulmonary Institute (CPI)
| | - Marc Humbert
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Kurt R Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado, Denver, CO, USA
| |
Collapse
|
8
|
Robert F, Certain MC, Baron A, Thuillet R, Duhaut L, Ottaviani M, Chelgham MK, Normand C, Berrebeh N, Ricard N, Furlan V, Desroches-Castan A, Gonzales E, Jacquemin E, Sitbon O, Humbert M, Bailly S, Coilly A, Guignabert C, Tu L, Savale L. Disrupted BMP-9 Signaling Impairs Pulmonary Vascular Integrity in Hepatopulmonary Syndrome. Am J Respir Crit Care Med 2024; 210:648-661. [PMID: 38626313 DOI: 10.1164/rccm.202307-1289oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/16/2024] [Indexed: 04/18/2024] Open
Abstract
Rationale: Hepatopulmonary syndrome (HPS) is a severe complication of liver diseases characterized by abnormal dilation of pulmonary vessels, resulting in impaired oxygenation. Recent research highlights the pivotal role of liver-produced BMP-9 (bone morphogenetic protein-9) in maintaining pulmonary vascular integrity. Objectives: This study aimed to investigate the involvement of BMP-9 in human and experimental HPS. Methods: Circulating BMP-9 levels were measured in 63 healthy control subjects and 203 patients with cirrhosis with or without HPS. Two animal models of portal hypertension were employed: common bile duct ligation with cirrhosis and long-term partial portal vein ligation without cirrhosis. Additionally, the therapeutic effect of low-dose BMP activator FK506 was investigated, and the pulmonary vascular phenotype of BMP-9-knockout rats was analyzed. Measurements and Main Results: Patients with HPS related to compensated cirrhosis exhibited lower levels of circulating BMP-9 compared with patients without HPS. Patients with severe cirrhosis exhibited consistently low levels of BMP-9. HPS characteristics were observed in animal models, including intrapulmonary vascular dilations and an increase in the alveolar-arterial gradient. HPS development in both rat models correlated with reduced intrahepatic BMP-9 expression, decreased circulating BMP-9 level and activity, and impaired pulmonary BMP-9 endothelial pathway. Daily treatment with FK506 for 2 weeks restored the BMP pathway in the lungs, alleviating intrapulmonary vascular dilations and improving gas exchange impairment. Furthermore, BMP-9-knockout rats displayed a pulmonary HPS phenotype, supporting its role in disease progression. Conclusions: The study findings suggest that portal hypertension-induced loss of BMP-9 signaling contributes to HPS development.
Collapse
Affiliation(s)
- Fabien Robert
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
| | - Marie-Caroline Certain
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
- Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire (PulmoTension), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Audrey Baron
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
- Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire (PulmoTension), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
| | - Léa Duhaut
- Centre Hépato-Biliaire, AP-HP, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, INSERM, UMR_S 1193, Hepatinov, Orsay, France
| | - Mina Ottaviani
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
| | - Mustapha Kamel Chelgham
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
| | - Corinne Normand
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
| | - Nihel Berrebeh
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
| | - Nicolas Ricard
- Biosanté Unit UMR_S 1292, Grenoble Alpes University, INSERM, Commissariat à l'énergie atomique et aux énergies alternative (CEA), Grenoble, France
| | - Valerie Furlan
- Service de pharmacologie-toxicologie, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Agnès Desroches-Castan
- Biosanté Unit UMR_S 1292, Grenoble Alpes University, INSERM, Commissariat à l'énergie atomique et aux énergies alternative (CEA), Grenoble, France
| | - Emmanuel Gonzales
- Université Paris-Saclay, INSERM, UMR_S 1193, Hepatinov, Orsay, France
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Biliary Atresia and Genetic Cholestasis, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Emmanuel Jacquemin
- Université Paris-Saclay, INSERM, UMR_S 1193, Hepatinov, Orsay, France
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Biliary Atresia and Genetic Cholestasis, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
- Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire (PulmoTension), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
- Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire (PulmoTension), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Sabine Bailly
- Biosanté Unit UMR_S 1292, Grenoble Alpes University, INSERM, Commissariat à l'énergie atomique et aux énergies alternative (CEA), Grenoble, France
| | - Audrey Coilly
- Centre Hépato-Biliaire, AP-HP, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, INSERM, UMR_S 1193, Hepatinov, Orsay, France
| | - Christophe Guignabert
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
| | - Ly Tu
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
| | - Laurent Savale
- Université Paris-Saclay, Unité Mixte de Recherche en Santé (UMR_S) 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT)", Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 999 "HPPIT", Le Kremlin-Bicêtre, France
- Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire (PulmoTension), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Ghofrani HA, Gomberg-Maitland M, Zhao L, Grimminger F. Mechanisms and treatment of pulmonary arterial hypertension. Nat Rev Cardiol 2024:10.1038/s41569-024-01064-4. [PMID: 39112561 DOI: 10.1038/s41569-024-01064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 11/28/2024]
Abstract
Substantial progress has been made in the management of pulmonary arterial hypertension (PAH) in the past 25 years, but the disease remains life-limiting. Established therapies for PAH are mostly limited to symptomatic relief by correcting the imbalance of vasoactive factors. The tyrosine kinase inhibitor imatinib, the first predominantly non-vasodilatory drug to be tested in patients with PAH, improved exercise capacity and pulmonary haemodynamics compared with placebo but at the expense of adverse events such as subdural haematoma. Given that administration by inhalation might reduce the risk of systemic adverse effects, inhaled formulations of tyrosine kinase inhibitors are currently in clinical development. Other novel therapeutic approaches for PAH include suppression of activin receptor type IIA signalling with sotatercept, which has shown substantial efficacy in clinical trials and was approved for use in the USA in 2024, but the long-term safety of the drug remains unclear. Future advances in the management of PAH will focus on right ventricular function and involve deep phenotyping and the development of a personalized medicine approach. In this Review, we summarize the mechanisms underlying PAH, provide an overview of available PAH therapies and their limitations, describe the development of newer, predominantly non-vasodilatory drugs that are currently being tested in phase II or III clinical trials, and discuss future directions for PAH research.
Collapse
Affiliation(s)
- Hossein-Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| | - Mardi Gomberg-Maitland
- George Washington University School of Medicine and Health Sciences, Department of Medicine, Washington, DC, USA
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
10
|
Lotsios NS, Keskinidou C, Dimopoulou I, Kotanidou A, Langleben D, Orfanos SE, Vassiliou AG. Effects of Modulating BMP9, BMPR2, and AQP1 on BMP Signaling in Human Pulmonary Microvascular Endothelial Cells. Int J Mol Sci 2024; 25:8043. [PMID: 39125626 PMCID: PMC11311989 DOI: 10.3390/ijms25158043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive increase in mean pulmonary arterial pressure. Mutations in the BMPR2 and AQP1 genes have been described in familial PAH. The bone morphogenetic proteins BMP9 and BMP10 bind with high affinity to BMPR2. Administration of BMP9 has been proposed as a potential therapeutic strategy against PAH, although recent conflicting evidence dispute the effect of such a practice. Considering the involvement of the above molecules in PAH onset, progression, and therapeutic value, we examined the effects of modulation of BMP9, BMPR2, and AQP1 on BMP9, BMP10, BMPR2, AQP1, and TGFB1 expression in human pulmonary microvascular endothelial cells in vitro. Our results demonstrated that silencing the BMPR2 gene resulted in increased expression of its two main ligands, namely BMP9 and BMP10. Exogenous administration of BMP9 caused the return of BMP10 to basal levels, while it restored the decreased AQP1 protein levels and the decreased TGFB1 mRNA and protein expression levels caused by BMPR2 silencing. Moreover, AQP1 gene silencing also resulted in increased expression of BMP9 and BMP10. Our results might possibly imply that the effect of exogenously administered BMP9 on molecules participating in the BMP signaling pathway could depend on the expression levels of BMPR2. Taken together, these results may provide insight into the highly complex interactions of the BMP signaling pathway.
Collapse
Affiliation(s)
- Nikolaos S. Lotsios
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Chrysi Keskinidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - David Langleben
- Center for Pulmonary Vascular Disease, Azrieli Heart Center and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| |
Collapse
|
11
|
Li W, Quigley K. Bone morphogenetic protein signalling in pulmonary arterial hypertension: revisiting the BMPRII connection. Biochem Soc Trans 2024; 52:1515-1528. [PMID: 38716930 PMCID: PMC11346422 DOI: 10.1042/bst20231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and life-threatening vascular disorder, characterised by abnormal remodelling of the pulmonary vessels and elevated pulmonary artery pressure, leading to right ventricular hypertrophy and right-sided heart failure. The importance of bone morphogenetic protein (BMP) signalling in the pathogenesis of PAH is demonstrated by human genetic studies. Many PAH risk genes are involved in the BMP signalling pathway and are highly expressed or preferentially act on vascular endothelial cells. Endothelial dysfunction is recognised as an initial trigger for PAH, and endothelial BMP signalling plays a crucial role in the maintenance of endothelial integrity. BMPR2 is the most prevalent PAH gene, found in over 80% of heritable cases. As BMPRII protein is the major type II receptor for a large family of BMP ligands and expressed ubiquitously in many tissues, dysregulated BMP signalling in other cells may also contribute to PAH pathobiology. Sotatercept, which contains the extracellular domain of another transforming growth factor-β family type II receptor ActRIIA fused to immunoglobin Fc domain, was recently approved by the FDA as a treatment for PAH. Neither its target cells nor its mechanism of action is fully understood. This review will revisit BMPRII function and its extracellular regulation, summarise how dysregulated BMP signalling in endothelial cells and smooth muscle cells may contribute to PAH pathogenesis, and discuss how novel therapeutics targeting the extracellular regulation of BMP signalling, such as BMP9 and Sotatercept, can be related to restoring BMPRII function.
Collapse
Affiliation(s)
- Wei Li
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| | - Kate Quigley
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| |
Collapse
|
12
|
Song J, Zheng J, Li Z, Fu L, Yang J, Li K, Yu X, Lv B, Du J, Huang Y, Jin H. Sulfur dioxide inhibits mast cell degranulation by sulphenylation of galectin-9 at cysteine 74. Front Immunol 2024; 15:1369326. [PMID: 38953022 PMCID: PMC11215078 DOI: 10.3389/fimmu.2024.1369326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
Objectives Mast cell (MC) degranulation is a key process in allergic reactions and inflammatory responses. Aspartate aminotransferase 1 (AAT1)-derived endogenous sulfur dioxide (SO2) is an important regulator of MC function. However, the mechanism underlying its role in MC degranulation remains unclear. This study aimed to investigate the mechanism by which endogenous SO2 controlled MC degranulation. Methods HMC-1 and Rat basophilic leukemia cell MC line (RBL-2H3) were used in the cell experiments. SO2 content was detected by in situ fluorescent probe. MC degranulation represented by the release rate of MC β-hexosaminidase was determined using a colorimetric assay. Sulfenylation of galectin-9 (Gal-9) in MCs and purified protein was detected using a biotin switch assay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the exact sulfenylation sites of Gal-9 by SO2. Animal models of passive cutaneous anaphylaxis (PCA) and hypoxia-driven pulmonary vascular remodeling were used to investigate the effect of SO2 on mast cell activation in vivo. Site-directed mutation of Gal-9 was conducted to confirm the exact site of SO2 and support the significance of SO2/Gal-9 signal axis in the regulation of MC degranulation. Results Degranulation was increased in AAT1-knockdowned MCs, and SO2 supplementation reversed the increase in MC degranulation. Furthermore, deficiency of endogenous SO2 contributed to IgE-mediated degranulation in vitro. Besides, SO2 inhibited IgE-mediated and hypoxia-driven MC degranulation in vivo. Mechanistically, LC-MS/MS analysis and site-directed mutation results showed that SO2 sulfenylated Gal-9 at cysteine 74. Sulfenylation of the 74th cysteine of Gal-9 protein was required in the SO2-inhibited MC degranulation under both physiological and pathophysiological conditions. Conclusion These findings elucidated that SO2 inhibited MC degranulation via sulfenylating Gal-9 under both physiological and pathophysiological conditions, which might provide a novel treatment approach for MC activation-related diseases.
Collapse
Affiliation(s)
- Jiaru Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Zheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zongmin Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
13
|
Mirza SL, Upton PD, Hodgson J, Gräf S, Morrell NW, Dunmore BJ. SEMA3G regulates BMP9 inhibition of VEGF-mediated migration and network formation in pulmonary endothelial cells. Vascul Pharmacol 2024; 155:107381. [PMID: 38795838 DOI: 10.1016/j.vph.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
AIMS Bone morphogenetic protein-9 (BMP9) is critical for bone morphogenetic protein receptor type-2 (BMPR2) signalling in pulmonary vascular endothelial cells. Furthermore, human genetics studies support the central role of disrupted BMPR2 mediated BMP9 signalling in vascular endothelial cells in the initiation of pulmonary arterial hypertension (PAH). In addition, loss-of-function mutations in BMP9 have been identified in PAH patients. BMP9 is considered to play an important role in vascular homeostasis and quiescence. METHODS AND RESULTS We identified a novel BMP9 target as the class-3 semaphorin, SEMA3G. Although originally identified as playing a role in neuronal development, class-3 semaphorins may have important roles in endothelial function. Here we show that BMP9 transcriptional regulation of SEMA3G occurs via ALK1 and the canonical Smad pathway, requiring both Smad1 and Smad5. Knockdown studies demonstrated redundancy between type-2 receptors in that BMPR2 and ACTR2A were compensatory. Increased SEMA3G expression by BMP9 was found to be regulated by the transcription factor, SOX17. Moreover, we observed that SEMA3G regulates VEGF signalling by inhibiting VEGFR2 phosphorylation and that VEGF, in contrast to BMP9, negatively regulated SEMA3G transcription. Functional endothelial cell assays of VEGF-mediated migration and network formation revealed that BMP9 inhibition of VEGF was abrogated by SEMA3G knockdown. Conversely, treatment with recombinant SEMA3G partially mimicked the inhibitory action of BMP9 in these assays. CONCLUSIONS This study provides further evidence for the anti-angiogenic role of BMP9 in microvascular endothelial cells and these functions are mediated at least in part via SOX17 and SEMA3G induction.
Collapse
Affiliation(s)
- Sarah L Mirza
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Paul D Upton
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Joshua Hodgson
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Nicholas W Morrell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Benjamin J Dunmore
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| |
Collapse
|
14
|
Luo Y, Qi X, Zhang Z, Zhang J, Li B, Shu T, Li X, Hu H, Li J, Tang Q, Zhou Y, Wang M, Fan T, Guo W, Liu Y, Zhang J, Pang J, Yang P, Gao R, Chen W, Yan C, Xing Y, Du W, Wang J, Wang C. Inactivation of Malic Enzyme 1 in Endothelial Cells Alleviates Pulmonary Hypertension. Circulation 2024; 149:1354-1371. [PMID: 38314588 DOI: 10.1161/circulationaha.123.067579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this study, we focused on ME1 (malic enzyme 1), a key enzyme linking glycolysis to the tricarboxylic acid cycle. We aimed to determine the role and mechanistic action of ME1 in PH. METHODS Global and endothelial-specific ME1 knockout mice were used to investigate the role of ME1 in hypoxia- and SU5416/hypoxia (SuHx)-induced PH. Small hairpin RNA and ME1 enzymatic inhibitor (ME1*) were used to study the mechanism of ME1 in pulmonary artery endothelial cells. Downstream key metabolic pathways and mediators of ME1 were identified by metabolomics analysis in vivo and ME1-mediated energetic alterations were examined by Seahorse metabolic analysis in vitro. The pharmacological effect of ME1* on PH treatment was evaluated in PH animal models induced by SuHx. RESULTS We found that ME1 protein level and enzymatic activity were highly elevated in lung tissues of patients and mice with PH, primarily in vascular endothelial cells. Global knockout of ME1 protected mice from developing hypoxia- or SuHx-induced PH. Endothelial-specific ME1 deletion similarly attenuated pulmonary vascular remodeling and PH development in mice, suggesting a critical role of endothelial ME1 in PH. Mechanistic studies revealed that ME1 inhibition promoted downstream adenosine production and activated A2AR-mediated adenosine signaling, which leads to an increase in nitric oxide generation and a decrease in proinflammatory molecule expression in endothelial cells. ME1 inhibition activated adenosine production in an ATP-dependent manner through regulating malate-aspartate NADH (nicotinamide adenine dinucleotide plus hydrogen) shuttle and thereby balancing oxidative phosphorylation and glycolysis. Pharmacological inactivation of ME1 attenuated the progression of PH in both preventive and therapeutic settings by promoting adenosine production in vivo. CONCLUSIONS Our findings indicate that ME1 upregulation in endothelial cells plays a causative role in PH development by negatively regulating adenosine production and subsequently dysregulating endothelial functions. Our findings also suggest that ME1 may represent as a novel pharmacological target for upregulating protective adenosine signaling in PH therapy.
Collapse
Affiliation(s)
- Ya Luo
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
- Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.L.)
| | - Xianmei Qi
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Zhenxi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases (Z.Z., W.D.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jiawei Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Bolun Li
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Ting Shu
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Xiaona Li
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Huiyuan Hu
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jinqiu Li
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Qihao Tang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Yitian Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Mingyao Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China (M.W., C.W.)
| | - Tianfei Fan
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Wenjun Guo
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China (J.Z.)
| | - Junling Pang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Ran Gao
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Wenhui Chen
- Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China (W.C.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (C.Y.)
| | - Yanjiang Xing
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Wenjing Du
- State Key Laboratory of Common Mechanism Research for Major Diseases (Z.Z., W.D.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Chen Wang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China (M.W., C.W.)
- Chinese Academy of Engineering, Beijing, China (C.W.)
| |
Collapse
|
15
|
Chooklin S, Chuklin S, Posivnych M, Krystopchuk S. Pathophysiological basis of hepatopulmonary syndrome. Gastroenterology 2024; 58:73-81. [DOI: 10.22141/2308-2097.58.1.2024.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Circulatory changes with increased blood flow and vasodilatation/vasoconstriction imbalance are an integral consequence of liver cirrhosis and portal hypertension and can affect the pulmonary circulation with the development of vascular disorders, with hepatopulmonary syndrome (HPS) being the most common. HPS is a serious pulmonary complication of progressive liver disease, resulting in a poor clinical prognosis. Vascular tone decrease, monocytic infiltration of pulmonary vessels, formation of intrapulmonary arteriovenous shunts, dysfunction of alveolar type II cells, destruction of the endothelial glycocalyx are important in the pathogenesis of HPS. Abnormalities of pulmonary capillaries lead to hypoxemia caused by a violation of the ventilation/perfusion ratio, diffusion disorders, and the development of arteriovenous anastomoses. Infiltration of the pulmonary vessels by monocytes is one of the key factors of HPS. This migration is facilitated by the intestinal microbiota translocation into the portal bloodstream with increased expression of proinflammatory cytokines (tumor necrosis factor α, interleukins 1, 6), leading to the activation of monocytes. Monocytes located in the pulmonary circulation promote the vasodilation through the activation of inducible nitric oxide (NO) synthase and thus NO production. This is also associated with endothelial dysfunction due to a decreased hepatic secretion of bone morphogenetic protein 9 and increased endothelin 1, endothelial overexpression of endothelin B receptors, and increased endothelial NO production. Proangiogenic factors such as vascular endothelial growth factor, platelet-derived growth factor, and placental growth factor play an important role in the proliferation of pulmonary capillaries. Circulation of tumor necrosis factor α, bile acids and monocyte infiltration in the pulmonary circulation lead to increased apoptosis of alveolar type II cells and decreased surfactant synthesis. Chronic inflammation in HPS disrupts the continuity of the endothelial glycocalyx layer. This article provides an overview of the current knowledge on the pathogenesis of HPS, summarizes many features of the disease based on the literature research in MEDLINE database on the PubMed platform.
Collapse
|
16
|
Grynblat J, Bogaard HJ, Eyries M, Meyrignac O, Savale L, Jaïs X, Ghigna MR, Celant L, Meijboom L, Houweling AC, Levy M, Antigny F, Chaouat A, Cottin V, Guignabert C, Coulet F, Sitbon O, Bonnet D, Humbert M, Montani D. Pulmonary vascular phenotype identified in patients with GDF2 ( BMP9) or BMP10 variants: an international multicentre study. Eur Respir J 2024; 63:2301634. [PMID: 38514094 DOI: 10.1183/13993003.01634-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/07/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.
Collapse
Affiliation(s)
- Julien Grynblat
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Harm Jan Bogaard
- Amsterdam Cardiovascular Sciences Pulmonary Hypertension and Thrombosis, Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Mélanie Eyries
- Sorbonne Université, Département de Génétique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Meyrignac
- Service de Radiologie Diagnostique et Interventionnelle Adulte, Biomaps - Laboratoire d'Imagerie Multimodale - CEA-INSERM-CNRS, Hôpital de Bicêtre, DMU 14 Smart Imaging, AP-HP, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Department of Pathology, International Center for Thoracic Cancers (CICT), Gustave Roussy, Villejuif, France
| | - Lucas Celant
- Amsterdam Cardiovascular Sciences Pulmonary Hypertension and Thrombosis, Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lilian Meijboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marilyne Levy
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | | | - Ari Chaouat
- Département de Pneumologie, Université de Lorraine, CHU de Nancy, Vandœuvre-lès-Nancy, France
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases and Centre for Pulmonary Hypertension, Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG, UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Christophe Guignabert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
| | - Florence Coulet
- Sorbonne Université, Département de Génétique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Sitbon
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Damien Bonnet
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Marc Humbert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - David Montani
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
17
|
Wei D, Su Y, Leung PCK, Li Y, Chen ZJ. Roles of bone morphogenetic proteins in endometrial remodeling during the human menstrual cycle and pregnancy. Hum Reprod Update 2024; 30:215-237. [PMID: 38037193 DOI: 10.1093/humupd/dmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND During the human menstrual cycle and pregnancy, the endometrium undergoes a series of dynamic remodeling processes to adapt to physiological changes. Insufficient endometrial remodeling, characterized by inadequate endometrial proliferation, decidualization and spiral artery remodeling, is associated with infertility, endometriosis, dysfunctional uterine bleeding, and pregnancy-related complications such as preeclampsia and miscarriage. Bone morphogenetic proteins (BMPs), a subset of the transforming growth factor-β (TGF-β) superfamily, are multifunctional cytokines that regulate diverse cellular activities, such as differentiation, proliferation, apoptosis, and extracellular matrix synthesis, are now understood as integral to multiple reproductive processes in women. Investigations using human biological samples have shown that BMPs are essential for regulating human endometrial remodeling processes, including endometrial proliferation and decidualization. OBJECTIVE AND RATIONALE This review summarizes our current knowledge on the known pathophysiological roles of BMPs and their underlying molecular mechanisms in regulating human endometrial proliferation and decidualization, with the goal of promoting the development of innovative strategies for diagnosing, treating and preventing infertility and adverse pregnancy complications associated with dysregulated human endometrial remodeling. SEARCH METHODS A literature search for original articles published up to June 2023 was conducted in the PubMed, MEDLINE, and Google Scholar databases, identifying studies on the roles of BMPs in endometrial remodeling during the human menstrual cycle and pregnancy. Articles identified were restricted to English language full-text papers. OUTCOMES BMP ligands and receptors and their transduction molecules are expressed in the endometrium and at the maternal-fetal interface. Along with emerging technologies such as tissue microarrays, 3D organoid cultures and advanced single-cell transcriptomics, and given the clinical availability of recombinant human proteins and ongoing pharmaceutical development, it is now clear that BMPs exert multiple roles in regulating human endometrial remodeling and that these biomolecules (and their receptors) can be targeted for diagnostic and therapeutic purposes. Moreover, dysregulation of these ligands, their receptors, or signaling determinants can impact endometrial remodeling, contributing to infertility or pregnancy-related complications (e.g. preeclampsia and miscarriage). WIDER IMPLICATIONS Although further clinical trials are needed, recent advancements in the development of recombinant BMP ligands, synthetic BMP inhibitors, receptor antagonists, BMP ligand sequestration tools, and gene therapies have underscored the BMPs as candidate diagnostic biomarkers and positioned the BMP signaling pathway as a promising therapeutic target for addressing infertility and pregnancy complications related to dysregulated human endometrial remodeling.
Collapse
Affiliation(s)
- Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yaxin Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
18
|
Bai H, Lu Q, Wu C, Xu F, Liu J, Wang K, Ding H, Yin Y, Liu Y, Lai X, Cao J. Bone morphogenetic protein 9 is a candidate prognostic biomarker and host-directed therapy target for sepsis. Sci Transl Med 2024; 16:eadi3275. [PMID: 38295185 DOI: 10.1126/scitranslmed.adi3275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024]
Abstract
Defining next-generation immune therapeutics for the treatment of sepsis will involve biomarker-based therapeutic decision-making. Bone morphogenetic protein 9 (BMP9) is a cytokine in the transforming growth factor-β superfamily. Here, circulating BMP9 concentrations were quantified in two independent cohorts of patients with sepsis. Decreased concentrations of serum BMP9 were observed in the patients with sepsis at the time of admission as compared with healthy controls. Concentrations of BMP9 at the time of admission were also associated with 28-day mortality, because patients with sepsis at a higher risk of death had lower BMP9 concentrations. The mechanism driving the contribution of BMP9 to host immunity was further investigated using in vivo murine sepsis models and in vitro cell models. We found that BMP9 treatment improved outcome in mice with experimental sepsis. BMP9-treated mice exhibited increased macrophage influx into the peritoneal cavity and more efficient bacterial clearance than untreated mice. In vitro, BMP9 promoted macrophage recruitment, phagocytosis, and subsequent bacterial killing. We further found that deletion of the type 1 BMP receptor ALK1 in macrophages abolished BMP9-mediated protection against polymicrobial sepsis in vivo. Further experiments indicated that the regulation of macrophage activation by the BMP9-ALK1 axis was mainly mediated through the suppressor of mother against decapentaplegic 1/5 signaling pathway. Together, these results suggest that BMP9 can both serve as a biomarker for patient stratification with an independent prognostic value and be developed as a host-directed therapy for sepsis.
Collapse
Affiliation(s)
- Haobo Bai
- Department of Laboratory Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Lu
- Department of Laboratory Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Biology Science Institutes of Chongqing Medical University, Chongqing 400016, China
| | - Chunxiang Wu
- Department of Clinical Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Fang Xu
- Department of Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiayu Liu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ke Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hao Ding
- Department of Laboratory Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Liu
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiaofei Lai
- Department of Laboratory Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ju Cao
- Department of Laboratory Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
19
|
Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res 2023; 119:2683-2696. [PMID: 37956047 PMCID: PMC10757586 DOI: 10.1093/cvr/cvad171] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Shah RV, Hwang S, Murthy VL, Zhao S, Tanriverdi K, Gajjar P, Duarte K, Schoenike M, Farrell R, Brooks LC, Gopal DM, Ho JE, Girerd N, Vasan RS, Levy D, Freedman JE, Lewis GD, Nayor M. Proteomics and Precise Exercise Phenotypes in Heart Failure With Preserved Ejection Fraction: A Pilot Study. J Am Heart Assoc 2023; 12:e029980. [PMID: 37889181 PMCID: PMC10727424 DOI: 10.1161/jaha.122.029980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND While exercise impairments are central to symptoms and diagnosis of heart failure with preserved ejection fraction (HFpEF), prior studies of HFpEF biomarkers have mostly focused on resting phenotypes. We combined precise exercise phenotypes with cardiovascular proteomics to identify protein signatures of HFpEF exercise responses and new potential therapeutic targets. METHODS AND RESULTS We analyzed 277 proteins (Olink) in 151 individuals (N=103 HFpEF, 48 controls; 62±11 years; 56% women) with cardiopulmonary exercise testing with invasive monitoring. Using ridge regression adjusted for age/sex, we defined proteomic signatures of 5 physiological variables involved in HFpEF: peak oxygen uptake, peak cardiac output, pulmonary capillary wedge pressure/cardiac output slope, peak pulmonary vascular resistance, and peak peripheral O2 extraction. Multiprotein signatures of each of the exercise phenotypes captured a significant proportion of variance in respective exercise phenotypes. Interrogating the importance (ridge coefficient magnitude) of specific proteins in each signature highlighted proteins with putative links to HFpEF pathophysiology (eg, inflammatory, profibrotic proteins), and novel proteins linked to distinct physiologies (eg, proteins involved in multiorgan [kidney, liver, muscle, adipose] health) were implicated in impaired O2 extraction. In a separate sample (N=522, 261 HF events), proteomic signatures of peak oxygen uptake and pulmonary capillary wedge pressure/cardiac output slope were associated with incident HFpEF (odds ratios, 0.67 [95% CI, 0.50-0.90] and 1.43 [95% CI, 1.11-1.85], respectively) with adjustment for clinical factors and B-type natriuretic peptides. CONCLUSIONS The cardiovascular proteome is associated with precision exercise phenotypes in HFpEF, suggesting novel mechanistic targets and potential methods for risk stratification to prevent HFpEF early in its pathogenesis.
Collapse
Affiliation(s)
- Ravi V. Shah
- Vanderbilt Translational and Clinical Research Center, Cardiology DivisionVanderbilt University Medical CenterNashvilleTN
| | - Shih‐Jen Hwang
- Population Sciences Branch, Division of Intramural ResearchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Venkatesh L. Murthy
- Departments of Medicine and RadiologyUniversity of Michigan Medical SchoolAnn ArborMI
| | - Shilin Zhao
- Vanderbilt Center for Quantitative SciencesVanderbilt University Medical CenterNashvilleTN
| | - Kahraman Tanriverdi
- Vanderbilt Translational and Clinical Research Center, Cardiology DivisionVanderbilt University Medical CenterNashvilleTN
| | - Priya Gajjar
- Cardiology Section, Department of MedicineBoston University School of MedicineBostonMA
| | - Kevin Duarte
- Université de Lorraine, Centre d’Investigations Cliniques Plurithématique 1433, INSERM 1116NancyFrance
| | - Mark Schoenike
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Robyn Farrell
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Liana C. Brooks
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Deepa M. Gopal
- Cardiology Section, Department of MedicineBoston University School of MedicineBostonMA
| | - Jennifer E. Ho
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBostonMA
| | - Nicholas Girerd
- Université de Lorraine, Centre d’Investigations Cliniques Plurithématique 1433, INSERM 1116NancyFrance
| | - Ramachandran S. Vasan
- University of Texas School of Public Health San Antonio, and Departments of Medicine and Population Health Sciences, University of Texas Health Science CenterSan AntonioTX
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural ResearchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Jane E. Freedman
- Vanderbilt Translational and Clinical Research Center, Cardiology DivisionVanderbilt University Medical CenterNashvilleTN
| | - Gregory D. Lewis
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Matthew Nayor
- Cardiology Section, Department of MedicineBoston University School of MedicineBostonMA
| |
Collapse
|
21
|
Fang Q, Bai Y, Hu S, Ding J, Liu L, Dai M, Qiu J, Wu L, Rao X, Wang Y. Unleashing the Potential of Nrf2: A Novel Therapeutic Target for Pulmonary Vascular Remodeling. Antioxidants (Basel) 2023; 12:1978. [PMID: 38001831 PMCID: PMC10669195 DOI: 10.3390/antiox12111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary vascular remodeling, characterized by the thickening of all three layers of the blood vessel wall, plays a central role in the pathogenesis of pulmonary hypertension (PH). Despite the approval of several drugs for PH treatment, their long-term therapeutic effect remains unsatisfactory, as they mainly focus on vasodilation rather than addressing vascular remodeling. Therefore, there is an urgent need for novel therapeutic targets in the treatment of PH. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor that regulates endogenous antioxidant defense and emerges as a novel regulator of pulmonary vascular remodeling. Growing evidence has suggested an involvement of Nrf2 and its downstream transcriptional target in the process of pulmonary vascular remodeling. Pharmacologically targeting Nrf2 has demonstrated beneficial effects in various diseases, and several Nrf2 inducers are currently undergoing clinical trials. However, the exact potential and mechanism of Nrf2 as a therapeutic target in PH remain unknown. Thus, this review article aims to comprehensively explore the role and mechanism of Nrf2 in pulmonary vascular remodeling associated with PH. Additionally, we provide a summary of Nrf2 inducers that have shown therapeutic potential in addressing the underlying vascular remodeling processes in PH. Although Nrf2-related therapies hold great promise, further research is necessary before their clinical implementation can be fully realized.
Collapse
Affiliation(s)
- Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
22
|
Montani D, Antigny F, Jutant EM, Chaumais MC, Le Ribeuz H, Grynblat J, Khouri C, Humbert M. Pulmonary hypertension associated with diazoxide: the SUR1 paradox. ERJ Open Res 2023; 9:00350-2023. [PMID: 37965230 PMCID: PMC10641583 DOI: 10.1183/23120541.00350-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/04/2023] [Indexed: 11/16/2023] Open
Abstract
The ATP-sensitive potassium channels and their regulatory subunits, sulfonylurea receptor 1 (SUR1/Kir6.2) and SUR2/Kir6.1, contribute to the pathophysiology of pulmonary hypertension (PH). Loss-of-function pathogenic variants in the ABCC8 gene, which encodes for SUR1, have been associated with heritable pulmonary arterial hypertension. Conversely, activation of SUR1 and SUR2 leads to the relaxation of pulmonary arteries and reduces cell proliferation and migration. Diazoxide, a SUR1 activator, has been shown to alleviate experimental PH, suggesting its potential as a therapeutic option. However, there are paradoxical reports of diazoxide-induced PH in infants. This review explores the role of SUR1/2 in the pathophysiology of PH and the contradictory effects of diazoxide on the pulmonary vascular bed. Additionally, we conducted a comprehensive literature review of cases of diazoxide-associated PH and analysed data from the World Health Organization pharmacovigilance database (VigiBase). Significant disproportionality signals link diazoxide to PH, while no other SUR activators have been connected with pulmonary vascular disease. Diazoxide-associated PH seems to be dose-dependent and potentially related to acute effects on the pulmonary vascular bed. Further research is required to decipher the differing pulmonary vascular consequences of diazoxide in different age populations and experimental models.
Collapse
Affiliation(s)
- David Montani
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, DMU 5 Thorinno, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Etienne-Marie Jutant
- CHU de Poitiers, Respiratory Department, INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
| | - Marie-Camille Chaumais
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Pharmacy, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- Université Paris-Saclay, Faculty of Pharmacy, Saclay, France
| | - Hélène Le Ribeuz
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Julien Grynblat
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Charles Khouri
- Univ. Grenoble Alpes, HP2 Laboratory, Grenoble, France
- Grenoble Alpes University Hospital, Pharmacovigilance Unit, Grenoble, France
| | - Marc Humbert
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, DMU 5 Thorinno, Le Kremlin-Bicêtre, France
| |
Collapse
|
23
|
Jose A, Elwing JM, Kawut SM, Pauciulo MW, Sherman KE, Nichols WC, Fallon MB, McCormack FX. Human liver single nuclear RNA sequencing implicates BMPR2, GDF15, arginine, and estrogen in portopulmonary hypertension. Commun Biol 2023; 6:826. [PMID: 37558836 PMCID: PMC10412637 DOI: 10.1038/s42003-023-05193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Portopulmonary hypertension (PoPH) is a type of pulmonary vascular disease due to portal hypertension that exhibits high morbidity and mortality. The mechanisms driving disease are unknown, and transcriptional characteristics unique to the PoPH liver remain unexplored. Here, we apply single nuclear RNA sequencing to compare cirrhotic livers from patients with and without PoPH. We identify characteristics unique to PoPH in cells surrounding the central hepatic vein, including increased growth differentiation factor signaling, enrichment of the arginine biosynthesis pathway, and differential expression of the bone morphogenic protein type II receptor and estrogen receptor type I genes. These results provide insight into the transcriptomic characteristics of the PoPH liver and mechanisms by which PoPH cellular dysfunction might contribute to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Arun Jose
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Jean M Elwing
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth E Sherman
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Francis X McCormack
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
24
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
25
|
Hye T, Hossain MR, Saha D, Foyez T, Ahsan F. Emerging biologics for the treatment of pulmonary arterial hypertension. J Drug Target 2023; 31:1-15. [PMID: 37026714 PMCID: PMC10228297 DOI: 10.1080/1061186x.2023.2199351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 04/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disorder, wherein mean systemic arterial pressure (mPAP) becomes abnormally high because of aberrant changes in various proliferative and inflammatory signalling pathways of pulmonary arterial cells. Currently used anti-PAH drugs chiefly target the vasodilatory and vasoconstrictive pathways. However, an imbalance between bone morphogenetic protein receptor type II (BMPRII) and transforming growth factor beta (TGF-β) pathways is also implicated in PAH predisposition and pathogenesis. Compared to currently used PAH drugs, various biologics have shown promise as PAH therapeutics that elicit their therapeutic actions akin to endogenous proteins. Biologics that have thus far been explored as PAH therapeutics include monoclonal antibodies, recombinant proteins, engineered cells, and nucleic acids. Because of their similarity with naturally occurring proteins and high binding affinity, biologics are more potent and effective and produce fewer side effects when compared with small molecule drugs. However, biologics also suffer from the limitations of producing immunogenic adverse effects. This review describes various emerging and promising biologics targeting the proliferative/apoptotic and vasodilatory pathways involved in PAH pathogenesis. Here, we have discussed sotatercept, a TGF-β ligand trap, which is reported to reverse vascular remodelling and reduce PVR with an improved 6-minute walk distance (6-MWDT). We also elaborated on other biologics including BMP9 ligand and anti-gremlin1 antibody, anti-OPG antibody, and getagozumab monoclonal antibody and cell-based therapies. Overall, recent literature suggests that biologics hold excellent promise as a safe and effective alternative to currently used PAH therapeutics.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Md Riajul Hossain
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
| | - Tahmina Foyez
- Department of Hematology Blood Research Center School of Medicine, The University of North Carolina at Chapel Hill, North Carolina
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
- MedLuidics LLC, Elk Grove, California, USA
| |
Collapse
|
26
|
Lee HW, Adachi T, Pak B, Park S, Hu X, Choi W, Kowalski PS, Chang CH, Clapham KR, Lee A, Papangeli I, Kim J, Han O, Park J, Anderson DG, Simons M, Jin SW, Chun HJ. BMPR1A promotes ID2-ZEB1 interaction to suppress excessive endothelial to mesenchymal transition. Cardiovasc Res 2023; 119:813-825. [PMID: 36166408 PMCID: PMC10409893 DOI: 10.1093/cvr/cvac159] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/25/2022] [Accepted: 09/14/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Components of bone morphogenetic protein (BMP) signalling have been implicated in both pathogenesis of pulmonary arterial hypertension (PAH) and endothelial-mesenchymal transition (EndoMT). In particular, the importance of BMP type 2 receptor in these processes has been extensively analysed. However, the contribution of BMP type 1 receptors (BMPR1s) to the onset of PAH and EndoMT remains poorly understood. BMPR1A, one of BMPR1s, was recently implicated in the pathogenesis of PAH, and was found to be down-regulated in the lungs of PAH patients, neither the downstream mechanism nor its contribution to EndoMT has been described. Therefore, we aim to delineate the role of endothelial BMPR1A in modulating EndoMT and pathogenesis of PAH. METHODS AND RESULTS We find that BMPR1A knockdown in endothelial cells (ECs) induces hallmarks of EndoMT, and deletion of endothelial Bmpr1a in adult mice (Bmpr1aiECKO) leads to development of PAH-like symptoms due to excessive EndoMT. By lineage tracing, we show that endothelial-derived smooth muscle cells are increased in endothelial Bmpr1a-deleted mice. Mechanistically, we identify ZEB1 as a primary target for BMPR1A in this setting; upon BMPR1A activation, ID2 physically interacts and sequesters ZEB1 to attenuate transcription of Tgfbr2, which in turn lowers the responses of ECs towards transforming growth factor beta (TGFβ) stimulation and prevents excessive EndoMT. In Bmpr1aiECKO mice, administering endothelial targeting lipid nanoparticles containing siRNA against Tgfbr2 effectively ameliorate PAH, reiterating the importance of BMPR1A-ID2/ZEB1-TGFBR2 axis in modulating progression of EndoMT and pathogenesis of PAH. CONCLUSIONS We demonstrate that BMPR1A is key to maintain endothelial identity and to prevent excessive EndoMT. We identify BMPR1A-induced interaction between ID2 and ZEB1 is the key regulatory step for onset of EndoMT and pathogenesis of PAH. Our findings indicate that BMPR1A-ID2/ZEB1-TGFBR2 signalling axis could serve as a potential novel therapeutic target for PAH and other EndoMT-related vascular disorders.
Collapse
Affiliation(s)
- Heon-Woo Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Takaomi Adachi
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Boryeong Pak
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Saejeong Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - C Hong Chang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Katharine R Clapham
- Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA 02127, USA
| | - Aram Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Orjin Han
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jihwan Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suk-Won Jin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- VA Connecticut Healthcare System, 950 Campbell Ave, 111B, West Haven, CT 06516, USA
| |
Collapse
|
27
|
Toyama T, Kudryashova TV, Ichihara A, Lenna S, Looney A, Shen Y, Jiang L, Teos L, Avolio T, Lin D, Kaplan U, Marden G, Dambal V, Goncharov D, Delisser H, Lafyatis R, Seta F, Goncharova EA, Trojanowska M. GATA6 coordinates cross-talk between BMP10 and oxidative stress axis in pulmonary arterial hypertension. Sci Rep 2023; 13:6593. [PMID: 37087509 PMCID: PMC10122657 DOI: 10.1038/s41598-023-33779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/19/2023] [Indexed: 04/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and often death. Here we report that deficiency of transcription factor GATA6 is a shared pathological feature of PA endothelial (PAEC) and smooth muscle cells (PASMC) in human PAH and experimental PH, which is responsible for maintenance of hyper-proliferative cellular phenotypes, pulmonary vascular remodeling and pulmonary hypertension. We further show that GATA6 acts as a transcription factor and direct positive regulator of anti-oxidant enzymes, and its deficiency in PAH/PH pulmonary vascular cells induces oxidative stress and mitochondrial dysfunction. We demonstrate that GATA6 is regulated by the BMP10/BMP receptors axis and its loss in PAECs and PASMC in PAH supports BMPR deficiency. In addition, we have established that GATA6-deficient PAEC, acting in a paracrine manner, increase proliferation and induce other pathological changes in PASMC, supporting the importance of GATA6 in pulmonary vascular cell communication. Treatment with dimethyl fumarate resolved oxidative stress and BMPR deficiency, reversed hemodynamic changes caused by endothelial Gata6 loss in mice, and inhibited proliferation and induced apoptosis in human PAH PASMC, strongly suggesting that targeting GATA6 deficiency may provide a therapeutic advance for patients with PAH.
Collapse
Affiliation(s)
- Tetsuo Toyama
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Tatiana V Kudryashova
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Asako Ichihara
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Stefania Lenna
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Agnieszka Looney
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Yuanjun Shen
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Lifeng Jiang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Leyla Teos
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Theodore Avolio
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Derek Lin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Ulas Kaplan
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Grace Marden
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Vrinda Dambal
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Dmitry Goncharov
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Horace Delisser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesca Seta
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Elena A Goncharova
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA.
- The Genome and Biomedical Science Facility (GBSF), Rm 6523, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA.
| |
Collapse
|
28
|
Upton PD, Dunmore BJ, Li W, Morrell NW. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev Dyn 2023; 252:327-342. [PMID: 35434863 PMCID: PMC10952790 DOI: 10.1002/dvdy.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal condition, the primary pathology of which involves loss of pulmonary vascular perfusion due to progressive aberrant vessel remodeling. The reduced capacity of the pulmonary circulation places increasing strain on the right ventricle of the heart, leading to death by heart failure. Currently, licensed therapies are primarily vasodilators, which have increased the median post-diagnosis life expectancy from 2.8 to 7 years. Although this represents a substantial improvement, the search continues for transformative therapeutics that reverse established disease. The genetics of human PAH heavily implicates reduced endothelial bone morphogenetic protein (BMP) signaling as a causal role for the disease pathobiology. Recent approaches have focused on directly enhancing BMP signaling or removing the inhibitory influence of pathways that repress BMP signaling. In this critical commentary, we review the evidence underpinning the development of two approaches: BMP-based agonists and inhibition of activin/GDF signaling. We also address the key considerations and questions that remain regarding these approaches.
Collapse
Affiliation(s)
- Paul D. Upton
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Benjamin J. Dunmore
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Wei Li
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Nicholas W. Morrell
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| |
Collapse
|
29
|
Sanges S, Rice L, Tu L, Valenzi E, Cracowski JL, Montani D, Mantero JC, Ternynck C, Marot G, Bujor AM, Hachulla E, Launay D, Humbert M, Guignabert C, Lafyatis R. Biomarkers of haemodynamic severity of systemic sclerosis-associated pulmonary arterial hypertension by serum proteome analysis. Ann Rheum Dis 2023; 82:365-373. [PMID: 36600187 PMCID: PMC9918672 DOI: 10.1136/ard-2022-223237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To mine the serum proteome of patients with systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH) and to detect biomarkers that may assist in earlier and more effective diagnosis and treatment. METHODS Patients with limited cutaneous SSc, no extensive interstitial lung disease and no PAH-specific therapy were included. They were classified as cases if they had PAH confirmed by right heart catheterisation (RHC) and serum collected on the same day as RHC; and as controls if they had no clinical evidence of PAH. RESULTS Patients were mostly middle-aged females with anticentromere-associated SSc. Among 1129 proteins assessed by a high-throughput proteomic assay (SOMAscan), only 2 were differentially expressed and correlated significantly with pulmonary vascular resistance (PVR) in SSc-PAH patients (n=15): chemerin (ρ=0.62, p=0.01) and SET (ρ=0.62, p=0.01). To validate these results, serum levels of chemerin were measured by ELISA in an independent cohort. Chemerin levels were confirmed to be significantly higher (p=0.01) and correlate with PVR (ρ=0.42, p=0.04) in SSc-PAH patients (n=24). Chemerin mRNA expression was detected in fibroblasts, pulmonary artery smooth muscle cells (PA-SMCs)/pericytes and mesothelial cells in SSc-PAH lungs by single-cell RNA-sequencing. Confocal immunofluorescence revealed increased expression of a chemerin receptor, CMKLR1, on SSc-PAH PA-SMCs. SSc-PAH serum seemed to induce higher PA-SMC proliferation than serum from SSc patients without PAH. This difference appeared neutralised when adding the CMKLR1 inhibitor α-NETA. CONCLUSION Chemerin seems an interesting surrogate biomarker for PVR in SSc-PAH. Increased chemerin serum levels and CMKLR1 expression by PA-SMCs may contribute to SSc-PAH pathogenesis by inducing PA-SMC proliferation.
Collapse
Affiliation(s)
- Sébastien Sanges
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Lisa Rice
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
| | - Ly Tu
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - David Montani
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Kremlin-Bicêtre, France
| | - Julio C Mantero
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
| | - Camille Ternynck
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Guillemette Marot
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
- Inria, MODAL: MOdels for Data Analysis and Learning, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR 2014 - US 41 - PLBS, bilille, Lille, France
| | - Andreea M Bujor
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
| | - Eric Hachulla
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Marc Humbert
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Robert F, Berrebeh N, Guignabert C, Humbert M, Bailly S, Tu L, Savale L. [Dysfunction of endothelial BMP-9 signaling in pulmonary vascular disease]. Rev Mal Respir 2023; 40:234-238. [PMID: 36828679 DOI: 10.1016/j.rmr.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
The signaling pathway of the bone morphogenetic protein (BMP)-9 binding to the endothelial receptor BMP receptor type II (BMPR-II), activin receptor-like kinase-1 (ALK1) and the coreceptor endoglin is essential to maintain the pulmonary vascular integrity. Dysregulation of this pathway is implicated in numerous vascular diseases, such as pulmonary arterial hypertension (PAH), hereditary hemorrhagic telangiectasia (HHT) and hepatopulmonary syndrome (HPS). This article aims to provide a comprehensive review of the implication of the BMP-9/BMPR-II/ALK1/endoglin pathway in the pathophysiology of these diseases.
Collapse
Affiliation(s)
- F Robert
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - N Berrebeh
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - C Guignabert
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - M Humbert
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France; Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris (AP-HP), 94276 Le Kremlin-Bicêtre, France
| | - S Bailly
- Laboratoire BioSanté, Université Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - L Tu
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - L Savale
- Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France; Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris (AP-HP), 94276 Le Kremlin-Bicêtre, France.
| |
Collapse
|
31
|
Leuillier M, Platel V, Tu L, Feugray G, Thuillet R, Groussard D, Messaoudi H, Ottaviani M, Chelgham M, Nicol L, Mulder P, Humbert M, Richard V, Morisseau C, Brunel V, Duflot T, Guignabert C, Bellien J. Inhibition of Soluble Epoxide Hydrolase Does Not Promote or Aggravate Pulmonary Hypertension in Rats. Cells 2023; 12:cells12040665. [PMID: 36831332 PMCID: PMC9954493 DOI: 10.3390/cells12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Inhibitors of soluble epoxide hydrolase (sEH), which catalyzes the hydrolysis of various natural epoxides to their corresponding diols, present an opportunity for developing oral drugs for a range of human cardiovascular and inflammatory diseases, including, among others, diabetes and neuropathic pain. However, some evidence suggests that their administration may precipitate the development of pulmonary hypertension (PH). We thus evaluated the impact of chronic oral administration of the sEH inhibitor TPPU (N-[1-(1-Oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea) on hemodynamics, pulmonary vascular reactivity, and remodeling, as well as on right ventricular (RV) dimension and function at baseline and in the Sugen (SU5416) + hypoxia (SuHx) rat model of severe PH. Treatment with TPPU started 5 weeks after SU5416 injection for 3 weeks. No differences regarding the increase in pulmonary vascular resistance, remodeling, and inflammation, nor the abolishment of phenylephrine-induced pulmonary artery constriction, were noted in SuHx rats. In addition, TPPU did not modify the development of RV dysfunction, hypertrophy, and fibrosis in SuHx rats. Similarly, none of these parameters were affected by TPPU in normoxic rats. Complementary in vitro data demonstrated that TPPU reduced the proliferation of cultured human pulmonary artery-smooth muscle cells (PA-SMCs). This study demonstrates that inhibition of sEH does not induce nor aggravate the development of PH and RV dysfunction in SuHx rats. In contrast, a potential beneficial effect against pulmonary artery remodeling in humans is suggested.
Collapse
Affiliation(s)
- Matthieu Leuillier
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
| | - Valentin Platel
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France
- Faculté de Médecine, Université Paris-Saclay, F-94276 Le Kremlin-Bicêtre, France
| | - Guillaume Feugray
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
- Department of General Biochemistry, CHU Rouen, F-76000 Rouen, France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France
- Faculté de Médecine, Université Paris-Saclay, F-94276 Le Kremlin-Bicêtre, France
| | - Déborah Groussard
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
| | - Hind Messaoudi
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
| | - Mina Ottaviani
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France
- Faculté de Médecine, Université Paris-Saclay, F-94276 Le Kremlin-Bicêtre, France
| | - Mustapha Chelgham
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France
- Faculté de Médecine, Université Paris-Saclay, F-94276 Le Kremlin-Bicêtre, France
| | - Lionel Nicol
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
| | - Paul Mulder
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France
- Faculté de Médecine, Université Paris-Saclay, F-94276 Le Kremlin-Bicêtre, France
| | - Vincent Richard
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
- Department of Pharmacology, CHU Rouen, F-76000 Rouen, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Valéry Brunel
- Department of General Biochemistry, CHU Rouen, F-76000 Rouen, France
| | - Thomas Duflot
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
- Department of Pharmacology, CHU Rouen, F-76000 Rouen, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France
- Faculté de Médecine, Université Paris-Saclay, F-94276 Le Kremlin-Bicêtre, France
- Correspondence: (C.G.); (J.B.)
| | - Jérémy Bellien
- INSERM EnVI UMR 1096, Health Campus, University of Rouen Normandie, F-76000 Rouen, France
- Department of Pharmacology, CHU Rouen, F-76000 Rouen, France
- Correspondence: (C.G.); (J.B.)
| |
Collapse
|
32
|
Pulmonary Vascular Remodeling in Pulmonary Hypertension. J Pers Med 2023; 13:jpm13020366. [PMID: 36836600 PMCID: PMC9967990 DOI: 10.3390/jpm13020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary vascular remodeling is the critical structural alteration and pathological feature in pulmonary hypertension (PH) and involves changes in the intima, media and adventitia. Pulmonary vascular remodeling consists of the proliferation and phenotypic transformation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) of the middle membranous pulmonary artery, as well as complex interactions involving external layer pulmonary artery fibroblasts (PAFs) and extracellular matrix (ECM). Inflammatory mechanisms, apoptosis and other factors in the vascular wall are influenced by different mechanisms that likely act in concert to drive disease progression. This article reviews these pathological changes and highlights some pathogenetic mechanisms involved in the remodeling process.
Collapse
|
33
|
Inactivating the Uninhibited: The Tale of Activins and Inhibins in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24043332. [PMID: 36834742 PMCID: PMC9963072 DOI: 10.3390/ijms24043332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advances in technology and biomedical knowledge have led to the effective diagnosis and treatment of an increasing number of rare diseases. Pulmonary arterial hypertension (PAH) is a rare disorder of the pulmonary vasculature that is associated with high mortality and morbidity rates. Although significant progress has been made in understanding PAH and its diagnosis and treatment, numerous unanswered questions remain regarding pulmonary vascular remodeling, a major factor contributing to the increase in pulmonary arterial pressure. Here, we discuss the role of activins and inhibins, both of which belong to the TGF-β superfamily, in PAH development. We examine how these relate to signaling pathways implicated in PAH pathogenesis. Furthermore, we discuss how activin/inhibin-targeting drugs, particularly sotatercep, affect pathophysiology, as these target the afore-mentioned specific pathway. We highlight activin/inhibin signaling as a critical mediator of PAH development that is to be targeted for therapeutic gain, potentially improving patient outcomes in the future.
Collapse
|
34
|
Bousseau S, Sobrano Fais R, Gu S, Frump A, Lahm T. Pathophysiology and new advances in pulmonary hypertension. BMJ MEDICINE 2023; 2:e000137. [PMID: 37051026 PMCID: PMC10083754 DOI: 10.1136/bmjmed-2022-000137] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 04/14/2023]
Abstract
Pulmonary hypertension is a progressive and often fatal cardiopulmonary condition characterised by increased pulmonary arterial pressure, structural changes in the pulmonary circulation, and the formation of vaso-occlusive lesions. These changes lead to increased right ventricular afterload, which often progresses to maladaptive right ventricular remodelling and eventually death. Pulmonary arterial hypertension represents one of the most severe and best studied types of pulmonary hypertension and is consistently targeted by drug treatments. The underlying molecular pathogenesis of pulmonary hypertension is a complex and multifactorial process, but can be characterised by several hallmarks: inflammation, impaired angiogenesis, metabolic alterations, genetic or epigenetic abnormalities, influence of sex and sex hormones, and abnormalities in the right ventricle. Current treatments for pulmonary arterial hypertension and some other types of pulmonary hypertension target pathways involved in the control of pulmonary vascular tone and proliferation; however, these treatments have limited efficacy on patient outcomes. This review describes key features of pulmonary hypertension, discusses current and emerging therapeutic interventions, and points to future directions for research and patient care. Because most progress in the specialty has been made in pulmonary arterial hypertension, this review focuses on this type of pulmonary hypertension. The review highlights key pathophysiological concepts and emerging therapeutic directions, targeting inflammation, cellular metabolism, genetics and epigenetics, sex hormone signalling, bone morphogenetic protein signalling, and inhibition of tyrosine kinase receptors.
Collapse
Affiliation(s)
- Simon Bousseau
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Rafael Sobrano Fais
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Sue Gu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrea Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tim Lahm
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, CO, USA
| |
Collapse
|
35
|
Kumar R, Aktay-Cetin Ö, Craddock V, Morales-Cano D, Kosanovic D, Cogolludo A, Perez-Vizcaino F, Avdeev S, Kumar A, Ram AK, Agarwal S, Chakraborty A, Savai R, de Jesus Perez V, Graham BB, Butrous G, Dhillon NK. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: Multilayered cross-talks in the setting of coinfections and comorbidities. PLoS Pathog 2023; 19:e1011063. [PMID: 36634048 PMCID: PMC9836319 DOI: 10.1371/journal.ppat.1011063] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Öznur Aktay-Cetin
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Vaughn Craddock
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergey Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Anil Kumar Ram
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Stuti Agarwal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Ananya Chakraborty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Member of the DZL, Member of CPI, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Ghazwan Butrous
- Cardiopulmonary Sciences, University of Kent, Canterbury, United Kingdom
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
36
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
37
|
Endothelial mechanosensing: A forgotten target to treat vascular remodeling in hypertension? Biochem Pharmacol 2022; 206:115290. [DOI: 10.1016/j.bcp.2022.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
38
|
VandenBroek MM, Skebo SI, Ormiston ML. Targeting BMPR-II in pulmonary arterial hypertension: a case of Hercules versus the Hydra? Expert Opin Ther Targets 2022; 26:1027-1030. [PMID: 36638064 DOI: 10.1080/14728222.2022.2168188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Sofia I Skebo
- Department of Biology, Queen's University, Kingston, K7L, Canada
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, K7L, Canada.,Departments of Biomedical and Molecular Sciences and Surgery, Queen's University, Kingston, K7L, Canada
| |
Collapse
|
39
|
Tian S, Cai Z, Sen P, van Uden D, van de Kamp E, Thuillet R, Tu L, Guignabert C, Boomars K, Van der Heiden K, Brandt MM, Merkus D. Loss of lung microvascular endothelial Piezo2 expression impairs NO synthesis, induces EndMT, and is associated with pulmonary hypertension. Am J Physiol Heart Circ Physiol 2022; 323:H958-H974. [PMID: 36149769 DOI: 10.1152/ajpheart.00220.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mechanical forces are translated into biochemical stimuli by mechanotransduction channels, such as the mechanically activated cation channel Piezo2. Lung Piezo2 expression has recently been shown to be restricted to endothelial cells. Hence, we aimed to investigate the role of Piezo2 in regulation of pulmonary vascular function and structure, as well as its contribution to development of pulmonary arterial hypertension (PAH). The expression of Piezo2 was significantly reduced in pulmonary microvascular endothelial cells (MVECs) from patients with PAH, in lung tissue from mice with a Bmpr2+/R899X knock-in mutation commonly found in patients with pulmonary hypertension, and in lung tissue of monocrotaline (MCT) and sugen-hypoxia-induced PH (SuHx) PAH rat models, as well as from a swine model with pulmonary vein banding. In MVECs, Piezo2 expression was reduced in response to abnormal shear stress, hypoxia, and TGFβ stimulation. Functional studies in MVECs exposed to shear stress illustrated that siRNA-mediated Piezo2 knockdown impaired endothelial alignment, calcium influx, phosphorylation of AKT, and nitric oxide production. In addition, siPiezo2 reduced the expression of the endothelial marker PECAM-1 and increased the expression of vascular smooth muscle markers ACTA2, SM22a, and calponin. Thus, Piezo2 acts as a mechanotransduction channel in pulmonary MVECs, stimulating shear-induced production of nitric oxide and is essentially involved in preventing endothelial to mesenchymal transition. Its blunted expression in pulmonary hypertension could impair the vasodilator capacity and stimulate vascular remodeling, indicating that Piezo2 might be an interesting therapeutic target to attenuate progression of the disease.NEW & NOTEWORTHY The mechanosensory ion channel Piezo2 is exclusively expressed in lung microvascular endothelial cells (MVECs). Patient MVECs as well as animal models of pulmonary (arterial) hypertension showed lower expression of Piezo2 in the lung. Mechanistically, Piezo2 is required for calcium influx and NO production in response to shear stress, whereas stimuli known to induce endothelial to mesenchymal transition (EndMT) reduce Piezo2 expression in MVECs, and Piezo2 knockdown induces a gene and protein expression pattern consistent with EndMT.
Collapse
Affiliation(s)
- Siyu Tian
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zongye Cai
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Payel Sen
- Walter Brendel Center of Experimental Medicine, University Clinic Munich, Munich, Germany.,German Center for Cardiovascular Research, Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Esther van de Kamp
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Raphael Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Karin Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Biomedical Engineering, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten M Brandt
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daphne Merkus
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands.,Walter Brendel Center of Experimental Medicine, University Clinic Munich, Munich, Germany.,German Center for Cardiovascular Research, Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
40
|
Zhao J, Wang Q, Deng X, Qian J, Tian Z, Liu Y, Li M, Zeng X. The treatment strategy of connective tissue disease associated pulmonary arterial hypertension: Evolving into the future. Pharmacol Ther 2022; 239:108192. [DOI: 10.1016/j.pharmthera.2022.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
|
41
|
Mendez PL, Obendorf L, Jatzlau J, Burdzinski W, Reichenbach M, Nageswaran V, Haghikia A, Stangl V, Hiepen C, Knaus P. Atheroprone fluid shear stress-regulated ALK1-Endoglin-SMAD signaling originates from early endosomes. BMC Biol 2022; 20:210. [PMID: 36171573 PMCID: PMC9520843 DOI: 10.1186/s12915-022-01396-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluid shear stress enhances endothelial SMAD1/5 signaling via the BMP9-bound ALK1 receptor complex supported by the co-receptor Endoglin. While moderate SMAD1/5 activation is required to maintain endothelial quiescence, excessive SMAD1/5 signaling promotes endothelial dysfunction. Increased BMP signaling participates in endothelial-to-mesenchymal transition and inflammation culminating in vascular diseases such as atherosclerosis. While the function of Endoglin has so far been described under picomolar concentrations of BMP9 and short-term shear application, we investigated Endoglin under physiological BMP9 and long-term pathophysiological shear conditions. RESULTS We report here that knock-down of Endoglin leads to exacerbated SMAD1/5 phosphorylation and atheroprone gene expression profile in HUVECs sheared for 24 h. Making use of the ligand-trap ALK1-Fc, we furthermore show that this increase is dependent on BMP9/10. Mechanistically, we reveal that long-term exposure of ECs to low laminar shear stress leads to enhanced Endoglin expression and endocytosis of Endoglin in Caveolin-1-positive early endosomes. In these endosomes, we could localize the ALK1-Endoglin complex, labeled BMP9 as well as SMAD1, highlighting Caveolin-1 vesicles as a SMAD signaling compartment in cells exposed to low atheroprone laminar shear stress. CONCLUSIONS We identified Endoglin to be essential in preventing excessive activation of SMAD1/5 under physiological flow conditions and Caveolin-1-positive early endosomes as a new flow-regulated signaling compartment for BMP9-ALK1-Endoglin signaling axis in atheroprone flow conditions.
Collapse
Affiliation(s)
- Paul-Lennard Mendez
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- International Max-Planck Research School for Biology and Computation, Berlin, Germany
| | - Leon Obendorf
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Wiktor Burdzinski
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin School for Regenerative Therapies, Berlin, Germany
| | - Maria Reichenbach
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Vanasa Nageswaran
- Charité-Universitätsmedizin Berlin, Klinik für Kardiologie, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Arash Haghikia
- Charité-Universitätsmedizin Berlin, Klinik für Kardiologie, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany
| | - Verena Stangl
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Faculty of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany.
- International Max-Planck Research School for Biology and Computation, Berlin, Germany.
- Berlin School for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
42
|
Cober ND, VandenBroek MM, Ormiston ML, Stewart DJ. Evolving Concepts in Endothelial Pathobiology of Pulmonary Arterial Hypertension. Hypertension 2022; 79:1580-1590. [PMID: 35582968 DOI: 10.1161/hypertensionaha.122.18261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a deadly disease, characterized by increased vascular resistance, pulmonary arteriolar loss, and occlusive arterial remodeling, leading to eventual right heart failure. Evidence increasingly points to the pulmonary endothelium as a central actor in PAH. Endothelial cell apoptosis can result directly in distal lung arteriolar pruning and indirectly in the formation of complex and occlusive arterial lesions, reflecting an imbalance between endothelial injury and repair in the development and progression of PAH. Many of the mutations implicated in PAH are in genes, which are predominantly, or solely, expressed in endothelial cells, and the endothelium is a major target for therapeutic interventions to restore BMP signaling. We explore how arterial pruning can promote the emergence of occlusive arterial remodeling mediated by ongoing endothelial injury secondary to hemodynamic perturbation and pathological increases in luminal shear stress. The emerging role of endothelial cell senescence is discussed in the transition from reversible to irreversible arterial remodeling in advanced PAH, and we review the sometimes conflicting evidence that female sex hormones can both protect or promote vascular changes in disease. Finally, we explore the contribution of the endothelium to metabolic changes and the altered inflammatory and immune state in the PAH lung, focusing on the role of excessive TGFβ signaling. Given the complexity of the endothelial pathobiology of PAH, we anticipate that emerging technologies that allow the study of molecular events at a single cell level will provide answers to many of the questions raised in this review.
Collapse
Affiliation(s)
- Nicholas D Cober
- Ottawa Hospital Research Institute, ON, Canada (N.D.C., D.J.S.).,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada (N.D.C., D.J.S.)
| | - M Martin VandenBroek
- Department of Medicine, Queen's University, Kingston, ON, Canada (M.M.V., M.L.O.)
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada (M.M.V., M.L.O.).,Departments of Surgery, and Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada (M.L.O.)
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, ON, Canada (N.D.C., D.J.S.).,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada (N.D.C., D.J.S.)
| |
Collapse
|
43
|
Cai Z, Tian S, Klein T, Tu L, Geenen LW, Koudstaal T, van den Bosch AE, de Rijke YB, Reiss IKM, Boersma E, van der Ley C, Van Faassen M, Kema I, Duncker DJ, Boomars KA, Tran-Lundmark K, Guignabert C, Merkus D. Kynurenine metabolites predict survival in pulmonary arterial hypertension: A role for IL-6/IL-6Rα. Sci Rep 2022; 12:12326. [PMID: 35853948 PMCID: PMC9296482 DOI: 10.1038/s41598-022-15039-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of the kynurenine pathway (KP) has been reported in patients with pulmonary arterial hypertension (PAH) undergoing PAH therapy. We aimed to determine KP-metabolism in treatment-naïve PAH patients, investigate its prognostic values, evaluate the effect of PAH therapy on KP-metabolites and identify cytokines responsible for altered KP-metabolism. KP-metabolite levels were determined in plasma from PAH patients (median follow-up 42 months) and in rats with monocrotaline- and Sugen/hypoxia-induced PH. Blood sampling of PAH patients was performed at the time of diagnosis, six months and one year after PAH therapy. KP activation with lower tryptophan, higher kynurenine (Kyn), 3-hydroxykynurenine (3-HK), quinolinic acid (QA), kynurenic acid (KA), and anthranilic acid was observed in treatment-naïve PAH patients compared with controls. A similar KP-metabolite profile was observed in monocrotaline, but not Sugen/hypoxia-induced PAH. Human lung primary cells (microvascular endothelial cells, pulmonary artery smooth muscle cells, and fibroblasts) were exposed to different cytokines in vitro. Following exposure to interleukin-6 (IL-6)/IL-6 receptor α (IL-6Rα) complex, all cell types exhibit a similar KP-metabolite profile as observed in PAH patients. PAH therapy partially normalized this profile in survivors after one year. Increased KP-metabolites correlated with higher pulmonary vascular resistance, shorter six-minute walking distance, and worse functional class. High levels of Kyn, 3-HK, QA, and KA measured at the latest time-point were associated with worse long-term survival. KP-metabolism was activated in treatment-naïve PAH patients, likely mediated through IL-6/IL-6Rα signaling. KP-metabolites predict response to PAH therapy and survival of PAH patients.
Collapse
Affiliation(s)
- Zongye Cai
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyu Tian
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Laurie W Geenen
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annemien E van den Bosch
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics/Neonatology, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Clinical Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Claude van der Ley
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn Van Faassen
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido Kema
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Karin A Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, LMU Munich, Munich, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| |
Collapse
|
44
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
45
|
Shu T, Liu Y, Zhou Y, Zhou Z, Li B, Xing Y, Yang P, Pang J, Li J, Song X, Ning X, Qi X, Xiong C, Yang H, Chen Q, Chen J, Yu Y, Wang J, Wang C. Inhibition of immunoglobulin E attenuates pulmonary hypertension. NATURE CARDIOVASCULAR RESEARCH 2022; 1:665-678. [PMID: 39196237 DOI: 10.1038/s44161-022-00095-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 06/06/2022] [Indexed: 08/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by pulmonary vascular remodeling. Immunoglobulin E (IgE) is known to participate in aortic vascular remodeling, but whether IgE mediates pulmonary vascular disease is unknown. In the present study, we found serum IgE elevation in pulmonary arterial hypertension (PAH) patients, hypoxia-induced PH mice and monocrotaline-induced PH rats. Neutralizing IgE with an anti-IgE antibody was effective in preventing PH development in mice and rat models. The IgE receptor FcεRIα was also upregulated in PH lung tissues and Fcer1a deficiency prevented the development of PH. Single-cell RNA-sequencing revealed that FcεRIα was mostly expressed in mast cells (MCs) and MC-specific Fcer1a knockout protected against PH in mice. IgE-activated MCs produced interleukin (IL)-6 and IL-13, which subsequently promoted vascular muscularization. Clinically approved IgE antibody omalizumab alleviated the progression of established PH in rats. Using genetic and pharmacological approaches, we have demonstrated that blocking IgE-FcεRIα signaling may hold potential for PAH treatment.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yitian Zhou
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Peking Union Medical College, MD Program, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjiang Xing
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jinqiu Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Ning
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xianmei Qi
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Changming Xiong
- Department of Cardiology, Pulmonary Vascular Disease Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Chen
- Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Chen Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed Pharmacother 2022; 151:113191. [PMID: 35643068 DOI: 10.1016/j.biopha.2022.113191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic and fatal disease, for which new therapeutic drugs and approaches are needed urgently. Baicalein and baicalin, the active compounds of the traditional Chinese medicine, Scutellaria baicalensis Georgi, exhibit a wide range of pharmacological activities. Numerous studies involving in vitro and in vivo models of PH have revealed that the treatment with baicalin and baicalein may be effective. This review summarizes the potential mechanisms driving the beneficial effects of baicalin and baicalein treatment on PH, including anti-inflammatory response, inhibition of pulmonary smooth muscle cell proliferation and endothelial-to-mesenchymal transformation, stabilization of the extracellular matrix, and mitigation of oxidative stress. The pharmacokinetics of these compounds have also been reviewed. The therapeutic potential of baicalin and baicalein warrants their continued study as natural treatments for PH.
Collapse
|
47
|
Li H, Li X, Hao Y, Wu C, Fu Y, Su N, Chen H, Ying B, Wang H, Su L, Cai H, He Q, Cai M, Sun J, Lin J, Scott A, Smith F, Huang X, Jin S. Maresin 1 intervention Reverses Experimental Pulmonary Arterial Hypertension in mice. Br J Pharmacol 2022; 179:5132-5147. [PMID: 35764296 DOI: 10.1111/bph.15906] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. EXPERIMENTAL APPROACH The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure (SuHx). After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by hemodynamic measurement and echocardiography, respectively. Vascular remodeling was evaluated by histological staining. Confocal and western blot were used to test related protein expression. In vitro, cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. KEY RESULTS Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated the right ventricular dysfunction (RVD) in murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodeling, attenuating endothelial to mesenchymal transformation (EndoMT) and enhancing apoptosis of α-SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK and FoxO1 phosphorylation via LGR6. CONCLUSION AND IMPLICATIONS Maresin 1 improved abnormal pulmonary vascular remodeling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhao Fu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nana Su
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Houlin Chen
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binyu Ying
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haixing Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihuang Su
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Haijian Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Qinlian He
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Mengsi Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Junwei Sun
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Jing Lin
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aaron Scott
- The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Fanggao Smith
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
48
|
Le Vely B, Phan C, Berrebeh N, Thuillet R, Ottaviani M, Chelgham MK, Chaumais MC, Amazit L, Humbert M, Huertas A, Guignabert C, Tu L. Loss of cAbl Tyrosine Kinase in Pulmonary Arterial Hypertension Causes Dysfunction of Vascular Endothelial Cells. Am J Respir Cell Mol Biol 2022; 67:215-226. [PMID: 35550008 DOI: 10.1165/rcmb.2021-0332oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease characterized by the dysfunction of pulmonary endothelial cells (ECs) and obstructive vascular remodeling. The non-receptor tyrosine kinase c-Abelson (cAbl) plays central roles in regulating cell-cycle arrest, apoptosis, and senescence after cellular stress. We hypothesized that cAbl is down-activated in experimental and human PAH, thus leading to reduced DNA integrity and angiogenic capacity of pulmonary ECs from PAH patients (PAH-ECs). We found cAbl and phosphorylated cAbl levels to be lower in the endothelium of remodeled pulmonary vessels in the lungs of PAH patients than controls. Similar observations were obtained for the lungs of sugen+hypoxia (SuHx) and monocrotaline (MCT) rats with established pulmonary hypertension. These in situ abnormalities were also replicated in vitro, with cultured PAH-ECs displaying lower cAbl expression and activity and an altered DNA damage response and capacity of tube formation. Downregulation of cAbl by RNA-interference in Control-ECs or its inhibition with dasatinib resulted in genomic instability and the failure to form tubes, whereas upregulation of cAbl with DPH reduced DNA damage and apoptosis in PAH-ECs. Finally, we establish the existence of crosstalk between cAbl and bone morphogenetic protein receptor type II (BMPRII). This work identifies the loss of cAbl signaling as a novel contributor to pulmonary EC dysfunction associated with PAH.
Collapse
Affiliation(s)
- Benjamin Le Vely
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Carole Phan
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Nihel Berrebeh
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Raphaël Thuillet
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Mina Ottaviani
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Mustapha Kamel Chelgham
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Marie-Camille Chaumais
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France.,Université Paris-Saclay Faculté de Pharmacie, 70620, Chatenay-Malabry, France
| | - Larbi Amazit
- Institut Biomédical de Bicêtre, 46657, UMS_44, Villejuif, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Marc Humbert
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France.,Assistance Publique - Hopitaux de Paris, 26930, Service de Pneumologie et Soins Intensifs Respiratoires, Le Kremlin-Bicêtre, France
| | - Alice Huertas
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France.,Assistance Publique - Hopitaux de Paris, 26930, Service de Pneumologie et Soins Intensifs Respiratoires, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Ly Tu
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France;
| |
Collapse
|
49
|
Aldred MA, Morrell NW, Guignabert C. New Mutations and Pathogenesis of Pulmonary Hypertension: Progress and Puzzles in Disease Pathogenesis. Circ Res 2022; 130:1365-1381. [PMID: 35482831 PMCID: PMC9897592 DOI: 10.1161/circresaha.122.320084] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex multifactorial disease with poor prognosis characterized by functional and structural alterations of the pulmonary circulation causing marked increase in pulmonary vascular resistance, ultimately leading to right heart failure and death. Mutations in the gene encoding BMPRII-a receptor for the TGF-β (transforming growth factor-beta) superfamily-account for over 70% of families with PAH and ≈20% of sporadic cases. In recent years, however, less common or rare mutations in other genes have been identified. This review will consider how these newly discovered PAH genes could help to provide a better understanding of the molecular and cellular bases of the maintenance of the pulmonary vascular integrity, as well as their role in the PAH pathogenesis underlying occlusion of arterioles in the lung. We will also discuss how insights into the genetic contributions of these new PAH-related genes may open up new therapeutic targets for this, currently incurable, cardiopulmonary disorder.
Collapse
Affiliation(s)
- Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas W Morrell
- University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France,Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
50
|
Kabwe JC, Sawada H, Mitani Y, Oshita H, Tsuboya N, Zhang E, Maruyama J, Miyasaka Y, Ko H, Oya K, Ito H, Yodoya N, Otsuki S, Ohashi H, Okamoto R, Dohi K, Nishimura Y, Mashimo T, Hirayama M, Maruyama K. CRISPR-mediated Bmpr2 point mutation exacerbates late pulmonary vasculopathy and reduces survival in rats with experimental pulmonary hypertension. Respir Res 2022; 23:87. [PMID: 35395852 PMCID: PMC8994407 DOI: 10.1186/s12931-022-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Patients with pulmonary arterial hypertension (PAH) carrying bone morphogenetic protein receptor type 2 (Bmpr2) mutations present earlier with severe hemodynamic compromise and have poorer survival outcomes than those without mutation. The mechanism underlying the worsening clinical phenotype of PAH with Bmpr2 mutations has been largely unaddressed in rat models of pulmonary hypertension (PH) because of the difficulty in reproducing progressive PH in mice and genetic modification in rats. We tested whether a clinically-relevant Bmpr2 mutation affects the progressive features of monocrotaline (MCT) induced-PH in rats. Methods A monoallelic single nucleotide insertion in exon 1 of Bmpr2 (+/44insG) was generated in rats using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9, then PH, pulmonary vascular disease (PVD) and survival after MCT injection with or without a phosphodiesterase type 5 inhibitor, tadalafil, administration were assessed. Results The +/44insG rats had reduced BMPR2 signalling in the lungs compared with wild-type. PH and PVD assessed at 3-weeks after MCT injection were similar in wild-type and +/44insG rats. However, survival at 4-weeks after MCT injection was significantly reduced in +/44insG rats. Among the rats surviving at 4-weeks after MCT administration, +/44insG rats had increased weight ratio of right ventricle to left ventricle plus septum (RV/[LV + S]) and % medial wall thickness (MWT) in pulmonary arteries (PAs). Immunohistochemical analysis showed increased vessels with Ki67-positive cells in the lungs, decreased mature and increased immature smooth muscle cell phenotype markers in the PAs in +/44insG rats compared with wild-type at 3-weeks after MCT injection. Contraction of PA in response to prostaglandin-F2α and endothelin-1 were significantly reduced in the +/44insG rats. The +/44insG rats that had received tadalafil had a worse survival with a significant increase in RV/(LV + S), %MWT in distal PAs and RV myocardial fibrosis compared with wild-type. Conclusions The present study demonstrates that the Bmpr2 mutation promotes dedifferentiation of PA smooth muscle cells, late PVD and RV myocardial fibrosis and adversely impacts both the natural and post-treatment courses of MCT-PH in rats with significant effects only in the late stages and warrants preclinical studies using this new genetic model to optimize treatment outcomes of heritable PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02005-w.
Collapse
Affiliation(s)
- Jane Chanda Kabwe
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan. .,The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.
| | - Yoshihide Mitani
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hironori Oshita
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.,The Department of Pediatrics, Nagoya City University School of Medicine, Aichi, Japan
| | - Naoki Tsuboya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Erquan Zhang
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan.,The Department of Neonatology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University, Fujian, China
| | - Junko Maruyama
- The Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideyoshi Ko
- The Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Kazunobu Oya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiromasa Ito
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Noriko Yodoya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Shoichiro Otsuki
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroyuki Ohashi
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Ryuji Okamoto
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kaoru Dohi
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuhei Nishimura
- The Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Hirayama
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazuo Maruyama
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan
| |
Collapse
|