1
|
Holm H, Jujic A, Nilsson PM, Magnusson M, Malan L. The prognostic significance of stress-phenotyping for stroke incidence: the Malmö Diet and Cancer Study. Stress 2025; 28:2443980. [PMID: 39731532 DOI: 10.1080/10253890.2024.2443980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Self-reported mental stress is not consistently recognized as a risk factor for stroke. This prompted development of a novel algorithm for stress-phenotype indices to quantify chronic stress prevalence in relation to a modified stroke risk score in a South African cohort. The algorithm is based on biomarkers adrenocorticotrophic hormone, high-density lipoprotein cholesterol, high-sensitive cardiac-troponin-T, and diastolic blood pressure which exemplifies the stress-ischemic-phenotype index. Further modification of the stroke risk score to accommodate alcohol misuse established the stress-diabetes-phenotype index. Whether positive stress-phenotype individuals will demonstrate a higher incidence of stroke in an independent Swedish cohort was unknown and investigated. METHODS Stress-phenotyping was done at baseline for 50 participants with incident stroke and 100 age-, and sex matched controls (aged 76 ± 5 years) from 2,924 individuals in southern Sweden. The mean time from inclusion to first stroke event was 5 ± 3 years. Stress-phenotyping comparisons and stroke incidence risk were determined. RESULTS A positive stress-ischemic-phenotype reflected higher incident stroke (72% vs. 28%, p = 0.019) and mortality rates (41% vs. 23%, p = 0.019). Whereas a positive stress-diabetes-phenotype reflected a higher incident stroke rate (80% vs. 20%, p = 0.008) but similar mortality rate (38% vs. 25%, p = 0.146). Both the positive stress-ischemic (OR: 2.9, 95% CI: 1.3-6.5, p = 0.011) and stress-diabetes-phenotypes (OR: 3.7, 95% CI: 1.5-8.9, p = 0.004) showed large effect size associations with incident stroke independent of cardiovascular risk confounders. CONCLUSION Positive stress-phenotype indices demonstrated a higher incidence of stroke. Ultimately the Malan stress-phenotype algorithms developed in South Africa could confirm incident stroke in an independent Swedish cohort. Stress-phenotyping could thus be useful in clinical routine practice in order to detect individuals at higher stroke risk.
Collapse
Affiliation(s)
- H Holm
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - A Jujic
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - P M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - M Magnusson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - L Malan
- Technology Transfer and Innovation-Support Office, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Joundi RA, Fang J, Austin PC, Smith EE, Yu AYX, Hachinski V, Sposato LA, Ganesh A, Sharma M, Kapral MK. Magnitude and Time-Course of Dementia Risk in Stroke Survivors: A Population-Wide Matched Cohort Study. Neurology 2025; 104:e210131. [PMID: 39631038 DOI: 10.1212/wnl.0000000000210131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Survivors of stroke are at high risk of dementia, but it is unclear whether this elevated risk is due to other confounding factors. We sought to determine the magnitude and time course of dementia risk after stroke with robust comparison with matched nonstroke populations in an entire province. METHODS We conducted a population-wide analysis of over 15 million people in Ontario, Canada, between 2002 and 2022. Using linked administrative databases, we identified adults hospitalized for ischemic stroke, intracerebral hemorrhage, or acute myocardial infarction (AMI). We performed 1:1 matching of people with stroke to all residents of Ontario (reference population) without stroke and separately to those with AMI, on age, sex, rural residence, neighborhood deprivation, and vascular comorbidities. We calculated the incident rate per 100 person-years and hazard ratios (HRs) for all-cause dementia between 90 days after stroke and 1 year, 5 years, 10 years, and total follow-up and evaluated time-varying HRs. In sensitivity analyses, we adjusted for new stroke in follow-up and the cumulative number of health care encounters. RESULTS Of 175,980 stroke survivors, 174,817 (99.3%) were successfully matched to people in the reference population and 151,673 (90%) were matched to those with AMI. Over a mean follow-up of 5.6 years (SD 4.71, maximum 20 years), a total of 32,621 (18.7%) were diagnosed with dementia after stroke compared with 21,929 (12.5%) in the Ontario reference population. The rate of dementia per 100 person-years over total follow-up time was higher after acute stroke compared with the reference population (3.34 vs 1.89) and the AMI cohort (3.19 vs 1.75). The HR of dementia was higher in those with stroke compared with the reference population (1.76, 95% CI 1.73-1.79) and the AMI cohort (1.82, 1.79-1.85). HRs varied across time, with over 2.5-fold increase in dementia risk within 1 year, decreasing to 1.5-fold at 5 years and 1.3-fold at 20 years after stroke. Estimates were similar in sensitivity analyses. Recurrent stroke was associated with 3-fold increased dementia risk. DISCUSSION In this population-wide study, almost one-fifth of stroke survivors were diagnosed with dementia, with an 80% higher risk of dementia after robust matching to those without stroke. Targeted dementia prevention efforts in acute and chronic survivors of stroke are needed.
Collapse
Affiliation(s)
- Raed A Joundi
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| | - Jiming Fang
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| | - Peter C Austin
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| | - Eric E Smith
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| | - Amy Ying Xin Yu
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| | - Vladimir Hachinski
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| | - Luciano A Sposato
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| | - Aravind Ganesh
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| | - Mukul Sharma
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| | - Moira K Kapral
- From the Division of Neurology (R.A.J., M.S.), Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton; ICES (J.F., P.C.A., A.Y.X.Y.), Toronto, Ontario; Departments of Clinical Neurosciences and Community Health Sciences (E.E.S., A.G.), Cumming School of Medicine, University of Calgary, Alberta; Division of Neurology (A.Y.X.Y.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Robarts Research Institute (V.H., L.A.S.), Department of Clinical Neurological Sciences, and Department of Epidemiology and Biostatistics, University of Western Ontario, London; and Division of General Internal Medicine (M.K.K.), Department of Medicine, University of Toronto-University Health Network, Ontario, Canada
| |
Collapse
|
3
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Stengl H, Poller WC, Di Vece D, Templin C, Endres M, Nolte CH, Scheitz JF. How the brain impacts the heart: lessons from ischaemic stroke and other neurological disorders. Heart 2025; 111:99-108. [PMID: 39515993 DOI: 10.1136/heartjnl-2024-324173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular alterations are common in patients who had ischaemic stroke, haemorrhagic stroke and other acute brain disorders such as seizures. These cardiac complications are important drivers of morbidity and mortality and comprise blood-based detection of cardiomyocyte damage, ECG changes, heart failure and arrhythmia. Recently, the concept of a distinct 'stroke-heart syndrome' has been formulated as a pathophysiological framework for poststroke cardiac complications. The concept considers cardiac sequelae after stroke to be the result of a stroke-induced disturbance of the brain-heart axis. In this review, we describe the spectrum of cardiac changes secondary to ischaemic stroke and other acute brain disorders. Furthermore, we focus on Takotsubo syndrome secondary to acute brain disorders as a model disease of disturbed brain-heart interaction. Finally, we aim to provide an overview of the anatomical and functional links between the brain and the heart, with emphasis on the autonomic network and the role of inflammation. Given the clinical relevance of the deleterious impact of acute brain injury on the heart, we call for clinical awareness and for starting joint efforts combining expertise of neurology and cardiology to identify specific therapeutic interventions.
Collapse
Affiliation(s)
- Helena Stengl
- Department of Neurology with Experimental Neurology and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Partner Site Berlin, DZNE, Berlin, Germany
| | - Wolfram C Poller
- Cardiology Division and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Davide Di Vece
- Department of Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Christian Templin
- Department of Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland
- Swiss CardioVascularClinic, Private Hospital Bethanien, Zurich, Switzerland
| | - Matthias Endres
- Department of Neurology with Experimental Neurology and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Partner Site Berlin, DZNE, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, DZHK, Berlin, Germany
| | - Christian H Nolte
- Department of Neurology with Experimental Neurology and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, DZHK, Berlin, Germany
| | - Jan F Scheitz
- Department of Neurology with Experimental Neurology and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, DZHK, Berlin, Germany
| |
Collapse
|
5
|
Li F, He Y, Yang A, Xia M, Zang W, Zhang J. The combined effects of cardiometabolic index and high-sensitivity C-reactive protein on the risk of new onset stroke in a Chinese national prospective longitudinal cohort study. Lipids Health Dis 2025; 24:7. [PMID: 39773642 PMCID: PMC11707920 DOI: 10.1186/s12944-025-02430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The Cardiometabolic Index (CMI) represents a novel anthropometric measurement, which combines characteristics of adiposity and lipids. Since obesity, lipid metabolism, and inflammation may collectively facilitate the occurrence of stroke, we hypothesize that a combination of elevated levels of the CMI and high-sensitivity C-reactive protein (hs-CRP) increases the risk of future stroke among middle-aged and older Chinese adults. METHODS This study included 8,973 participants aged 45 years or older from the China Longitudinal Study on Health and Retirement (CHARLS), who were stroke-free and underwent baseline evaluations between 2011 and 2012, with followed-up at 2013, 2015 and 2018. The exposures were CMI and hs-CRP, with CMI calculated using the formula [waist circumference (cm)/height (cm)] × [triglycerides (mmol/L)/HDL-C (mmol/L)]. The primary outcome was the occurrence of new-onset stroke events. Cox proportional hazards models and restricted cubic spline (RCS) analyses were conducted to examine the associations between CMI, hs-CRP, and their combined effects on stroke risk. Sensitivity analysis was further implemented to verify the robustness of the results. RESULTS A total of 629 participants (7.01%) suffered new-onset stroke during follow-up. The risk for stroke increased with each elevating quartile of baseline CMI levels, with adjusted HRs and 95% CIs being 1.27 (0.98-1.66), 1.41 (1.08-1.83), and 1.46 (1.09-1.96) for Q2, Q3, and Q4, respectively. Moreover, participants with levels of hs-CRP ≥ 2 mg/L also had significantly higher stroke incidence compared to those with CRP levels < 2 mg/L (adjusted HR 1.24, 95% CI 1.05-1.47, p = 0.012). Specifically, those concurrently with the highest CMI quartile and levels of hs-CRP ≥ 2 mg/L had the highest risk of stroke (adjusted HR 1.90, 95% CI 1.32-2.74). The subsequent sensitivity analyses yielded consistent results, further corroborating the initial findings. CONCLUSIONS The combination of CMI and hs-CRP exhibited a significant association with stroke risk among middle-aged and older Chinese adults, highlighting the importance of joint assessments of these biomarkers for refining risk stratification and enhancing primary prevention strategies for stroke.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Yu He
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Ali Yang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Mingrong Xia
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Weizhou Zang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan, China.
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Pan L, Peng Y, Jiang L. Association between prognostic nutritional index and stroke: A nationally representative cross-sectional study from NHANES. J Stroke Cerebrovasc Dis 2025; 34:108165. [PMID: 39617218 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The correlation between the prognostic nutritional index (PNI) and the risk of stroke has become a hot spot within the medical research community. The available evidence from a large sample regarding the correlation between PNI and stroke is inadequate. There is also a need for more research analysis from national surveys. OBJECTIVE The principal goal of this research is to improve our understanding of the relationship between PNI and the risk of stroke. This study also intends to investigate the potential synergistic influence of PNI on stroke in combination with other interacting variables. METHODS A cross-sectional study was conducted with 35,549 participants selected from the National Health and Nutrition Examination Survey (NHANES) 2005-2018 cycle. Information was gathered from all participants regarding the following: lymphocyte count, albumin levels, stroke occurrence, age, sex, race/ethnicity, education level, poverty income ratio (PIR), marital status, body mass index (BMI), smoking habits, drinking status, physical activity measured in total metabolic equivalents (PA_total_MET), diabetes status, glycohemoglobin levels, total cholesterol, direct high-density lipoprotein cholesterol(direct HDL-cholesterol), hypertension, and coronary heart disease. Curve fitting, subgroup analysis, and multifactor weighted logistic regression analysis were used to examine the relationship between PNI and stroke. RESULTS The overall prevalence of stroke was found to be 3.9%, PNI quartile 4(Q4) had an increased prevalence of stroke than quartile 1, 2, and 3(Q1,2,3). Our research suggested a negative association between PNI and the risk of stroke, as indicated by the odds ratio (OR=0.98) with a 95% confidence interval (CI=0.97∼0.99) and a p-value <0.05 (P=0.005), even after adjusting for all confounders. Subsequent subgroup analysis indicated a significant difference in the impact of PNI on stroke between individuals with different body mass index(BMI) levels (p for interaction = 0.02). CONCLUSION Our findings underscore that lower PNI in US adults is associated with an increased stroke risk, shedding light on a potential interrelationship between nutrition, inflammatory parameters, and stroke.
Collapse
Affiliation(s)
- Linshan Pan
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Yongjun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Lihua Jiang
- Department of Acupuncture, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
7
|
Xu L, Li S, Qi J, Mi Y, Zhang Y, Yang Y, Wang Y, Zhou D, Li N, Hou Y. Effusol ameliorates ischemic stroke by targeting NLRP3 protein to regulate NLRP3 inflammasome-mediated pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156253. [PMID: 39615210 DOI: 10.1016/j.phymed.2024.156253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The significance of pyroptosis as an inflammatory mode of death in ischemic stroke (IS) has attracted much attention in recent years. Effusol is a dihydrophenanthrene component extracted from Juncus effusus L.. Previous studies have found that Juncus effusus L. has a good inhibitory effect against microglia activation. However, it is not clear whether effusol inhibits microglia over-activation and attenuates its mediated microglia pyroptosis in the treatment of IS. PURPOSE The aim is to examine how effusol influences the initiation and activation stages of pyroptosis, as well as the NLRP3 inflammasome, resulting from microglial over-activation triggered post-IS. METHODS This study investigated the impact of effusol on neurological severity and edema to assess its neuroprotective effects in IS. Mechanistically, immunofluorescence and western blotting were applied to explore the initiation and activation of the NLRP3 inflammasome. Finally, we employed the NLRP3 specific inhibitor, molecular docking, drug affinity responsive target stability (DARTS), and cellular thermal shift assay (CETSA) to further explore the underlying targets of effusol. RESULTS Effusol mitigated IS-induced damage and downregulated the expression of inflammatory factors at the mRNA level, the protein levels of toll-like receptor 4 (TLR4), nuclear transcription factor NF-κB p65, and key components of the NLRP3 inflammasome. Effusol also mitigated mitochondrial damage by increasing ATP levels and decreasing mitochondrial membrane potential. Importantly, effusol targets NLRP3 protein to inhibit pyroptosis, thereby suppressing the hyperactivation of NLRP3 inflammasome. CONCLUSIONS Effusol may be protective against IS by targeting NLRP3 proteins to inhibit NLRP3 inflammasome activation-mediated pyroptosis. This finding provides a theoretical basis and a prospective drug candidate for the treatment of effusol in IS.
Collapse
Affiliation(s)
- Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Siyu Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Jiaxin Qi
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Ying Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China..
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, PR China.
| |
Collapse
|
8
|
Wen Z, Zhu L, He W, Liang T, Zhong Q, Long J, Su L. Exploring the causal inference of inflammatory bowel disease and ischemic stroke: a bidirectional two-sample Mendelian randomization study. J Thromb Thrombolysis 2024:10.1007/s11239-024-03065-z. [PMID: 39720960 DOI: 10.1007/s11239-024-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/26/2024]
Abstract
Growing evidence suggests inflammatory bowel disease (IBD) is linked to ischemic stroke (IS); however, the results are inconclusive. Therefore, it remains uncertain whether the association between IBD and IS is causal. Herein, we performed a bidirectional Mendelian randomization (MR) study to examine the causal association of IBD with IS. We obtained summary-level data for IBD and IS from several publicly released genome-wide association studies to conduct a two-sample bidirectional Mendelian randomization (MR) analysis. Herein, the inverse-variance weighted method was utilized as the primary approach. Then, we applied the weighted median and MR-Egger estimators for the follow-up sensitivity analyses. In addition, the MR-Egger intercept test was performed to detect the potential directional pleiotropy. Genetically predicted IBD was not causally associated with IS and IS subtypes (IS: OR = 0.99, 95% CI 0.98-1.01, p = 0.49; large artery atherosclerosis stroke: OR = 1.00, 95% CI: 0.96-1.05, p = 0.88; cardioembolic stroke: OR = 0.99, 95% CI 0.96-1.03, p = 0.75; small-vessel occlusion stroke: OR = 1.02, 95% CI 0.99-1.05, p = 0.16). Moreover, we did not find a significant causal effect of UC or CD on IS and IS subtypes. Furthermore, there was no significant association observed between IS and IBD in the reverse MR analysis. The estimates were consistent across sensitivity analyses. Our MR analysis does not support a bidirectional causal association between IBD and IS, despite observational studies reporting an association of IBD with IS.
Collapse
Affiliation(s)
- Zheng Wen
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lulu Zhu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Wanting He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Tian Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Qingqing Zhong
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Jianxiong Long
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Li Su
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
9
|
Zhang Y, Zhang S, Yang L, Zhang Y, Cheng Y, Jia P, Lv Y, Wang K, Fan P, Zhang P, Wei H. Lactate modulates microglial inflammatory responses through HIF-1α-mediated CCL7 signaling after cerebral ischemia in mice. Int Immunopharmacol 2024; 146:113801. [PMID: 39675197 DOI: 10.1016/j.intimp.2024.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Lactate is a potent regulator of neuroinflammation. We recently demonstrated that lactate alleviated neuronal injury via HIF-1α-regulated microglial inflammation after oxygen-glucose deprivation (OGD). However, the underlying mechanisms and the effect of lactate on microglial responses after ischemic stroke remained unknown. Mouse acute cerebral ischemia-reperfusion injury was induced by middle cerebral artery occlusion (MCAO). L-lactate (100 mM, 2 μl) was intracerebroventricularly administrated 30 min after the reperfusion. Microglia responses were evidenced by the expression of multiple markers such as CD86, iNOS, arginase-1, CD206 and Ym1 in the peri-infarction 24 h after MCAO using western blot analysis and quantitative real-time PCR. Inflammatory factors IL-6, TNF-α, TGF-β and IL-10, as well as NF-κB signaling were also detected. Infarct size and neuronal apoptosis in the peri-infarction at 24 h, mice survival within 7 days and long-term neurobehavioral function were evaluated. The involvement of HIF-1α in lactate-mediated microglial inflammation after MCAO was assessed using a HIF-1α inhibitor. Additionally, transcriptome analysis was used to identify the potential lactate targets in BV2 cells after OGD. The recombinant product of the identified CCL7 gene was used to verify its effect on cerebral ischemia-reperfusion injury in vivo. Lactate supplementation reduced infarction volume, neuronal apoptosis and neurological deficits. Lactate reduced the expression of CD86, iNOS, IL-6, TNF-α and elevated the expression of arginase-1, CD206, Ym1, TGF-β and IL-10 in the peri-infarction at 24 h after reperfusion. Consistently, lactate inhibited the NF-κB signaling. Additionally, lactate upregulated HIF-1α in microglia 24 h after reperfusion, while inhibition of HIF-1α reversed the effects of lactate on brain damage and neuroinflammation after cerebral ischemia. Furthermore, CCL7 was identified as the top down-regulated inflammatory gene induced by lactate in OGD-treated BV2 cells. It was also found high expression of CCL7 in the peri-infarction at 24 h after reperfusion and lactate treatment inhibited CCL7 expression. However, HIF-1α inhibitor reversed the effect of lactate treatment on CCL7 expression. Finally, supplementation of recombinant CCL7 reversed the mitigated neuroinflammation and neuroprotective effect rendered by lactate treatment after MCAO. We concluded that treatment with lactate modulated the microglia inflammatory responses and alleviated cerebral ischemia injury. The inhibition of CCL7/NF-κB signaling by HIF-1α might be involved in the beneficial effect of lactate treatment.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Shuyue Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Liufei Yang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yiqin Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yuying Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Pei Fan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Neurobiology Institute of Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| |
Collapse
|
10
|
Jin Z, Jiang C, Cho EB, Bahraminejad S, Han J, Hao J, Liu J, Yu Y, Jiang J. Suppressing the Inflammatory Prostaglandin Signaling after Thrombotic Stroke Ameliorates Ischemic Brain Injury and Facilitates Poststroke Recovery. ACS Pharmacol Transl Sci 2024; 7:4056-4068. [PMID: 39698290 PMCID: PMC11650728 DOI: 10.1021/acsptsci.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Acute cerebral ischemia is a leading cause of death and disability, particularly among old adults. The narrow therapeutic window and risk of hemorrhagic transformation largely limit patient eligibility for the current treatment. The neuroinflammatory signaling pathway involving the prostaglandin E2 (PGE2) receptor subtype EP2 has now been clarified to contribute to the secondary neurotoxicity following ischemic stroke. We previously demonstrated the feasibility of pharmacologically targeting EP2 for ischemic stroke using an EP2 antagonist in a mouse model of transient middle cerebral artery occlusion. Herein, we evaluated the effects of a second-generation EP2 antagonist with improved potency and selectivity in a mouse model of thrombotic stroke, the most common type of stroke. We found that the EP2 antagonist, when administered hours after an ischemic stroke induced within motor and somatosensory cortices by photoactivation of a light-sensitive dye Rose Bengal, reduced cortical infarction in a dose-dependent manner. EP2 inhibition also improved the poststroke body weight recovery and reduced neurological impairments in locomotor and cognitive functions, revealed by a panel of behavioral tests. These broad benefits support the feasibility of targeting the PGE2/EP2 axis-mediated neuroinflammatory pathway as a novel strategy to alleviate the ischemic brain injury caused by thrombotic occlusion and accelerate poststroke recovery.
Collapse
Affiliation(s)
- Zhen Jin
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chenyao Jiang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Eun Bee Cho
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Sina Bahraminejad
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Juqian Han
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiukuan Hao
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jiawang Liu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal
Chemistry Core, Office of Research, University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
11
|
Cao Z, Chen Z, Yang J, Shen X, Chen C, Zhu X, Fang Q. Prediction Value of High Serum Pentraxin-3 for Short-Term Recurrence of Cerebral Infarction in Patients Accompanied with Intracranial Atherosclerotic Stenosis Within One Year. Int J Gen Med 2024; 17:6029-6035. [PMID: 39678683 PMCID: PMC11646456 DOI: 10.2147/ijgm.s491039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Objective Elevated serum pentraxin-3 levels are generally considered a risk factor for atherosclerosis. However, there is limited data on the relationship between pentraxin-3 and cerebral infarction (CI) accompanied by intracranial atherosclerotic stenosis (ICAS). This study aims to investigate the association between pentraxin-3 (PTX-3) and short-term recurrence in cerebral infarction caused by ICAS patients within one year. Methods A prospective observational study was conducted. Cerebral infarction accompanied by intracranial atherosclerotic stenosis (CI-ICAS) patients were selected from January 2020 to December 2023. Recurrent ischemic stroke (RIS) is defined as a new neurological deficit that appears after a period of clinical stabilization, lasting more than 24 hours, with an attributable new ischemic lesion that can be confirmed by CT or MRI. Serum pentraxin-3 levels were determined on admission. Multivariate logistic regression analysis was used to investigate the relationship between serum pentraxin-3 and RIS. Results Among 398 patients enrolled, 112 cases (28.1%) had recurrence within one year. The elevation of serum PTX-3 level in patients accompanied with ICAS was independently correlated with recurrent stroke. Therefore, it is worth considering the possibility of intervening in higher PTX-3 levels. Serum pentraxin-3 was significantly higher in patients with RIS (15.16 vs 10.21 µmol/L, P<0.001). Correlation analysis showed that PTX-3 was correlated with age, LDL, Hs-CRP, Baseline NIHSS score, and Hcy (P < 0.001). Univariate logistic regression analysis showed that pentraxin-3 remained an independent predictor of recurrent ischemic stroke after adjusting for major confounding factors (OR = 1.21, 95% CI: 1.06-1.39, P = 0.007). Conclusion The elevation of serum pentraxin-3 level in patients with ischemic stroke was independently correlated with the recurrence of stroke within one year. Therefore, intervention in serum pentraxin-3 levels may be worth considering.
Collapse
Affiliation(s)
- Zhiyong Cao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People’s Republic of China
| | - Zhenhua Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People’s Republic of China
| | - Jiawei Yang
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People’s Republic of China
| | - Xiaozhu Shen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Xiangyang Zhu
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People’s Republic of China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
12
|
Yang X, Pan Y, Cai L, Wang W, Zhai X, Zhang Y, Wu Q, Chen J, Zhang C, Wang Y. Calycosin Ameliorates Neuroinflammation via TLR4-Mediated Signal Following Cerebral Ischemia/Reperfusion Injury in vivo and in vitro. J Inflamm Res 2024; 17:10711-10727. [PMID: 39677283 PMCID: PMC11645956 DOI: 10.2147/jir.s480262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024] Open
Abstract
Background Cerebral ischemia-reperfusion injury (CIRI) is a key pathophysiological process that leads to stroke mortality, with TLR4-mediated inflammation playing a crucial role. Our previous research highlighted the neuroprotective effects of the phytoestrogen calycosin on CIRI, although the precise mechanism remains unclear. This study aimed to explore the effects of calycosin on the HMGB1/TLR4/NF-κB signaling pathway in rat models of CIRI, both in vivo and in vitro. Methods In vivo, a rat CIRI model was established using middle cerebral artery occlusion (MCAO), inducing ischemia for 1.5 h followed by 24 h of reperfusion. Calycosin was administered intraperitoneally 1 h after ischemia. Neurological deficits and brain infarct volumes were evaluated. Histological changes and key protein expressions around the ischemic penumbra were assessed by H&E staining and immunofluorescence. In vitro, primary neurons and PC12 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic CIRI. Cell viability was measured using a CCK8 assay, and alterations in HMGB1/TLR4/NF-κB pathway components were analyzed using qRT-PCR, Western blotting, and ELISA. Results In the MCAO rat model, calycosin significantly reduced neurological deficits and infarct sizes, and improved brain tissue damage following reperfusion. Similarly, in the OGD/R model, calycosin attenuated neuronal injury in PC12 cells and in primary neurons. Additionally, calycosin inhibited LPS-induced activation of the HMGB1/TLR4/NF-κB signaling pathway in PC12 cells. Both in vitro and in vivo studies have shown that calycosin effectively downregulates HMGB1 and TLR4 expression, decreases NF-κB and IκB phosphorylation, and reduces the secretion of inflammatory cytokines such as IL-6 and IL-18. Conclusion These findings suggest that calycosin mitigates cerebral ischemia-reperfusion injury and neuroinflammation by inhibiting the HMGB1/TLR4/NF-κB signaling pathway, thereby providing neuroprotection.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Yanjin Pan
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Le Cai
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Wenbo Wang
- Department of Neurosurgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, People’s Republic of China
| | - Xiaoya Zhai
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Yuhui Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Qiguang Wu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, People’s Republic of China
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, People’s Republic of China
| | - Yong Wang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, People’s Republic of China
- Department of Physiology, Guilin Medical University, Guilin, 541199, People’s Republic of China
| |
Collapse
|
13
|
Liu F, Cheng Y, Han X, Zhu N, Jiang S, Li J, Ma W, Yu J. Identification of hub genes and biological pathways related to central post-stroke pain in ischemic stroke. Hum Mol Genet 2024:ddae178. [PMID: 39657721 DOI: 10.1093/hmg/ddae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
This investigation aims to screen ischemic stroke (IS)-related hub genes of central post-stroke pain (CPSP) from public databases and predict their potential roles through bioinformatics analysis to better interpret CPSP in IS. First, based on differential analysis, Venn analysis, and enrichment analyses, we identified 13 differently expressed genes in CPSP (CPSP-DEGs) related to the TNF signaling pathway, Vascular smooth muscle contraction, and IL-17 signaling pathway. Subsequently, through screening and analysis of the PPI network constructed by the Search Tool for the Retrieval of Interacting Genes (STRING) database, we obtained 3 CPSP-related hub genes (CD163, MMP9, and ARG1). They were all highly expressed in the IS group, exhibiting good diagnostic performance, with area under curve (AUC) value > 0.85. The immune-related analysis demonstrated that the infiltration levels of various immune cells in the IS group and the normal group were substantially different. In addition, by utilizing some online websites, we not only predicted some microRNAs (miRNAs) and transcription factors (TFs) that may target hub genes but also mined small molecular drugs that may target differentially expressed genes (DEGs) in IS. In conclusion, this project first investigated the role of CPSP-related genes in IS and identified 3 hub genes. At the same time, we predicted some miRNAs, TFs, and candidate drugs that may target hub genes. Our research uncovered the potential mechanism of CPSP-related genes in IS from multiple perspectives. Furthermore, it also laid a research foundation for the future study of the mechanisms of IS disease.
Collapse
Affiliation(s)
- Fude Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an 710061, China
| | - Yawen Cheng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an 710061, China
| | - Xiangning Han
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an 710061, China
| | - Ning Zhu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an 710061, China
| | - Shiliang Jiang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an 710061, China
| | - Jiahao Li
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an 710061, China
| | - Wenlong Ma
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an 710061, China
| | - Jia Yu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an 710061, China
| |
Collapse
|
14
|
Granados-Martinez C, Alfageme-Lopez N, Navarro-Oviedo M, Nieto-Vaquero C, Cuartero MI, Diaz-Benito B, Moro MA, Lizasoain I, Hernandez-Jimenez M, Pradillo JM. Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions. Biomedicines 2024; 12:2781. [PMID: 39767686 PMCID: PMC11673227 DOI: 10.3390/biomedicines12122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Stroke is one of the most devastating pathologies in terms of mortality, cause of dementia, major adult disability, and socioeconomic burden worldwide. Despite its severity, treatment options remain limited, with no pharmacological therapies available for hemorrhagic stroke (HS) and only fibrinolytic therapy or mechanical thrombectomy for ischemic stroke (IS). In the pathophysiology of stroke, after the acute phase, many patients develop systemic immunosuppression, which, combined with neurological dysfunction and hospital management, leads to the onset of stroke-associated infections (SAIs). These infections worsen prognosis and increase mortality. Recent evidence, particularly from experimental studies, has highlighted alterations in the microbiota-gut-brain axis (MGBA) following stroke, which ultimately disrupts the gut flora and increases intestinal permeability. These changes can result in bacterial translocation (BT) from the gut to sterile organs, further contributing to the development of SAIs. Given the novelty and significance of these processes, especially the role of BT in the development of SAIs, this review summarizes the latest advances in understanding these phenomena and discusses potential therapeutic strategies to mitigate them, ultimately reducing post-stroke complications and improving treatment outcomes.
Collapse
Affiliation(s)
- Cristina Granados-Martinez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Nuria Alfageme-Lopez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
| | - Manuel Navarro-Oviedo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Carmen Nieto-Vaquero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Isabel Cuartero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Blanca Diaz-Benito
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Maria Angeles Moro
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ignacio Lizasoain
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Macarena Hernandez-Jimenez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- AptaTargets S.L. Avda. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Jesus Miguel Pradillo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| |
Collapse
|
15
|
Wang C, Li Y, Zhang Y, Smerin D, Gu L, Jiang S, Xiong X. Triolein alleviates ischemic stroke brain injury by regulating autophagy and inflammation through the AKT/mTOR signaling pathway. Mol Med 2024; 30:242. [PMID: 39639187 PMCID: PMC11622655 DOI: 10.1186/s10020-024-00995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Triolein, a symmetric triglyceride exhibiting anti-inflammatory and antioxidant properties, has demonstrated potential in mitigating cellular damage. However, its therapeutic efficacy in ischemic stroke (IS) and underlying molecular mechanisms remain elusive. Given the critical roles of inflammation and autophagy in IS pathogenesis, this study aimed to elucidate the effects of triolein in IS and investigate its mechanism of action. METHODS We evaluated the impact of triolein using both in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) and in vivo middle cerebral artery occlusion (MCAO/R) models. Neurological function and cerebral infarct volume were assessed 72 h post-reperfusion. Autophagy was quantified through monodansyl cadaverine (MDC) labeling of autophagic vesicles and Western blot analysis of autophagy-related proteins. Microglial activation was visualized via immunofluorescence, while inflammatory cytokine expression was quantified using RT-qPCR. The cytoprotective effect of triolein on OGD/R-induced HT22 cells was evaluated using Cell Counting Kit-8 and lactate dehydrogenase release assays. The involvement of the Protein kinase B/Mechanistic target of rapamycin kinase (AKT/mTOR) pathway was assessed through Western blot analysis. RESULTS Triolein administration significantly reduced infarct volume, enhanced neurological recovery, and attenuated M1 microglial activation and inflammation in MCAO/R-induced mice. Western blot analysis and MDC labeling revealed that triolein exerted an inhibitory effect on post-IS autophagy. Notably, in the BV2-induced OGD/R model, triolein demonstrated an autophagy-dependent suppression of the inflammatory response. Furthermore, triolein inhibited the activation of the AKT/mTOR signaling pathway, consequently attenuating autophagy and mitigating the post-IS inflammatory response. CONCLUSIONS This study provides novel evidence that triolein exerts neuroprotective effects by inhibiting post-stroke inflammation through an autophagy-dependent mechanism. Moreover, the modulation of the AKT/mTOR signaling pathway appears to be integral to the neuroprotective efficacy of triolein. These findings elucidate potential therapeutic strategies for IS management and warrant further investigation.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuting Jiang
- Department of Breast Surgery, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Xu A, Li Z, Ding Y, Wang X, Yang Y, Du L, Wang D, Shu S, Wang Z. Electroacupuncture suppresses NK cell infiltration and activation in the ischemic mouse brain through STAT3 inhibition. Brain Res Bull 2024; 219:111128. [PMID: 39542049 DOI: 10.1016/j.brainresbull.2024.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
AIMS Electroacupuncture (EA) at Shuigou (GV26) and Baihui (GV20) has shown therapeutic benefits for stroke patients. Given that natural killer (NK) cell infiltration into the brain significantly contributes to the exacerbation of cerebral ischemic injury, this study investigated the impact of EA at Shuigou (GV26) and Baihui (GV20) on post-ischemic brain infiltration and activation of NK cells. METHODS Neurological deficit score, rotarod test, adhesive removal test, and TTC staining were used to evaluate the beneficial effects of EA in middle cerebral artery occlusion (MCAO) mice. The inhibitory effect of EA on STAT3 activation was assessed using Western blot. Flow cytometry was used to explore the impact of EA on post-ischemic brain infiltration of NK cells, as well as the activating receptor NKG2D expression and interferon-γ (IFN-γ) production by these infiltrated NK cells. RESULTS EA significantly alleviated neurological functional deficits and reduced brain infarction in MCAO mice. Abundant NK cells infiltrated into the ischemic hemisphere, but this infiltration was significantly suppressed by EA. Furthermore, EA attenuated NKG2D levels and reduced production of IFN-γ by NK cells in the ischemic brain. Notably, EA's inhibitory effect on post-ischemic NK cell brain infiltration and activation was comparable to that of STAT3 inhibition. The combination of EA and STAT3 inhibition did not result in further enhancement of the inhibitory effect. Moreover, the protective effects of EA against MCAO injury were abolished when STAT3 was activated. CONCLUSION Our findings suggest that EA at Shuigou (GV26) and Baihui (GV20) inhibits the post-ischemic brain infiltration and activation of NK cells through STAT3 inhibition, significantly contributing to its therapeutic effects against brain ischemia.
Collapse
Affiliation(s)
- Ao Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziqing Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Acupuncture and Moxibustion Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi 330008, China
| | - Yangyang Ding
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyu Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yufang Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lixia Du
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Deheng Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shi Shu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhifei Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Piepke M, Jander A, Gagliani N, Gelderblom M. IL-17A-producing γδ T cells: A novel target in stroke immunotherapy. Eur J Immunol 2024; 54:e2451067. [PMID: 39396374 PMCID: PMC11628885 DOI: 10.1002/eji.202451067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The activation of the immune system is crucial for the fate of the ischemic brain tissue and neurological outcome in experimental stroke. Rapidly after stroke γδ (γδ17), T cells release IL-17A in the ischemic brain and thereby amplify the early detrimental immune response. Notably, IL-17A levels in γδ17 T cells are modulated by the intestinal microbiota which is, in turn, shaped by the diet. Importantly, besides their proinflammatory effects, meningeal γδ17 T cells have been recently implicated in regulating neuronal signaling, behavior, and cognition under homeostatic and pathological conditions at the brain-meningeal interface. Against this background, we propose that a dietary intervention represents a promising treatment option to improve poststroke outcomes by the modulation of the microbiota composition and IL-17A levels in γδ T cells.
Collapse
Affiliation(s)
- Marius Piepke
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfMartinistraße 52HamburgGermany
| | - Alina Jander
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfMartinistraße 52HamburgGermany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic SurgeryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mathias Gelderblom
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfMartinistraße 52HamburgGermany
| |
Collapse
|
18
|
Shi M, Chen H, Ci X, Geng W, Qi X, Chen Y, Yin X. Assessment of corticospinal tract damage and cytokines response in early and late stages of acute unilateral brainstem infarction patients. Front Immunol 2024; 15:1504626. [PMID: 39676865 PMCID: PMC11638050 DOI: 10.3389/fimmu.2024.1504626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Background Acute brainstem infarction is associated with high morbidity and mortality, the integrity of corticospinal tract (CST) detected via diffusion tensor imaging (DTI) can assist in predicting the motor recovery of the patients. In addition to the damage caused by ischemia and reperfusion, sterile inflammation also contributes to the brain injury after stroke. However, the changes in CST integrity detected by DTI in acute brainstem infarction have yet to be fully elucidated, and it is still unclear whether sterile inflammation can cause damage to the CST. Methods In this study, the acute brainstem infarction patients in the early (EABI patients, n = 19) and late (LABI patients, n = 21) stages and healthy controls (HCs, n = 22) are employed. The probabilistic tractography technique was used and the fractional anisotropy (FA) value was chosen to evaluated the integrity of the CST, the IL-6, IL-10, IL-17, IL-1β, and tumor necrosis factor (TNF)-α levels in the plasma are measured to evaluate the level of inflammation. Results Compared to the HCs (F = 13.634, p ANOVA < 0.001), the CST FA values on the infarcted side were abnormally elevated in EABI patients (p LSD = 0.003), and decreased in LABI patients (p LSD = 0.034). The levels of IL-6 (F = 12.311, p ANOVA < 0.001, EABI vs HCs: p LSD < 0.001, LABI vs HCs: p LSD < 0.001), IL-10 (F = 11.329, p ANOVA < 0.001, EABI vs HCs: p LSD < 0.001, LABI vs HCs: p LSD = 0.017) and IL-1β (F = 15.986, p ANOVA < 0.001, EABI vs HCs: p LSD < 0.001, LABI vs HCs: p LSD < 0.001) were increased in both EABI and LABI patients, while the IL-17 levels were elevated only in LABI patients (F = 4.258, p ANOVA = 0.019, LABI vs HCs: p LSD = 0.027). Among these cytokines, the increased IL-6 (r = 0.663, p = 0.002) and IL-1β (r = 0.615, p = 0.005) levels of EABI patients might be related to the elevated CST FA values, while the increased IL-17 (r = -0.599, p = 0.004) levels of LABI patients might contribute to the decrease of the CST FA values. Conclusion Our study reveals that the increased CST FA values in EABI patients may include signals generated by the immune cells which move along the CST. The sterile inflammation may contribute to the impairment of CST integrity in LABI patients.
Collapse
Affiliation(s)
- Mengye Shi
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaojiao Ci
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Geng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinyang Qi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yuchen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Zhang J, Lin F, Xu Y, Sun J, Zhang L, Chen W. Lactylation and Ischemic Stroke: Research Progress and Potential Relationship. Mol Neurobiol 2024:10.1007/s12035-024-04624-4. [PMID: 39541071 DOI: 10.1007/s12035-024-04624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is caused by interrupted cerebral blood flow and is a leading cause of mortality and disability worldwide. Significant advancements have been achieved in comprehending the pathophysiology of stroke and the fundamental mechanisms responsible for ischemic damage. Lactylation, as a newly discovered post-translational modification, has been reported to participate in several physiological and pathological processes. However, research on lactylation and ischemic stroke is scarce. This review summarized the current function of protein lactylation in other diseases or normal physiological processes and explored their potential link with the pathophysiological process and the reparative mechanism of ischemic stroke. We proposed that neuroinflammation, regulation of metabolism, regulation of messenger RNA translation, angiogenesis, and neurogenesis might be the bridge linking lactylation and ischemic stroke. Our study provided a novel perspective for comprehending the role of protein lactylation in the pathophysiological processes underlying ischemic stroke. Lactylation might be a promising target in drug development of ischemic stroke.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Feng Lin
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yue Xu
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jiaxin Sun
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Lei Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| | - Wenli Chen
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| |
Collapse
|
20
|
He Y, Wang J, Ying C, Xu KL, Luo J, Wang B, Gao J, Yin Z, Zhang Y. The interplay between ferroptosis and inflammation: therapeutic implications for cerebral ischemia-reperfusion. Front Immunol 2024; 15:1482386. [PMID: 39582857 PMCID: PMC11583640 DOI: 10.3389/fimmu.2024.1482386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
Stroke ranks as the second most significant contributor to mortality worldwide and is a major factor in disability. Ischemic strokes account for 71% of all stroke incidences globally. The foremost approach to treating ischemic stroke prioritizes quick reperfusion, involving methods such as intravenous thrombolysis and endovascular thrombectomy. These techniques can reduce disability but necessitate immediate intervention. After cerebral ischemia, inflammation rapidly arises in the vascular system, producing pro-inflammatory signals that activate immune cells, which in turn worsen neuronal injury. Following reperfusion, an overload of intracellular iron triggers the Fenton reaction, resulting in an excess of free radicals that cause lipid peroxidation and damage to cellular membranes, ultimately leading to ferroptosis. The relationship between inflammation and ferroptosis is increasingly recognized as vital in the process of cerebral ischemia-reperfusion (I/R). Inflammatory processes disturb iron balance and encourage lipid peroxidation (LPO) through neuroglial cells, while also reducing the activity of antioxidant systems, contributing to ferroptosis. Furthermore, the lipid peroxidation products generated during ferroptosis, along with damage-associated molecular patterns (DAMPs) released from ruptured cell membranes, can incite inflammation. Given the complex relationship between ferroptosis and inflammation, investigating their interaction in brain I/R is crucial for understanding disease development and creating innovative therapeutic options. Consequently, this article will provide a comprehensive introduction of the mechanisms linking ferroptosis and neuroinflammation, as well as evaluate potential treatment modalities, with the goal of presenting various insights for alleviating brain I/R injury and exploring new therapeutic avenues.
Collapse
Affiliation(s)
- Yuxuan He
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingyi Wang
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Chunmiao Ying
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kang Li Xu
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingwen Luo
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Baiqiao Wang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Gao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zaitian Yin
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yunke Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Yang B, Hu S, Jiang Y, Xu L, Shu S, Zhang H. Advancements in Single-Cell RNA Sequencing Research for Neurological Diseases. Mol Neurobiol 2024; 61:8797-8819. [PMID: 38564138 DOI: 10.1007/s12035-024-04126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Neurological diseases are a major cause of the global burden of disease. Although the mechanisms of the occurrence and development of neurological diseases are not fully clear, most of them are associated with cells mediating neuroinflammation. Yet medications and other therapeutic options to improve treatment are still very limited. Single-cell RNA sequencing (scRNA-seq), as a delightfully potent breakthrough technology, not only identifies various cell types and response states but also uncovers cell-specific gene expression changes, gene regulatory networks, intercellular communication, and cellular movement trajectories, among others, in different cell types. In this review, we describe the technology of scRNA-seq in detail and discuss and summarize the application of scRNA-seq in exploring neurological diseases, elaborating the corresponding specific mechanisms of the diseases as well as providing a reliable basis for new therapeutic approaches. Finally, we affirm that scRNA-seq promotes the development of the neuroscience field and enables us to have a deeper cellular understanding of neurological diseases in the future, which provides strong support for the treatment of neurological diseases and the improvement of patients' prognosis.
Collapse
Affiliation(s)
- Bingjie Yang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuqi Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiru Jiang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Xu
- Department of Neurology, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Song Shu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Yang H, Han T, Han Y, Liu X, She Y, Xu Y, Bai L, Zhou J. Multi-phase computed tomography angiography combined with inflammation index to predict clinical functional prognosis in patients with acute ischemic stroke. Clin Radiol 2024; 79:e1321-e1329. [PMID: 39271306 DOI: 10.1016/j.crad.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
AIM In this study, we investigated the feasibility of the Alberta Stroke Program Early CT Score (ASPECTS) and multiphase computed tomography angiography (mCTA) lateral branch circulation grading combined with clinical and laboratory indicators to predict the clinical prognosis of patients with acute ischemic stroke after 90 days. MATERIALS AND METHODS The clinical data of 80 patients with acute anterior circulation ischemic stroke were retrospectively analyzed and divided into the good prognosis (37 cases) and poor prognosis groups (43 cases) according to their clinical function score at 90 days after discharge. Various factors, including basic imaging parameters (ASPECTS), occluded vessel location, affected side location and clinical indicators (time from onset to computed tomography examination, height, weight, body mass index, previous hypertension, and degree of hypertension and diabetes mellitus), laboratory blood rutine, and biochemical tests (white blood count, neutrophil count, lymphocyte count, neutrophil-to-lymphocyte ratio, hematocrit test, platelet count, international normalized ratio, blood glucose, triglycerides, uric acid, and D-dimer) were considered in the analysis. RESULTS Logistic regression analysis showed that the mCTA score, hypertension, and neutrophil count were significant independent predictors. CONCLUSION A nomogram of the mCTA score, hypertension, and neutrophil count may predict functional recovery after 90 days in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- H Yang
- Department of Radiology, The Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - T Han
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Y Han
- Department of Radiology, The Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - X Liu
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Y She
- Department of Radiology, The Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Y Xu
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - L Bai
- Department of Radiology, The Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - J Zhou
- Department of Radiology, The Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
23
|
Wang L, Luo Z, Yang L, Li W. The Effectiveness and Safety of Rivaroxaban and Edoxaban in the Treatment of Lower Extremity Deep Vein Thrombosis. Ann Vasc Surg 2024; 108:246-256. [PMID: 38960092 DOI: 10.1016/j.avsg.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Deep vein thrombosis (DVT) is a medical condition characterized by forming a blood clot, or thrombus, in one of the deep veins, typically in the legs. It is a type of venous thromboembolism, which refers to the formation of blood clots in the veins. It is caused by Virchow's triad (stasis, hypercoagulation, and endothelial injury). OBJECTIVE Our main objective is to explore the effectiveness and safety of rivaroxaban and edoxaban in treating lower extremity DVT. METHODS We conducted a retrospective study involving 406 patients subjected to DVT treatment using direct oral anticoagulants (edoxaban and rivaroxaban) at our hospital. We recruited adult patients (aged 18 years and more) diagnosed with lower extremity DVT and received treatment with either rivaroxaban or edoxaban as the primary anticoagulant therapy for DVT. We excluded patients who received treatment with other anticoagulant medications (warfarin and heparin) as the primary therapy for DVT. RESULTS The groups showed statistically significant differences in red blood cell count and hemoglobin levels, with the edoxaban group having high values. However, the 2 groups observed no statistically significant differences in creatinine clearance, white blood cell count, platelet count, C-reactive protein, and D-dimer levels. The difference in the incidence of pulmonary embolism between the 2 groups was statistically significant (P value < 0.001). The edoxaban group had fewer pulmonary embolism patients than the rivaroxaban group. The reduction in recurrent thrombosis was significantly higher in the rivaroxaban group compared to the edoxaban group. There were no significant differences in the major bleeding at various sites across the 2 treatment groups (P > 0.05). CONCLUSIONS Rivaroxaban's pharmacokinetic profile includes rapid absorption and a relatively short half-life. It means that once administered, rivaroxaban quickly reaches its peak concentration in the blood and is subsequently eliminated from the body within a relatively short period. Edoxaban's pharmacokinetic profile may include slower absorption and a longer half-life than rivaroxaban. It can result in a slower rate of achieving peak concentration and a more prolonged presence in the bloodstream. These results emphasize the need for careful consideration of anticoagulant therapy in patients with underlying cancer and underscore the importance of managing risks while providing adequate anticoagulation to prevent thrombotic events.
Collapse
Affiliation(s)
- Liang Wang
- Department of Interventional Vascular Surgery, Chengdu First People's Hospital, Chengdu, Sichuan.
| | - Zeen Luo
- Department of Interventional Vascular Surgery, Chengdu First People's Hospital, Chengdu, Sichuan
| | - Long Yang
- Department of Interventional Vascular Surgery, Chengdu First People's Hospital, Chengdu, Sichuan
| | - Weiye Li
- Department of Interventional Vascular Surgery, Chengdu First People's Hospital, Chengdu, Sichuan
| |
Collapse
|
24
|
Xiao M, Chen Y, Mu J. Innate immunity-mediated neuroinflammation promotes the onset and progression of post-stroke depression. Exp Neurol 2024; 381:114937. [PMID: 39197708 DOI: 10.1016/j.expneurol.2024.114937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Post-stroke depression (PSD) is a prevalent psychiatric disorder after stroke, with the incidence of approximately one-third among stroke survivors. It is classified as an organic mental disorder and has a well-documented association with stroke affecting various aspects of patients, such as the recovery of limb motor function, daily living self-care ability, and increasing the mortality of stroke survivors. However, the pathogenesis of PSD is not yet fully understood. Currently, immune inflammation is a research hotspot. This review focuses on the pathogenesis of PSD, particularly elucidating the role of inflammation in mediating neuroinflammation through innate immunity. Simultaneously, we highlight that peripheral inflammation following a stroke may trigger a detrimental cycle of neuroinflammation by activating innate immune pathways within the central nervous system, which could potentially contribute to the development of PSD. Lastly, we summarize potential treatments for PSD and propose targeting cytokines and innate immune pathways as novel therapeutic approaches.
Collapse
Affiliation(s)
- Mi Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Yujie Chen
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Mu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China.
| |
Collapse
|
25
|
Wu Z, Qian Y, Shang Y, Zhang Y, Wang M, Jiao M. Exploring common biomarkers of ischemic stroke and obstructive sleep apnea through bioinformatics analysis. PLoS One 2024; 19:e0312013. [PMID: 39475897 PMCID: PMC11524449 DOI: 10.1371/journal.pone.0312013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Clinical observations have shown that many patients with ischemic stroke (IS) have a history of obstructive sleep apnea (OSA) both before and after the stroke's onset, suggesting potential underlying connections and shared comorbid mechanisms between the two conditions. The aim of this study is to identify the genetic characteristics of OSA patients who develop IS and to establish a reliable disease diagnostic model to assess the risk of IS in OSA patients. METHODS We selected IS and OSA datasets from the Gene Expression Omnibus (GEO) database as training sets. Core genes were identified using the Limma package, Weighted Gene Co-expression Network Analysis (WGCNA), and machine learning algorithms. Gene Set Variation Analysis (GSVA) was conducted for pathway enrichment analysis, while single-sample gene set enrichment analysis (ssGSEA) was employed for immune infiltration analysis. Finally, a diagnostic model was developed using Least Absolute Shrinkage and Selection Operator (LASSO) regression, with its diagnostic efficacy validated using receiver operating characteristic (ROC) curves across two independent validation sets. RESULTS The results revealed that differential analysis and machine learning identified two common genes, TM9SF2 and CCL8, shared between IS and OSA. Additionally, seven signaling pathways were found to be commonly upregulated in both conditions. Immune infiltration analysis demonstrated a significant decrease in monocyte levels, with TM9SF2 showing a negative correlation and CCL8 showing a positive correlation with monocytes. The diagnostic model we developed exhibited excellent predictive value in the validation set. CONCLUSIONS In summary, two immune-related core genes, TM9SF2 and CCL8, were identified as common to both IS and OSA. The diagnostic model developed based on these genes may be used to predict the risk of IS in OSA patients.
Collapse
Affiliation(s)
- Zhe Wu
- Rehabilitation Department, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yutong Qian
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Chinese Medicine, Shanghai, P.R. China
| | - Yaxin Shang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yu Zhang
- Department of Integrated Traditional Chinese and Western Medicine in Gynecology, Shanghai Jiading Maternal Child Health Hospital, Shanghai, P.R. China
| | - Meilin Wang
- Department of Orthopedic and Spinal Rehabilitation, Ningbo Rehabilitation Hospital, Ningbo, P.R. China
| | - Mingyuan Jiao
- Research and Teaching Department, Jinhua Maternal Child Health Hospital, Jinhua, P.R. China
| |
Collapse
|
26
|
Chen X, Zhang S. Development, assessment and validation of a novel nomogram model for predicting stroke mimics in stroke center:A single-center observational study. Heliyon 2024; 10:e38602. [PMID: 39403531 PMCID: PMC11472074 DOI: 10.1016/j.heliyon.2024.e38602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Early recognition and prediction of stroke mimics (SM) can avoid inappropriate recanalization therapy and delay in the management of SM etiology. The purpose of this study is to screen the predictors for SM and develop a novel predictive nomogram model for predicting SM. Meanwhile, the diagnostic performance of the nomogram model was evaluated and validated. The diagnostic efficacy of the nomogram model was also compared with four other SM structured scales. METHODS The clinical data of eligible patients were retrospectively enrolled as training datasets from January 2020 to December 2021; and the clinical data of eligible patients were prospectively enrolled as validation datasets from February to December 2022 in stroke center, Shengjing hospital, respectively. Univariate analysis and Lasso regression were used to select the optimal predictors for the training set, and a nomogram model was constructed by multivariate logistics regression, predictive scoring based on nomogram model is performed for each subject suffering from suspected acute ischemic stroke. Area under the curve (AUC), Hosmer-Lemeshow goodness-of-fit test, Calibration curve, decision curve analysis (DCA), clinical impact curve (CIC) analysis and bootstrap sampling were performed to assess and validate the predictive performance and clinical utility of the nomogram model, and the DeLong test was used to compare the overall diagnostic performance of the nomogram model with the other four structured SM scales. The Delong test was also conducted to assess the external reliability of the SM nomogram model by comparing the predictive diagnostic performance of the validation set with the training set. Additionally, the Calibration curve was utilized to evaluate the diagnostic calibration capability of the SM nomogram model in the validation set. RESULTS 703 eligible patients (68 with SM, accounting for 9.7 %) were assigned to the training set, while 301 patients (26 with SM, accounting for 8.6 %) were assigned to the validation set. A nomogram model was then developed using these six parameters (SBP, history of epilepsy, isolated dizziness, isolated sensory impairment, headache, and absence of speech impairment symptoms), a dynamic web-based version of the nomogram was subsequently created. Comparing with four other scales, the nomogram model showed the highest overall diagnostic performance (AUC = 0.929, 95%CI = 0.908-0.947). The Hosmer-Lemeshow goodness-of-fit test was conducted to assess the agreement between the predicted SM values from the model and the observed SM values. The results of the test indicated a favorable consistency (χ2 = 9.299, P = 0.3177) between the predicted and observed SM. The results obtained from the analysis of the Calibration curve, DCA curve, and CIC analysis suggested that the nomogram possesses a favorable predictive capacity and superior clinical usefulness. Furthermore, the external validation demonstrated that there is no significant difference in the overall predictive diagnostic performance between the validation set and training set (0.929 vs 0.910, P > 0.05), thereby confirming the favorable stability of the nomogram model. CONCLUSION Our study firstly proposed a nomogram prediction approach based on the clinical features of SM, which could effectively predict the occurrence of SM. The utilization of the nomogram in stroke center proves advantageous for the identification and evaluation of SM, thereby enhancing diagnostic decision-making and strategies employed for suspected acute stroke patients.
Collapse
Affiliation(s)
- Xiaoman Chen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Shuo Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| |
Collapse
|
27
|
Betts C, Ahlfinger Z, Udeh MC, Kirmani BF. Recent Updates on COVID-19 Associated Strokes. Neurosci Insights 2024; 19:26331055241287730. [PMID: 39391859 PMCID: PMC11465292 DOI: 10.1177/26331055241287730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
The SARS-CoV-2 virus is primarily a respiratory virus, but, as it spread worldwide, it became apparent that there are multiple extrapulmonary manifestations. Reports arose of young and otherwise healthy patients presenting to emergency departments with large-vessel occlusions. Because of a rapidly evolving pandemic, conflicting data sometimes arose regarding the impact of the pandemic on strokes. COVID-19 can induce a hypercoagulable and a proinflammatory state through the interactions with the ACE-2 receptor. These mechanisms may lead to the strokes, both ischemic and hemorrhagic, that are seen in this infection. Strokes, in conjunction with COVID-19 infection, tended to be more disabling and portended a higher mortality. Treatment of these strokes was challenging, as emergency departments were strained with the high burden of COVID-19 admissions. Finally, vaccines against COVID-19 were widely administered, and their potential to cause stroke as an adverse event are discussed. This article will provide an in depth review of the recent updates about the incidence, epidemiology, pathophysiology, clinical presentation and treatment of strokes that are associated with COVID-19.
Collapse
Affiliation(s)
- Colton Betts
- School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Zane Ahlfinger
- School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | | | - Batool F Kirmani
- School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Neurology, CHI St. Joseph Health, Bryan, TX, USA
| |
Collapse
|
28
|
Sun H, Tang Q, Yan X, Xie W, Xu Y, Zhang W. Cathepsins and neurological diseases: a Mendelian randomization study. Front Neurosci 2024; 18:1454369. [PMID: 39420987 PMCID: PMC11484041 DOI: 10.3389/fnins.2024.1454369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background The causal relationship between cathepsins and neurological diseases remains uncertain. To address this, we utilized a two-sample Mendelian randomization (MR) approach to assess the potential causal effect of cathepsins on the development of neurological diseases. Methods This study conducted a two-sample two-way MR study using pooled data from published genome-wide association studies to evaluate the relationship between 10 cathepsins (B, D, E, F, G, H, L2, O, S, and Z) and 7 neurological diseases, which included ischemic stroke, cerebral hemorrhage, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and epilepsy. The analysis employed various methods such as inverse variance weighting (IVW), weighted median, MR Egger regression, MR pleiotropy residual sum and outlier, Cochran Q statistic, and leave-one-out analysis. Results We found a causal relationship between cathepsins and neurological diseases, including Cathepsin B and Parkinson's disease (IVW odds ratio (OR): 0.89, 95% confidence interval (CI): 0.83, 0.95, p = 0.001); Cathepsin D and Parkinson's disease (OR: 0.80, 95%CI: 0.68, 0.95, p = 0.012); Cathepsin E and ischemic stroke (OR: 1.05, 95%CI: 1.01, 1.09, p = 0.015); Cathepsin O and ischemic stroke (OR: 1.05, 95%CI: 1.01, 1.10, p = 0.021). Reverse MR analyses revealed that multiple sclerosis and Cathepsin E (OR: 1.05, 95%CI: 1.01, 1.10, p = 0.030). There is currently no significant relationship has been found between other cathepsins and neurological diseases. Conclusion Our study reveals a causal relationship between Cathepsins B, D, E, and O and neurological diseases, offering valuable insights for research aimed at improving the diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Haitao Sun
- Changchun University of Chinese Medicine, Changchun, China
| | - Qingqing Tang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xue Yan
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Wanying Xie
- Changchun University of Chinese Medicine, Changchun, China
| | - Yueshan Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Weimin Zhang
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
29
|
Wang Z, Hu C, Zhang W, Liu W, He S, Liu Y, Yang L, Wang Y. Dynamically crosslinked ECM-like hydrogels loaded with ROS-responsive drug nanoparticles for treating inflammation in myocardial infarction and stroke. COMPOSITES PART B: ENGINEERING 2024; 285:111734. [DOI: 10.1016/j.compositesb.2024.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
31
|
Zhang Y, Zhu Z, Li Z, Feng J, Long J, Deng Y, Ahmed W, Khan AA, Huang S, Fu Q, Chen L. Sbno1 mediates cell-cell communication between neural stem cells and microglia through small extracellular vesicles. Cell Biosci 2024; 14:125. [PMID: 39343943 PMCID: PMC11441009 DOI: 10.1186/s13578-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs) play a crucial role in the progress of ischemic stroke. Research on zebrafish embryonic demonstrates an association between Strawberry Notch 1 (Sbno1) and central nervous system development. However, the regulation and underlying mechanism of Sbno1 in NSCs have not been studied yet. Here, we investigated the role and the mechanism of Sbno1 in NSCs development and the potential therapeutic value of Sbno1 in ischemic stroke. METHODS Adeno-associated virus (AAV) was used for overexpression or knockdown of Sbno1 in vitro or in vivo. A mouse model of MCAO was established to evaluate the neuroprotective effects of AAV-Sbno1, including balance beam test, rotarod test, and strength evaluation. H&E and immunofluorescence assessed neuronal impairment. Western blot and RT-qPCR were used to detect the expression of Sbno1 and its downstream target genes. RNA-seq and western blot were performed to explore further molecular mechanisms by which Sbno1 promoted endogenous repair of NSCs and macrophages M2 polarization. CCK8 was conducted to assess the effects of Sbno1 on NSCs proliferation. The impact of Sbno1 on NSCs apoptosis was evaluated by flow cytometry. NSCs derived from small extracellular vesicles (sEV) were obtained using ultracentrifugation and identified through nanoparticle tracking analysis (NTA) and western blot analysis. RESULTS Our results showed that Sbno1 is highly expressed in the central nervous system, which plays a crucial role in regulating the proliferation of NSCs through the PI3k-Akt-GSK3β-Wnt/β-catenin signaling pathway. In addition, with overexpression of Sbno1 in the hippocampus, post-stroke behavioral scores were superior to the wild-type mice, and immunofluorescence staining revealed an increased number of newly generated neurons. sEV released by NSCs overexpressing Sbno1 inhibited neuroinflammation, which mechanistically impaired the activation of the microglial NF-κB and MAPK signaling pathways. CONCLUSIONS Our studies indicate that sbno1 promotes the proliferation of NSCs and enhances endogenous repairing through the PI3k-Akt-GSK3β-Wnt/β-catenin signaling pathway. Additionally, NSCs overexpressing sbno1 improve ischemic stroke recovery and inhibit neuroinflammation after ischemia by sEV through the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhinuo Li
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jun Long
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Yushu Deng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Waqas Ahmed
- Department of Neurology, Zhongda Hospital Southeast University, Nanjing, China
| | - Ahsan Ali Khan
- Department of Neurosurgery, The Aga Khan University, Karachi, Pakistan
| | - Shiying Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Guo J, Wang D, Jia J, Zhang J, Liu Y, Lu J, Zhao X, Yan J. Neutrophil-to-Lymphocyte Ratio, Lymphocyte-to-Monocyte Ratio and Platelet-to-Lymphocyte Ratio as Predictors of Short- and Long-Term Outcomes in Ischemic Stroke Patients with Atrial Fibrillation. J Inflamm Res 2024; 17:6661-6672. [PMID: 39345895 PMCID: PMC11430226 DOI: 10.2147/jir.s480513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Inflammatory response plays essential roles in the pathophysiology of both ischemic stroke and atrial fibrillation (AF). We aimed to investigate whether composite inflammatory markers, including neutrophil to lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR) and platelet-to-lymphocyte ratio (PLR), can serve as early predictors of short- and long-term outcomes in ischemic stroke patients with AF. Patients and Methods Ischemic stroke patients with AF were enrolled in this cohort study. The primary outcome was 1-year functional dependence or death (modified Rankin scale (mRS) score 3-6). Secondary outcomes included hemorrhagic transformation (HT) and early neurological deterioration (END, increase in the National Institutes of Health Stroke Scale (NIHSS) ≥4 within 7 days). Partial correlations were performed to assess the correlation between systemic inflammation markers and admission NIHSS scores. Univariate and multivariate logistic analyses were performed to investigate whether systemic inflammatory markers were independent predictors of adverse outcomes. Results A total of 408 patients were included. Partial correlation analysis revealed statistically significant but weak correlations between the NLR (r = 0.287; P < 0.001), PLR (r = 0.158; P = 0.001) and admission NIHSS score. Compared with patients without HT or END, patients who developed HT or END had higher NLR and PLR, and lower LMR. Patients in the functional dependence or death group had significantly higher NLR and PLR, and lower LMR than those in the functional independence group (all P < 0.001). Multivariate logistic analysis indicated that NLR, LMR and PLR were independent predictors of HT (OR = 1.069, 0.814 and 1.003, respectively), END (OR = 1.100, 0.768 and 1.006, respectively) and adverse 1-year functional outcome (OR = 1.139, 0.760 and 1.005, respectively). Conclusion NLR, LMR and PLR were independent predictors for in-hospital HT, END and long-term functional outcome in ischemic stroke patients with AF. Close monitoring of these inflammatory markers may help guide risk stratification and clinical treatment strategies.
Collapse
Affiliation(s)
- Jiahuan Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dandan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jiaokun Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yanfang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingjing Lu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Jing Yan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
33
|
Chen H, Liu Z, Zhao L, Jia Z. Neuroprotective effects of salvianolic acids combined with Panax notoginseng saponins in cerebral ischemia/reperfusion rats concerning the neurovascular unit and trophic coupling. Brain Behav 2024; 14:e70036. [PMID: 39295106 PMCID: PMC11410882 DOI: 10.1002/brb3.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/16/2024] [Accepted: 08/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The neurovascular unit (NVU) and neurovascular trophic coupling (NVTC) play a key regulatory role in brain injury caused by ischemic stroke. Salvianolic acids (SAL) and Panax notoginseng saponins (PNS) are widely used in China to manage ischemic stroke. Neuroprotective effects of SAL and PNS, either taken alone or in combination, were examined in this research. METHODS Wistar rats were randomly divided into the following groups: Sham group (Sham), cerebral ischemia/reperfusion group (I/R), I/R with SAL group (SAL), I/R with PNS group (PNS), I/R with SAL combined with PNS (SAL + PNS), and I/R with edaravone group (EDA). Treatment was administered once daily for two days after modeling of middle cerebral artery occlusion/reperfusion (MCAO/R). RESULTS Compared with the I/R group, SAL, PNS, or SAL + PNS treatment reduced infarct size, improved neurological deficit score, reduced Evans blue extravasation, increased expression of CD31 and tight junction proteins (TJs), including zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), and junctional adhesion molecule-1 (JAM-1). Furthermore, SAL, PNS, or SAL + PNS suppressed the activations of microglia and astrocyte and led to the amelioration of neuron and pericyte injury. Treatment also inhibited NVU dissociation of GFAP/PDGFRβ and Collagen IV/GFAP while upregulated the expression level of BDNF/TrkB and BDNF/NeuN. CONCLUSIONS SAL and PNS have significantly remedied structural and functional disorders of NVU and NVTC in I/R injury. These effects were more pronounced when SAL and PNS were combined than when used separately.
Collapse
Affiliation(s)
- Hongyang Chen
- School of Basic Medical SciencesYunnan University of Chinese MedicineKunmingP. R. China
| | - Zhen Liu
- Department of Traditional Chinese MedicineThe Baotou Central HospitalBaotouP. R. China
| | - Lei Zhao
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Zhuangzhuang Jia
- School of Basic Medical SciencesYunnan University of Chinese MedicineKunmingP. R. China
| |
Collapse
|
34
|
Ralapanawa U, Sivakanesan R, Tennakoon S, Karunathilake P. Ischemia-modified albumin: is it a promising marker in acute coronary syndrome? BMC Cardiovasc Disord 2024; 24:436. [PMID: 39174920 PMCID: PMC11342533 DOI: 10.1186/s12872-024-04108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Acute coronary syndrome (ACS) is a type of coronary heart disease (CHD), which is responsible for one-third of total deaths in people older than 35 years. Even though cardiac troponin is the gold standard for myocardial necrosis it is blind for ischemia without necrosis. Studies demonstrate that Ischaemia Modified Albumin (IMA) is more sensitive in diagnosing ischemic chest pain compared to cardiac troponin T and electrocardiogram, and its combination with these tests significantly increases the sensitivity for diagnosing unstable angina, non-ST-elevation myocardial infarction (NSTEMI), or ST-elevation myocardial infarction (STEMI), with high positive and negative predictive values, making it a valuable tool for ruling out ACS in patients with inconclusive diagnoses in the emergency department. METHODS This prospective cohort study, conducted at the Teaching Hospital, Peradeniya, Sri Lanka, from 2015 to 2019, investigated ischemia-modified albumin (IMA) levels in 330 acute coronary syndrome (ACS) patients. Excluding those with various chronic conditions and those on specific medications, serum IMA was analyzed using a colorimetric assay based on cobalt (II) binding to human serum albumin affected by myocardial ischemia. Serum IMA levels were measured, and statistical analyses, including non-parametric tests and correlation analyses, were conducted to evaluate the association between IMA levels and various demographic and clinical factors. RESULTS IMA concentrations were found to be non-normally distributed, with an average concentration of 0.252 ± 0.123 AU. No overall significant gender-based difference in IMA levels was observed, though within the younger age group (< 59 years), males exhibited higher IMA concentrations than females. Significant gender differences were observed in the younger age group, with males showing higher IMA levels than females (p = 0.033). No significant differences in IMA levels were found across different ethnicities (p = 0.217) or BMI categories (p = 0.056). A significant increase in IMA levels was noted in ACS patients compared to control subjects (p < 0.001). Correlation analysis revealed significant associations between IMA levels and total cholesterol (r = 0.262, p = 0.009) and low-density lipoprotein (LDL) levels (r = 0.280, p = 0.006). Notably, a significant gender difference in IMA levels was found in obese patients, suggesting physiological differences in response to obesity. The study also revealed higher IMA concentrations in NSTEMI and STEMI patients compared to those with unstable angina. CONCLUSION The study confirms elevated IMA levels in ACS patients, supporting its diagnostic potential. It reveals demographic influences, such as higher IMA levels in younger males and significant gender-specific differences in obese patients. Personalized approaches considering demographics and lipid management are essential for ACS risk reduction and IMA's role in management.
Collapse
Affiliation(s)
- Udaya Ralapanawa
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Ramiah Sivakanesan
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sampath Tennakoon
- Department of Community Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Parackrama Karunathilake
- Department of Medicine, Faculty of Medicine, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka.
| |
Collapse
|
35
|
Sun W, Yang Z, Wang Y, Miao J, Pan C, Li G, Liang W, Zhao X, Lan Y, Qiu X, Wang H, Chen M, Yang Y. Peripheral inflammation and trajectories of depressive symptomology after ischemic stroke: A prospective cohort study. J Affect Disord 2024; 359:14-21. [PMID: 38729221 DOI: 10.1016/j.jad.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Understanding the association of peripheral inflammation and post-stroke depressive symptomology (PSDS) might provide further insights into the complex etiological mechanism of organic depression. However, studies focusing on the longitudinal patterns of PSDS were limited and it remained unclear whether peripheral inflammation influences the occurrence and development of PSDS. METHODS A total of 427 prospectively enrolled and followed ischemic stroke patients were included in the analytical sample. Depressive symptomology was assessed on four occasions during 1 year after ischemic stroke. Peripheral inflammatory proteins on admission and repeated measures of peripheral immune markers in three stages were collected. Latent class growth analysis (LCGA) was employed to delineate group-based trajectories of peripheral immune markers and PSDS. Multinomial regression was performed to investigate the association of peripheral inflammation with PSDS trajectories. RESULTS Four distinct trajectories of PSDS were identified: stable-low (n = 237, 55.5 %), high-remitting (n = 120, 28.1 %), late-onset (n = 44, 10.3 %), and high-persistent (n = 26, 6.1 %) PSDS trajectories. The elevation of peripheral fibrinogen on admission increased the risk of high-persistent PSDS in patients with early high PSDS. Additionally, chronic elevation of innate immune levels might not only increase the risk of high-persistent PSDS in patients with early high PSDS but also increase the risk of late-onset PSDS in patients without early high PSDS. The elevation of adaptive immune levels in the convalescence of ischemic stroke may contribute to the remission of early high PSDS. CONCLUSIONS Peripheral immunity could influence the development of PSDS, and this influence might have temporal heterogeneity. These results might provide vital clues for the inflammation hypothesis of PSD.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Zhaoxia Yang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China
| | - Yanyan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China.
| | - Chensheng Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China
| | - Guo Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China
| | - Wenwen Liang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China
| | - Xin Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China.
| | - Yan Lan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiuli Qiu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China
| | - Hao Wang
- Department of Neurology, General Hospital of the Yangtze River Shipping, No.5 Huiji Road, Wuhan 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China
| | - Yuan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
36
|
Li K, Ding W, Li X, Gao H, Wang S, Li T, Zhao H, Zhang S. Intestinal Akkermansia muciniphila is Beneficial to Functional Recovery Following Ischemic Stroke. J Neuroimmune Pharmacol 2024; 19:43. [PMID: 39141019 DOI: 10.1007/s11481-024-10146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Recent studies have demonstrated the interaction between gut microbiota and brain on ischemic stroke, but the roles of gut microbiota in the pathophysiology of ischemic stroke remain largely unclear. In this study, we detected a significant increase of intestinal Akkermansia muciniphila (AKK) following ischemic stroke by a rose bengal photothrombosis model. To investigate the function and mechanism of AKK on ischemic stroke, we performed the AKK administration prior to stroke surgery. The results showed that mice treated with AKK gained significantly higher body weight and behaved better than those in PBS group at 3 days after ischemic stroke. Consistently, AKK administration remarkably decreased the infarct volumes as well as the density of degenerating neurons and apoptotic cells after ischemic stroke. Notably, AKK is a potential therapeutic target in immune-related disorders connected to the microbiota, and inflammation is crucially involved in the pathophysiological process of ischemic stroke. For the determination of underlying mechanisms of this protective effect, we investigated whether there are associations between AKK and neuroinflammation following ischemic stroke. The results suggested that AKK administration significantly reduced the activation of astrocytes and microglia but up-regulated multiple anti-inflammatory factors following ischemic stroke. Therefore, our study highlighted the beneficial roles of intestinal AKK on ischemic stroke and provided a new perspective for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Kemin Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Wancong Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Xinrui Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Shuang Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China.
| |
Collapse
|
37
|
Liu L, Zhao B, Yu Y, Gao W, Liu W, Chen L, Xia Z, Cao Q. Vascular Aging in Ischemic Stroke. J Am Heart Assoc 2024; 13:e033341. [PMID: 39023057 DOI: 10.1161/jaha.123.033341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular senescence, a permanent halt in cell division due to stress, spurs functional and structural changes, contributing to vascular aging characterized by endothelial dysfunction and vascular remodeling. This process raises the risk of ischemic stroke (IS) in older individuals, with its mechanisms still not completely understood despite ongoing research efforts. In this review, we have analyzed the impact of vascular aging on increasing susceptibility and exacerbating the pathology of IS. We have emphasized the detrimental effects of endothelial dysfunction and vascular remodeling influenced by oxidative stress and inflammatory response on vascular aging and IS. Our goal is to aid the understanding of vascular aging and IS pathogenesis, particularly benefiting older adults with high risk of IS.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Bo Zhao
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Yueyang Yu
- Taikang Medical School, School of Basic Medical Sciences Wuhan University Wuhan China
| | - Wenwei Gao
- Department of Critical Care Medicine Renmin Hospital of Wuhan University Wuhan China
| | - Weitu Liu
- Department of Pathology Hubei Provincial Hospital of Traditional Chinese Medicine Wuhan China
| | - Lili Chen
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Zhongyuan Xia
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Quan Cao
- Department of Nephrology Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
38
|
Wang C, Gu L, Zhang Y, Gao Y, Jian Z, Xiong X. Bibliometric insights into the inflammation and mitochondrial stress in ischemic stroke. Exp Neurol 2024; 378:114845. [PMID: 38838802 DOI: 10.1016/j.expneurol.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking. OBJECTIVE To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke. METHODS We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved. CONCLUSION Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
39
|
Li ZH, Pu XQ, Li SS, Dong XK, Zhang GQ, Wang Y, Liu JM. Neuroprotective Effect and Mechanism of Tanreqing Injection on Ischemic Stroke: Insights from Network Pharmacology and in vivo Experiments. Chin J Integr Med 2024; 30:713-720. [PMID: 38910191 DOI: 10.1007/s11655-024-3910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 06/25/2024]
Abstract
OBJECTIVE To explore the neuroprotective effects and mechanism of Tanreqing Injection (TRQ) on treating ischemic stroke based on network pharmacology and in vivo experimental validation. METHODS The chemical compounds of TRQ were retrieved based on published data, with targets retrieved from PubChem, Therapeutic Target Database and DrugBank. Network visualization and analysis were performed using Cytoscape, with protein-protein interaction networks derived from the STRING database. Enrichment analysis was performed using Kyoto Encyclopedia of Genes Genomes pathway and Gene Ontology analysis. In in vivo experiments, the middle cerebral artery occlusion (MCAO) model was used. Infarct volume was determined by 2,3,5-triphenyltetrazolium hydrochloride staining and protein expressions were analyzed by Western blot. Molecular docking was performed to predict ligand-receptor interactions. RESULTS We screened 81 chemical compounds in TRQ and retrieved their therapeutic targets. Of the targets, 116 were therapeutic targets for stroke. The enrichment analysis showed that the apelin signaling pathway was a key pathway for ischemic stroke. Furthermore, in in vivo experiment we found that administering with intraperitoneal injection of 2.5 mL/kg TRQ every 6 h could significantly reduce the infarct volume of MCAO rats (P<0.05). In addition, protein levels of the apelin receptor (APJ)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway were increased by TRQ (P<0.05). In addition, 41 chemical compounds in TRQ could bind to APJ. CONCLUSIONS The neuroprotective effect of TRQ may be related to the APJ/PI3K/AKT signaling pathway. However, further studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Zhong-Hao Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Neurology, Beijing University of Chinese Medicine Dongfang Hospital, Beijing, 100078, China
| | - Xiao-Qi Pu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Sha-Sha Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao-Ke Dong
- Department of Neurology, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, 100163, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Yu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jin-Min Liu
- Department of Neurology, Beijing University of Chinese Medicine Dongfang Hospital, Beijing, 100078, China
| |
Collapse
|
40
|
Zhu L, Zhong W, Meng X, Yang X, Zhang W, Tian Y, Li Y. Polymeric nanocarriers delivery systems in ischemic stroke for targeted therapeutic strategies. J Nanobiotechnology 2024; 22:424. [PMID: 39026255 PMCID: PMC11256638 DOI: 10.1186/s12951-024-02673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemic stroke is a complex, high-mortality disease with multifactorial etiology and pathogenesis. Currently, drug therapy is mainly used treat ischemic stroke in clinic, but there are still some limitations, such as limited blood-brain barrier (BBB) penetration efficiency, a narrow treatment time window and drug side effects. Recent studies have pointed out that drug delivery systems based on polymeric nanocarriers can effectively improve the insufficient treatment for ischemic stroke. They can provide neuronal protection by extending the plasma half-life of drugs, enhancing the drug's permeability to penetrate the BBB, and targeting specific structures and cells. In this review, we classified polymeric nanocarriers used for delivering ischemic stroke drugs and introduced their preparation methods. We also evaluated the feasibility and effectiveness and discussed the existing limitations and prospects of polymeric nanocarriers for ischemic stroke treatment. We hoped that this review could provide a theoretical basis for the future development of nanomedicine delivery systems for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xuchen Meng
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenchuan Zhang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yayuan Tian
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
41
|
Zhao P, Zhang G, Wang Y, Wei C, Wang Z, Zhai W, Shen Y, Shi L, Sun L. Peripheral immunity is associated with cognitive impairment after acute minor ischemic stroke and transient ischemic attack. Sci Rep 2024; 14:16201. [PMID: 39003356 PMCID: PMC11246473 DOI: 10.1038/s41598-024-67172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Immunoinflammation is associated with the development of post-stroke cognitive impairment (PSCI), however, peripheral immunity has not been fully explored. We aimed to investigate the association between PSCI and peripheral immune indicators, including neutrophil, lymphocyte, and mononuclear percentages and counts; the systemic immune inflammation index; platelet-to-lymphocyte ratio; neutrophil-to-lymphocyte ratio (NLR); and lymphocyte-to-monocyte ratio. A total of 224 patients with acute minor ischemic stroke or transient ischemic attack with 6-12 months of follow-up were included. PSCI was defined as a Montreal Cognitive Assessment score < 22 during the follow-up period. We performed logistic regression, subgroup analyses based on age and sex, and further established predictive models. We found that increased innate immunity indicators (neutrophils, neutrophil percentage) increased the risk of PSCI, whereas increased adaptive immunity indicator (lymphocytes) were protective against PSCI, especially in patients aged 50-65 years. Neutrophil percentage and NLR improved the predictive efficacy of the models that included demographic, clinical, and imaging information, with the area under the curve increased from 0.765 to 0.804 and 0.803 (P = 0.042 and 0.049, respectively). We conducted a comprehensive analysis of peripheral immunity in PSCI, providing a novel perspective on the early detection, etiology, and treatment of PSCI.
Collapse
Affiliation(s)
- PanPan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - GuiMei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - YongChun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - ChunXiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - ZiCheng Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - WeiJie Zhai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - YanXin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Lin Shi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
42
|
Deng D, Lei H, Cao Z, Zhang C, Du R, Gao X, Wei J, Lu Y, Zhou X, Zhang L. Microbiome-gut-brain axis contributes to patients and Bama miniature pigs with acute large ischemic stroke. Front Neurosci 2024; 18:1378844. [PMID: 39071180 PMCID: PMC11272540 DOI: 10.3389/fnins.2024.1378844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Acute large hemispheric infarction (ALHI) is an overwhelming emergency with a great challenge of gastrointestinal dysfunction clinically. Here, we initially proposed delayed bowel movements as the clinical phenotype of strike to gut-brain axis (GBA) in ALHI patients by epidemiological analysis of 499 acute ischemic stroke (AIS) patients. 1H NMR-based metabolomics revealed that AIS markedly altered plasma global metabolic profiling of patients compared with healthy controls. Risk factors of strike on GBA were the National Institutes of Health Stroke Scale (NIHSS) score ≥ 5 and stroke onset time ≤ 24 h. As a result, first defecating time after admission to the hospital ≥2 days could be considered as a potential risk factor for strike on GBA. Subsequently, the ALHI Bama miniature (BM) pig model with acute symptomatic seizure was successfully established by ligation of the left ascending pharyngeal artery combined with local air injection. Clinical phenotypes of brain necrosis such as hemiplegia were examined with brain diffusion-weighted imaging (DWI) and pathological diagnosis. In addition to global brain injury and inflammation, we also found that ALHI induced marked alterations of intestinal barrier integrity, the gut microbial community, and microbiota-derived metabolites including serotonin and neurotransmitters in both plasma and multiple brain tissues of BM pigs. These findings revealed that microbiota-gut-brain axis highly contributed to the occurrence and development of ALHI.
Collapse
Affiliation(s)
- Dazhi Deng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Gao
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Wei
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Yibo Lu
- Department of Radiology, Nanning Fourth People's Hospital and Guangxi AIDS Clinical Treatment Center, Nanning, China
| | - Xiangzhen Zhou
- Department of Pathology, The People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Limin Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Lee H, Lee J, Jung D, Oh H, Shin H, Choi B. Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke. Int J Mol Sci 2024; 25:7546. [PMID: 39062789 PMCID: PMC11277498 DOI: 10.3390/ijms25147546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic electrical stimulation, such as transcranial cortical stimulation and peripheral somatosensory stimulation, is used to improve motor function in patients with stroke. We hypothesized that these stimulations exert neuroprotective effects during the subacute phase of ischemic stroke by regulating novel common signaling pathways. Male C57BL/6J mouse models of ischemic stroke were treated with high-definition (HD)-transcranial alternating current stimulation (tACS; 20 Hz, 89.1 A/mm2), HD-transcranial direct current stimulation (tDCS; intensity, 55 A/mm2; charge density, 66,000 C/m2), or electroacupuncture (EA, 2 Hz, 1 mA) in the early stages of stroke. The therapeutic effects were assessed using behavioral motor function tests. The underlying mechanisms were determined using transcriptomic and other biomedical analyses. All therapeutic electrical tools alleviated the motor dysfunction caused by ischemic stroke insults. We focused on electrically stimulating common genes involved in apoptosis and cell death using transcriptome analysis and chose 11 of the most potent targets (Trem2, S100a9, Lgals3, Tlr4, Myd88, NF-kB, STAT1, IL-6, IL-1β, TNF-α, and Iba1). Subsequent investigations revealed that electrical stimulation modulated inflammatory cytokines, including IL-1β and TNF-α, by regulating STAT1 and NF-kB activation, especially in amoeboid microglia; moreover, electrical stimulation enhanced neuronal survival by activating neurotrophic factors, including BDNF and FGF9. Therapeutic electrical stimulation applied to the transcranial cortical- or periphery-nerve level to promote functional recovery may improve neuroprotection by modulating a common neuronal death pathway and upregulating neurotrophic factors. Therefore, combining transcranial cortical and peripheral somatosensory stimulation may exert a synergistic neuroprotective effect, further enhancing the beneficial effects on motor deficits in patients with ischemic stroke.
Collapse
Affiliation(s)
- Hongju Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
| | - Juyeon Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dahee Jung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Harim Oh
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hwakyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byungtae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
44
|
Wu C, Wu C, Peng L, Wu M, Li Z, Chen J. Multi-omics approaches for the understanding of therapeutic mechanism for Huang-Qi-Long-Dan Granule against ischemic stroke. Pharmacol Res 2024; 205:107229. [PMID: 38782148 DOI: 10.1016/j.phrs.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
After long-term clinical application, traditional Chinese medicine (TCM) has accumulated rich experience in the stroke treatment. Huang-Qi-Long-Dan Granule (HQLDG) is a TCM formula that has been used in clinical for the treatment of acute ischemic stroke. However, its mechanism against ischemic stroke is still unknown. This study aimed to identify HQLDG's effect against ischemic stroke and explore its underlying mechanism. 16s rRNA sequencing, metabolomics/tryptophan (Trp)-targeted metabolomics analysis and transcriptomic analysis were used to investigate HQLDG underlying therapeutic mechanism. Our results revealed that HQLDG significantly decreased the infarct volume, improved mouse behavior and brain slices pathological staining. In addition, it could ameliorate intestinal barrier damage and regulate tight junction gene expression. 16s rRNA, metabolomics and transcriptomics analysis revealed that HQLDG treatment significantly improved the composition of gut microbiota and Trp metabolism pathway, and further downregulated Th17/IL-17 signaling pathway. HQLDG treatment could significantly decrease serum inflammatory cytokines, IL-17A and IL-22; down-regulate Trp metabolism receptor gene (Ahr), inflammatory cytokines genes (IL-17a, IL-22), and an important coding gene for maintaining the mature Th17 (rorc) in both brain and intestinal tissues. In the contrary, after gut microbiota removal, this effect of HQLDG was impaired. HQLDG treated mouse fecal microbiota transplantation also had positive effect against tMCAO injury. Moreover, AhR inhibitor could decrease IL-17A immunofluorescence. These results suggested that the gut microbiota regulation might be an important intermediate in HQLDG against tMCAO injury. HQLDG might exert anti-ischemic stroke effects through the gut microbiota-Trp metabolism-Th17/IL-17 signaling, which provides new insights into HQLDG-mediated prevention in ischemic stroke.
Collapse
Affiliation(s)
- Chuanhong Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Chaoyong Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lixia Peng
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Mingxuan Wu
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Jianxin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
45
|
Huang Y, Han Z, Shen T, Zheng Y, Yang Z, Fan J, Wang R, Yan F, Tao Z, Luo Y, Liu P. Neutrophil migration participates in the side effect of recombinant human tissue plasminogen activator. CNS Neurosci Ther 2024; 30:e14825. [PMID: 38954749 PMCID: PMC11218914 DOI: 10.1111/cns.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
AIMS Ischemic stroke remains a challenge in medical research because of the limited treatment options. Recombinant human tissue plasminogen activator (rtPA) is the primary treatment for recanalization. However, nearly 50% of the patients experience complications that result in ineffective reperfusion. The precise factors contributing to ineffective reperfusion remain unclear; however, recent studies have suggested that immune cells, notably neutrophils, may influence the outcome of rtPA thrombolysis via mechanisms such as the formation of neutrophil extracellular traps. This study aimed to explore the nonthrombolytic effects of rtPA on neutrophils and highlight their contribution to ineffective reperfusion. METHODS We evaluated the effects of rtPA treatment on middle cerebral artery occlusion in rats. We also assessed neutrophil infiltration and activation after rtPA treatment in vitro and in vivo in a small cohort of patients with massive cerebral ischemia (MCI). RESULTS rtPA increased neutrophil infiltration into the brain microvessels and worsened blood-brain barrier damage during ischemia. It also increased the neutrophil counts of the patients with MCI. CONCLUSION Neutrophils play a crucial role in promoting ischemic injury and blood-brain barrier disruption, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Yuyou Huang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Tong Shen
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yangmin Zheng
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhenhong Yang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Junfen Fan
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Rongliang Wang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhen Tao
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yumin Luo
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
| | - Ping Liu
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| |
Collapse
|
46
|
Qian K, Hu J, Wang C, Xu C, Chen Y, Feng Q, Feng Y, Wu Y, Yu X, Ji Q. Dynamic change of neutrophil-to-lymphocyte ratio and its predictive value of prognosis in acute ischemic stroke. Brain Behav 2024; 14:e3616. [PMID: 38988102 PMCID: PMC11237173 DOI: 10.1002/brb3.3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE The present research aimed to explore the dynamic change of the neutrophil-to-lymphocyte ratio (NLR) and its relationship with functional outcome following an acute ischemic stroke (AIS), whether receiving intravenous thrombolysis (IVT) or not. METHODS We retrospectively analyzed data that were prospectively acquired from patients with AIS treated with IVT or not. For patients receiving IVT, the NLR was based on a blood test performed prior to IVT (d0) and at different time points after disease onset (d1, d3, d7). In addition, in the non-IVT group, the NLR was obtained at different time points after disease onset (d1, d3, d7). Follow-ups were performed 3 months after onset via telephone. In addition, a good outcome was defined as a modified Rankin scale (mRS) ≤1; a poor outcome means 2 ≤ mRS ≤ 6. RESULTS A total of 204 AIS patients were included in this study. The NLR presented a dynamic change as it increased to its peak at day 1 and gradually declined to its baseline at day 7, no matter whether patients were receiving IVT or not. Patients with poor outcomes have a higher NLR at various time points. The results of multivariate logistic regression analysis demonstrated that the National Institutes of Health Stroke Scale (NIHSS), NLR d1, NLR d3, and NLR d7 were independently associated with functional outcomes. The area under the receiver operating characteristic curve of NLR in predicting outcomes was as follows: NLR d3 demonstrated robust predictive power within the IVT therapy cohort, whereas NLR d7 was predictive in the non-IVT cohort. However, the most potent predictor emerged as the combination of NIHSS and NLR. CONCLUSION NLR has the potential to predicate diagnosis for AIS, especially when combined with the NIHSS score.
Collapse
Affiliation(s)
- Kai Qian
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Jie Hu
- Department of Emergency, Dongtai People's Hospital, Dongtai, China
| | - Chunyan Wang
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Chunxiang Xu
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Yanguo Chen
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Qing Feng
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Ya Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Yu
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
47
|
Ma KT, Wu YJ, Yang YX, Wu T, Chen C, Peng F, Du JR, Peng C. A novel phthalein component ameliorates neuroinflammation and cognitive dysfunction by suppressing the CXCL12/CXCR4 axis in rats with vascular dementia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118117. [PMID: 38548120 DOI: 10.1016/j.jep.2024.118117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chuanxiong, a plant of the Umbelliferae family, is a genuine medicinal herb from Sichuan Province. Phthalides are one of its main active components and exhibit good protective effect against cerebrovascular diseases. However, the mechanism by which phthalides exert neuroprotective effects is still largely unclear. AIM OF THE STUDY In this study, we extracted a phthalein component (named as QBT) from Ligusticum Chuanxiong, and investigated its neuroprotective effects against vascular dementia (VaD) rats and the underlying mechanism, focusing on the chemokine 12 (CXCL12)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis. METHODS A rat model of VaD was established, and treated with QBT. Cognitive dysfunction in VaD rats was assessed using the Y-maze, new object recognition, and Morris water maze tests. Neuronal damage and inflammatory response in VaD rats were examined through Nissl staining, immunofluorescence, enzyme-linked immunospecific assay, and western blotting analysis. Furthermore, the effects of QBT on CXCL12/CXCR4 axis and its downstream signaling pathways, Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor-κB (NF-κB), were investigated in VaD rats and BV2 microglial cells exposed to oxygen glucose deprivation. RESULTS QBT significantly alleviated cognitive dysfunction and neuronal damage in VaD rats, along with inhibition of VaD-induced over-activation of microglia and astrocytes and inflammatory response. Moreover, QBT exhibited anti-inflammatory effects by inhibiting the CXCL12/CXCR4 axis and its downstream JAK2/STAT3 and PI3K/AKT/NF-κB pathways, thereby attenuating the neuroinflammatory response both in vivo and in vitro. CONCLUSION QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, exerting neuroprotective effects by suppressing neuroinflammatory response through inhibition of the CXCL12/CXCR4 axis.
Collapse
Affiliation(s)
- Kai-Ting Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Jin Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Xin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Chu Chen
- Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
48
|
She Y, Shao CY, Liu YF, Huang Y, Yang J, Wan HT. Catalpol reduced LPS induced BV2 immunoreactivity through NF-κB/NLRP3 pathways: an in Vitro and in silico study. Front Pharmacol 2024; 15:1415445. [PMID: 38994205 PMCID: PMC11237369 DOI: 10.3389/fphar.2024.1415445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Ischemic Stroke (IS) stands as one of the primary cerebrovascular diseases profoundly linked with inflammation. In the context of neuroinflammation, an excessive activation of microglia has been observed. Consequently, regulating microglial activation emerges as a vital target for neuroinflammation treatment. Catalpol (CAT), a natural compound known for its anti-inflammatory properties, holds promise in this regard. However, its potential to modulate neuroinflammatory responses in the brain, especially on microglial cells, requires comprehensive exploration. Methods: In our study, we investigated into the potential anti-inflammatory effects of catalpol using lipopolysaccharide (LPS)-stimulated BV2 microglial cells as an experimental model. The production of nitric oxide (NO) by LPS-activated BV2 cells was quantified using the Griess reaction. Immunofluorescence was employed to measure glial cell activation markers. RT-qPCR was utilized to assess mRNA levels of various inflammatory markers. Western blot analysis examined protein expression in LPS-activated BV2 cells. NF-κB nuclear localization was detected by immunofluorescent staining. Additionally, molecular docking and molecular dynamics simulations (MDs) were conducted to explore the binding affinity of catalpol with key targets. Results: Catalpol effectively suppressed the production of nitric oxide (NO) induced by LPS and reduced the expression of microglial cell activation markers, including Iba-1. Furthermore, we observed that catalpol downregulated the mRNA expression of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β, as well as key molecules involved in the NLRP3 inflammasome and NF-κB pathway, including NLRP3, NF-κB, caspase-1, and ASC. Our mechanistic investigations shed light on how catalpol operates against neuroinflammation. It was evident that catalpol significantly inhibited the phosphorylation of NF-κB and NLRP3 inflammasome activation, both of which serve as upstream regulators of the inflammatory cascade. Molecular docking and MDs showed strong binding interactions between catalpol and key targets such as NF-κB, NLRP3, and IL-1β. Conclusion: Our findings support the idea that catalpol holds the potential to alleviate neuroinflammation, and it is achieved by inhibiting the activation of NLRP3 inflammasome and NF-κB, ultimately leading to the downregulation of pro-inflammatory cytokines. Catalpol emerges as a promising candidate for the treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Yong She
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chong-yu Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan-feng Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Huang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hai-tong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Jiang Z, Sun Y, Wang Z, Liu S. Causal relations between ischemic stroke and epilepsy: A bidirectional Mendelian randomization study. Heliyon 2024; 10:e32532. [PMID: 38961935 PMCID: PMC11219486 DOI: 10.1016/j.heliyon.2024.e32532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Background Although previous studies have reported a bidirectional relationship between ischemic stroke (IS) and epilepsy, the existence of a causal nexus and its directionality remains a topic of controversy. Methods The single nucleotide polymorphisms (SNPs) associated with IS were extracted from the Genome-Wide Association Study (GWAS) database. Pooled genetic data encompassing all epilepsy cases, as well as generalized and focal epilepsy subtypes, were acquired from the International League Against Epilepsy's GWAS study. In this study, the primary analysis approach utilized the inverse variance weighting (IVW) method as the main analytical technique. To enhance the robustness of the findings against potential pleiotropy, additional sensitivity analyses were conducted. Results In the forward analysis, the IVW method demonstrated that IS was associated with an increased risk of all epilepsy (odds ratio (OR) = 1.127, 95 % confidence interval (CI) = 1.038-1.224, P = 0.004) and generalized epilepsy (IVW: OR = 1.340, 95 % CI = 1.162-1.546, P = 5.70 × 10-5). There was no substantial causal relationship observed between IS and focal epilepsy (P > 0.05). Furthermore, generalized epilepsy, focal epilepsy, and all epilepsy did not show a causal relationship with IS. Conclusion This Mendelian randomization (MR) analysis demonstrates that IS increases the risk of developing epilepsy, especially generalized epilepsy. Conversely, no clear causal association was found between epilepsy and the onset of stroke. Therefore, the possible mechanisms of the effect of epilepsy on the pathogenesis of IS still need to be further investigated.
Collapse
Affiliation(s)
- Zongzhi Jiang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yining Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ziyi Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
50
|
Shuai H, Wang Z, Xiao Y, Ge Y, Mao H, Gao J. Genetically supported causality between gut microbiota, immune cells, and ischemic stroke: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1402718. [PMID: 38894965 PMCID: PMC11185428 DOI: 10.3389/fmicb.2024.1402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background Previous studies have highlighted a robust correlation between gut microbiota/immune cells and ischemic stroke (IS). However, the precise nature of their causal relationship remains uncertain. To address this gap, our study aims to meticulously investigate the causal association between gut microbiota/immune cells and the likelihood of developing IS, employing a two-sample Mendelian randomization (MR) analysis. Methods Our comprehensive analysis utilized summary statistics from genome-wide association studies (GWAS) on gut microbiota, immune cells, and IS. The primary MR method employed was the inverse variance-weighted (IVW) approach. To address potential pleiotropy and identify outlier genetic variants, we incorporated the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) technique, along with MR-Egger regression. Heterogeneity was assessed using Cochran's Q-test. Additionally, leave-one-out analysis was conducted to pinpoint any individual genetic variant influencing the observed causal associations. Finally, a reverse MR analysis was performed to explore the potential of reverse causation. Results Our investigation revealed four gut microbial taxa and 16 immune cells with a significant causal relationship with IS (p < 0.05). Notably, two bacterial features and five immunophenotypes were strongly associated with a lower IS risk: genus.Barnesiella.id.944 (OR: 0.907, 95% CI: 0.836-0.983, p = 0.018), genus.LachnospiraceaeNK4A136group.id.11319 (OR: 0.918, 95% CI: 0.853-0.983, p = 0.988), Activated & resting Treg % CD4++ (OR: 0.977, 95% CI: 0.956-0.998, p = 0.028). Additionally, significant associations between IS risk and two bacterial features along with eleven immunophenotypes were observed: genus.Paraprevotella.id.962 (OR: 1.106, 95% CI: 1.043-1.172, p < 0.001), genus.Streptococcus.id.1853 (OR: 1.119, 95% CI: 1.034-1.210, p = 0.005), CD127 on granulocyte (OR: 1.039, 95% CI: 1.009-1.070, p = 0.011). Our analyses did not reveal heterogeneity based on the Cochrane's Q-test (p > 0.05) nor indicate instances of horizontal pleiotropy according to MR-Egger and MR-PRESSO analyses (p > 0.05). Furthermore, the robustness of our MR results was confirmed through leave-one-out analysis. Conclusion Our study provides further evidence supporting the potential association between gut microbiota and immune cells in relation to IS, shedding light on the underlying mechanisms that may contribute to this condition. These findings lay a solid foundation for future investigations into targeted prevention strategies.
Collapse
Affiliation(s)
- Han Shuai
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Zi Wang
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yinggang Xiao
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yali Ge
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hua Mao
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Ju Gao
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|