1
|
Pesti-Asbóth G, Szilágyi E, Bíróné Molnár P, Oláh J, Babinszky L, Czeglédi L, Cziáky Z, Paholcsek M, Stündl L, Remenyik J. Monitoring physiological processes of fast-growing broilers during the whole life cycle: Changes of redox-homeostasis effected to trassulfuration pathway predicting the development of non-alcoholic fatty liver disease. PLoS One 2023; 18:e0290310. [PMID: 37590293 PMCID: PMC10434899 DOI: 10.1371/journal.pone.0290310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
In the broiler industry, the average daily gain and feed conversion ratio are extremely favorable, but the birds are beginning to approach the maximum of their genetic capacity. However, as a consequence of strong genetic selection, the occurrence of certain metabolic diseases, such as myopathies, ascites, sudden cardiac death and tibial dyschondroplasia, is increasing. These metabolic diseases can greatly affect the health status and welfare of birds, as well as the quality of meat. The main goal of this study was to investigate the changes in the main parameters of redox homeostasis during the rearing (1-42 days of age) of broilers with high genetic capacity, such as the concentrations of malondialdehyde, vitamin C, vitamin E, and reduced glutathione, the activities of glutathione peroxidase and glutathione reductase, and the inhibition rate of superoxide dismutase. Damage to the transsulfuration pathway during growth and the reason for changes in the level of homocysteine were investigated. Further, the parameters that can characterize the biochemical changes occurring in the birds were examined. Our study is the first characterize plasma albumin saturation. A method was developed to measure the levels of other small molecule thiol components of plasma. Changes in redox homeostasis induce increases in the concentrations of tumor necrosis factor alpha and inflammatory interleukins interleukin 2, interleukin 6 and interleukin 8 in broilers reared according to current large-scale husbandry technology and feeding protocols. A significant difference in all parameters tested was observed on the 21st day. The concentrations of cytokines and homocysteine increased, while the concentrations of glutathione and cysteine in the plasma decreased. Our findings suggest that observed changes in the abovementioned biochemical indices have a negative effect on poultry health.
Collapse
Affiliation(s)
- Georgina Pesti-Asbóth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - Endre Szilágyi
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - Piroska Bíróné Molnár
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - János Oláh
- Farm and Regional Research Institute of Debrecen, University of Debrecen, Debrecen, Hungary
| | - László Babinszky
- Faculty of Agricultural and Food Sciences and Environmental Management, Department of Animal Nutrition Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
| | - Levente Czeglédi
- Faculty of Agricultural and Food Sciences and Environmental Management, Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Group, University of Nyíregyháza; Nyíregyháza, Hungary
| | - Melinda Paholcsek
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - László Stündl
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Alam MF, Hijri SI, Alshahrani S, Alqahtani SS, Jali AM, Ahmed RA, Adawi MM, Algassmi SM, Shaheen ES, Moni SS, Anwer T. Zingerone Attenuates Carfilzomib-Induced Cardiotoxicity in Rats through Oxidative Stress and Inflammatory Cytokine Network. Int J Mol Sci 2022; 23:ijms232415617. [PMID: 36555257 PMCID: PMC9779556 DOI: 10.3390/ijms232415617] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Carfilzomib (CFZ) is an anticancer medication acting as a selective proteasome inhibitor. However, it can cause cardiovascular problems, increasing mortality and morbidity. This study aimed to investigate whether zingerone (ZRN) could help reduce carfilzomib-induced cardiotoxicity in Wistar albino rats. Rats were divided into five groups of six animals each. The first group received normal saline as a control (NC); the second group received multiple doses (six) of CFZ (4 mg/kg) intraperitoneally (IP); the third and fourth groups received zingerone (50 mg/kg and 100 mg/kg oral) along with six doses of CFZ for 16 days; and the fifth group received only 100 mg/kg zingerone orally. Hematological, biochemical, oxidative stress, and histopathological studies confirmed the findings of CFZ-induced cardiotoxicity. We found that ZRN significantly attenuated the effects of CFZ on oxidative stress by enhancing the antioxidant properties of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Additionally, ZRN reduces inflammatory cytokines and apoptotic markers, such as IL-1β, IL-6, TNFα, and caspase-3. Overall, zingerone prevents carfilzomib-induced cardiotoxicity in rats, as evidenced by histopathological studies.
Collapse
Affiliation(s)
- Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence:
| | - Sami I. Hijri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mansour M. Adawi
- Department of Histopathology, King Fahad Hospital, Jazan 45142, Saudi Arabia
| | - Sameeh M. Algassmi
- Department of Histopathology, King Fahad Hospital, Jazan 45142, Saudi Arabia
| | - Emad Sayed Shaheen
- Department of Animal House, Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
3
|
A redox switch regulates the assembly and anti-CRISPR activity of AcrIIC1. Nat Commun 2022; 13:7071. [PMID: 36400778 PMCID: PMC9674691 DOI: 10.1038/s41467-022-34551-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Anti-CRISPRs (Acrs) are natural inhibitors of bacteria's CRISPR-Cas systems, and have been developed as a safeguard to reduce the off-target effects of CRISPR gene-editing technology. Acrs can directly bind to CRISPR-Cas complexes and inhibit their activities. However, whether this process is under regulation in diverse eukaryotic cellular environments is poorly understood. In this work, we report the discovery of a redox switch for NmeAcrIIC1, which regulates NmeAcrIIC1's monomer-dimer interconversion and inhibitory activity on Cas9. Further structural studies reveal that a pair of conserved cysteines mediates the formation of inactive NmeAcrIIC1 dimer and directs the redox cycle. The redox switch also applies to the other two AcrIIC1 orthologs. Moreover, by replacing the redox-sensitive cysteines, we generated a robust AcrIIC1 variant that maintains potent inhibitory activity under various redox conditions. Our results reveal a redox-dependent regulation mechanism of Acr, and shed light on the design of superior Acr for CRISPR-Cas systems.
Collapse
|
4
|
Correia MJ, Pimpão AB, Fernandes DGF, Morello J, Sequeira CO, Calado J, Antunes AMM, Almeida MS, Branco P, Monteiro EC, Vicente JB, Serpa J, Pereira SA. Cysteine as a Multifaceted Player in Kidney, the Cysteine-Related Thiolome and Its Implications for Precision Medicine. Molecules 2022; 27:1416. [PMID: 35209204 PMCID: PMC8874463 DOI: 10.3390/molecules27041416] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Dalila G. F. Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Joaquim Calado
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Nephrology Department, Centro Hospitalar Universitário de Lisboa Central, 1069-166 Lisboa, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, 1049-001 Lisboa, Portugal;
| | - Manuel S. Almeida
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Patrícia Branco
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| |
Collapse
|
5
|
Pavão ML, Ferin R, Lima A, Baptista J. Cysteine and related aminothiols in cardiovascular disease, obesity and insulin resistance. Adv Clin Chem 2022; 109:75-127. [DOI: 10.1016/bs.acc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Walker DI, Hart JE, Patel CJ, Rudel R, Chu JH, Garshick E, Pennell KD, Laden F, Jones DP. Integrated molecular response of exposure to traffic-related pollutants in the US trucking industry. ENVIRONMENT INTERNATIONAL 2022; 158:106957. [PMID: 34737152 PMCID: PMC9624233 DOI: 10.1016/j.envint.2021.106957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/29/2023]
Abstract
Exposure to traffic-related pollutants, including diesel exhaust, is associated with increased risk of cardiopulmonary disease and mortality; however, the precise biochemical pathways underlying these effects are not known. To investigate biological response mechanisms underlying exposure to traffic related pollutants, we used an integrated molecular response approach that included high-resolution metabolomic profiling and peripheral blood gene expression to identify biological responses to diesel exhaust exposure. Plasma samples were collected from 73 non-smoking males employed in the US trucking industry between February 2009 and October 2010, and analyzed using untargeted high-resolution metabolomics to characterize metabolite associations with shift- and week-averaged levels of elemental carbon (EC), organic carbon (OC) and particulate matter with diameter ≤ 2.5 μm (PM2.5). Metabolic associations with EC, OC and PM2.5 were evaluated for biochemical processes known to be associated with disease risk. Annotated metabolites associated with exposure were then tested for relationships with the peripheral blood transcriptome using multivariate selection and network correlation. Week-averaged EC and OC levels, which were averaged across multiple shifts during the workweek, resulted in the greatest exposure-associated metabolic alterations compared to shift-averaged exposure levels. Metabolic changes associated with EC exposure suggest increased lipid peroxidation products, biomarkers of oxidative stress, thrombotic signaling lipids, and metabolites associated with endothelial dysfunction from altered nitric oxide metabolism, while OC exposures were associated with antioxidants, oxidative stress biomarkers and critical intermediates in nitric oxide production. Correlation with whole blood RNA gene expression provided additional evidence of changes in processes related to endothelial function, immune response, inflammation, and oxidative stress. We did not detect metabolic associations with PM2.5. This study provides an integrated molecular assessment of human exposure to traffic-related air pollutants that includes diesel exhaust. Metabolite and transcriptomic changes associated with exposure to EC and OC are consistent with increased risk of cardiovascular diseases and the adverse health effects of traffic-related air pollution.
Collapse
Affiliation(s)
- Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Jaime E Hart
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | | | - Jen-Hwa Chu
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Eric Garshick
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Pulmonary, Allergy, Sleep and Critical Care Medicine, VA Boston Healthcare System, Boston, MA, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, United States
| | - Francine Laden
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction. Int J Mol Sci 2021; 22:ijms221810043. [PMID: 34576205 PMCID: PMC8471715 DOI: 10.3390/ijms221810043] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation is among the core causatives of male infertility. Despite male infertility being a serious global issue, "bits and pieces" of its complex etiopathology still remain missing. During inflammation, levels of proinflammatory mediators in the male reproductive tract are greater than usual. According to epidemiological research, in numerous cases of male infertility, patients suffer from acute or chronic inflammation of the genitourinary tract which typically occurs without symptoms. Inflammatory responses in the male genital system are inextricably linked to oxidative stress (OS). OS is detrimental to male fertility parameters as it causes oxidative damage to reproductive cells and intracellular components. Multifarious male infertility causative factors pave the way for impairing male reproductive functions via the common mechanisms of OS and inflammation, both of which are interlinked pathophysiological processes, and the occurrence of any one of them induces the other. Both processes may be simultaneously found in the pathogenesis of male infertility. Thus, the present article aims to explain the role of inflammation and OS in male infertility in detail, as well as to show the mechanistic pathways that link causative factors of male reproductive tract inflammation, OS induction, and oxidant-sensitive cellular cascades leading to male infertility.
Collapse
|
8
|
Correia MJ, Pimpão AB, Lopes-Coelho F, Sequeira CO, Coelho NR, Gonçalves-Dias C, Barouki R, Coumoul X, Serpa J, Morello J, Monteiro EC, Pereira SA. Aryl Hydrocarbon Receptor and Cysteine Redox Dynamics Underlie (Mal)adaptive Mechanisms to Chronic Intermittent Hypoxia in Kidney Cortex. Antioxidants (Basel) 2021; 10:antiox10091484. [PMID: 34573115 PMCID: PMC8469308 DOI: 10.3390/antiox10091484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
We hypothesized that an interplay between aryl hydrocarbon receptor (AhR) and cysteine-related thiolome at the kidney cortex underlies the mechanisms of (mal)adaptation to chronic intermittent hypoxia (CIH), promoting arterial hypertension (HTN). Using a rat model of CIH-HTN, we investigated the impact of short-term (1 and 7 days), mid-term (14 and 21 days, pre-HTN), and long-term intermittent hypoxia (IH) (up to 60 days, established HTN) on CYP1A1 protein level (a sensitive hallmark of AhR activation) and cysteine-related thiol pools. We found that acute and chronic IH had opposite effects on CYP1A1 and the thiolome. While short-term IH decreased CYP1A1 and increased protein-S-thiolation, long-term IH increased CYP1A1 and free oxidized cysteine. In addition, an in vitro administration of cystine, but not cysteine, to human endothelial cells increased Cyp1a1 expression, supporting cystine as a putative AhR activator. This study supports CYP1A1 as a biomarker of obstructive sleep apnea (OSA) severity and oxidized pools of cysteine as risk indicator of OSA-HTN. This work contributes to a better understanding of the mechanisms underlying the phenotype of OSA-HTN, mimicked by this model, which is in line with precision medicine challenges in OSA.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Filipa Lopes-Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Nuno R. Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Clara Gonçalves-Dias
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Robert Barouki
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Xavier Coumoul
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Correspondence:
| |
Collapse
|
9
|
High Plasma Cystine Levels Are Associated with Blood Pressure and Reversed by CPAP in Patients with Obstructive Sleep Apnea. J Clin Med 2021; 10:jcm10071387. [PMID: 33808409 PMCID: PMC8037115 DOI: 10.3390/jcm10071387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) independent of obesity (OBS) imposes severe cardiovascular risk. To what extent plasma cystine concentration (CySS), a novel pro-oxidative vascular risk factor, is increased in OSA with or without OBS is presently unknown. We therefore studied CySS together with the redox state and precursor amino acids of glutathione (GSH) in peripheral blood mononuclear cells (PBMC) in untreated male patients with OSA (apnea-hypopnea-index (AHI) > 15 h-1, n = 28) compared to healthy male controls (n = 25) stratifying for BMI ≥ or < 30 kg m-2. Fifteen OSA patients were reassessed after 3-5-months CPAP. CySS correlated with cumulative time at an O2-saturation <90% (Tu90%) (r = 0.34, p < 0.05) beside BMI (r = 0.58, p < 0.001) and was higher in subjects with "hypoxic stress" (59.4 ± 2.0 vs. 50.1 ± 2.7 µM, p < 0.01) defined as Tu90% ≥ 15.2 min (corresponding to AHI ≥ 15 h-1). Moreover, CySS significantly correlated with systolic (r = 0.32, p < 0.05) and diastolic (r = 0.31, p < 0.05) blood pressure. CPAP significantly lowered CySS along with blood pressure at unchanged BMI. Unexpectedly, GSH antioxidant capacity in PBMC was increased with OSA and reversed with CPAP. Plasma CySS levels are increased with OSA-related hypoxic stress and associated with higher blood pressure. CPAP decreases both CySS and blood pressure. The role of CySS in OSA-related vascular endpoints and their prevention by CPAP warrants further studies.
Collapse
|
10
|
Liu Y, Yu Y, Zhao Q, Tang C, Zhang H, Qin Y, Feng X, Zhang J. Fluorescent probes based on nucleophilic aromatic substitution reactions for reactive sulfur and selenium species: Recent progress, applications, and design strategies. Coord Chem Rev 2021; 427:213601. [PMID: 33024340 PMCID: PMC7529596 DOI: 10.1016/j.ccr.2020.213601] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Reactive sulfur species (RSS) and reactive selenium species (RSeS) are important substances for the maintenance of physiological balance. Imbalance of RSS and RSeS is closely related to a series of human diseases, so it is considered to be an important biomarker in early diagnosis, treatment, and stage monitoring. Fast and accurate quantitative analysis of different RSS and RSeS in complex biological systems may promote the development of personalized diagnosis and treatment in the future. One way to explore the physiological function of various types of RSS and RSeS in vivo is to detect them at the molecular level, and one of the most effective methods for this is to use fluorescent probes. Nucleophilic aromatic substitution (SNAr) reactions are commonly exploited as a detection mechanism for RSS and RSeS in fluorescent probes. In this review, we cover recent progress in fluorescent probes for RSS and RSeS based on SNAr reactions, and discuss their response mechanisms, properties, and applications. Benzenesulfonate, phenyl-O ether, phenyl-S ether, phenyl-Se ether, 7-nitro-2,1,3-benzoxadiazole (NBD), benzoate, and selenium-nitrogen bonds are all good detection groups. Moreover, based on an integration of different reports, we propose the design and synthesis of RSS- and RSeS-selective probes based on SNAr reactions, current challenges, and future research directions, considering the selection of active sites, the effect of substituents on the benzene ring, and the introduction of other functional groups.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Islam SJ, Kim JH, Topel M, Liu C, Ko YA, Mujahid MS, Sims M, Mubasher M, Ejaz K, Morgan-Billingslea J, Jones K, Waller EK, Jones D, Uppal K, Dunbar SB, Pemu P, Vaccarino V, Searles CD, Baltrus P, Lewis TT, Quyyumi AA, Taylor H. Cardiovascular Risk and Resilience Among Black Adults: Rationale and Design of the MECA Study. J Am Heart Assoc 2020; 9:e015247. [PMID: 32340530 PMCID: PMC7428584 DOI: 10.1161/jaha.119.015247] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Cardiovascular disease incidence, prevalence, morbidity, and mortality have declined in the past several decades; however, disparities persist among subsets of the population. Notably, blacks have not experienced the same improvements on the whole as whites. Furthermore, frequent reports of relatively poorer health statistics among the black population have led to a broad assumption that black race reliably predicts relatively poorer health outcomes. However, substantial intraethnic and intraracial heterogeneity exists; moreover, individuals with similar risk factors and environmental exposures are often known to experience vastly different cardiovascular health outcomes. Thus, some individuals have good outcomes even in the presence of cardiovascular risk factors, a concept known as resilience. Methods and Results The MECA (Morehouse‐Emory Center for Health Equity) Study was designed to investigate the multilevel exposures that contribute to “resilience” in the face of risk for poor cardiovascular health among blacks in the greater Atlanta, GA, metropolitan area. We used census tract data to determine “at‐risk” and “resilient” neighborhoods with high or low prevalence of cardiovascular morbidity and mortality, based on cardiovascular death, hospitalization, and emergency department visits for blacks. More than 1400 individuals from these census tracts assented to demographic, health, and psychosocial questionnaires administered through telephone surveys. Afterwards, ≈500 individuals were recruited to enroll in a clinical study, where risk biomarkers, such as oxidative stress, and inflammatory markers, endothelial progenitor cells, metabolomic and microRNA profiles, and subclinical vascular dysfunction were measured. In addition, comprehensive behavioral questionnaires were collected and ideal cardiovascular health metrics were assessed using the American Heart Association's Life Simple 7 measure. Last, 150 individuals with low Life Simple 7 were recruited and randomized to a behavioral mobile health (eHealth) plus health coach or eHealth only intervention and followed up for improvement. Conclusions The MECA Study is investigating socioenvironmental and individual behavioral measures that promote resilience to cardiovascular disease in blacks by assessing biological, functional, and molecular mechanisms. REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT03308812.
Collapse
Affiliation(s)
- Shabatun J Islam
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Jeong Hwan Kim
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Matthew Topel
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Chang Liu
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA.,Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics Rollins School of Public Health Emory University Atlanta GA
| | - Mahasin S Mujahid
- Division of Epidemiology School of Public Health University of California Berkeley CA
| | - Mario Sims
- Department of Medicine University of Mississippi Medical Center Jackson MS
| | - Mohamed Mubasher
- Department of Community Health and Preventive Medicine Morehouse School of Medicine Atlanta GA
| | - Kiran Ejaz
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Jan Morgan-Billingslea
- Department of Community Health and Preventive Medicine Morehouse School of Medicine Atlanta GA
| | - Kia Jones
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Edmund K Waller
- Department of Hematology and Oncology Winship Cancer Institute Emory University School of Medicine Atlanta GA
| | - Dean Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine Department of Medicine Emory University School of Medicine Atlanta GA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine Department of Medicine Emory University School of Medicine Atlanta GA
| | - Sandra B Dunbar
- Nell Hodgson Woodruff School of Nursing Emory University Atlanta GA
| | - Priscilla Pemu
- Department of Medicine Morehouse School of Medicine Atlanta GA
| | - Viola Vaccarino
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA.,Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Charles D Searles
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Peter Baltrus
- Department of Community Health and Preventive Medicine Morehouse School of Medicine Atlanta GA.,National Center for Primary Care Morehouse School of Medicine Atlanta GA
| | - Tené T Lewis
- Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Arshed A Quyyumi
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Herman Taylor
- Department of Medicine Morehouse School of Medicine Atlanta GA
| |
Collapse
|
12
|
Lee JO, Yang YM, Choi JH, Kim TW, Lee JW, Kim YP. Microbial Redox Regulator-Enabled Pulldown for Rapid Analysis of Plasma Low-Molecular-Weight Biothiols. Anal Chem 2019; 91:10064-10072. [PMID: 31286772 DOI: 10.1021/acs.analchem.9b01991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although low-molecular-weight (LMW) biothiols function as a disease indicator in plasma, rapidly and effectively analyzing them remains challenging in the extracellular oxidative environment due to technical difficulties. Here, we report a newly designed, affinity pulldown platform using a Bacillus subtilis-derived organic hydroperoxide resistance regulatory (OhrRBS) protein and its operator dsDNA for rapid and cost-effective analyses of plasma LMW biothiols. In the presence of organic hydroperoxide, LMW biothiols triggered the rapid dissociation of FAM-labeled dsDNA from FLAG-tagged OhrRBS via S-thiolation of OhrRBS on anti-FLAG antibody-coated beads, which led to a strong increase of fluorescence intensity in the supernatant after pulldown. This method was easily extended by using a reducing agent to detect free and total LMW biothiols simultaneously in mouse plasma. Unlike free plasma LMW biothiols, total plasma LMW biothiols were more elevated in ΔLDLR mice than those in normal mice. Owing to the rapid dissociation of OhrR/dsDNA complexes in response to LMW biothiols, this pulldown platform is immediately suitable for monitoring rapid redox changes in plasma LMW biothiols as well as studying oxidative stress and diseases in blood.
Collapse
Affiliation(s)
- Jin Oh Lee
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Yoon-Mo Yang
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Jin-Won Lee
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Young-Pil Kim
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea.,Institute of Nano Science and Technology , Hanyang University , Seoul 04763 , Republic of Korea
| |
Collapse
|
13
|
Chandler JD, Hu X, Ko EJ, Park S, Fernandes J, Lee YT, Orr ML, Hao L, Smith MR, Neujahr DC, Uppal K, Kang SM, Jones DP, Go YM. Low-dose cadmium potentiates lung inflammatory response to 2009 pandemic H1N1 influenza virus in mice. ENVIRONMENT INTERNATIONAL 2019; 127:720-729. [PMID: 30999129 PMCID: PMC6536378 DOI: 10.1016/j.envint.2019.03.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 05/04/2023]
Abstract
Cadmium (Cd) is a toxic, pro-inflammatory metal ubiquitous in the diet that accumulates in body organs due to inefficient elimination. Responses to influenza virus infection are variable, particularly severity of pneumonia. We used a murine model of chronic low-dose oral exposure to Cd to test if increased lung tissue Cd worsened inflammation in response to sub-lethal H1N1 infection. The results show that Cd-treated mice had increased lung tissue inflammatory cells, including neutrophils, monocytes, T lymphocytes and dendritic cells, following H1N1 infection. Lung genetic responses to infection (increasing TNF-α, interferon and complement, and decreasing myogenesis) were also exacerbated. To reveal the organization of a network structure, pinpointing molecules critical to Cd-altered lung function, global correlations were made for immune cell counts, leading edge gene transcripts and metabolites. This revealed that Cd increased correlation of myeloid immune cells with pro-inflammatory genes, particularly interferon-γ and metabolites. Together, the results show that Cd burden in mice increased inflammation in response to sub-lethal H1N1 challenge, which was coordinated by genetic and metabolic responses, and could provide new targets for intervention against lethal inflammatory pathology of clinical H1N1 infection.
Collapse
Affiliation(s)
- Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Soojin Park
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Young-Tae Lee
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Michael L Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Li Hao
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - David C Neujahr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
| |
Collapse
|
14
|
Walker DI, Lane KJ, Liu K, Uppal K, Patton AP, Durant JL, Jones DP, Brugge D, Pennell KD. Metabolomic assessment of exposure to near-highway ultrafine particles. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:469-483. [PMID: 30518795 PMCID: PMC6551325 DOI: 10.1038/s41370-018-0102-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/06/2018] [Accepted: 11/12/2018] [Indexed: 05/17/2023]
Abstract
Exposure to traffic-related air pollutants has been associated with increased risk of adverse cardiopulmonary outcomes and mortality; however, the biochemical pathways linking exposure to disease are not known. To delineate biological response mechanisms associated with exposure to near-highway ultrafine particles (UFP), we used untargeted high-resolution metabolomics to profile plasma from 59 participants enrolled in the Community Assessment of Freeway Exposure and Health (CAFEH) study. Metabolic variations associated with UFP exposure were assessed using a cross-sectional study design based upon low (mean 16,000 particles/cm3) and high (mean 24,000 particles/cm3) annual average UFP exposures. In comparing quantified metabolites, we identified five metabolites that were differentially expressed between low and high exposures, including arginine, aspartic acid, glutamine, cystine and methionine sulfoxide. Analysis of the metabolome identified 316 m/z features associated with UFP, which were consistent with increased lipid peroxidation, endogenous inhibitors of nitric oxide and vehicle exhaust exposure biomarkers. Network correlation analysis and metabolic pathway enrichment identified 38 pathways and included variations related to inflammation, endothelial function and mitochondrial bioenergetics. Taken together, these results suggest UFP exposure is associated with a complex series of metabolic variations related to antioxidant pathways, in vivo generation of reactive oxygen species and processes critical to endothelial function.
Collapse
Affiliation(s)
- Douglas I Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin J Lane
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Ken Liu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - John L Durant
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Doug Brugge
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
- Jonathan M. Tisch College of Civic Life, Tufts University, Medford, MA, USA
| | - Kurt D Pennell
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
15
|
Dennis KK, Go YM, Jones DP. Redox Systems Biology of Nutrition and Oxidative Stress. J Nutr 2019; 149:553-565. [PMID: 30949678 PMCID: PMC6461723 DOI: 10.1093/jn/nxy306] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Diet and nutrition contribute to both beneficial and harmful aspects of oxidative processes. The harmful processes, termed oxidative stress, occur with many human diseases. Major advances in understanding oxidative stress and nutrition have occurred with broad characterization of dietary oxidants and antioxidants, and with mechanistic studies showing antioxidant efficacy. However, randomized controlled trials in humans with free-radical-scavenging antioxidants and the glutathione precursor N-acetylcysteine have provided limited or inconsistent evidence for health benefits. This, combined with emerging redox theory, indicates that holistic models are needed to understand the interplay of nutrition and oxidative stress. The purpose of this article is to highlight how recent advances in redox theory and the development of new omics tools and data-driven approaches provide a framework for future nutrition and oxidative stress research. Here we describe why a holistic approach is needed to understand the impact of nutrition on oxidative stress and how recent advances in omics and data analysis methods are viable tools for systems nutrition approaches. Based on the extensive research on glutathione and related thiol antioxidant systems, we summarize the advancing framework for diet and oxidative stress in which antioxidant systems are a component of a larger redox network that serves as a responsive interface between the environment and an individual. The feasibility for redox network analysis has been established by experimental models in which dietary factors are systematically varied and oxidative stress markers are linked through integrated omics (metabolome, transcriptome, proteome). With this framework, integrated redox network models will support optimization of diet to protect against oxidative stress and disease.
Collapse
Affiliation(s)
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
16
|
Allawzi A, Elajaili H, Redente EF, Nozik-Grayck E. Oxidative Toxicology of Bleomycin: Role of the Extracellular Redox Environment. CURRENT OPINION IN TOXICOLOGY 2019; 13:68-73. [PMID: 31289762 PMCID: PMC6615752 DOI: 10.1016/j.cotox.2018.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bleomycin is a commonly used cancer therapeutic that is associated with oxidative stress leading to pulmonary toxicity. Bleomycin has been used in animal studies to model pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary hypertension secondary to interstitial lung disease. The toxicity with bleomycin is initiated by direct oxidative damage, which then leads to subsequent inflammation and fibrosis mediated by generation of both extracellular ROS and intracellular ROS. While most studies focus on the intracellular ROS implicated in TGFβ signaling and fibrosis, the changes in the extracellular redox environment, particularly with the initiation of early inflammation, is also critical to the pathogenesis of bleomycin induced injury and fibrosis. In this review, we focus on the role of extracellular redox environment in bleomycin toxicity, with attention to the generation of extracellular ROS, alterations in the redox state of extracellular thiols, and the central role of the extracellular isoform of superoxide dismutase in the development of bleomycin induced injury and fibrosis.
Collapse
Affiliation(s)
- Ayed Allawzi
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Hanan Elajaili
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Elizabeth F. Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver, CO
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Eva Nozik-Grayck
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
17
|
Pickering G, Macian N, Papet I, Dualé C, Coudert C, Pereira B. N-acetylcysteine prevents glutathione decrease and does not interfere with paracetamol antinociceptive effect at therapeutic dosage: a randomized double-blind controlled trial in healthy subjects. Fundam Clin Pharmacol 2019; 33:303-311. [PMID: 30471141 DOI: 10.1111/fcp.12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 01/12/2023]
Abstract
Paracetamol (APAP) may lead to hepatic changes even at therapeutic dosages. Glutathione (GSH) plays a pivotal role in APAP metabolism as it allows the detoxification of a toxic metabolite. N-Acetylcysteine (NAC) is APAP antidote, is also largely used as a mucoactive drug and is often associated with APAP. This study aims at evaluating if 1- NAC modifies APAP pain efficacy and 2- NAC prevents glutathione depletion with APAP at therapeutic doses. This double-blind randomized controlled study (NCT02206178) was carried out in 24 healthy volunteers. APAP was given for 4 days (1 g ×4 daily) with NAC or with placebo. Thermal pain tests, whole blood GSH, and hepatic enzymes (ASAT, ALAT) were measured before (D0) and after (D4) oral APAP-NAC or APAP-placebo intake. anova for repeated measures adapted to cross-overdesign was performed and a two-tailed type I error was fixed at 5%. The primary endpoint was the area under the curve (0-240 min) of pain intensity (Numerical Scale) after thermal pain stimulation using Pathway-Medoc® . APAP antinociceptive effect was similar in both groups. GSH was maintained to its baseline value in the APAP/NAC group but diminished in the APAP/placebo group (P = 0.033). This study shows for the first time that APAP antinociceptive effectiveness is not influenced by NAC. It also shows that the effect of APAP at therapeutic dosage on GSH may be counteracted by NAC. These issues are particularly important for patients as APAP is often prescribed for years as a first-line pain treatment and further trials in patients are now warranted.
Collapse
Affiliation(s)
- Gisèle Pickering
- Centre de Pharmacologie Clinique CIC Inserm 1405, CHU Clermont-Ferrand, Clermont-Ferrand, Auvergne, 63000, France.,Inserm 1107, Université Clermont Auvergne Neurodol, Clermont-Ferrand, Auvergne, 63000, France
| | - Nicolas Macian
- Centre de Pharmacologie Clinique CIC Inserm 1405, CHU Clermont-Ferrand, Clermont-Ferrand, Auvergne, 63000, France
| | - Isabelle Papet
- INRA, UNH, Unité de Nutrition Humaine, CRNH, Université Clermont Auvergne, Clermont-Ferrand, Auvergne, 63000, France
| | - Christian Dualé
- Centre de Pharmacologie Clinique CIC Inserm 1405, CHU Clermont-Ferrand, Clermont-Ferrand, Auvergne, 63000, France.,Inserm 1107, Université Clermont Auvergne Neurodol, Clermont-Ferrand, Auvergne, 63000, France
| | - Catherine Coudert
- Pharmacie centrale, CHU Clermont-Ferrand, Clermont-Ferrand, Auvergne, 63000, France
| | - Bruno Pereira
- DRCI, CHU Clermont-Ferrand, Clermont-Ferrand, Auvergne, 63000, France
| |
Collapse
|
18
|
Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X, Liu S. Hydrogen Sulfide (H 2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol 2018; 9:1066. [PMID: 30298008 PMCID: PMC6160695 DOI: 10.3389/fphar.2018.01066] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, but its pathogenesis is not yet clear. Hydrogen sulfide (H2S) is considered to be the third most important endogenous gasotransmitter in the organism after carbon monoxide and nitric oxide. It can be synthesized in mammalian tissues and can freely cross the cell membrane and exert many biological effects in various systems including cardiovascular system. More and more recent studies have supported the protective effects of endogenous H2S and exogenous H2S-releasing compounds (such as NaHS, Na2S, and GYY4137) in cardiovascular diseases, such as cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and atherosclerosis. Here, we provided an up-to-date overview of the mechanistic actions of H2S as well as the therapeutic potential of various classes of H2S donors in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, United States
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Hu X, Chandler JD, Fernandes J, Orr ML, Hao L, Uppal K, Neujahr DC, Jones DP, Go YM. Selenium supplementation prevents metabolic and transcriptomic responses to cadmium in mouse lung. Biochim Biophys Acta Gen Subj 2018; 1862:2417-2426. [PMID: 29656123 DOI: 10.1016/j.bbagen.2018.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The protective effect of selenium (Se) on cadmium (Cd) toxicity is well documented, but underlying mechanisms are unclear. METHODS Male mice fed standard diet were given Cd (CdCl2, 18 μmol/L) in drinking water with or without Se (Na2SeO4, 20 μmol/L) for 16 weeks. Lungs were analyzed for Cd concentration, transcriptomics and metabolomics. Data were analyzed with biostatistics, bioinformatics, pathway enrichment analysis, and combined transcriptome-metabolome-wide association study. RESULTS Mice treated with Cd had higher lung Cd content (1.7 ± 0.4 pmol/mg protein) than control mice (0.8 ± 0.3 pmol/mg protein) or mice treated with Cd and Se (0.4 ± 0.1 pmol/mg protein). Gene set enrichment analysis of transcriptomics data showed that Se prevented Cd effects on inflammatory and myogenesis genes and diminished Cd effects on several other pathways. Similarly, Se prevented Cd-disrupted metabolic pathways in amino acid metabolism and urea cycle. Integrated transcriptome and metabolome network analysis showed that Cd treatment had a network structure with fewer gene-metabolite clusters compared to control. Centrality measurements showed that Se counteracted changes in a group of Cd-responsive genes including Zdhhc11, (protein-cysteine S-palmitoyltransferase), Ighg1 (immunoglobulin heavy constant gamma-1) and associated changes in metabolite concentrations. CONCLUSION Co-administration of Se with Cd prevented Cd increase in lung and prevented Cd-associated pathway and network responses of the transcriptome and metabolome. Se protection against Cd toxicity in lung involves complex systems responses. GENERAL SIGNIFICANCE Environmental Cd stimulates proinflammatory and profibrotic signaling. The present results indicate that dietary or supplemental Se could be useful to mitigate Cd toxicity.
Collapse
Affiliation(s)
- Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael L Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Li Hao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - David C Neujahr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
21
|
L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids 2018; 50:909-921. [PMID: 29626298 DOI: 10.1007/s00726-018-2559-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
L-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of L-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and L-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p < 0.005) increased the levels of cell adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. L-Cysteine treatment significantly (p < 0.005) increased G6PD activity and levels of GSH, and decreased NOX, ROS, and adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas L-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.
Collapse
|
22
|
Zheng Y, Ritzenthaler JD, Burke TJ, Otero J, Roman J, Watson WH. Age-dependent oxidation of extracellular cysteine/cystine redox state (E h(Cys/CySS)) in mouse lung fibroblasts is mediated by a decline in Slc7a11 expression. Free Radic Biol Med 2018; 118:13-22. [PMID: 29458149 PMCID: PMC5884717 DOI: 10.1016/j.freeradbiomed.2018.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
Aging is associated with progressive oxidation of the extracellular environment. The redox state of human plasma, defined by the concentrations of cysteine (Cys) and cystine (CySS), becomes more oxidized as we age. Recently, we showed that fibroblasts isolated from the lungs of young and old mice retain this differential phenotype; old cells produce and maintain a more oxidizing extracellular redox potential (Eh(Cys/CySS)) than young cells. Microarray analysis identified down-regulation of Slc7a11, the light subunit of the CySS/glutamate transporter, as a potential mediator of age-related oxidation in these cells. The purpose of the present study was to investigate the mechanistic link between Slc7a11 expression and extracellular Eh(Cys/CySS). Sulforaphane treatment or overexpression of Slc7a11 was used to increase Slc7a11 in lung fibroblasts from old mice, and sulfasalazine treatment or siRNA-mediated knock down was used to decrease Slc7a11 in young fibroblasts. Slc7a11 mRNA levels were measured by real-time PCR, Slc7a11 activity was determined by measuring the rate of glutamate release, Cys, CySS, glutathione (GSH) and its disulfide (GSSG) were measured by HPLC, and Eh(Cys/CySS) was calculated from the Nernst equation. The results showed that both Eh(Cys/CySS) and Eh(GSH/GSSG) were more oxidized in the conditioned media of old cells than in young cells. Up-regulation of Slc7a11 via overexpression or sulforaphane treatment restored extracellular Eh(Cys/CySS) in cultures of old cells, whereas down-regulation reproduced the oxidizing Eh(Cys/CySS) in young cells. Only sulforaphane treatment was able to increase total GSH and restore Eh(GSH/GSSG), whereas overexpression, knock down and sulfasalazine had no effect on these parameters. In addition, inhibition of GSH synthesis with buthionine sulfoximine had no effect on the ability of cells to restore their extracellular redox potential in response to an oxidative challenge. In conclusion, our study reveals Slc7a11 is the key regulator of age-dependent changes in extracellular Eh(Cys/CySS) in primary mouse lung fibroblasts, and its effects are not dependent on GSH synthesis.
Collapse
Affiliation(s)
- Yuxuan Zheng
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 505 South Hancock Street, Louisville, KY 40202, United States.
| | - Jeffrey D Ritzenthaler
- Department of Medicine, Divisions of Gastroenterology, Hepatology and Nutrition, and Pulmonary, Critical Care, & Sleep Medicine, University of Louisville School of Medicine, 550 South Jackson Street, Louisville, KY 40202, United States.
| | - Tom J Burke
- Department of Medicine, Divisions of Gastroenterology, Hepatology and Nutrition, and Pulmonary, Critical Care, & Sleep Medicine, University of Louisville School of Medicine, 550 South Jackson Street, Louisville, KY 40202, United States.
| | - Javier Otero
- Department of Medicine, Divisions of Gastroenterology, Hepatology and Nutrition, and Pulmonary, Critical Care, & Sleep Medicine, University of Louisville School of Medicine, 550 South Jackson Street, Louisville, KY 40202, United States.
| | - Jesse Roman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 505 South Hancock Street, Louisville, KY 40202, United States; Department of Medicine, Divisions of Gastroenterology, Hepatology and Nutrition, and Pulmonary, Critical Care, & Sleep Medicine, University of Louisville School of Medicine, 550 South Jackson Street, Louisville, KY 40202, United States; Robley Rex Veterans Affairs Medical Center, 800 Zorn Avenue, Louisville, KY 40206, United States.
| | - Walter H Watson
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 505 South Hancock Street, Louisville, KY 40202, United States; Department of Medicine, Divisions of Gastroenterology, Hepatology and Nutrition, and Pulmonary, Critical Care, & Sleep Medicine, University of Louisville School of Medicine, 550 South Jackson Street, Louisville, KY 40202, United States.
| |
Collapse
|
23
|
Binu P, Gifty K, Vineetha RC, Abhilash S, Arathi P, Nair RH. Eugenol, a plant-derived phenolic nutraceutical, protects thiol (SH) group in myocardium from ROS-mediated oxidation under chemotherapeutic stress induced by arsenic trioxide – a in vivo model study. Drug Chem Toxicol 2018; 41:352-357. [DOI: 10.1080/01480545.2018.1424179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P. Binu
- Physiology Research Laboratory, School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - K. Gifty
- Physiology Research Laboratory, School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - R. C. Vineetha
- Physiology Research Laboratory, School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - S. Abhilash
- Physiology Research Laboratory, School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - P. Arathi
- Physiology Research Laboratory, School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - R. Harikumaran Nair
- Physiology Research Laboratory, School of Biosciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
24
|
Hajjar I, Hayek SS, Goldstein FC, Martin G, Jones DP, Quyyumi A. Oxidative stress predicts cognitive decline with aging in healthy adults: an observational study. J Neuroinflammation 2018; 15:17. [PMID: 29338747 PMCID: PMC5771063 DOI: 10.1186/s12974-017-1026-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
Background Redox signaling, which can be assessed by circulating aminothiols, reflects oxidative stress (OS) status and has been linked to clinical cardiovascular disease and its risk factors. These, in turn, are related to executive function decline. OS may precede the pro-inflammatory state seen in vascular disease. The objective of this study is to investigate the association between aminothiol markers of OS and inflammation in cognitive decline, especially in the executive cognitive domain which is highly susceptible to cardiovascular risk factors and is an important predictor of cognitive disability. Methods The study design is that of a longitudinal cohort study within the setting of a large academic institution with participants being university employees (n = 511), mean age 49 years, 68% women, and 23% African-American. These participants were followed for four consecutive years with a yearly cognitive assessment conducted using computerized versions of 15 cognitive tests. Peripheral cystine, glutathione, their disulfide derivatives, and C-reactive protein (CRP) were measured. Results Lower levels of glutathione at baseline was associated with a decline in the executive domain over 4 years (covariate-adjusted relative risk (RR) for glutathione = 1.70 (95% CI = 1.02–2.85), p = 0.04). Furthermore, a longitudinal decline in glutathione level was associated with a faster decline in the executive domain (p = 0.03). None of the other OS markers or CRP were linked to cognitive decline over 4 years. Conclusion Increased OS reflected by decreased glutathione was associated with a decline in executive function in a healthy population. In contrast, inflammation was not linked to cognitive decline. OS may be an earlier biomarker that precedes the inflammatory phase of executive decline with aging.
Collapse
Affiliation(s)
- Ihab Hajjar
- Emory Univeristy, 1841 Clifton Road NE, Atlanta, GA, 30329, United States.
| | - Salim S Hayek
- Emory Univeristy, 1841 Clifton Road NE, Atlanta, GA, 30329, United States
| | | | - Greg Martin
- Emory Univeristy, 1841 Clifton Road NE, Atlanta, GA, 30329, United States
| | - Dean P Jones
- Emory Univeristy, 1841 Clifton Road NE, Atlanta, GA, 30329, United States
| | - Arshed Quyyumi
- Emory Univeristy, 1841 Clifton Road NE, Atlanta, GA, 30329, United States
| |
Collapse
|
25
|
Abstract
Many acute and chronic lung diseases could benefit from improved regeneration therapy. In development and throughout life, genetically encoded exposure memory systems allow environmental exposures, diet, and infectious agents to direct subsequent phenotypic adaptation and responses. The impact of such memory systems on lung regeneration is currently unknown. This article provides a brief overview of advances in redox biology and medicine as a framework for elucidating exposure memory and delineating spatiotemporal responses in lung regeneration. New imaging and omics methods enable precise definition to advance knowledge of development and the cumulative changes in lung biochemistry, structure, and cell populations occurring from prior and ongoing exposures. Importantly, conditioning steps may be needed to reverse exposure memory and enable effective regeneration. Thus, to complement developmental biology and regenerative medicine, research programs are needed to gain systematic knowledge of how lifelong exposures impact lung biology and support transition of lung regeneration from hypothetical to practical medicine.
Collapse
|
26
|
Maclean KN, Jiang H, Aivazidis S, Kim E, Shearn CT, Harris PS, Petersen DR, Allen RH, Stabler SP, Roede JR. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism. FASEB J 2018; 32:1265-1280. [PMID: 29101223 DOI: 10.1096/fj.201700586r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cystathionine β-synthase-deficient homocystinuria (HCU) is a poorly understood, life-threatening inborn error of sulfur metabolism. Analysis of hepatic glutathione (GSH) metabolism in a mouse model of HCU demonstrated significant depletion of cysteine, GSH, and GSH disulfide independent of the block in trans-sulfuration compared with wild-type controls. HCU induced the expression of the catalytic and regulatory subunits of γ-glutamyl ligase, GSH synthase (GS), γ-glutamyl transpeptidase 1, 5-oxoprolinase (OPLAH), and the GSH-dependent methylglyoxal detoxification enzyme, glyoxalase-1. Multiple components of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant-response regulatory axis were induced without any detectable activation of Nrf2. Metabolomic analysis revealed the accumulation of multiple γ-glutamyl amino acids and that plasma ophthalmate levels could serve as a noninvasive marker for hepatic redox stress. Neither cysteine, nor betaine treatment was able to reverse the observed enzyme inductions. Taurine treatment normalized the expression levels of γ-glutamyl ligase C/M, GS, OPLAH, and glyoxalase-1, and reversed HCU-induced deficits in protein glutathionylation by acting to double GSH levels relative to controls. Collectively, our data indicate that the perturbation of the γ-glutamyl cycle could contribute to multiple sequelae in HCU and that taurine has significant therapeutic potential for both HCU and other diseases for which GSH depletion is a critical pathogenic factor.-Maclean, K. N., Jiang, H., Aivazidis, S., Kim, E., Shearn, C. T., Harris, P. S., Petersen, D. R., Allen, R. H., Stabler, S. P., Roede, J. R. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Hua Jiang
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Stefanos Aivazidis
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Eugene Kim
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Colin T Shearn
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Robert H Allen
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| |
Collapse
|
27
|
Qu H, Yu H, Gu R, Chen D, Chen X, Huang Y, Xi W, Huang Y. Proteomics for studying the effects of L. rhamnosus LV108 against non-alcoholic fatty liver disease in rats. RSC Adv 2018; 8:38517-38528. [PMID: 35559112 PMCID: PMC9090571 DOI: 10.1039/c8ra06771f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/04/2018] [Indexed: 01/07/2023] Open
Abstract
Probiotics show protective effects against non-alcoholic fatty liver disease (NAFLD). However, their efficacy against NAFLD and the mechanisms are still unknown. In this study, Tandem Mass Tag (TMT) relative quantitative proteomics was utilized to track the changes in liver protein expression in rats fed with Lactobacillus rhamnosus LV108. A total of 4155 corresponding proteins were identified by MS. A total of 26 differentially expressed proteins were found between the L. rhamnosus LV108 treatment group and mode group, and there are 16 proteins up-regulated and 10 proteins down-regulated. Most of the differentially expressed proteins were involved in apoptosis and lipid metabolism. The key differentially expressed proteins (BFAR and Cyt-C) were verified by parallel reaction monitoring to be reliable. Our study is the first attempt to analyze the protein profile of probiotic-treated NAFLD model rats by quantitative proteomics. The identified proteins in this study will likely contribute to a better understanding of the molecular mechanisms of the effect of probiotics on NAFLD. Probiotics show protective effects against non-alcoholic fatty liver disease (NAFLD).![]()
Collapse
Affiliation(s)
- Hengxian Qu
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| | - Hongbo Yu
- Uni-enterprise (China) Holding, Ltd
- Kunshan
- China
| | - Ruixia Gu
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| | - Dawei Chen
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| | - Xia Chen
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| | | | - Wenbo Xi
- Uni-enterprise (China) Holding, Ltd
- Kunshan
- China
| | - Yujun Huang
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| |
Collapse
|
28
|
Go YM, Jones DP. Redox theory of aging: implications for health and disease. Clin Sci (Lond) 2017; 131:1669-1688. [PMID: 28667066 PMCID: PMC5773128 DOI: 10.1042/cs20160897] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023]
Abstract
Genetics ultimately defines an individual, yet the phenotype of an adult is extensively determined by the sequence of lifelong exposures, termed the exposome. The redox theory of aging recognizes that animals evolved within an oxygen-rich environment, which created a critical redox interface between an organism and its environment. Advances in redox biology show that redox elements are present throughout metabolic and structural systems and operate as functional networks to support the genome in adaptation to environmental resources and challenges during lifespan. These principles emphasize that physical and functional phenotypes of an adult are determined by gene-environment interactions from early life onward. The principles highlight the critical nature of cumulative exposure memories in defining changes in resilience progressively during life. Both plasma glutathione and cysteine systems become oxidized with aging, and the recent finding that cystine to glutathione ratio in human plasma predicts death in coronary artery disease (CAD) patients suggests this could provide a way to measure resilience of redox networks in aging and disease. The emerging concepts of cumulative gene-environment interactions warrant focused efforts to elucidate central mechanisms by which exposure memory governs health and etiology, onset and progression of disease.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, U.S.A
| | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, U.S.A.
| |
Collapse
|
29
|
Garibaldi S, Barisione C, Marengo B, Ameri P, Brunelli C, Balbi M, Ghigliotti G. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols. Toxins (Basel) 2017; 9:toxins9010027. [PMID: 28075404 PMCID: PMC5308259 DOI: 10.3390/toxins9010027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/24/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Local accumulation of Advanced Oxidation Protein Products (AOPP) induces pro-inflammatory and pro-fibrotic processes in kidneys and is an independent predictor of renal fibrosis and of rapid decline of eGFR in patients with chronic kidney disease (CKD). In addition to kidney damage, circulating AOPP may be regarded as mediators of systemic oxidative stress and, in this capacity, they might play a role in the progression of atherosclerotic damage of arterial walls. Atherosclerosis is a chronic inflammatory disease that involves activation of innate and adaptive immunity. Dendritic cells (DCs) are key cells in this process, due to their role in antigen presentation, inflammation resolution and T cell activation. AOPP consist in oxidative modifications of proteins (such as albumin and fibrinogen) that mainly occur through myeloperoxidase (MPO)-derived hypochlorite (HOCl). HOCl modified proteins have been found in atherosclerotic lesions. The oxidizing environment and the shifts in cellular redox equilibrium trigger inflammation, activate immune cells and induce immune responses. Thus, surface thiol groups contribute to the regulation of immune functions. The aims of this work are: (1) to evaluate whether AOPP-proteins induce activation and differentiation of mature macrophages into dendritic cells in vitro; and (2) to define the role of cell surface thiol groups and of free radicals in this process. AOPP-proteins were prepared by in vitro incubation of human serum albumin (HSA) with HOCl. Mouse macrophage-like RAW264.7 were treated with various concentrations of AOPP-HSA with or without the antioxidant N-acetyl cysteine (NAC). Following 48 h of HSA-AOPP treatment, RAW264.7 morphological changes were evaluated by microscopic observation, while markers of dendritic lineage and activation (CD40, CD86, and MHC class II) and allogeneic T cell proliferation were evaluated by flow cytometry. Cell surface thiols were measured by AlexaFluor-maleimide binding, and ROS production was assessed as DCF fluorescence by flow cytometry. HSA-AOPP induced the differentiation of RAW264.7 cells into a dendritic-like phenotype, as shown by morphological changes, by increased CD40, CD86 and MHC class II surface expression and by induction of T cell proliferation. The cell surface thiols dose dependently decreased following HSA-AOPP treatment, while ROS production increased. NAC pre-treatment enhanced the amount of cell surface thiols and prevented their reduction due to treatment with AOPP. Both ROS production and RAW264.7 differentiation into DC-like cells induced by HSA-AOPP were reduced by NAC. Our results highlight that oxidized plasma proteins modulate specific immune responses of macrophages through a process involving changes in the thiol redox equilibrium. We suggest that this mechanism may play a role in determining the rapid progression of the atherosclerotic process observed in CKD patients.
Collapse
Affiliation(s)
- Silvano Garibaldi
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova 16132, Italy.
| | - Chiara Barisione
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova 16132, Italy.
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genova, Genova 16132, Italy.
| | - Pietro Ameri
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova 16132, Italy.
| | - Claudio Brunelli
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova 16132, Italy.
| | - Manrico Balbi
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova 16132, Italy.
| | - Giorgio Ghigliotti
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova 16132, Italy.
| |
Collapse
|
30
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
31
|
Jones IV AR, Meshulam T, Oliveira MF, Burritt N, Corkey BE. Extracellular Redox Regulation of Intracellular Reactive Oxygen Generation, Mitochondrial Function and Lipid Turnover in Cultured Human Adipocytes. PLoS One 2016; 11:e0164011. [PMID: 27741233 PMCID: PMC5065187 DOI: 10.1371/journal.pone.0164011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/19/2016] [Indexed: 12/04/2022] Open
Abstract
Background Many tissues play an important role in metabolic homeostasis and the development of diabetes and obesity. We hypothesized that the circulating redox metabolome is a master metabolic regulatory system that impacts all organs and modulates reactive oxygen species (ROS) production, lipid peroxidation, energy production and changes in lipid turnover in many cells including adipocytes. Methods Differentiated human preadipocytes were exposed to the redox couples, lactate (L) and pyruvate (P), β–hydroxybutyrate (βOHB) and acetoacetate (Acoc), and the thiol-disulfides cysteine/ cystine (Cys/CySS) and GSH/GSSG for 1.5–4 hours. ROS measurements were done with CM-H2DCFDA. Lipid peroxidation (LPO) was assessed by a modification of the thiobarbituric acid method. Lipolysis was measured as glycerol release. Lipid synthesis was measured as 14C-glucose incorporated into lipid. Respiration was assessed using the SeaHorse XF24 analyzer and the proton leak was determined from the difference in respiration with oligomycin and antimycin A. Results Metabolites with increasing oxidation potentials (GSSG, CySS, Acoc) increased adipocyte ROS. In contrast, P caused a decrease in ROS compared with L. Acoc also induced a significant increase in both LPO and lipid synthesis. L and Acoc increased lipolysis. βOHB increased respiration, mainly due to an increased proton leak. GSSG, when present throughout 14 days of differentiation significantly increased fat accumulation, but not when added later. Conclusions We demonstrated that in human adipocytes changes in the external redox state impacted ROS production, LPO, energy efficiency, lipid handling, and differentiation. A more oxidized state generally led to increased ROS, LPO and lipid turnover and more reduction led to increased respiration and a proton leak. However, not all of the redox couples were the same suggesting compartmentalization. These data are consistent with the concept of the circulating redox metabolome as a master metabolic regulatory system.
Collapse
Affiliation(s)
- Albert R. Jones IV
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tova Meshulam
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marcus F. Oliveira
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Nathan Burritt
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara E. Corkey
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Jones DP. Hydrogen peroxide and central redox theory for aerobic life: A tribute to Helmut Sies: Scout, trailblazer, and redox pioneer. Arch Biochem Biophys 2016; 595:13-8. [PMID: 27095208 PMCID: PMC4838774 DOI: 10.1016/j.abb.2015.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/05/2015] [Accepted: 09/05/2015] [Indexed: 02/07/2023]
Abstract
When Rafael Radi and I wrote about Helmut Sies for the Redox Pioneer series, I was disappointed that the Editor restricted us to the use of "Pioneer" in the title. My view is that Helmut was always ahead of the pioneers: He was a scout discovering paths for exploration and a trailblazer developing strategies and methods for discovery. I have known him for nearly 40 years and greatly enjoyed his collegiality as well as brilliance in scientific scholarship. He made monumental contributions to 20th century physiological chemistry beginning with his first measurement of H2O2 in rat liver. While continuous H2O2 production is dogma today, the concept of H2O2 production in mammalian tissues was largely buried for half a century. He continued this leadership in research on oxidative stress, GSH, selenium, and singlet oxygen, during the timeframe when physiological chemistry and biochemistry transitioned to contemporary 21st century systems biology. His impact has been extensive in medical and health sciences, especially in nutrition, aging, toxicology and cancer. I briefly summarize my interactions with Helmut, stressing our work together on the redox code, a set of principles to link mitochondrial respiration, bioenergetics, H2O2 metabolism, redox signaling and redox proteomics into central redox theory.
Collapse
Affiliation(s)
- Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Differential Regulation of the Extracellular Cysteine/Cystine Redox State (EhCySS) by Lung Fibroblasts from Young and Old Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1561305. [PMID: 27642492 PMCID: PMC5014973 DOI: 10.1155/2016/1561305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022]
Abstract
Aging is associated with progressive oxidation of plasma cysteine (Cys)/cystine (CySS) redox state, expressed as EhCySS. Cultured cells condition their media to reproduce physiological EhCySS, but it is unknown whether aged cells produce a more oxidized extracellular environment reflective of that seen in vivo. In the current study, we isolated primary lung fibroblasts from young and old female mice and measured the media EhCySS before and after challenge with Cys or CySS. We also measured expression of genes related to redox regulation and fibroblast function. These studies revealed that old fibroblasts produced a more oxidizing extracellular EhCySS than young fibroblasts and that old fibroblasts had a decreased capacity to recover from an oxidative challenge due to a slower rate of reduction of CySS to Cys. These defects were associated with 10-fold lower expression of the Slc7a11 subunit of the xCT cystine-glutamate transporter. Extracellular superoxide dismutase (Sod3) was the only antioxidant or thiol-disulfide regulating enzyme among 36 examined that was downregulated in old fibroblasts by more than 2-fold, but there were numerous changes in extracellular matrix components. Thus, aging fibroblasts not only contribute to remodeling of the extracellular matrix but also have a profound effect on the extracellular redox environment.
Collapse
|
34
|
Chandler JD, Hu X, Ko EJ, Park S, Lee YT, Orr M, Fernandes J, Uppal K, Kang SM, Jones DP, Go YM. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. Am J Physiol Regul Integr Comp Physiol 2016; 311:R906-R916. [PMID: 27558316 DOI: 10.1152/ajpregu.00298.2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation.
Collapse
Affiliation(s)
- Joshua D Chandler
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Xin Hu
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Eun-Ju Ko
- Georgia State University, Atlanta, Georgia
| | | | | | - Michael Orr
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Jolyn Fernandes
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Karan Uppal
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | | | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Young-Mi Go
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| |
Collapse
|
35
|
Abstract
Thiol isomerases are multifunctional enzymes that influence protein structure via their oxidoreductase, isomerase, and chaperone activities. These enzymes localize at high concentrations in the endoplasmic reticulum of all eukaryotic cells where they serve an essential function in folding nascent proteins. However, thiol isomerases can escape endoplasmic retention and be secreted and localized on plasma membranes. Several thiol isomerases including protein disulfide isomerase, ERp57, and ERp5 are secreted by and localize to the membranes of platelets and endothelial cells. These vascular thiol isomerases are released following vessel injury and participate in thrombus formation. Although most of the activities of vascular thiol isomerases that contribute to thrombus formation are yet to be defined at the molecular level, allosteric disulfide bonds that are modified by thiol isomerases have been described in substrates such as αIIbβ3, αvβ3, GPIbα, tissue factor, and thrombospondin. Vascular thiol isomerases also act as redox sensors. They respond to the local redox environment and influence S-nitrosylation of surface proteins on platelets and endothelial cells. Despite our rudimentary understanding of the mechanisms by which thiol isomerases control vascular function, the clinical utility of targeting them in thrombotic disorders is already being explored in clinical trials.
Collapse
|
36
|
Abstract
Disulfide bonds represent versatile posttranslational modifications whose roles encompass the structure, catalysis, and regulation of protein function. Due to the oxidizing nature of the extracellular environment, disulfide bonds found in secreted proteins were once believed to be inert. This notion has been challenged by the discovery of redox-sensitive disulfides that, once cleaved, can lead to changes in protein activity. These functional disulfides are twisted into unique configurations, leading to high strain and potential energy. In some cases, cleavage of these disulfides can lead to a gain of function in protein activity. Thus, these motifs can be referred to as switches. We describe the couples that control redox in the extracellular environment, examine several examples of proteins with switchable disulfides, and discuss the potential applications of disulfides in molecular biology.
Collapse
Affiliation(s)
- Michael C Yi
- Department of Chemical Engineering, Stanford University, Stanford, California 94305; ,
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305; , .,Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
37
|
Lung extracellular matrix and redox regulation. Redox Biol 2016; 8:305-15. [PMID: 26938939 PMCID: PMC4777985 DOI: 10.1016/j.redox.2016.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention.
Collapse
|
38
|
Fuentes E, Palomo I. Role of oxidative stress on platelet hyperreactivity during aging. Life Sci 2016; 148:17-23. [PMID: 26872977 DOI: 10.1016/j.lfs.2016.02.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
Abstract
Thrombotic events are common causes of morbidity and mortality in the elderly. Age-accelerated vascular injury is commonly considered to result from increased oxidative stress. There is abundant evidence that oxidative stress regulate several components of thrombotic processes, including platelet activation. Thus oxidative stress can trigger platelet hyperreactivity by decreasing nitric oxide bioavailability. Therefore oxidative stress measurement may help in the early identification of asymptomatic subjects at risk of thrombosis. In addition, oxidative stress inhibitors and platelet-derived nitric oxide may represent a novel anti-aggregation/-activation approach. In this article the relative contribution of oxidative stress and platelet activation in aging is explored.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile.
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile.
| |
Collapse
|
39
|
Patel RS, Ghasemzadeh N, Eapen DJ, Sher S, Arshad S, Ko YA, Veledar E, Samady H, Zafari AM, Sperling L, Vaccarino V, Jones DP, Quyyumi AA. Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease. Circulation 2016; 133:361-9. [PMID: 26673559 PMCID: PMC4722941 DOI: 10.1161/circulationaha.115.019790] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Free radical scavengers have failed to improve patient outcomes, promoting the concept that clinically important oxidative stress may be mediated by alternative mechanisms. We sought to examine the association of emerging aminothiol markers of nonfree radical mediated oxidative stress with clinical outcomes. METHODS AND RESULTS Plasma levels of reduced (cysteine and glutathione) and oxidized (cystine and glutathione disulphide) aminothiols were quantified by high performance liquid chromatography in 1411 patients undergoing coronary angiography (mean age 63 years, male 66%). All patients were followed for a mean of 4.7 ± 2.1 years for the primary outcome of all-cause death (n=247). Levels of cystine (oxidized) and glutathione (reduced) were associated with risk of death (P<0.001 both) before and after adjustment for covariates. High cystine and low glutathione levels (>+1 SD and <-1 SD, respectively) were associated with higher mortality (adjusted hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.19-2.21; HR, 2.19; 95% CI, 1.50-3.19; respectively) compared with those outside these thresholds. Furthermore, the ratio of cystine/glutathione was also significantly associated with mortality (adjusted HR, 1.92; 95% CI, 1.39-2.64) and was independent of and additive to high-sensitivity C-reactive protein level. Similar associations were found for other outcomes of cardiovascular death and combined death and myocardial infarction. CONCLUSIONS A high burden of oxidative stress, quantified by the plasma aminothiols, cystine, glutathione, and their ratio, is associated with mortality in patients with coronary artery disease, a finding that is independent of and additive to the inflammatory burden. Importantly, these data support the emerging role of nonfree radical biology in driving clinically important oxidative stress.
Collapse
Affiliation(s)
- Riyaz S Patel
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Nima Ghasemzadeh
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Danny J Eapen
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Salman Sher
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Shawn Arshad
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Yi-an Ko
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Emir Veledar
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Habib Samady
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - A Maziar Zafari
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Laurence Sperling
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Viola Vaccarino
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Dean P Jones
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.)
| | - Arshed A Quyyumi
- From Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.P., N.G., D.J.E., S.S., S.A., H.S., A.M.Z., L.S., V.V., D.P.J., A.A.Q.); Institute of Cardiovascular Science, University College London, United Kingdom (R.S.P.); Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA (Y.K.); Department of Medicine, Baptist Health South Florida, Miami, FL (E.V.); Department of Epidemiology, Rollins School of Public Health, Atlanta, GA (E.V., V.V.); and Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA (A.M.Z.).
| |
Collapse
|
40
|
Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5698931. [PMID: 26881031 PMCID: PMC4736408 DOI: 10.1155/2016/5698931] [Citation(s) in RCA: 652] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/29/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Oxidative stress has been implicated in many chronic diseases. However, antioxidant trials are so far largely unsuccessful as a preventive or curative measure. Chronic low-grade inflammatory process, on the other hand, plays a central role in the pathogenesis of a number of chronic diseases. Oxidative stress and inflammation are closely related pathophysiological processes, one of which can be easily induced by another. Thus, both processes are simultaneously found in many pathological conditions. Therefore, the failure of antioxidant trials might result from failure to select appropriate agents that specifically target both inflammation and oxidative stress or failure to use both antioxidants and anti-inflammatory agents simultaneously or use of nonselective agents that block some of the oxidative and/or inflammatory pathways but exaggerate the others. To examine whether the interdependence between oxidative stress and inflammation can explain the antioxidant paradox we discussed in the present review the basic aspects of oxidative stress and inflammation and their relationship and dependence.
Collapse
|
41
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
42
|
Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology. Biomolecules 2015; 5:2477-503. [PMID: 26437442 PMCID: PMC4693244 DOI: 10.3390/biom5042477] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023] Open
Abstract
Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis.
Collapse
|
43
|
Nocito L, Kleckner AS, Yoo EJ, Jones IV AR, Liesa M, Corkey BE. The extracellular redox state modulates mitochondrial function, gluconeogenesis, and glycogen synthesis in murine hepatocytes. PLoS One 2015; 10:e0122818. [PMID: 25816337 PMCID: PMC4376787 DOI: 10.1371/journal.pone.0122818] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/24/2015] [Indexed: 01/13/2023] Open
Abstract
Circulating redox state changes, determined by the ratio of reduced/oxidized pairs of different metabolites, have been associated with metabolic diseases. However, the pathogenic contribution of these changes and whether they modulate normal tissue function is unclear. As alterations in hepatic gluconeogenesis and glycogen metabolism are hallmarks that characterize insulin resistance and type 2 diabetes, we tested whether imposed changes in the extracellular redox state could modulate these processes. Thus, primary hepatocytes were treated with different ratios of the following physiological extracellular redox couples: β-hydroxybutyrate (βOHB)/acetoacetate (Acoc), reduced glutathione (GSH)/oxidized glutathione (GSSG), and cysteine/cystine. Exposure to a more oxidized ratio via extracellular βOHB/Acoc, GSH/GSSG, and cysteine/cystine in hepatocytes from fed mice increased intracellular hydrogen peroxide without causing oxidative damage. On the other hand, addition of more reduced ratios of extracellular βOHB/Acoc led to increased NAD(P)H and maximal mitochondrial respiratory capacity in hepatocytes. Greater βOHB/Acoc ratios were also associated with decreased β-oxidation, as expected with enhanced lipogenesis. In hepatocytes from fasted mice, a more extracellular reduced state of βOHB/Acoc led to increased alanine-stimulated gluconeogenesis and enhanced glycogen synthesis capacity from added glucose. Thus, we demonstrated for the first time that the extracellular redox state regulates the major metabolic functions of the liver and involves changes in intracellular NADH, hydrogen peroxide, and mitochondrial respiration. Because redox state in the blood can be communicated to all metabolically sensitive tissues, this work confirms the hypothesis that circulating redox state may be an important regulator of whole body metabolism and contribute to alterations associated with metabolic diseases.
Collapse
Affiliation(s)
- Laura Nocito
- Department of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Amber S. Kleckner
- Department of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Elsia J. Yoo
- Department of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Albert R. Jones IV
- Department of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Marc Liesa
- Department of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Barbara E. Corkey
- Department of Medicine, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
SIGNIFICANCE Cystic fibrosis (CF) is the most common lethal genetic disorder in the Caucasian people. It is due to the mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene located on the long arm of the chromosome 7, which encodes for CFTR protein. The latter, an adenosine triphosphate binding cassette, is a transmembrane chloride channel that is also involved in glutathione transport. As glutathione/glutathione disulfide constitutes the most important pool of cellular redox systems, CFTR defects could thus disrupt the intracellular redox balance. Resulting multisystemic diseases are essentially characterized by a chronic respiratory failure, a pancreatic insufficiency, an essential fatty acid deficiency (EFAD), and inadequate levels of antioxidant vitamins. RECENT ADVANCES The pathophysiology of CF is complex; however, several mechanisms are proposed, including oxidative stress (OxS) whose implication is recognized and has been clearly demonstrated in CF airways. CRITICAL ISSUES Little is known about OxS intrinsic triggers and its own involvement in intestinal lipid disorders. Despite the regular administration of pancreatic supplements, high-fat high-calorie diets, and antioxidant fat-soluble vitamins, there is a persistence of steatorrhea, EFAD, and harmful OxS. Intriguingly, several trials with elevated doses of antioxidant vitamins have not yielded significant improvements. FUTURE DIRECTIONS The main sources and self-maintenance of OxS in CF should be clarified to improve treatment of patients. Therefore, this review will discuss the potential sources and study the mechanisms of OxS in the intestine, known to develop various complications, and its involvement in intestinal lipid disorders in CF patients.
Collapse
Affiliation(s)
- Marie-Laure Kleme
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montréal, Quebec, Canada
| | | |
Collapse
|
45
|
Inhibition of thiol isomerase activity diminishes endothelial activation of plasminogen, but not of protein C. Thromb Res 2015; 135:748-53. [PMID: 25700620 DOI: 10.1016/j.thromres.2015.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 01/14/2015] [Accepted: 01/31/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Cell surface thiol isomerase enzymes, principally protein disulphide isomerase (PDI), have emerged as important regulators of platelet function and tissue factor activation via their action on allosteric disulphide bonds. Allosteric disulphides are present in other haemostasis-related proteins, and we have therefore investigated whether thiol isomerase inhibition has any influence on two endothelial activities relevant to haemostatic regulation, namely activation of protein C and activation of plasminogen, with subsequent fibrinolysis. MATERIALS AND METHODS The study was performed using the human microvascular endothelial cell line HMEC-1. Thiol isomerase gene expression was measured by RT-PCR and activation of protein C and plasminogen by cell-based assays using chromogenic substrates S2366 and S2251, respectively. Cell mediated fibrinolysis was measured by monitoring absorbance at 405 nm following fibrin clot formation on the surface of HMEC-1 monolayers. RESULTS AND CONCLUSIONS A variety of thiol isomerase enzymes, including PDI, were expressed by HMEC-1 cells and thiol reductase activity detectable on the cell surface was inhibited by both RL90 anti-PDI antibody and by the PDI inhibitor quercetin-3-rutinoside (rutin). In cell-based assays, activation of plasminogen, but not of protein C, was inhibited by RL90 antibody and, to a lesser extent, by rutin. Fibrin clot lysis occurring on a HMEC-1 monolayer was also significantly slowed by RL90 antibody and by rutin, but RL90-mediated inhibition was abolished in the presence of exogenous tissue plasminogen activator (tPA). We conclude that thiol isomerases, including PDI, are involved in fibrinolytic regulation at the endothelial surface, although not via a direct action on tPA. These findings broaden understanding of haemostatic regulation by PDI, and may aid in development of novel anti-thrombotic therapeutic strategies targeted via the fibrinolysis system.
Collapse
|
46
|
Brülisauer L, Gauthier MA, Leroux JC. Disulfide-containing parenteral delivery systems and their redox-biological fate. J Control Release 2014; 195:147-54. [DOI: 10.1016/j.jconrel.2014.06.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
|
47
|
Glutathione peroxidase-1 expression is up-regulated by ozone therapy in ApoE deficient mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Eble JA, de Rezende FF. Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins. Antioxid Redox Signal 2014; 20:1977-93. [PMID: 24040997 PMCID: PMC3993061 DOI: 10.1089/ars.2013.5294] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/29/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. RECENT ADVANCES ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. CRITICAL ISSUES In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. FUTURE DIRECTIONS Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Johannes A. Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
- Excellence Cluster Cardio-Pulmonary System, Center for Molecular Medicine, Vascular Matrix Biology, Frankfurt University Hospital, Frankfurt/Main, Germany
| | - Flávia Figueiredo de Rezende
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
- Excellence Cluster Cardio-Pulmonary System, Center for Molecular Medicine, Vascular Matrix Biology, Frankfurt University Hospital, Frankfurt/Main, Germany
| |
Collapse
|
49
|
Xie J, Potter A, Xie W, Lynch C, Seefeldt T. Evaluation of a dithiocarbamate derivative as a model of thiol oxidative stress in H9c2 rat cardiomyocytes. Free Radic Biol Med 2014; 70:214-22. [PMID: 24607690 PMCID: PMC4011664 DOI: 10.1016/j.freeradbiomed.2014.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/22/2014] [Accepted: 02/26/2014] [Indexed: 12/16/2022]
Abstract
Thiol redox state (TRS) refers to the balance between reduced thiols and their corresponding disulfides and is mainly reflected by the ratio of reduced and oxidized glutathione (GSH/GSSG). A decrease in GSH/GSSG, which reflects a state of thiol oxidative stress, as well as thiol modifications such as S-glutathionylation, has been shown to have important implications in a variety of cardiovascular diseases. Therefore, research models for inducing thiol oxidative stress are important tools for studying the pathophysiology of these disease states as well as examining the impact of pharmacological interventions on thiol pathways. The purpose of this study was to evaluate the use of a dithiocarbamate derivative, 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA), as a pharmacological model of thiol oxidative stress by examining the extent of thiol modifications induced in H9c2 rat cardiomyocytes and its impact on cellular functions. The extent of thiol oxidative stress produced by 2-AAPA was also compared to other models of oxidative stress including hydrogen peroxide (H2O2), diamide, buthionine sulfoximine, and N,N׳-bis(2-chloroethyl)-N-nitroso-urea. Results indicated that 2-AAPA effectively inhibited glutathione reductase and thioredoxin reductase activities and decreased the GSH/GSSG ratio by causing a significant accumulation of GSSG. 2-AAPA also increased the formation of protein disulfides as well as S-glutathionylation. The alteration in TRS led to a loss of mitochondrial membrane potential, release of cytochrome c, and increase in reactive oxygen species production. Compared to other models, 2-AAPA is more potent at creating a state of thiol oxidative stress with lower cytotoxicity, higher specificity, and more pharmacological relevance, and could be utilized as a research tool to study TRS-related normal and abnormal biochemical processes in cardiovascular diseases.
Collapse
Affiliation(s)
- Jiashu Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Ashley Potter
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Wei Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Christophina Lynch
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Teresa Seefeldt
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
50
|
Murphy DD, Reddy EC, Moran N, O'Neill S. Regulation of platelet activity in a changing redox environment. Antioxid Redox Signal 2014; 20:2074-89. [PMID: 24206201 DOI: 10.1089/ars.2013.5698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE The regulation of platelet function is finely tuned by a balance between the vasculature's redox environment and the oxidative processes that occur in it. The activation of platelets at sites of vascular damage is essential for the maintenance of normal hemostasis. In the extracellular milieu, a normal redox environment is maintained by thiol/disulfide redox couples, which include reduced and oxidized glutathione (GSH/GSSG) and cysteine (Cys/CySS). Oxidative changes in either of the plasma redox potentials are directly linked with risk factors for cardiovascular disease. RECENT ADVANCES Many proteins found on the surface of platelets contain cysteine residues that are targets for oxidation. These include platelet-specific integrins and thiol isomerase enzymes that respond to changes in the extracellular redox environment, thus influencing normal platelet responses. CRITICAL ISSUES The post-translational modification of critical cysteine thiol groups is linked to alterations in redox potentials and occurs both intracellularly and extracellularly in normal platelet activation. Platelet integrins, in particular, are prime targets for redox modification due to their high cysteine content. Although the role of thiol/disulfide bond exchange in platelet activation is established, the effects of a changing redox environment on platelet reactivity are unclear. FUTURE DIRECTIONS A thorough understanding of these mechanisms and how they interact with other platelet signaling events is of the utmost importance for the development of novel therapeutic targets so that we can protect against inappropriate thrombus formation.
Collapse
Affiliation(s)
- Desmond D Murphy
- 1 Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland , Dublin, Ireland
| | | | | | | |
Collapse
|