1
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Panara V, Varaliová Z, Wilting J, Koltowska K, Jeltsch M. The relationship between the secondary vascular system and the lymphatic vascular system in fish. Biol Rev Camb Philos Soc 2024; 99:2108-2133. [PMID: 38940420 DOI: 10.1111/brv.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries via specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the 'fish lymphatics' are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics versus the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.
Collapse
Affiliation(s)
- Virginia Panara
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 A, Uppsala, 752 36, Sweden
| | - Zuzana Varaliová
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical School Göttingen, Kreuzbergring 36, Göttingen, 37075, Germany
| | - Katarzyna Koltowska
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Wihuri Research Institute, Haartmaninkatu 8, Helsinki, 00290, Finland
- Helsinki One Health, University of Helsinki, P.O. Box 4, Helsinki, 00014, Finland
- Helsinki Institute of Sustainability Science, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
3
|
Salvador AFM, Abduljawad N, Kipnis J. Meningeal Lymphatics in Central Nervous System Diseases. Annu Rev Neurosci 2024; 47:323-344. [PMID: 38648267 DOI: 10.1146/annurev-neuro-113023-103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nora Abduljawad
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Jonathan Kipnis
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
4
|
Castranova D, Kenton MI, Kraus A, Dell CW, Park JS, Galanternik MV, Park G, Lumbantobing DN, Dye L, Marvel M, Iben J, Taimatsu K, Pham V, Willms RJ, Blevens L, Robertson TF, Hou Y, Huttenlocher A, Foley E, Parenti LR, Frazer JK, Narayan K, Weinstein BM. The axillary lymphoid organ - an external, experimentally accessible immune organ in the zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605139. [PMID: 39091802 PMCID: PMC11291151 DOI: 10.1101/2024.07.25.605139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics in vivo, the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac. Noninvasive high-resolution imaging of transgenically marked immune cells can be carried out in the lobes of living animals, and the ALO is readily accessible to external treatment. This newly discovered tissue provides a superb model for dynamic live imaging of immune cells and their interaction with pathogens and surrounding tissues, including blood and lymphatic vessels.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Madeleine I. Kenton
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Aurora Kraus
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Christopher W. Dell
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jong S. Park
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gilseung Park
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel N. Lumbantobing
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Louis Dye
- Microscopy and Imaging Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Miranda Marvel
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Kiyohito Taimatsu
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Van Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Reegan J. Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Blevens
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lynne R. Parenti
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - J. Kimble Frazer
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Xu Y, Han Y, Liu L, Han S, Zou S, Cheng B, Wang F, Xie X, Liang Y, Song M, Pang S. Highly sensitive response to the toxicity of environmental chemicals in transparent casper zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174865. [PMID: 39032757 DOI: 10.1016/j.scitotenv.2024.174865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The response sensitivity to toxic substances is the most concerned performance of animal model in chemical risk assessment. Casper (mitfaw2/w2;mpv17a9/a9), a transparent zebrafish mutant, is a useful in vivo model for toxicological assessment. However, the ability of casper to respond to the toxicity of exogenous chemicals is unknown. In this study, zebrafish embryos were exposed to five environmental chemicals, chlorpyrifos, lindane, α-endosulfan, bisphenol A, tetrabromobisphenol A (TBBPA), and an antiepileptic drug valproic acid. The half-lethal concentration (LC50) values of these chemicals in casper embryos were 62-87 % of that in the wild-type. After TBBPA exposure, the occurrence of developmental defects in the posterior blood island of casper embryos was increased by 67-77 % in relative to the wild-type, and the half-maximal effective concentration (EC50) in casper was 73 % of that in the wild-type. Moreover, the casper genetic background significantly increased the hyperlocomotion caused by chlorpyrifos and lindane exposure compared with the wild-type. These results demonstrated that casper had greater susceptibility to toxicity than wild-type zebrafish in acute toxicity, developmental toxicity and neurobehavioral toxicity assessments. Our data will inform future toxicological studies in casper and accelerate the development of efficient approaches and strategies for toxicity assessment via the use of casper.
Collapse
Affiliation(s)
- Yingjun Xu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yiming Han
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Li Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shanshan Han
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shibiao Zou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Bo Cheng
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xunwei Xie
- China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Maoyong Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shaochen Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
6
|
Chen J, Ding J, Li Y, Feng F, Xu Y, Wang T, He J, Cang J, Luo L. Epidermal growth factor-like domain 7 drives brain lymphatic endothelial cell development through integrin αvβ3. Nat Commun 2024; 15:5986. [PMID: 39013903 PMCID: PMC11252342 DOI: 10.1038/s41467-024-50389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
In zebrafish, brain lymphatic endothelial cells (BLECs) are essential for meningeal angiogenesis and cerebrovascular regeneration. Although epidermal growth factor-like domain 7 (Egfl7) has been reported to act as a pro-angiogenic factor, its roles in lymphangiogenesis remain unclear. Here, we show that Egfl7 is expressed in both blood and lymphatic endothelial cells. We generate an egfl7 cq180 mutant with a 13-bp-deletion in exon 3 leading to reduced expression of Egfl7. The egfl7 cq180 mutant zebrafish exhibit defective formation of BLEC bilateral loop-like structures, although trunk and facial lymphatic development remains unaffected. Moreover, while the egfl7 cq180 mutant displays normal BLEC lineage specification, the migration and proliferation of these cells are impaired. Additionally, we identify integrin αvβ3 as the receptor for Egfl7. αvβ3 is expressed in the CVP and sprouting BLECs, and blocking this integrin inhibits the formation of BLEC bilateral loop-like structures. Thus, this study identifies a role for Egfl7 in BLEC development that is mediated through the integrin αvβ3.
Collapse
Affiliation(s)
- Jingying Chen
- School of Life Sciences, Department of Anaesthesia of Zhongshan Hospital, Fudan University, 200438, Shanghai, China.
| | - Jing Ding
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Yongyu Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Fujuan Feng
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Yuhang Xu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Tao Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Jing Cang
- School of Life Sciences, Department of Anaesthesia of Zhongshan Hospital, Fudan University, 200438, Shanghai, China
| | - Lingfei Luo
- School of Life Sciences, Department of Anaesthesia of Zhongshan Hospital, Fudan University, 200438, Shanghai, China.
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
7
|
He X, Xiong D, Zhao L, Fu J, Luo L. Meningeal lymphatic supporting cells govern the formation and maintenance of zebrafish mural lymphatic endothelial cells. Nat Commun 2024; 15:5547. [PMID: 38956047 PMCID: PMC11220022 DOI: 10.1038/s41467-024-49818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
The meninges are critical for the brain functions, but the diversity of meningeal cell types and intercellular interactions have yet to be thoroughly examined. Here we identify a population of meningeal lymphatic supporting cells (mLSCs) in the zebrafish leptomeninges, which are specifically labeled by ependymin. Morphologically, mLSCs form membranous structures that enwrap the majority of leptomeningeal blood vessels and all the mural lymphatic endothelial cells (muLECs). Based on its unique cellular morphologies and transcriptional profile, mLSC is characterized as a unique cell type different from all the currently known meningeal cell types. Because of the formation of supportive structures and production of pro-lymphangiogenic factors, mLSCs not only promote muLEC development and maintain the dispersed distributions of muLECs in the leptomeninges, but also are required for muLEC regeneration after ablation. This study characterizes a newly identified cell type in leptomeninges, mLSC, which is required for muLEC development, maintenance, and regeneration.
Collapse
Affiliation(s)
- Xiang He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Daiqin Xiong
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Lei Zhao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jialong Fu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China.
- School of Life Sciences, Fudan University, Yangpu, Shanghai, 200438, China.
| |
Collapse
|
8
|
Su AX, Ma ZJ, Li ZY, Li XY, Xia L, Ge YJ, Chen GH. Serum levels of neurotensin, pannexin-1, and sestrin-2 and the correlations with sleep quality or/and cognitive function in the patients with chronic insomnia disorder. Front Psychiatry 2024; 15:1360305. [PMID: 38803679 PMCID: PMC11128551 DOI: 10.3389/fpsyt.2024.1360305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives To examine serum concentrations of neurotensin, pannexin-1 and sestrin-2, and their correlations with subjective and objective sleep quality and cognitive function in the patients with chronic insomnia disorder (CID). Methods Sixty-five CID patients were enrolled continuously and fifty-six good sleepers in the same period were served as healthy controls (HCs). Serum levels of neurotensin, pannexin-1 and sestrin-2 were measured by enzyme-linked immunosorbent assays. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and polysomnography, and mood was evaluated by 17-item Hamilton Depression Rating Scale. General cognitive function was assessed with the Chinese-Beijing Version of Montreal Cognitive Assessment and spatial memory was evaluated by Blue Velvet Arena Test (BVAT). Results Relative to the HCs, the CID sufferers had higher levels of neurotensin (t=5.210, p<0.001) and pannexin-1 (Z=-4.169, p<0.001), and lower level of sestrin-2 (Z=-2.438, p=0.015). In terms of objective sleep measures, pannexin-1 was positively associated with total sleep time (r=0.562, p=0.002) and sleep efficiency (r=0.588, p=0.001), and negatively with wake time after sleep onset (r=-0.590, p=0.001) and wake time (r=-0.590, p=0.001); sestrin-2 was positively associated with percentage of rapid eye movement sleep (r=0.442, p=0.016) and negatively with non-rapid eye movement sleep stage 2 in the percentage (r=-0.394, p=0.034). Adjusted for sex, age and HAMD, pannexin-1 was still associated with the above objective sleep measures, but sestrin-2 was only negatively with wake time (r=-0.446, p=0.022). However, these biomarkers showed no significant correlations with subjective sleep quality (PSQI score). Serum concentrations of neurotensin and pannexin-1 were positively associated with the mean erroneous distance in the BVAT. Adjusted for sex, age and depression, neurotensin was negatively associated with MoCA score (r=-0.257, p=0.044), pannexin-1 was positively associated with the mean erroneous distance in the BVAT (r=0.270, p=0.033). Conclusions The CID patients had increased neurotensin and pannexin-1 and decreased sestrin-2 in the serum levels, indicating neuron dysfunction, which could be related to poor sleep quality and cognitive dysfunction measured objectively.
Collapse
Affiliation(s)
- Ai-Xi Su
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
- Department of General Medicine, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zi-Jie Ma
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Zong-Yin Li
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Lan Xia
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| |
Collapse
|
9
|
Hoang TA, Gracia G, Cao E, Nicolazzo JA, Trevaskis NL. Quantifying the Lymphatic Transport of Model Therapeutics from the Brain in Rats. Mol Pharm 2024; 21:2473-2483. [PMID: 38579335 DOI: 10.1021/acs.molpharmaceut.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
In recent years, the drainage of fluids, immune cells, antigens, fluorescent tracers, and other solutes from the brain has been demonstrated to occur along lymphatic outflow pathways to the deep cervical lymph nodes in the neck. To the best of our knowledge, no studies have evaluated the lymphatic transport of therapeutics from the brain. The objective of this study was to determine the lymphatic transport of model therapeutics of different molecular weights and lipophilicity from the brain using cervical lymph cannulation and ligation models in rats. To do this, anesthetized Sprague-Dawley rats were cannulated at the carotid artery and cannulated, ligated, or left intact at the cervical lymph duct. Rats were administered 14C-ibuprofen (206.29 g/mol, logP 3.84), 3H-halofantrine HCl (536.89 g/mol, logP 8.06), or 3H-albumin (∼65,000 g/mol) via direct injection into the brain striatum at a rate of 0.5 μL/min over 16 min. Plasma or cervical lymph samples were collected for up to 6-8 h following dosing, and brain and lymph nodes were collected at 6 or 8 h. Samples were subsequently analyzed for radioactivity levels via scintillation counting. For 14C-ibuprofen, plasma concentrations over time (plasma AUC0-6h) were >2 fold higher in lymph-ligated rats than in lymph-intact rats, suggesting that ibuprofen is cleared from the brain primarily via nonlymphatic routes (e.g., across the blood-brain barrier) but that this clearance is influenced by changes in lymphatic flow. For 3H-halofantrine, >73% of the dose was retained at the brain dosing site in lymph-intact and lymph-ligated groups, and plasma AUC0-8h values were low in both groups (<0.3% dose.h/mL), consistent with the high retention in the brain. It was therefore not possible to determine whether halofantrine undergoes lymphatic transport from the brain within the duration of the study. For 3H-albumin, plasma AUC0-8h values were not significantly different between lymph-intact, lymph-ligated, and lymph-cannulated rats. However, >4% of the dose was recovered in cervical lymph over 8 h. Lymph/plasma concentration ratios of 3H-albumin were also very high (up to 53:1). Together, these results indicate that 3H-albumin is transported from the brain not only via lymphatic routes but also via the blood. Similar to other tissues, the lymphatics may thus play a significant role in the transport of macromolecules, including therapeutic proteins, from the brain but are unlikely to be a major transport pathway from the brain for small molecule drugs that are not lipophilic. Our rat cervical lymph cannulation model can be used to quantify the lymphatic drainage of different molecules and factors from the brain.
Collapse
Affiliation(s)
- Thu A Hoang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3000, Australia
| |
Collapse
|
10
|
Chen J, Pan Y, Liu Q, Li G, Chen G, Li W, Zhao W, Wang Q. The Interplay between Meningeal Lymphatic Vessels and Neuroinflammation in Neurodegenerative Diseases. Curr Neuropharmacol 2024; 22:1016-1032. [PMID: 36380442 PMCID: PMC10964105 DOI: 10.2174/1570159x21666221115150253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Meningeal lymphatic vessels (MLVs) are essential for the drainage of cerebrospinal fluid, macromolecules, and immune cells in the central nervous system. They play critical roles in modulating neuroinflammation in neurodegenerative diseases. Dysfunctional MLVs have been demonstrated to increase neuroinflammation by horizontally blocking the drainage of neurotoxic proteins to the peripheral lymph nodes. Conversely, MLVs protect against neuroinflammation by preventing immune cells from becoming fully encephalitogenic. Furthermore, evidence suggests that neuroinflammation affects the structure and function of MLVs, causing vascular anomalies and angiogenesis. Although this field is still in its infancy, the strong link between MLVs and neuroinflammation has emerged as a potential target for slowing the progression of neurodegenerative diseases. This review provides a brief history of the discovery of MLVs, introduces in vivo and in vitro MLV models, highlights the molecular mechanisms through which MLVs contribute to and protect against neuroinflammation, and discusses the potential impact of neuroinflammation on MLVs, focusing on recent progress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Guangyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Gongcan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
11
|
Yang D, Wang W, Yuan Z, Liang Y. Information-Rich Multi-Functional OCT for Adult Zebrafish Intra- and Extracranial Imaging. Bioengineering (Basel) 2023; 10:856. [PMID: 37508883 PMCID: PMC10375992 DOI: 10.3390/bioengineering10070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The zebrafish serves as a valuable animal model for both intra- and extracranial research, particularly in relation to the brain and skull. To effectively investigate the development and regeneration of adult zebrafish, a versatile in vivo imaging technique capable of showing both intra- and extracranial conditions is essential. In this paper, we utilized a high-resolution multi-functional optical coherence tomography (OCT) to obtain rich intra- and extracranial imaging outcomes of adult zebrafish, encompassing pigmentation distribution, tissue-specific information, cranial vascular imaging, and the monitoring of traumatic brain injury (TBI). Notably, it is the first that the channels through the zebrafish cranial suture, which may have a crucial function in maintaining the patency of the cranial sutures, have been observed. Rich imaging results demonstrated that a high-resolution multi-functional OCT system can provide a wealth of novel and interpretable biological information for intra- and extracranial studies of adult zebrafish.
Collapse
Affiliation(s)
- Di Yang
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Weike Wang
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Zhuoqun Yuan
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Yanmei Liang
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
Elazary Y, Cheow K, Cheng RK, Ghosh R, Shainer I, Wexler Y, Crasta K, Gothilf Y, Jesuthasan SJ. Glial cells expressing visual cycle genes are vital for photoreceptor survival in the zebrafish pineal gland. J Pineal Res 2023; 74:e12854. [PMID: 36692235 DOI: 10.1111/jpi.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Photoreceptors in the vertebrate eye are dependent on the retinal pigmented epithelium for a variety of functions including retinal re-isomerization and waste disposal. The light-sensitive pineal gland of fish, birds, and amphibians is evolutionarily related to the eye but lacks a pigmented epithelium. Thus, it is unclear how these functions are performed. Here, we ask whether a subpopulation of zebrafish pineal cells, which express glial markers and visual cycle genes, is involved in maintaining photoreceptors. Selective ablation of these cells leads to a loss of pineal photoreceptors. Moreover, these cells internalize exorhodopsin that is secreted by pineal rod-like photoreceptors, and in turn release CD63-positive extracellular vesicles (EVs) that are taken up by pdgfrb-positive phagocytic cells in the forebrain meninges. These results identify a subpopulation of glial cells that is critical for pineal photoreceptor survival and indicate the existence of cells in the forebrain meninges that receive EVs released by these pineal cells and potentially function in waste disposal.
Collapse
Affiliation(s)
- Yotam Elazary
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Kathleen Cheow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Institute of Molecular and Cell Biology, Singapore
| | - Raghumoy Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Inbal Shainer
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Yair Wexler
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Karen Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Suresh J Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Institute of Molecular and Cell Biology, Singapore
| |
Collapse
|
13
|
Como CN, Kim S, Siegenthaler J. Stuck on you: Meninges cellular crosstalk in development. Curr Opin Neurobiol 2023; 79:102676. [PMID: 36773497 PMCID: PMC10023464 DOI: 10.1016/j.conb.2023.102676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
The spatial and temporal development of the brain, overlying meninges (fibroblasts, vasculature and immune cells) and calvarium are highly coordinated. In particular, the timing of meningeal fibroblasts into molecularly distinct pia, arachnoid and dura subtypes coincides with key developmental events in the brain and calvarium. Further, the meninges are positioned to influence development of adjacent structures and do so via depositing basement membrane and producing molecular cues to regulate brain and calvarial development. Here, we review the current knowledge of how meninges development aligns with events in the brain and calvarium and meningeal fibroblast "crosstalk" with these structures. We summarize outstanding questions and how the use of non-mammalian models to study the meninges will substantially advance the field of meninges biology.
Collapse
Affiliation(s)
- Christina N Como
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. https://twitter.com/ChristinaComo
| | - Sol Kim
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado, School of Medicine Department of Pediatrics 12800 East 19th Ave MS-8313 Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
15
|
Deng H, Zhang J, Wu F, Wei F, Han W, Xu X, Zhang Y. Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect. Cancers (Basel) 2023; 15:cancers15041169. [PMID: 36831512 PMCID: PMC9954532 DOI: 10.3390/cancers15041169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The lymphatic system is a channel for fluid transport and cell migration, but it has always been controversial in promoting and suppressing cancer. VEGFC/VEGFR3 signaling has long been recognized as a major molecular driver of lymphangiogenesis. However, many studies have shown that the neural network of lymphatic signaling is complex. Lymphatic vessels have been found to play an essential role in the immune regulation of tumor metastasis and cardiac repair. This review describes the effects of lipid metabolism, extracellular vesicles, and flow shear forces on lymphangiogenesis. Moreover, the pro-tumor immune tolerance function of lymphatic vessels is discussed, and the tasks of meningeal lymphatic vessels and cardiac lymphatic vessels in diseases are further discussed. Finally, the value of conversion therapy targeting the lymphatic system is introduced from the perspective of immunotherapy and pro-lymphatic biomaterials for lymphangiogenesis.
Collapse
Affiliation(s)
- Hongyang Deng
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fahong Wu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fengxian Wei
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wei Han
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaodong Xu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youcheng Zhang
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
16
|
Chen C, Tang Y, Tan Y, Wang L, Li H. Three-dimensional cerebral vasculature topological parameter extraction of transgenic zebrafish embryos with a filling-enhancement deep learning network. BIOMEDICAL OPTICS EXPRESS 2023; 14:971-984. [PMID: 36874479 PMCID: PMC9979664 DOI: 10.1364/boe.484351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Quantitative analysis of zebrafish cerebral vasculature is essential for the study of vascular development and disease. We developed a method to accurately extract the cerebral vasculature topological parameters of transgenic zebrafish embryos. The intermittent and hollow vascular structures of transgenic zebrafish embryos, obtained from 3D light-sheet imaging, were transformed into continuous solid structures with a filling-enhancement deep learning network. The enhancement enables the extraction of 8 vascular topological parameters accurately. Quantitation of the zebrafish cerebral vasculature vessels with the topological parameters show a developmental pattern transition from 2.5 to 5.5 dpf.
Collapse
Affiliation(s)
- Chong Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230041, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - YuJun Tang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230041, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Yao Tan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - LinBo Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Hui Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| |
Collapse
|
17
|
Hoang TA, Cao E, Gracia G, Nicolazzo JA, Trevaskis NL. Development and application of a novel cervical lymph collection method to assess lymphatic transport in rats. Front Pharmacol 2023; 14:1111617. [PMID: 36744256 PMCID: PMC9895367 DOI: 10.3389/fphar.2023.1111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Background: Fluids, solutes and immune cells have been demonstrated to drain from the brain and surrounding structures to the cervical lymph vessels and nodes in the neck via meningeal lymphatics, nasal lymphatics and/or lymphatic vessels associated with cranial nerves. A method to cannulate the efferent cervical lymph duct for continuous cervical lymph fluid collection in rodents has not been described previously and would assist in evaluating the transport of molecules and immune cells from the head and brain via the lymphatics, as well as changes in lymphatic transport and lymph composition with different physiological challenges or diseases. Aim: To develop a novel method to cannulate and continuously collect lymph fluid from the cervical lymph duct in rats and to analyze the protein, lipid and immune cell composition of the collected cervical lymph fluid. Methods: Male Sprague-Dawley rats were cannulated at the carotid artery with or without cannulation or ligation at the cervical lymph duct. Samples of blood, whole lymph and isolated lipoprotein fractions of lymph were collected and analyzed for lipid and protein composition using commercial kits. Whole lymph samples were centrifuged and isolated pellets were stained and processed for flow cytometry analysis of CD3+, CD4+, CD8a+, CD45R+ (B220) and viable cell populations. Results: Flow rate, phospholipid, triglyceride, cholesterol ester, free cholesterol and protein concentrations in cervical lymph were 0.094 ± 0.014 mL/h, 0.34 ± 0.10, 0.30 ± 0.04, 0.07 ± 0.02, 0.02 ± 0.01 and 16.78 ± 2.06 mg/mL, respectively. Protein was mostly contained within the non-lipoprotein fraction but all lipoprotein types were also present. Flow cytometry analysis of cervical lymph showed that 67.1 ± 7.4% of cells were CD3+/CD4+ T lymphocytes, 5.8 ± 1.6% of cells were CD3+/CD8+ T lymphocytes, and 10.8 ± 4.6% of cells were CD3-/CD45R+ B lymphocytes. The remaining 16.3 ± 4.6% cells were CD3-/CD45- and identified as non-lymphocytes. Conclusion: Our novel cervical lymph cannulation method enables quantitative analysis of the lymphatic transport of immune cells and molecules in the cervical lymph of rats for the first time. This valuable tool will enable more detailed quantitative analysis of changes to cervical lymph composition and transport in health and disease, and could be a valuable resource for discovery of biomarkers or therapeutic targets in future studies.
Collapse
|
18
|
González-Hernández S, Mukouyama YS. Lymphatic vasculature in the central nervous system. Front Cell Dev Biol 2023; 11:1150775. [PMID: 37091974 PMCID: PMC10119411 DOI: 10.3389/fcell.2023.1150775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The central nervous system (CNS) is considered as an immune privilege organ, based on experiments in the mid 20th century showing that the brain fails to mount an efficient immune response against an allogeneic graft. This suggests that in addition to the presence of the blood-brain barrier (BBB), the apparent absence of classical lymphatic vasculature in the CNS parenchyma limits the capacity for an immune response. Although this view is partially overturned by the recent discovery of the lymphatic-like hybrid vessels in the Schlemm's canal in the eye and the lymphatic vasculature in the outmost layer of the meninges, the existence of lymphatic vessels in the CNS parenchyma has not been reported. Two potential mechanisms by which lymphatic vasculature may arise in the organs are: 1) sprouting and invasion of lymphatic vessels from the surrounding tissues into the parenchyma and 2) differentiation of blood endothelial cells into lymphatic endothelial cells in the parenchyma. Considering these mechanisms, we here discuss what causes the dearth of lymphatic vessels specifically in the CNS parenchyma.
Collapse
|
19
|
Mani A, Salinas I. The knowns and many unknowns of CNS immunity in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2022; 131:431-440. [PMID: 36241002 DOI: 10.1016/j.fsi.2022.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Many disease agents infect the central nervous system (CNS) of teleost fish causing severe losses for the fish farming sector. Yet, neurotropic fish pathogens remain poorly documented and immune responses in the teleost CNS essentially unknown. Previously thought to be devoid of an immune system, the mammalian CNS is now recognized to be protected from infection by diverse immune cells that mostly reside in the meningeal lymphatic system. Here we review the current body of work pertaining immune responses in the teleost CNS to infection. We identify important knowledge gaps with regards to CNS immunity in fish and make recommendations for rigorous experimentation and reporting in manuscripts so that fish immunologists can advance this burgeoning field.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
20
|
Brain borders at the central stage of neuroimmunology. Nature 2022; 612:417-429. [PMID: 36517712 DOI: 10.1038/s41586-022-05474-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 12/16/2022]
Abstract
The concept of immune privilege suggests that the central nervous system is isolated from the immune system. However, recent studies have highlighted the borders of the central nervous system as central sites of neuro-immune interactions. Although the nervous and immune systems both function to maintain homeostasis, under rare circumstances, they can develop pathological interactions that lead to neurological or psychiatric diseases. Here we discuss recent findings that dissect the key anatomical, cellular and molecular mechanisms that enable neuro-immune responses at the borders of the brain and spinal cord and the implications of these interactions for diseases of the central nervous system.
Collapse
|
21
|
Fin ray branching is defined by TRAP + osteolytic tubules in zebrafish. Proc Natl Acad Sci U S A 2022; 119:e2209231119. [PMID: 36417434 PMCID: PMC9889879 DOI: 10.1073/pnas.2209231119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The shaping of bone structures relies on various cell types and signaling pathways. Here, we use the zebrafish bifurcating fin rays during regeneration to investigate bone patterning. We found that the regenerating fin rays form via two mineralization fronts that undergo an osteoblast-dependent fusion/stitching until the branchpoint, and that bifurcation is not simply the splitting of one unit into two. We identified tartrate-resistant acid phosphatase-positive osteolytic tubular structures at the branchpoints, hereafter named osteolytic tubules (OLTs). Chemical inhibition of their bone-resorbing activity strongly impairs ray bifurcation, indicating that OLTs counteract the stitching process. Furthermore, by testing different osteoactive compounds, we show that the position of the branchpoint depends on the balance between bone mineralization and resorption activities. Overall, these findings provide a unique perspective on fin ray formation and bifurcation, and reveal a key role for OLTs in defining the proximo-distal position of the branchpoint.
Collapse
|
22
|
Green LA, O'Dea MR, Hoover CA, DeSantis DF, Smith CJ. The embryonic zebrafish brain is seeded by a lymphatic-dependent population of mrc1 + microglia precursors. Nat Neurosci 2022; 25:849-864. [PMID: 35710983 PMCID: PMC10680068 DOI: 10.1038/s41593-022-01091-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/06/2022] [Indexed: 02/02/2023]
Abstract
Microglia are the resident macrophages of the CNS that serve critical roles in brain construction. Although human brains contain microglia by 4 weeks gestation, an understanding of the earliest microglia that seed the brain during its development remains unresolved. Using time-lapse imaging in zebrafish, we discovered a mrc1a+ microglia precursor population that seeds the brain before traditionally described microglia. These early microglia precursors are dependent on lymphatic vasculature that surrounds the brain and are independent of pu1+ yolk sac-derived microglia. Single-cell RNA-sequencing datasets reveal Mrc1+ microglia in the embryonic brains of mice and humans. We then show in zebrafish that these early mrc1a+ microglia precursors preferentially expand during pathophysiological states in development. Taken together, our results identify a critical role of lymphatics in the microglia precursors that seed the early embryonic brain.
Collapse
Affiliation(s)
- Lauren A Green
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Michael R O'Dea
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Camden A Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Dana F DeSantis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
23
|
Chen J, He J, Luo L. Brain vascular damage-induced lymphatic ingrowth is directed by Cxcl12b/Cxcr4a. Development 2022; 149:275687. [PMID: 35694896 DOI: 10.1242/dev.200729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
After ischemic stroke, promotion of vascular regeneration without causing uncontrolled vessel growth appears to be the major challenge for pro-angiogenic therapies. The molecular mechanisms underlying how nascent blood vessels (BVs) are correctly guided into the post-ischemic infarction area remain unknown. Here, using a zebrafish cerebrovascular injury model, we show that chemokine signaling provides crucial guidance cues to determine the growing direction of ingrown lymphatic vessels (iLVs) and, in turn, that of nascent BVs. The chemokine receptor Cxcr4a is transcriptionally activated in the iLVs after injury, whereas its ligand Cxcl12b is expressed in the residual central BVs, the destinations of iLV ingrowth. Mutant and mosaic studies indicate that Cxcl12b/Cxcr4a-mediated chemotaxis is necessary and sufficient to determine the growing direction of iLVs and nascent BVs. This study provides a molecular basis for how the vessel directionality of cerebrovascular regeneration is properly determined, suggesting potential application of Cxcl12b/Cxcr4a in the development of post-ischemic pro-angiogenic therapies.
Collapse
Affiliation(s)
- Jingying Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715 Chongqing, China.,University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei, 400714 Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715 Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715 Chongqing, China.,University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei, 400714 Chongqing, China
| |
Collapse
|
24
|
Palominos MF, Calfún C, Nardocci G, Candia D, Torres-Paz J, Whitlock KE. The Olfactory Organ Is a Unique Site for Neutrophils in the Brain. Front Immunol 2022; 13:881702. [PMID: 35693773 PMCID: PMC9186071 DOI: 10.3389/fimmu.2022.881702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022] Open
Abstract
In the vertebrate olfactory tract new neurons are continuously produced throughout life. It is widely believed that neurogenesis contributes to learning and memory and can be regulated by immune signaling molecules. Proteins originally identified in the immune system have subsequently been localized to the developing and adult nervous system. Previously, we have shown that olfactory imprinting, a specific type of long-term memory, is correlated with a transcriptional response in the olfactory organs that include up-regulation of genes associated with the immune system. To better understand the immune architecture of the olfactory organs we made use of cell-specific fluorescent reporter lines in dissected, intact adult brains of zebrafish to examine the association of the olfactory sensory neurons with neutrophils and blood-lymphatic vasculature. Surprisingly, the olfactory organs contained the only neutrophil populations observed in the brain; these neutrophils were localized in the neural epithelia and were associated with the extensive blood vasculature of the olfactory organs. Damage to the olfactory epithelia resulted in a rapid increase of neutrophils both within the olfactory organs as well as the central nervous system. Analysis of cell division during and after damage showed an increase in BrdU labeling in the neural epithelia and a subset of the neutrophils. Our results reveal a unique population of neutrophils in the olfactory organs that are associated with both the olfactory epithelia and the lymphatic vasculature suggesting a dual olfactory-immune function for this unique sensory system.
Collapse
Affiliation(s)
- M Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Cristian Calfún
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Gino Nardocci
- Faculty of Medicine, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Danissa Candia
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jorge Torres-Paz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
25
|
Keep RF, Jones HC, Drewes LR. Advances in brain barriers and brain fluids research in 2021: great progress in a time of adversity. Fluids Barriers CNS 2022; 19:48. [PMID: 35681151 PMCID: PMC9178944 DOI: 10.1186/s12987-022-00343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
This editorial highlights advances in brain barrier and brain fluid research in 2021. It covers research on components of the blood–brain barrier, neurovascular unit and brain fluid systems; how brain barriers and brain fluid systems are impacted by neurological disorders and their role in disease progression; and advances in strategies for treating such disorders.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
26
|
Haynes EM, Ulland TK, Eliceiri KW. A Model of Discovery: The Role of Imaging Established and Emerging Non-mammalian Models in Neuroscience. Front Mol Neurosci 2022; 15:867010. [PMID: 35493325 PMCID: PMC9046975 DOI: 10.3389/fnmol.2022.867010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Rodents have been the dominant animal models in neurobiology and neurological disease research over the past 60 years. The prevalent use of rats and mice in neuroscience research has been driven by several key attributes including their organ physiology being more similar to humans, the availability of a broad variety of behavioral tests and genetic tools, and widely accessible reagents. However, despite the many advances in understanding neurobiology that have been achieved using rodent models, there remain key limitations in the questions that can be addressed in these and other mammalian models. In particular, in vivo imaging in mammals at the cell-resolution level remains technically difficult and demands large investments in time and cost. The simpler nervous systems of many non-mammalian models allow for precise mapping of circuits and even the whole brain with impressive subcellular resolution. The types of non-mammalian neuroscience models available spans vertebrates and non-vertebrates, so that an appropriate model for most cell biological questions in neurodegenerative disease likely exists. A push to diversify the models used in neuroscience research could help address current gaps in knowledge, complement existing rodent-based bodies of work, and bring new insight into our understanding of human disease. Moreover, there are inherent aspects of many non-mammalian models such as lifespan and tissue transparency that can make them specifically advantageous for neuroscience studies. Crispr/Cas9 gene editing and decreased cost of genome sequencing combined with advances in optical microscopy enhances the utility of new animal models to address specific questions. This review seeks to synthesize current knowledge of established and emerging non-mammalian model organisms with advances in cellular-resolution in vivo imaging techniques to suggest new approaches to understand neurodegeneration and neurobiological processes. We will summarize current tools and in vivo imaging approaches at the single cell scale that could help lead to increased consideration of non-mammalian models in neuroscience research.
Collapse
Affiliation(s)
- Elizabeth M. Haynes
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler K. Ulland
- Department of Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
27
|
Bekisz S, Baudin L, Buntinx F, Noël A, Geris L. In Vitro, In Vivo, and In Silico Models of Lymphangiogenesis in Solid Malignancies. Cancers (Basel) 2022; 14:1525. [PMID: 35326676 PMCID: PMC8946816 DOI: 10.3390/cancers14061525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphangiogenesis (LA) is the formation of new lymphatic vessels by lymphatic endothelial cells (LECs) sprouting from pre-existing lymphatic vessels. It is increasingly recognized as being involved in many diseases, such as in cancer and secondary lymphedema, which most often results from cancer treatments. For some cancers, excessive LA is associated with cancer progression and metastatic dissemination to the lymph nodes (LNs) through lymphatic vessels. The study of LA through in vitro, in vivo, and, more recently, in silico models is of paramount importance in providing novel insights and identifying the key molecular actors in the biological dysregulation of this process under pathological conditions. In this review, the different biological (in vitro and in vivo) models of LA, especially in a cancer context, are explained and discussed, highlighting their principal modeled features as well as their advantages and drawbacks. Imaging techniques of the lymphatics, complementary or even essential to in vivo models, are also clarified and allow the establishment of the link with computational approaches. In silico models are introduced, theoretically described, and illustrated with examples specific to the lymphatic system and the LA. Together, these models constitute a toolbox allowing the LA research to be brought to the next level.
Collapse
Affiliation(s)
- Sophie Bekisz
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
| | - Louis Baudin
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Florence Buntinx
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Agnès Noël
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
- Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
28
|
Paulissen SM, Castranova DM, Krispin SM, Burns MC, Menéndez J, Torres-Vázquez J, Weinstein BM. Anatomy and development of the pectoral fin vascular network in the zebrafish. Development 2022; 149:dev199676. [PMID: 35132436 PMCID: PMC8959142 DOI: 10.1242/dev.199676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.
Collapse
Affiliation(s)
- Scott M. Paulissen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Daniel M. Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Shlomo M. Krispin
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Margaret C. Burns
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Javier Menéndez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Castranova D, Samasa B, Venero Galanternik M, Gore AV, Goldstein AE, Park JS, Weinstein BM. Long-term imaging of living adult zebrafish. Development 2022; 149:274463. [PMID: 35142351 PMCID: PMC8918778 DOI: 10.1242/dev.199667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
The zebrafish has become a widely used animal model due, in large part, to its accessibility to and usefulness for high-resolution optical imaging. Although zebrafish research has historically focused mostly on early development, in recent years the fish has increasingly been used to study regeneration, cancer metastasis, behavior and other processes taking place in juvenile and adult animals. However, imaging of live adult zebrafish is extremely challenging, with survival of adult fish limited to a few tens of minutes using standard imaging methods developed for zebrafish embryos and larvae. Here, we describe a new method for imaging intubated adult zebrafish using a specially designed 3D printed chamber for long-term imaging of adult zebrafish on inverted microscope systems. We demonstrate the utility of this new system by nearly day-long observation of neutrophil recruitment to a wound area in living double-transgenic adult casper zebrafish with fluorescently labeled neutrophils and lymphatic vessels, as well as intubating and imaging the same fish repeatedly. We also show that Mexican cavefish can be intubated and imaged in the same way, demonstrating this method can be used for long-term imaging of adult animals from diverse aquatic species.
Collapse
|
30
|
Meningeal Lymphatics: An Immune Gateway for the Central Nervous System. Cells 2021; 10:cells10123385. [PMID: 34943894 PMCID: PMC8699870 DOI: 10.3390/cells10123385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 01/30/2023] Open
Abstract
The recent (re)discovery of the meningeal lymphatic system has opened new theories as to how immune cells traffic and interact with the central nervous system (CNS). While evidence is accumulating on the contribution of the meningeal lymphatic system in both homeostatic and disease conditions, a lot remains unknown about the mechanisms that allow for interaction between the meningeal lymphatic system and immune cells. In this review, we synthesize the knowledge about the lymphatic immune interaction in the CNS and highlight the important questions that remain to be answered.
Collapse
|
31
|
Dalum AS, Kraus A, Khan S, Davydova E, Rigaudeau D, Bjørgen H, López-Porras A, Griffiths G, Wiegertjes GF, Koppang EO, Salinas I, Boudinot P, Rességuier J. High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue. Front Immunol 2021; 12:769901. [PMID: 34880866 PMCID: PMC8647647 DOI: 10.3389/fimmu.2021.769901] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is extensively used as an animal model for human and fish diseases. However, our understanding of the structural organization of its immune system remains incomplete, especially the mucosa-associated lymphoid tissues (MALTs). Teleost MALTs are commonly perceived as diffuse and scattered populations of immune cells throughout the mucosa. Yet, structured MALTs have been recently discovered in Atlantic salmon (Salmo salar L.), including the interbranchial lymphoid tissue (ILT) in the gills. The existence of the ILT was only recently identified in zebrafish and other fish species, highlighting the need for in-depth characterizations of the gill-associated lymphoid tissue (GIALT) in teleosts. Here, using 3-D high-resolution microscopy, we analyze the GIALT of adult zebrafish with an immuno-histology approach that reveals the organization of lymphoid tissues via the labeling of T/NK cells with an antibody directed to a highly conserved epitope on the kinase ZAP70. We show that the GIALT in zebrafish is distributed over at least five distinct sub-regions, an organization found in all pairs of gill arches. The GIALT is diffuse in the pharyngeal part of the gill arch, the interbranchial septum and the filaments/lamellae, and structured in two sub-regions: the ILT, and a newly discovered lymphoid structure located along each side of the gill arch, which we named the Amphibranchial Lymphoid Tissue (ALT). Based on RAG2 expression, neither the ILT nor the ALT constitute additional thymi. The ALT shares several features with the ILT such as presence of abundant lymphoid cells and myeloid cells embedded in a network of reticulated epithelial cells. Further, the ILT and the ALT are also a site for T/NK cell proliferation. Both ILT and ALT show structural changes after infection with Spring Viraemia of Carp Virus (SVCV). Together, these data suggest that ALT and ILT play an active role in immune responses. Comparative studies show that whereas the ILT seems absent in most neoteleosts ("Percomorphs"), the ALT is widely present in cyprinids, salmonids and neoteleosts, suggesting that it constitutes a conserved tissue involved in the protection of teleosts via the gills.
Collapse
Affiliation(s)
- Alf S. Dalum
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Aurora Kraus
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Shanawaz Khan
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| | - Erna Davydova
- Department of Biosciences, BMB, University of Oslo, Oslo, Norway
| | | | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Gareth Griffiths
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Erling O. Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Pierre Boudinot
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julien Rességuier
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Jeong YM, Lee JG, Cho HJ, Lee WS, Jeong J, Lee JS. Differential Clearance of Aβ Species from the Brain by Brain Lymphatic Endothelial Cells in Zebrafish. Int J Mol Sci 2021; 22:11883. [PMID: 34769316 PMCID: PMC8584359 DOI: 10.3390/ijms222111883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/01/2023] Open
Abstract
The failure of amyloid beta (Aβ) clearance is a major cause of Alzheimer's disease, and the brain lymphatic systems play a crucial role in clearing toxic proteins. Recently, brain lymphatic endothelial cells (BLECs), a non-lumenized lymphatic cell in the vertebrate brain, was identified, but Aβ clearance via this novel cell is not fully understood. We established an in vivo zebrafish model using fluorescently labeled Aβ42 to investigate the role of BLECs in Aβ clearance. We discovered the efficient clearance of monomeric Aβ42 (mAβ42) compared to oligomeric Aβ42 (oAβ42), which was illustrated by the selective uptake of mAβ42 by BLECs and peripheral transport. The genetic depletion, pharmacological inhibition via the blocking of the mannose receptor, or the laser ablation of BLECs resulted in the defective clearance of mAβ42. The treatment with an Aβ disaggregating agent facilitated the internalization of oAβ42 into BLECs and improved the peripheral transport. Our findings reveal a new role of BLECs in the differential clearance of mAβ42 from the brain and provide a novel therapeutic strategy based on promoting Aβ clearance.
Collapse
Affiliation(s)
- Yun-Mi Jeong
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jae-Geun Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Hyun-Ju Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
- Department of Functional Genomics, KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|
33
|
Blei F. Update October 2021. Lymphat Res Biol 2021; 19:488-512. [PMID: 34610248 DOI: 10.1089/lrb.2021.29111.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Chen J, Li X, Ni R, Chen Q, Yang Q, He J, Luo L. Acute brain vascular regeneration occurs via lymphatic transdifferentiation. Dev Cell 2021; 56:3115-3127.e6. [PMID: 34562378 DOI: 10.1016/j.devcel.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Acute ischemic stroke damages the regional brain blood vessel (BV) network. Acute recovery of basic blood flows, which is carried out by the earliest regenerated BVs, are critical to improve clinical outcomes and minimize lethality. Although the late-regenerated BVs form via growing along the meninge-derived ingrown lymphatic vessels (iLVs), mechanisms underlying the early, acute BV regeneration remain elusive. Using zebrafish cerebrovascular injury models, we show that the earliest regenerated BVs come from lymphatic transdifferentiation, a hitherto unappreciated process in vertebrates. Mechanistically, the LV-to-BV transdifferentiation occurs exclusively in the stand-alone iLVs through Notch activation. In the track iLVs adhered by late-regenerated BVs, transdifferentiation never occurs because the BV-expressing EphrinB2a paracellularly activates the iLV-expressing EphB4a to inhibit Notch activation. Suppression of LV-to-BV transdifferentiation blocks acute BV regeneration and becomes lethal. These results demonstrate that acute BV regeneration occurs via lymphatic transdifferentiation, suggesting this process and key regulatory molecules EphrinB2a/EphB4a/Notch as new postischemic therapeutic targets.
Collapse
Affiliation(s)
- Jingying Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China; University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei 400714, Chongqing, China
| | - Xiuhua Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Qi Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China; University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei 400714, Chongqing, China.
| |
Collapse
|
35
|
Huisman Y, Uphoff K, Berger M, Dobrindt U, Schelhaas M, Zobel T, Bussmann J, van Impel A, Schulte-Merker S. Meningeal lymphatic endothelial cells fulfill scavenger endothelial cell function and cooperate with microglia in waste removal from the brain. Glia 2021; 70:35-49. [PMID: 34487573 DOI: 10.1002/glia.24081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
Brain lymphatic endothelial cells (BLECs) constitute a group of loosely connected endothelial cells that reside within the meningeal layer of the zebrafish brain without forming a vascular tubular system. BLECs have been shown to readily endocytose extracellular cargo molecules from the brain parenchyma, however, their functional relevance in relation to microglia remains enigmatic. We here compare their functional uptake efficiency for several macromolecules and bacterial components with microglia in a qualitative and quantitative manner in 5-day-old zebrafish embryos. We find BLECs to be significantly more effective in the uptake of proteins, polysaccharides and virus particles as compared to microglia, while larger particles like bacteria are only ingested by microglia but not by BLECs, implying a clear distribution of tasks between the two cell types in the brain area. In addition, we compare BLECs to the recently discovered scavenger endothelial cells (SECs) of the cardinal vein and find them to accept an identical set of substrate molecules. Our data identifies BLECs as the first brain-associated SEC population in vertebrates, and demonstrates that BLECs cooperate with microglia to remove particle waste from the brain.
Collapse
Affiliation(s)
- Yvonne Huisman
- Institute of Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | - Katharina Uphoff
- Institute of Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany
| | | | | | - Mario Schelhaas
- Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany.,Institute of Cellular Virology, ZMBE, Münster, Germany
| | - Thomas Zobel
- Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany.,Imaging Network, Cells in Motion Interfaculty Centre, WWU Münster, Germany
| | - Jeroen Bussmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Andreas van Impel
- Institute of Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| |
Collapse
|
36
|
Yeung SSH, Ho YS, Chang RCC. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp Mol Med 2021; 53:1251-1267. [PMID: 34489558 PMCID: PMC8492689 DOI: 10.1038/s12276-021-00660-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Recent research into meningeal lymphatics has revealed a never-before appreciated role of type II innate lymphoid cells (ILC2s) in modulating neuroinflammation in the central nervous system (CNS). To date, the role of ILC2-mediated inflammation in the periphery has been well studied. However, the exact distribution of ILC2s in the CNS and therefore their putative role in modulating neuroinflammation in neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and major depressive disorder (MDD) remain highly elusive. Here, we review the current evidence of ILC2-mediated modulation of neuroinflammatory cues (i.e., IL-33, IL-25, IL-5, IL-13, IL-10, TNFα, and CXCL16-CXCR6) within the CNS, highlight the distribution of ILC2s in both the periphery and CNS, and discuss some challenges associated with cell type-specific targeting that are important for therapeutics. A comprehensive understanding of the roles of ILC2s in mediating and responding to inflammatory cues may provide valuable insight into potential therapeutic strategies for many dementia-related disorders.
Collapse
Affiliation(s)
- Sherry Sin-Hang Yeung
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Yuen-Shan Ho
- grid.16890.360000 0004 1764 6123School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR China
| | - Raymond Chuen-Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| |
Collapse
|
37
|
Jafree DJ, Long DA, Scambler PJ, Ruhrberg C. Mechanisms and cell lineages in lymphatic vascular development. Angiogenesis 2021; 24:271-288. [PMID: 33825109 PMCID: PMC8205918 DOI: 10.1007/s10456-021-09784-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Lymphatic vessels have critical roles in both health and disease and their study is a rapidly evolving area of vascular biology. The consensus on how the first lymphatic vessels arise in the developing embryo has recently shifted. Originally, they were thought to solely derive by sprouting from veins. Since then, several studies have uncovered novel cellular mechanisms and a diversity of contributing cell lineages in the formation of organ lymphatic vasculature. Here, we review the key mechanisms and cell lineages contributing to lymphatic development, discuss the advantages and limitations of experimental techniques used for their study and highlight remaining knowledge gaps that require urgent attention. Emerging technologies should accelerate our understanding of how lymphatic vessels develop normally and how they contribute to disease.
Collapse
Affiliation(s)
- Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Faculty of Medical Sciences, University College London, London, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter J Scambler
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
38
|
Greenspan LJ, Weinstein BM. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis 2021; 24:251-269. [PMID: 33449300 PMCID: PMC8205957 DOI: 10.1007/s10456-020-09761-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Endothelial cells display an extraordinary plasticity both during development and throughout adult life. During early development, endothelial cells assume arterial, venous, or lymphatic identity, while selected endothelial cells undergo additional fate changes to become hematopoietic progenitor, cardiac valve, and other cell types. Adult endothelial cells are some of the longest-lived cells in the body and their participation as stable components of the vascular wall is critical for the proper function of both the circulatory and lymphatic systems, yet these cells also display a remarkable capacity to undergo changes in their differentiated identity during injury, disease, and even normal physiological changes in the vasculature. Here, we discuss how endothelial cells become specified during development as arterial, venous, or lymphatic endothelial cells or convert into hematopoietic stem and progenitor cells or cardiac valve cells. We compare findings from in vitro and in vivo studies with a focus on the zebrafish as a valuable model for exploring the signaling pathways and environmental cues that drive these transitions. We also discuss how endothelial plasticity can aid in revascularization and repair of tissue after damage- but may have detrimental consequences under disease conditions. By better understanding endothelial plasticity and the mechanisms underlying endothelial fate transitions, we can begin to explore new therapeutic avenues.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
40
|
Cells with Many Talents: Lymphatic Endothelial Cells in the Brain Meninges. Cells 2021; 10:cells10040799. [PMID: 33918497 PMCID: PMC8067019 DOI: 10.3390/cells10040799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The lymphatic system serves key functions in maintaining fluid homeostasis, the uptake of dietary fats in the small intestine, and the trafficking of immune cells. Almost all vascularized peripheral tissues and organs contain lymphatic vessels. The brain parenchyma, however, is considered immune privileged and devoid of lymphatic structures. This contrasts with the notion that the brain is metabolically extremely active, produces large amounts of waste and metabolites that need to be cleared, and is especially sensitive to edema formation. Recently, meningeal lymphatic vessels in mammals and zebrafish have been (re-)discovered, but how they contribute to fluid drainage is still not fully understood. Here, we discuss these meningeal vessel systems as well as a newly described cell population in the zebrafish and mouse meninges. These cells, termed brain lymphatic endothelial cells/Fluorescent Granular Perithelial cells/meningeal mural lymphatic endothelial cells in fish, and Leptomeningeal Lymphatic Endothelial Cells in mice, exhibit remarkable features. They have a typical lymphatic endothelial gene expression signature but do not form vessels and rather constitute a meshwork of single cells, covering the brain surface.
Collapse
|
41
|
Ma T, Wang F, Xu S, Huang JH. Meningeal immunity: Structure, function and a potential therapeutic target of neurodegenerative diseases. Brain Behav Immun 2021; 93:264-276. [PMID: 33548498 DOI: 10.1016/j.bbi.2021.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 12/25/2022] Open
Abstract
Meningeal immunity refers to immune surveillance and immune defense in the meningeal immune compartment, which depends on the unique position, structural composition of the meninges and functional characteristics of the meningeal immune cells. Recent research advances in meningeal immunity have demonstrated many new ways in which a sophisticated immune landscape affects central nervous system (CNS) function under physiological or pathological conditions. The proper function of the meningeal compartment might protect the CNS from pathogens or contribute to neurological disorders. Since the concept of meningeal immunity, especially the meningeal lymphatic system and the glymphatic system, is relatively new, we will provide a general review of the meninges' basic structural elements, organization, regulation, and functions with regards to meningeal immunity. At the same time, we will emphasize recent evidence for the role of meningeal immunity in neurodegenerative diseases. More importantly, we will speculate about the feasibility of the meningeal immune region as a drug target to provide some insights for future research of meningeal immunity.
Collapse
Affiliation(s)
- Tengyun Ma
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610060, PR China.
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health Center, Temple, TX 76502, United States; Department of Surgery, Texas A&M University College of Medicine, Temple, TX 76502, United States
| |
Collapse
|
42
|
Pamuk ON, Hasni S. Correspondence on 'Blood-brain barrier leakage in systemic lupus erythematosus is associated with gray matter loss and cognitive impairment'. Ann Rheum Dis 2021; 82:e123. [PMID: 33622690 DOI: 10.1136/annrheumdis-2021-220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Omer Nuri Pamuk
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- Lupus Clinical Research Program, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Parab S, Quick RE, Matsuoka RL. Endothelial cell-type-specific molecular requirements for angiogenesis drive fenestrated vessel development in the brain. eLife 2021; 10:64295. [PMID: 33459592 PMCID: PMC7840183 DOI: 10.7554/elife.64295] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial cells (vECs) in the brain exhibit structural and functional heterogeneity. Fenestrated, permeable brain vasculature mediates neuroendocrine function, body-fluid regulation, and neural immune responses; however, its vascular formation remains poorly understood. Here, we show that specific combinations of vascular endothelial growth factors (Vegfs) are required to selectively drive fenestrated vessel formation in the zebrafish myelencephalic choroid plexus (mCP). We found that the combined, but not individual, loss of Vegfab, Vegfc, and Vegfd causes severely impaired mCP vascularization with little effect on neighboring non-fenestrated brain vessel formation, demonstrating fenestrated-vEC-specific angiogenic requirements. This Vegfs-mediated vessel-selective patterning also involves Ccbe1. Expression analyses, cell-type-specific ablation, and paracrine activity-deficient vegfc mutant characterization suggest that vEC-autonomous Vegfc and meningeal fibroblast-derived Vegfab and Vegfd are critical for mCP vascularization. These results define molecular cues and cell types critical for directing fenestrated CP vascularization and indicate that vECs’ distinct molecular requirements for angiogenesis underlie brain vessel heterogeneity.
Collapse
Affiliation(s)
- Sweta Parab
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States
| | - Rachael E Quick
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States
| | - Ryota L Matsuoka
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States
| |
Collapse
|
44
|
Affiliation(s)
- Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Victoria, Australia (B.M.H., N.I.B.).,Department of Anatomy and Neuroscience (B.M.H.), University of Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology (B.M.H.), University of Melbourne, Victoria, Australia
| | - Neil I Bower
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Victoria, Australia (B.M.H., N.I.B.).,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Australia (N.I.B.)
| |
Collapse
|