1
|
Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol 2024; 188:1-14. [PMID: 38246086 DOI: 10.1016/j.yjmcc.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Chu Y, Hua Y, He L, He J, Chen Y, Yang J, Mahmoud I, Zeng F, Zeng X, Benavides GA, Darley-Usmar VM, Young ME, Ballinger SW, Prabhu SD, Zhang C, Xie M. β-hydroxybutyrate administered at reperfusion reduces infarct size and preserves cardiac function by improving mitochondrial function through autophagy in male mice. J Mol Cell Cardiol 2024; 186:31-44. [PMID: 37979443 PMCID: PMC11094739 DOI: 10.1016/j.yjmcc.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Ischemia/reperfusion (I/R) injury after revascularization contributes ∼50% of infarct size and causes heart failure, for which no established clinical treatment exists. β-hydroxybutyrate (β-OHB), which serves as both an energy source and a signaling molecule, has recently been reported to be cardioprotective when administered immediately before I/R and continuously after reperfusion. This study aims to determine whether administering β-OHB at the time of reperfusion with a single dose can alleviate I/R injury and, if so, to define the mechanisms involved. We found plasma β-OHB levels were elevated during ischemia in STEMI patients, albeit not to myocardial protection level, and decreased after revascularization. In mice, compared with normal saline, β-OHB administrated at reperfusion reduced infarct size (by 50%) and preserved cardiac function, as well as activated autophagy and preserved mtDNA levels in the border zone. Our treatment with one dose β-OHB reached a level achievable with fasting and strenuous physical activity. In neonatal rat ventricular myocytes (NRVMs) subjected to I/R, β-OHB at physiologic level reduced cell death, increased autophagy, preserved mitochondrial mass, function, and membrane potential, in addition to attenuating reactive oxygen species (ROS) levels. ATG7 knockdown/knockout abolished the protective effects of β-OHB observed both in vitro and in vivo. Mechanistically, β-OHB's cardioprotective effects were associated with inhibition of mTOR signaling. In conclusion, β-OHB, when administered at reperfusion, reduces infarct size and maintains mitochondrial homeostasis by increasing autophagic flux (potentially through mTOR inhibition). Since β-OHB has been safely tested in heart failure patients, it may be a viable therapeutic to reduce infarct size in STEMI patients.
Collapse
Affiliation(s)
- Yuxin Chu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yutao Hua
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lihao He
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jin He
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yunxi Chen
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jing Yang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ismail Mahmoud
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Fanfang Zeng
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Shenzhen 518020, China
| | - Xiaochang Zeng
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Shenzhen 518020, China
| | - Gloria A Benavides
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Victor M Darley-Usmar
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sumanth D Prabhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Min Xie
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
3
|
Hermann R, Mestre Cordero VE, Fernández Pazos MDLM, Reznik FJ, Vélez DE, Marina Prendes MG. Role of autophagy in simulated ischemic-reperfused left atrial myocardium. Int J Cardiol 2023; 378:77-88. [PMID: 36804762 DOI: 10.1016/j.ijcard.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND AND AIM Autophagy has recently emerged as a potential and promising therapeutic approach to maintain cardiac cellular homeostasis. The aim of the present study was to investigate the role of autophagy in the ischemic-reperfused atrial myocardium. METHODS Isolated rat left atria subjected to simulated ischemia-reperfusion were used. The bathing medium contained either 10 mM d-glucose or 10 mM d-glucose and 1.2 mM palmitate. 3-methyladenine (3-MA) was used as pharmacological autophagy inhibitor. RESULTS LC3-II/LC3-I ratio, an indicator of autophagosome formation, was significantly enhanced during reperfusion, this increase being slowed by the exposure to high palmitate concentration and prevented by 3-MA. Beclin-1 was significantly increased during reperfusion period in both metabolic conditions, and pharmacological inhibition of AMPK partially prevented LC3-II/LC3-I ratio increase. Autophagy inhibition significantly increased mitochondrial damage and impaired mitochondrial ATP synthesis rate at reperfusion. Tissue ATP content recovery and contractile reserve were also reduced during this period, these effects being more pronounced either in 3-MA treated atria and ischemic-reperfused atria incubated with palmitate. Moreover, severe tachyarrhythmias were observed in the presence of 3-MA, in both metabolic conditions. This phenomenon was partially prevented by mitochondrial inner membrane ion channels blocker, PK11195. CONCLUSION Present study provides new insights into the role of autophagy in ischemic-reperfused atrial myocardium. The observation of greater deterioration in mitochondrial structure and function when this process was inhibited, suggests an association between autophagy and the structural and functional preservation of mitochondria. Exogenous metabolic substrates, to which the myocardium is exposed during ischemia-reperfusion, might not affect this process.
Collapse
Affiliation(s)
- Romina Hermann
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina.
| | - Victoria Evangelina Mestre Cordero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | | | - Federico Joaquín Reznik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Buenos Aires, Argentina
| | - Débora Elisabet Vélez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - María Gabriela Marina Prendes
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| |
Collapse
|
4
|
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ, Ren J. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med 2022; 28:836-849. [PMID: 35879138 PMCID: PMC9509460 DOI: 10.1016/j.molmed.2022.06.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
With the growing prevalence of cardiovascular disease (CVD), there is an urgent need to explore non-conventional therapeutic measures to alleviate the burden of CVD on global healthcare. Mitochondrial injury plays a cardinal role in the pathogenesis of CVD. Mitochondrial dynamics and mitophagy are essential machineries that govern mitochondrial health in cardiomyocytes in physiological and pathophysiological settings. However, with the onset and progression of CVD, homeostasis of mitophagy is disturbed through largely unknown pathological mechanisms, causing mitochondrial damage and ultimately cardiomyocyte death. In this review we decipher the dual regulatory role of mitophagy in CVD pathogenesis, summarize controversies in mitophagy, and highlight recently identified compounds capable of modulating mitophagy. We share our perspectives on future mitophagy research directions in the context of CVD.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mario Chiong
- Center for Advanced Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Sergio Lavandero
- Center for Advanced Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Johansson I, Dicembrini I, Mannucci E, Cosentino F. Glucose-lowering therapy in patients undergoing percutaneous coronary intervention. EUROINTERVENTION 2021; 17:e618-e630. [PMID: 34596567 PMCID: PMC9724943 DOI: 10.4244/eij-d-20-01250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
The number of individuals with diabetes and pre-diabetes is constantly increasing. These conditions are overrepresented in patients undergoing percutaneous coronary intervention and are associated with adverse prognosis. Optimal glycaemic control during an acute coronary syndrome is a relevant factor for the improvement of longer-term outcomes. In addition, the implementation of newer glucose-lowering drugs with proven cardiovascular benefits has a remarkable impact on recurrence of events, hospitalisations for heart failure and mortality. In this narrative review, we outline the current state-of-the art recommendations for glucose-lowering therapy in patients with diabetes undergoing coronary intervention. In addition, we discuss the most recent evidence-based indications for revascularisation in patients with diabetes as well as the targets for glycaemic control post revascularisation. Current treatment goals for concomitant risk factor control are also addressed. Lastly, we acknowledge the presence of knowledge gaps in need of future research.
Collapse
Affiliation(s)
- Isabelle Johansson
- Cardiology Unit, Department of Medicine Solna, Karolinska Institute Heart & Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
6
|
Montero-Bullon JF, Aveiro SS, Melo T, Martins-Marques T, Lopes D, Neves B, Girão H, Rosário M Domingues M, Domingues P. Cardiac phospholipidome is altered during ischemia and reperfusion in an ex vivo rat model. Biochem Biophys Rep 2021; 27:101037. [PMID: 34169155 PMCID: PMC8207217 DOI: 10.1016/j.bbrep.2021.101037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of death, morbidity, and health costs worldwide. In AMI, a sudden blockage of blood flow causes myocardial ischemia and cell death. Reperfusion after ischemia has paradoxical effects and may exacerbate the myocardial injury, a process known as ischemic reperfusion injury. In this work we evaluated the lipidome of isolated rat hearts, maintained in controlled perfusion (CT), undergoing global ischemia (ISC) or ischemia followed by reperfusion (IR). 153 polar lipid levels were significantly different between conditions. 48 features had q < 0.001 and included 8 phosphatidylcholines and 4 lysophospholipids, which were lower in ISC compared to CT, and even lower in the IR group, suggesting that IR induces more profound changes than ISC. We observed that the levels of 16 alkyl acyl phospholipids were significantly altered during ISC and IR. Overall, these data indicate that myocardial lipid remodelling and possibly damage occurs to a greater extent during reperfusion. The adaptation of cardiac lipidome during ISC and IR described is consistent with the presence of oxidative damage and may reflect the impact of AMI on the lipidome at the cellular level and provide new insights into the role of lipids in the pathophysiology of acute myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Javier-Fernando Montero-Bullon
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Susana S. Aveiro
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Tânia Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Diana Lopes
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - M. Rosário M Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| |
Collapse
|
7
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
8
|
Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Jüni P, Lettino M, Marx N, Mellbin LG, Östgren CJ, Rocca B, Roffi M, Sattar N, Seferović PM, Sousa-Uva M, Valensi P, Wheeler DC. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2021; 41:255-323. [PMID: 31497854 DOI: 10.1093/eurheartj/ehz486] [Citation(s) in RCA: 2443] [Impact Index Per Article: 610.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Guía ESC 2019 sobre diabetes, prediabetes y enfermedad cardiovascular, en colaboración con la European Association for the Study of Diabetes (EASD). Rev Esp Cardiol 2020. [DOI: 10.1016/j.recesp.2019.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Nyström T, James SK, Lindahl B, Östlund O, Erlinge D, Herlitz J, Omerovic E, Mellbin L, Alfredsson J, Fröbert O, Jernberg T, Hofmann R. Oxygen Therapy in Myocardial Infarction Patients With or Without Diabetes: A Predefined Subgroup Analysis From the DETO2X-AMI Trial. Diabetes Care 2019; 42:2032-2041. [PMID: 31473600 DOI: 10.2337/dc19-0590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/29/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the effects of oxygen therapy in myocardial infarction (MI) patients with and without diabetes. RESEARCH DESIGN AND METHODS In the Determination of the Role of Oxygen in Suspected Acute Myocardial Infarction (DETO2X-AMI) trial, 6,629 normoxemic patients with suspected MI were randomized to oxygen at 6 L/min for 6-12 h or ambient air. In this prespecified analysis involving 5,010 patients with confirmed MI, 934 had known diabetes. Oxidative stress may be of particular importance in diabetes, and the primary objective was to study the effect of supplemental oxygen on the composite of all-cause death and rehospitalization with MI or heart failure (HF) at 1 year in patients with and without diabetes. RESULTS As expected, event rates were significantly higher in patients with diabetes compared with patients without diabetes (main composite end point: hazard ratio [HR] 1.60 [95% CI 1.32-1.93], P < 0.01). In patients with diabetes, the main composite end point occurred in 16.2% (72 of 445) allocated to oxygen as compared with 16.6% (81 of 489) allocated to ambient air (HR 0.93 [95% CI 0.67-1.27], P = 0.81). There was no statistically significant difference for the individual components of the composite end point or the rate of cardiovascular death up to 1 year. Likewise, corresponding end points in patients without diabetes were similar between the treatment groups. CONCLUSIONS Despite markedly higher event rates in patients with MI and diabetes, oxygen therapy did not significantly affect 1-year all-cause death, cardiovascular death, or rehospitalization with MI or HF, irrespective of underlying diabetes, in line with the results of the entire study.
Collapse
Affiliation(s)
- Thomas Nyström
- Division of Endocrinology, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Stefan K James
- Cardiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Bertil Lindahl
- Cardiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Ollie Östlund
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - David Erlinge
- Cardiology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Herlitz
- Department of Health Sciences, University of Borås, Borås, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine and Sahlgrenska University Hospital Department of Cardiology, University of Gothenburg, Gothenburg, Sweden
| | - Linda Mellbin
- Division of Cardiology, Department of Medicine, Solna, Karolinska Institutet, and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Joakim Alfredsson
- Department of Medical and Health Sciences and Department of Cardiology, Linköping University, Linköping, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Tomas Jernberg
- Cardiology, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
11
|
Jin JL, Cao YX, Liu HH, Zhang HW, Guo YL, Wu NQ, Zhu CG, Xu RX, Gao Y, Sun J, Dong Q, Li JJ. Impact of free fatty acids on prognosis in coronary artery disease patients under different glucose metabolism status. Cardiovasc Diabetol 2019; 18:134. [PMID: 31610783 PMCID: PMC6791018 DOI: 10.1186/s12933-019-0936-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Background The aim of the present study is to examine the effects of free fatty acids (FFAs) on major cardiovascular events (MACEs) in patients with stable coronary artery disease (CAD) and different glucose metabolism status. Methods In this study, we consecutively enrolled 5443 patients from March 2011 to May 2015. Patients were categorized according to both status of glucose metabolism status [diabetes mellitus (DM), pre-diabetes (Pre-DM), normal glycaemia regulation (NGR)] and FFAs levels. All subjects were followed up for the occurrence of the MACEs. Results During a median of 6.7 years’ follow-up, 608 MACEs occurred. A twofold higher FFAs level was independently associated with MACEs after adjusting for confounding factors [Hazard Ratio (HR): 1.242, 95% confidence interval (CI) 1.084–1.424, p value = 0.002]. Adding FFAs to the Cox model increased the C-statistic by 0.015 (0.005–0.027). No significant difference in MACEs was observed between NGR and Pre-DM groups (p > 0.05). When patients were categorized by both status of glucose metabolism and FFAs levels, medium and high FFAs were associated with significantly higher risk of MACEs in Pre-DM [1.736 (1.018–2.959) and 1.779 (1.012–3.126), all p-value < 0.05] and DM [2.017 (1.164–3.494) and 2.795 (1.619–4.824), all p-value < 0.05]. Conclusions The present data indicated that baseline FFAs levels were associated with the prognosis in DM and Pre-DM patients with CAD, suggesting that FFAs may be a valuable predictor in patients with impaired glucose metabolism.
Collapse
Affiliation(s)
- Jing-Lu Jin
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Ye-Xuan Cao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Hui-Hui Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Hui-Wen Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Jing Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China.
| |
Collapse
|
12
|
Sposito AC, de Lima-Junior JC, Moura FA, Barreto J, Bonilha I, Santana M, Virginio VW, Sun L, Carvalho LSF, Soares AA, Nadruz W, Feinstein SB, Nofer JR, Zanotti I, Kontush A, Remaley AT. Reciprocal Multifaceted Interaction Between HDL (High-Density Lipoprotein) and Myocardial Infarction. Arterioscler Thromb Vasc Biol 2019; 39:1550-1564. [DOI: 10.1161/atvbaha.119.312880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite decades of therapeutic advances, myocardial infarction remains a leading cause of death worldwide. Recent studies have identified HDLs (high-density lipoproteins) as a potential candidate for mitigating coronary ischemia/reperfusion injury via a broad spectrum of signaling pathways. HDL ligands, such as S1P (sphingosine-1-phosphate), Apo (apolipoprotein) A-I, clusterin, and miRNA, may influence the opening of the mitochondrial channel, insulin sensitivity, and production of vascular autacoids, such as NO, prostacyclin, and endothelin-1. In parallel, antioxidant activity and sequestration of oxidized molecules provided by HDL can attenuate the oxidative stress that triggers ischemia/reperfusion. Nevertheless, during myocardial infarction, oxidation and the capture of oxidized and proinflammatory molecules generate large phenotypic and functional changes in HDL, potentially limiting its beneficial properties. In this review, new findings from cellular and animal models, as well as from clinical studies, will be discussed to describe the cardioprotective benefits of HDL on myocardial infarction. Furthermore, mechanisms by which HDL modulates cardiac function and potential strategies to mitigate postmyocardial infarction risk damage by HDL will be detailed throughout the review.
Collapse
Affiliation(s)
- Andrei C. Sposito
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - José Carlos de Lima-Junior
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Filipe A. Moura
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
- Department of Medicine, Weill-Cornell Medical College, New York, NY (F.A.M.)
| | - Joaquim Barreto
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Isabella Bonilha
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Michele Santana
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Vitor W. Virginio
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Lufan Sun
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China (L.S.)
| | - Luiz Sergio F. Carvalho
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Alexandre A.S. Soares
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Wilson Nadruz
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Steve B. Feinstein
- Division of Cardiology, Rush University Medical Center, Chicago, IL (S.B.F.)
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (J.-R.N.)
| | - Ilaria Zanotti
- Department of Food and Drugs, University of Parma, Italy (I.Z.)
| | - Anatol Kontush
- UMR-ICAN 1166, National Institute for Health and Medical Research (INSERM), Sorbonne University, Paris, France (A.K.)
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
| |
Collapse
|
13
|
Norhammar A, Mellbin L, Cosentino F. Diabetes: Prevalence, prognosis and management of a potent cardiovascular risk factor. Eur J Prev Cardiol 2018; 24:52-60. [PMID: 28618910 DOI: 10.1177/2047487317709554] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review highlights the increased risk of cardiovascular disease and the dismal prognosis after acute coronary events when diabetes is present. Although there have been improvements in this area, diabetes still confers an increased risk. In order to achieve successful outcomes in individuals with diabetes, extensive treatment of risk factors and the use of all available evidence-based therapies are needed. In this context, glucose-lowering therapies and antithrombotic and revascularisation strategies are detailed in this review. Emerging data indicate that novel glucose-lowering drugs may impact cardiovascular outcome with mechanisms that are beyond glucose control. In addition, this review addresses hidden diabetes and impaired glucose tolerance in patients with acute and stable coronary artery disease and how they influence future cardiovascular risk.
Collapse
Affiliation(s)
- Anna Norhammar
- 1 Cardiology Unit, Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden.,2 Capio S:t Görans hospital, Sankt Göransplan, Stockholm, Sweden
| | - Linda Mellbin
- 1 Cardiology Unit, Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Cosentino
- 1 Cardiology Unit, Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Moura FA, Cintra R, Carvalho LS, Santos SN, Modolo R, Munhoz DB, Quinaglia e Silva JC, Coelho OR, Nadruz W, Sposito AC. Adverse outcome has a U-shaped relation with acute phase change in insulin sensitivity after ST-Elevation Myocardial Infarction. Int J Cardiol 2018; 254:16-22. [PMID: 29246426 DOI: 10.1016/j.ijcard.2017.11.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/19/2017] [Accepted: 11/30/2017] [Indexed: 11/30/2022]
|
15
|
Hermann R, Mestre Cordero VE, Fernández Pazos MDLM, Reznik FJ, Vélez DE, Savino EA, Marina Prendes MG, Varela A. Differential effects of AMP-activated protein kinase in isolated rat atria subjected to simulated ischemia-reperfusion depending on the energetic substrates available. Pflugers Arch 2017; 470:367-383. [PMID: 29032506 DOI: 10.1007/s00424-017-2075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 12/31/2022]
Abstract
AMP-activated protein kinase (AMPK) is a serine-threonine kinase that functions primarily as a metabolic sensor to coordinate anabolic and catabolic processes in the cell, via phosphorylation of multiple proteins involved in metabolic pathways, aimed to re-establish energy homeostasis at a cell-autonomous level. Myocardial ischemia and reperfusion represents a metabolic stress situation for myocytes. Whether AMPK plays a critical role in the metabolic and functional responses involved in these conditions remains uncertain. In this study, in order to gain a deeper insight into the role of endogenous AMPK activation during myocardial ischemia and reperfusion, we explored the effects of the pharmacological inhibition of AMPK on contractile function rat, contractile reserve, tissue lactate production, tissue ATP content, and cellular viability. For this aim, isolated atria subjected to simulated 75 min ischemia-75 min reperfusion (Is-Rs) in the presence or absence of the pharmacological inhibitor of AMPK (compound C) were used. Since in most clinical situations of ischemia-reperfusion the heart is exposed to high levels of fatty acids, the influence of palmitate present in the incubation medium was also investigated. The present results suggest that AMPK activity significantly increases during Is, remaining activated during Rs. The results support that intrinsic activation of AMPK has functional protective effects in the reperfused atria when glucose is the only available energetic substrate whereas it is deleterious when palmitate is also available. Cellular viability was not affected by either of these conditions.
Collapse
Affiliation(s)
- Romina Hermann
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina.
| | - Victoria Evangelina Mestre Cordero
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - María de Las Mercedes Fernández Pazos
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - Federico Joaquín Reznik
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - Débora Elisabet Vélez
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - Enrique Alberto Savino
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - María Gabriela Marina Prendes
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - Alicia Varela
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| |
Collapse
|
16
|
Fukuoka Y, Nakano A, Tama N, Hasegawa K, Ikeda H, Morishita T, Ishida K, Kaseno K, Amaya N, Uzui H, Okazawa H, Tada H. Impaired myocardial microcirculation in the flow-glucose metabolism mismatch regions in revascularized acute myocardial infarction. J Nucl Cardiol 2017; 24:1641-1650. [PMID: 27301963 DOI: 10.1007/s12350-016-0526-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/13/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND In successfully revascularized acute myocardial infarction (AMI), microvascular function in a myocardial flow-glucose metabolism mismatch pattern has not been reported. We aimed to elucidate myocardial flow reserve (MFR) and myocardial viability in mismatch segments. METHODS 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and adenosine stress 13N-ammonia PET were performed in eighteen AMI patients to evaluate myocardial glucose metabolism, myocardial blood flow (MBF), and MFR. Infarct segments were classified into 3 groups: normal (preserved resting MBF), mismatch (preserved FDG uptake but reduced resting MBF), and match (reduced FDG uptake and resting MBF). Regional wall motion score (WMS) was assessed immediately after reperfusion and recovery periods. RESULTS MFR in the mismatch group was significantly lower than that in non-infarct-related segments (1.655 ± 0.516 vs 2.282 ± 0.629, P < .01) and similar to that in the match group (1.635 ± 0.528, P = .999). WMS in the mismatch group was significantly improved (3.07 ± 0.48 vs 2.07 ± 1.14, P = .003); however, in recovery periods, WMS in the mismatch group was significantly higher than that in the normal group (1.05 ± 1.04, P < .01). CONCLUSIONS In successfully revascularized AMI, microvascular function is impaired despite preserved myocardial glucose metabolism in mismatch segments.
Collapse
Affiliation(s)
- Yoshitomo Fukuoka
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Akira Nakano
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
- Division of Cardiology, Hikone Municipal Hospital, 1882 Hassakacho, Hikone, Shiga, 522-0057, Japan
| | - Naoto Tama
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Kanae Hasegawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Hiroyuki Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Tetsuji Morishita
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Kentaro Ishida
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Kenichi Kaseno
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Naoki Amaya
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, Division of Medical Imaging, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
17
|
Selker HP, Harris WS, Rackley CE, Marsh JB, Ruthazer R, Beshansky JR, Rashba EJ, Peter I, Opie LH. Very early administration of glucose-insulin-potassium by emergency medical service for acute coronary syndromes: Biological mechanisms for benefit in the IMMEDIATE Trial. Am Heart J 2016; 178:168-75. [PMID: 27502865 DOI: 10.1016/j.ahj.2016.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 03/31/2016] [Indexed: 10/21/2022]
Abstract
AIMS In the IMMEDIATE Trial, intravenous glucose-insulin-potassium (GIK) was started as early as possible for patients with suspected acute coronary syndrome by ambulance paramedics in communities. In the IMMEDIATE Biological Mechanism Cohort substudy, reported here, we investigated potential modes of GIK action on specific circulating metabolic components. Specific attention was given to suppression of circulating oxygen-wasting free fatty acids (FFAs) that had been posed as part of the early GIK action related to averting cardiac arrest. METHODS We analyzed the changes in plasma levels of FFA, glucose, C-peptide, and the homeostasis model assessment (HOMA) index. RESULTS With GIK, there was rapid suppression of FFA levels with estimated levels for GIK and placebo groups after 2 hours of treatment of 480 and 781 μmol/L (P<.0001), even while patterns of FFA saturation remained unchanged. There were no significant changes in the HOMA index in the GIK or placebo groups (HOMA index: placebo 10.93, GIK 12.99; P = .07), suggesting that GIK infusions were not countered by insulin resistance. Also, neither placebo nor GIK altered endogenous insulin secretion as reflected by unchanging C-peptide levels. CONCLUSION These mechanistic observations support the potential role of FFA suppression in very early cardioprotection by GIK. They also suggest that the IMMEDIATE Trial GIK formula is balanced with respect to its insulin and glucose composition, as it induced no endogenous insulin secretion.
Collapse
|
18
|
McCormick LM, Heck PM, Ring LS, Kydd AC, Clarke SJ, Hoole SP, Dutka DP. Glucagon-like peptide-1 protects against ischemic left ventricular dysfunction during hyperglycemia in patients with coronary artery disease and type 2 diabetes mellitus. Cardiovasc Diabetol 2015; 14:102. [PMID: 26253538 PMCID: PMC4528379 DOI: 10.1186/s12933-015-0259-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023] Open
Abstract
Background Enhancement of myocardial
glucose uptake may reduce fatty acid oxidation and improve tolerance to ischemia. Hyperglycemia, in association with hyperinsulinemia, stimulates this metabolic change but may have deleterious effects on left ventricular (LV) function. The incretin hormone, glucagon-like peptide-1 (GLP-1), also has favorable cardiovascular effects, and has emerged as an alternative method of altering myocardial substrate utilization. In patients with coronary artery disease (CAD), we investigated: (1) the effect of a hyperinsulinemic hyperglycemic clamp (HHC) on myocardial performance during dobutamine stress echocardiography (DSE), and (2) whether an infusion of GLP-1(7-36) at the time of HHC protects against ischemic LV dysfunction during DSE in patients with type 2 diabetes mellitus (T2DM). Methods In study 1, twelve patients underwent two DSEs with tissue Doppler imaging (TDI)—one during the steady-state phase of a HHC. In study 2, ten patients with T2DM underwent two DSEs with TDI during the steady-state phase of a HHC. GLP-1(7-36) was infused intravenously at 1.2 pmol/kg/min during one of the scans. In both studies, global LV function was assessed by ejection fraction and mitral annular systolic velocity, and regional wall LV function was assessed using peak systolic velocity, strain and strain rate from 12 paired non-apical segments. Results In study 1, the HHC (compared with control) increased glucose (13.0 ± 1.9 versus 4.8 ± 0.5 mmol/l, p < 0.0001) and insulin (1,212 ± 514 versus 114 ± 47 pmol/l, p = 0.01) concentrations, and reduced FFA levels (249 ± 175 versus 1,001 ± 333 μmol/l, p < 0.0001), but had no net effect on either global or regional LV function. In study 2, GLP-1 enhanced both global (ejection fraction, 77.5 ± 5.0 versus 71.3 ± 4.3%, p = 0.004) and regional (peak systolic strain −18.1 ± 6.6 versus −15.5 ± 5.4%, p < 0.0001) myocardial performance at peak stress and at 30 min recovery. These effects were predominantly driven by a reduction in contractile dysfunction in regions subject to demand ischemia. Conclusions In patients with CAD, hyperinsulinemic hyperglycemia has a neutral effect on LV function during DSE. However, GLP-1 at the time of hyperglycemia improves myocardial tolerance to demand ischemia in patients with T2DM. Trial Registration: http://www.isrctn.org. Unique identifier ISRCTN69686930
Collapse
Affiliation(s)
- Liam M McCormick
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Patrick M Heck
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Liam S Ring
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Anna C Kydd
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Sophie J Clarke
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Stephen P Hoole
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - David P Dutka
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK. .,Department of Cardiovascular Medicine, ACCI Level 6, Addenbrooke's Hospital, Box 110, Hills Rd, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
19
|
Wilby KJ, Elmekaty E, Abdallah I, Habra M, Al-Siyabi K. Blood glucose control for patients with acute coronary syndromes in Qatar. Saudi Pharm J 2015; 24:35-9. [PMID: 26903766 PMCID: PMC4720025 DOI: 10.1016/j.jsps.2015.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/11/2015] [Indexed: 01/27/2023] Open
Abstract
Background: Blood glucose is known to be elevated in patients presenting with acute coronary syndromes. However a gap in knowledge exists regarding effective management strategies once admitted to acute care units. It is also unknown what factors (if any) predict elevated glucose values during initial presentation. Objectives: Objectives of the study were to characterize blood glucose control in patients admitted to the cardiac care unit (CCU) in Qatar and to determine predictive factors associated with high glucose levels (>10 mmol/l) on admission to the CCU. Setting: All data for this study were obtained from the CCU at Heart Hospital in Doha, Qatar. Method: A retrospective chart review was completed for patients admitted to the CCU in Qatar from October 1st, 2012 to March 31st, 2013, of which 283 were included. Baseline characteristics (age, gender, nationality, medical history, smoking status, type of acute coronary syndrome), capillary and lab blood glucose measurements, and use of insulin were extracted. Time spent in glucose ranges of <4, 4 to <8, 8 to <10, and >10 mmol/1 was calculated manually. Univariate and multivariate logistic regression were performed to assess factors associated with high glucose on admission. The primary analysis was completed with capillary data and a sensitivity analysis was completed using laboratory data. Main outcome measure: Blood glucose values measured on admission and throughout length of stay in the CCU. Results: Capillary blood glucose data showed majority of time was spent in the range of >10 mmol/l (41.95%), followed by 4–8 mmol/l (35.44%), then 8–10 mmol/l (21.45%), and finally <4 mmol/l (1.16%). As a sensitivity analysis, laboratory data showed very similar findings. Diabetes, hypertension, and non-smoker status predicted glucose values >10 mmol/l on admission (p < 0.05) in a univariate analysis but only diabetes remained significant in a multivariate model (OR 23.3; 95% CI, 11.5–47.3). Conclusion: Diabetes predicts high glucose values on hospital admission for patients with ACS and patients are not being adequately controlled throughout CCU stay.
Collapse
Affiliation(s)
- Kyle John Wilby
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| | - Eman Elmekaty
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| | | | - Masa Habra
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| | - Khalid Al-Siyabi
- Heart Hospital, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| |
Collapse
|
20
|
Wang J, Liu B, Han H, Yuan Q, Xue M, Xu F, Chen Y. Acute Hepatic Insulin Resistance Contributes to Hyperglycemia in Rats Following Myocardial Infarction. Mol Med 2015; 21:68-76. [PMID: 25730774 DOI: 10.2119/molmed.2014.00240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/23/2015] [Indexed: 12/27/2022] Open
Abstract
Although hyperglycemia is common in patients with acute myocardial infarction (MI), the underlying mechanisms are largely unknown. Insulin signaling plays a key role in the regulation of glucose homeostasis. In this study, we test the hypothesis that rapid alteration of insulin signaling pathways could be a potential contributor to acute hyperglycemia after MI. Male rats were used to produce MI by ligation of the left anterior descending coronary artery. Plasma glucose and insulin levels were significantly higher in MI rats than those in controls. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) was reduced significantly in the liver tissue of MI rats compared with controls, followed by decreased attachment of phosphatidylinositol 3-kinase (PI3K) p85 subunit with IRS1 and Akt phosphorylation. However, insulin-stimulated signaling was not altered significantly in skeletal muscle after MI. The relative mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase were slightly higher in the liver tissue of MI rats than those in controls. Rosiglitazone (ROSI) markedly restored hepatic insulin signaling, inhibited gluconeogenesis and reduced plasma glucose levels in MI rats. Insulin resistance develops rapidly in liver but not skeletal muscle after MI, which contributes to acute hyperglycemia. Therapy aimed at potentiating hepatic insulin signaling may be beneficial for MI-induced hyperglycemia.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Emergency, Shandong University, Jinan, China.,Chest Pain Center, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Baoshan Liu
- Department of Emergency, Shandong University, Jinan, China.,Chest Pain Center, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Han
- Department of Emergency, Shandong University, Jinan, China.,Chest Pain Center, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Mengyang Xue
- Department of Emergency, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency, Shandong University, Jinan, China.,Chest Pain Center, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency, Shandong University, Jinan, China.,Chest Pain Center, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
21
|
Abstract
Plasma free fatty acids (non-esterified fatty acids) increase in the first hour of the onset of acute myocardial ischaemia. This results from catecholamine stimulation of adipose tissue lipolysis. It can lead to a metabolic crisis in the injured myocardium with the development of ventricular arrhythmias and increased early mortality. Preconditioning, β-adrenergic blockade and glucose–insulin–potassium are possible therapeutic approaches, but anti-lipolytic agents, such as some nicotinic acid derivatives, can reduce plasma free fatty acid concentrations within minutes and have untried potential. A clinical trial of their effectiveness is needed from the first moment when a patient with an acute coronary syndrome is seen by paramedics.
Collapse
|
22
|
Abstract
Cardiovascular disease (CVD) has become the most-common cause of death worldwide. The Western lifestyle does not promote healthy living, and the consequences are most devastating when social inequalities are combined with economic factors and population growth. The expansion of poor nutritional habits, obesity, and associated conditions (such as diabetes mellitus, hypertension, physical inactivity, and advancing age) are major risk factors for developing CVD and are increasing in prevalence. Individuals in low-income and middle-income countries are undergoing a major shift in cardiovascular risk factors as they adopt Western lifestyles, a phenomenon that is hastened by industrialization, urbanization, and globalization. In this Perspectives article, I predict the 10 most-promising advances in cardiovascular therapies and interventions. Our improved understanding of CVD might help us, during the next decade, to achieve a transition from treating complex disease to promoting global cardiovascular health.
Collapse
Affiliation(s)
- Valentin Fuster
- Cardiovascular Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, PO Box 1030, New York, NY 10029-6574, USA
| |
Collapse
|
23
|
Yu Q, Zhou N, Nan Y, Zhang L, Li Y, Hao X, Xiong L, Lau WB, Ma XL, Wang H, Gao F. Effective glycaemic control critically determines insulin cardioprotection against ischaemia/reperfusion injury in anaesthetized dogs. Cardiovasc Res 2014; 103:238-47. [PMID: 24845581 DOI: 10.1093/cvr/cvu132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS Experimental evidence has shown significant cardioprotective effects of insulin, whereas clinical trials produced mixed results without valid explanations. This study was designed to examine the effect of hyperglycaemia on insulin cardioprotective action in a preclinical large animal model of myocardial ischaemia/reperfusion (MI/R). METHODS AND RESULTS Anaesthetized dogs were subjected to MI/R (30 min/4 h) and randomized to normal plasma insulin/euglycaemia (NI/NG), normal-insulin/hyperglycaemia (NI/HG), high-insulin/euglycaemia (HI/NG), and high-insulin/hyperglycaemia (HI/HG) achieved by controlled glucose/insulin infusion. Endogenous insulin production was abolished by peripancreatic vessel ligation. Compared with the control animals (NI/NG), hyperglycaemia (NI/HG) significantly aggravated MI/R injury. Insulin elevation at clamped euglycaemia (HI/NG) protected against MI/R injury as evidenced by reduced infarct size, decreased necrosis and apoptosis, and alleviated inflammatory and oxidative stress (leucocyte infiltration, myeloperoxidase, and malondialdehyde levels). However, these cardioprotective effects of insulin were markedly blunted in hyperglycaemic animals (HI/HG). In vitro mechanistic study in neonatal rat cardiomyocytes revealed that insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and Akt was significantly attenuated by high glucose, accompanied by markedly increased IRS-1 O-GlcNAc glycosylation following hypoxia/reoxygenation. Inhibition of hexosamine biosynthesis with 6-diazo-5-oxonorleucine abrogated high glucose-induced O-GlcNAc modification and inactivation of IRS-1/Akt as well as cell injury. CONCLUSIONS Our results, derived from a canine model of MI/R, demonstrate that hyperglycaemia blunts insulin protection against MI/R injury via hyperglycaemia-induced glycosylation and subsequent inactivation of insulin-signalling proteins. Our findings suggest that prevention of hyperglycaemia is critical for achieving maximal insulin cardioprotection for the ischaemic/reperfused hearts.
Collapse
Affiliation(s)
- Qiujun Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ning Zhou
- Department of Cardiology, Hospital of Shaanxi Provincial Corps of Chinese People's Armed Police Forces, Xi'an, China
| | - Ying Nan
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Lihua Zhang
- Department of Geriatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoke Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xin L Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Haichang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China Department of Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Rydén L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, Hammes HP, Huikuri H, Marre M, Marx N, Mellbin L, Ostergren J, Patrono C, Seferovic P, Uva MS, Taskinen MR, Tendera M, Tuomilehto J, Valensi P, Zamorano JL. ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD - summary. Diab Vasc Dis Res 2014; 11:133-73. [PMID: 24800783 DOI: 10.1177/1479164114525548] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
25
|
Guía de práctica clínica de la ESC sobre diabetes, prediabetes y enfermedad cardiovascular, en colaboración con la European Association for the Study of Diabetes. Rev Esp Cardiol 2014. [DOI: 10.1016/j.recesp.2013.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Gruzdeva O, Uchasova E, Belik E, Dyleva Y, Shurygina E, Barbarash O. Lipid, adipokine and ghrelin levels in myocardial infarction patients with insulin resistance. BMC Cardiovasc Disord 2014; 14:7. [PMID: 24433403 PMCID: PMC3898041 DOI: 10.1186/1471-2261-14-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/13/2014] [Indexed: 01/07/2023] Open
Abstract
Background Insulin resistance (IR) is a risk factor for ischaemic heart disease and myocardial infarction (MI). IR often manifests in MI and is regarded as an independent predictor of in-hospital mortality, which can provide early risk stratification for recurrent acute coronary events. Methods The study enrolled 200 patients (130 males and 70 females aged 61.4 ± 1.12 years) diagnosed with ST elevation MI. At days 1 and 12 from the MI onset, IR levels and lipid profiles, as well as serum glucose, insulin, adipokine and ghrelin levels, were measured. Results Free fatty acid (FFA) levels had the most pronounced changes: IR patients had a 9-fold increase in FFA levels at day 1, and patients without IR had a 6-fold increase. Leptin levels at days 1 and 12, in IR patients were, on average, 1.5- and 2-fold higher compared to the controls and patients with no IR (р < 0.05). Leptin levels in IR patients were increased throughout the entire hospital stay. Resistin levels in IR patients were, on average, 1.4-fold higher throughout the entire hospital stay, while in non-IR patients, resistin levels were similar to the controls. Adiponectin levels in IR patients were decreased compared to the controls, while in patients with IR, they were similar to the controls. Both IR and non-IR MI patients had 3-fold and 3.7-fold lower ghrelin levels at day 1, respectively, compared to the controls. The correlation analysis showed a negative correlation between ghrelin and FFA (r = −0.48 р = 0.007), ghrelin and leptin (r = −0.4 р = 0.003), ghrelin and insulin (r = −0.54 р = 0.002), and ghrelin and glucose (r = −0.31 р = 0.002) in MI patients. Conclusion Dyslipidaemia, along with insulinaemia and glycaemia, is one of the most significant IR risk factors in the acute and early recovery phases of MI. Dyslipidaemia is characterised by a high FFA level; an imbalance of leptin, resistin, and adiponectin; and a deficiency of ghrelin in the acute and early recovery periods of MI. FFA and ghrelin can be used as promising molecular markers to stratify the risk of recurrent acute coronary events and diabetes mellitus in MI patients.
Collapse
Affiliation(s)
| | - Evgenya Uchasova
- Research Institute for Complex Issues of Cardiovascular Diseases under the Siberian Branch of the Russian Academy of Medical Sciences, Kemerovo, Russia.
| | | | | | | | | |
Collapse
|
27
|
Mellbin L, Rydén L. Evidence for a beneficial effect of glucose–insulin–potassium in patients with acute coronary syndromes. Did the IMMEDIATE trial solve an unanswered question? Expert Rev Cardiovasc Ther 2014; 10:1097-9. [DOI: 10.1586/erc.12.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Rydén L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, Hammes HP, Huikuri H, Marre M, Marx N, Mellbin L, Ostergren J, Patrono C, Seferovic P, Uva MS, Taskinen MR, Tendera M, Tuomilehto J, Valensi P, Zamorano JL, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, De Backer G, Sirnes PA, Ezquerra EA, Avogaro A, Badimon L, Baranova E, Baumgartner H, Betteridge J, Ceriello A, Fagard R, Funck-Brentano C, Gulba DC, Hasdai D, Hoes AW, Kjekshus JK, Knuuti J, Kolh P, Lev E, Mueller C, Neyses L, Nilsson PM, Perk J, Ponikowski P, Reiner Z, Sattar N, Schächinger V, Scheen A, Schirmer H, Strömberg A, Sudzhaeva S, Tamargo JL, Viigimaa M, Vlachopoulos C, Xuereb RG. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J 2013; 34:3035-87. [PMID: 23996285 DOI: 10.1093/eurheartj/eht108] [Citation(s) in RCA: 1426] [Impact Index Per Article: 118.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
-
- The disclosure forms of the authors and reviewers are available on the ESC website www.escardio.org/guidelines
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lazzeri C, Valente S, Chiostri M, Attanà P, Picariello C, Gensini GF. The glucose dysmetabolism in the acute phase of non-diabetic ST-elevation myocardial infarction: from insulin resistance to hyperglycemia. Acta Diabetol 2013; 50:293-300. [PMID: 21984048 DOI: 10.1007/s00592-011-0325-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/31/2011] [Indexed: 01/27/2023]
Abstract
In the setting of acute myocardial infarction, hyperglycemia and acute insulin resistance may represent a stress response to myocardial injury mainly related to acute catecholamine release. By measuring glucose values and insulin resistance (Homeostatic Model Assessment index-HOMA), we evaluated in 356 non-diabetic patients with ST-elevation myocardial infarction (STEMI) undergone mechanical revascularization: (a) the acute glycometabolic response by evaluating insulin resistance, glucose levels, and their combination and (b) whether insulin resistance and increased glucose values (and their combination) are able to affect in-Intensive Cardiac Care Unit (ICCU) mortality and complications. In the overall population, 226 (63.5%) patients showed glucose values ≤140 mg/dl (group B), while 130 patients had glucose values >140 mg/dl (group A) (36.5%). Within group B, insulin resistance (as inferred by positive HOMA index) was present in 125 patients (55.3%), whereas 101 patients (44.7%) exhibited normal values of HOMA index. Within group A, 109 patients (83.8%) were insulin resistant, while 21 patients (16.2%) had normal values of HOMA index. At multivariable analysis, glucose values were independently associated with in-ICCU mortality (OR: 7.387; 95% CI 2.701-20.201; P < 0.001) and complications (OR: 1.786; 95% CI 1.089-2.928; P = 0.022). In the early phase of STEMI, the acute glycometabolic response to stress is heterogeneous (ranging from no insulin resistance to glucose levels >140 mg/dl and, finally, to the combination of increased glucose values and insulin resistance). Increased glucose values are stronger prognostic factors since they are independently associated with in-ICCU mortality and complications.
Collapse
Affiliation(s)
- Chiara Lazzeri
- Intensive Cardiac Coronary Unit, Department of Heart and Vessel, Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni 85, 50134, Florence, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Grossman AN, Opie LH, Beshansky JR, Ingwall JS, Rackley CE, Selker HP. Glucose-insulin-potassium revived: current status in acute coronary syndromes and the energy-depleted heart. Circulation 2013; 127:1040-8. [PMID: 23459576 DOI: 10.1161/circulationaha.112.130625] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Barazzoni R, Aleksova A, Armellini I, Cattin MR, Zanetti M, Carriere C, Giacca M, Dore F, Guarnieri G, Sinagra G. Adipokines, ghrelin and obesity-associated insulin resistance in nondiabetic patients with acute coronary syndrome. Obesity (Silver Spring) 2012; 20:2348-53. [PMID: 22653312 DOI: 10.1038/oby.2012.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Altered glucose metabolism negatively modulates outcome in acute coronary syndromes (ACS). Insulin resistance is commonly associated with increasing BMI in the general population and these associations may involve obesity-related changes in circulating ghrelin and adipokines. We aimed at investigating interactions between BMI, insulin resistance and ACS and their associations with plasma ghrelin and adipokine concentrations. Homeostasis model assessment of insulin resistance (HOMA(IR))-insulin resistance index, plasma adiponectin, leptin, total (T-Ghrelin), acylated (Acyl-Ghrelin), and desacylated ghrelin (Desacyl-Ghrelin) were measured in 60 nondiabetic ACS patients and 44 subjects without ACS matched for age, sex, and BMI. Compared with non-ACS, ACS patients had similar HOMA(IR) and plasma adipokines, but lower T- and Desacyl-Ghrelin and higher Acyl-Ghrelin. Obesity (BMI > 30) was associated with higher HOMA(IR), lower adiponectin, and higher leptin (P < 0.05) similarly in ACS and non-ACS subjects. In ACS (n = 60) HOMA(IR) remained associated negatively with adiponectin and positively with leptin independently of BMI and c-reactive protein (CRP) (P < 0.05). On the other hand, low T- and Desacyl-Ghrelin with high Acyl-Ghrelin characterized both obese and non-obese ACS patients and were not associated with HOMA(IR). In conclusion, in ACS patients, obesity and obesity-related changes in plasma leptin and adiponectin are associated with and likely contribute to negatively modulate insulin resistance. ACS per se does not however enhance the negative impact of obesity on insulin sensitivity. High acylated and low desacylated ghrelin characterize ACS patients independently of obesity, but are not associated with insulin sensitivity.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Clinica Medica-Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
She T, Wang X, Gan Y, Kuang D, Yue J, Ni J, Zhao X, Wang G. Hyperglycemia suppresses cardiac stem cell homing to peri-infarcted myocardium via regulation of ERK1/2 and p38 MAPK activities. Int J Mol Med 2012; 30:1313-20. [PMID: 22965067 DOI: 10.3892/ijmm.2012.1125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/23/2012] [Indexed: 11/05/2022] Open
Abstract
Hyperglycemia in the acute phase of myocardial infarction (MI) is a marker of worse prognosis in both diabetic and non-diabetic patients; however, the role of hyperglycemia in the homing of cardiac stem cells (CSCs) to damaged myocardium post-MI and the possible mechanisms involved are not well understood. In this study, an MI model was induced in normoglycemic and hyperglycemic rats by left coronary artery ligation. Immunofluorescence was used to examine the migration of CSCs in vivo by injecting BrdU-labeled CSCs into the atrium-ventricle groove (AV-groove). Immunohistochemistry, western blot analysis and ELISA were carried out to detect the expression of stem cell factor (SCF) protein and RT-PCR was conducted for the expression of SCF mRNA. Phosphorylation of ERK1/2 and p38 MAPK was detected by western blot analysis. Afterwards, cardiac function was evaluated by hemodynamic measurement. On Day 5 post-MI, the accumulation of CSCs significantly increased in the peri-infarcted myocardium in normoglycemic rats, which led to an improvement in cardiac function 3 weeks after MI. However, the accumulation of CSCs markedly decreased in hyperglycemic rats, followed by the decline of cardiac function. SCF expression, followed with phosphorylation of ERK1/2 and p38 MAPK, were also significantly downregulated in the peri-infarcted myocardium in hyperglycemic rats compared to normoglycemic rats. Moreover, SCF expression and the migration of CSCs were blocked by either the MEK-specific inhibitor PD98059 or the p38 MAPK-selective inhibitor SB203580. The experiments in vitro confirmed that hyperglycemia decreased SCF expression via reduction in ERK1/2 and p38 MAPK activities and further inhibited the migration of CSCs. The results suggest that hyperglycemia suppresses CSC migration towards the ischemic area post-MI. This is possibly due to decreased myocardial SCF expression via reduction of ERK1/2 and p38 MAPK activities in hyperglycemic rats.
Collapse
Affiliation(s)
- Tonghui She
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The main determinant of myocardial necrosis following an acute myocardial infarction (AMI) is duration of ischemia. Infarct size is a strong independent predictor of postinfarction mortality. Interventions able to protect the myocardium from death during an AMI (cardioprotection) are urgently needed. Myocardial injury associated with reperfusion (ischemia/reperfusion injury [I/R]) significantly contributes to the final necrotic size. Duration of ischemia can only be reduced by social and emergency medical services--hospital collaborative programs. However, for a given duration of ischemia, infarct size can be limited by reducing reperfusion injury. Despite the fact that several therapies have been shown to reduce I/R injury in animal models, translation to humans has been frustrating. The cost of developing new drugs able to reduce I/R injury is huge, and this is a major roadblock in the field of cardioprotection. Recent studies have proposed that old, inexpensive drugs--in human use for decades (e.g., β-blockers and cyclosporine, among others)--can reduce I/R injury when administered intravenously before coronary opening. The demonstration of such a cardioprotective effect should have a significant impact in the care of AMI patients.
Collapse
Affiliation(s)
- David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | | |
Collapse
|
34
|
Ussher JR, Wang W, Gandhi M, Keung W, Samokhvalov V, Oka T, Wagg CS, Jaswal JS, Harris RA, Clanachan AS, Dyck JRB, Lopaschuk GD. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc Res 2012; 94:359-69. [PMID: 22436846 DOI: 10.1093/cvr/cvs129] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS During reperfusion of the ischaemic myocardium, fatty acid oxidation rates quickly recover, while glucose oxidation rates remain depressed. Direct stimulation of glucose oxidation via activation of pyruvate dehydrogenase (PDH), or secondary to an inhibition of malonyl CoA decarboxylase (MCD), improves cardiac functional recovery during reperfusion following ischaemia. However, the effects of such interventions on the evolution of myocardial infarction are unknown. The purpose of this study was to determine whether infarct size is decreased in response to increased glucose oxidation. METHODS AND RESULTS In vivo, direct stimulation of PDH in mice with the PDH kinase (PDHK) inhibitor, dichloroacetate, significantly decreased infarct size following temporary ligation of the left anterior descending coronary artery. These results were recapitulated in PDHK 4-deficient (PDHK4-/-) mice, which have enhanced myocardial PDH activity. These interventions also protected against ischaemia/reperfusion injury in the working heart, and dichloroacetate failed to protect in PDHK4-/- mice. In addition, there was a dramatic reduction in the infarct size in malonyl CoA decarboxylase-deficient (MCD-/-) mice, in which glucose oxidation rates are enhanced (secondary to an inhibition of fatty acid oxidation) relative to their wild-type littermates (10.8 ± 3.8 vs. 39.5 ± 4.7%). This cardioprotective effect in MCD-/- mice was associated with increased PDH activity in the ischaemic area at risk (1.89 ± 0.18 vs. 1.52 ± 0.05 μmol/g wet weight/min). CONCLUSION These findings demonstrate that stimulating glucose oxidation via targeting either PDH or MCD decreases the infarct size, validating the concept that optimizing myocardial metabolism is a novel therapy for ischaemic heart disease.
Collapse
Affiliation(s)
- John R Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lazzeri C, Valente S, Chiostri M, Picariello C, Gensini GF. Correlates of acute insulin resistance in the early phase of non-diabetic ST-elevation myocardial infarction. Diab Vasc Dis Res 2011; 8:35-42. [PMID: 21262869 DOI: 10.1177/1479164110396744] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The relationship between insulin secretion and acute insulin resistance (as assessed by Homeostatic Model Assessment [HOMA] index) and clinical and biochemical parameters in the early phase of non-diabetic ST-elevation myocardial infarction (STEMI) is so far unexplored. We aimed at assessing this relation in 286 consecutive STEMI patients without previously known diabetes submitted to primary percutaneous coronary intervention (PCI). Insulin resistance (as indicated by HOMA) was detectable in 67.1%. Non-parametric correlation showed that HOMA index was significantly correlated with BMI (r = 0.242; p < 0.0001) and HbA(1c) (r = 0.189; p < 0.001). At multivariable backward linear regression analysis, glycaemia was directly related to leukocyte count (p = 0.0003), age (p = 0.0001), creatine kinase isoform MB (CK-MB) (p = 0.00278) and lactate (p < 0.0001). Insulin was directly and significantly related to glycaemia (p = 0.0006), body mass index (BMI) (p = 0.00028) and lactate (p = 0.0096) In the early phase of STEMI without previously known diabetes the acute glucose dysmetabolism is quite complex, comprising increased glucose values and the development of acute insulin resistance. While insulin secretion is strictly related to BMI, apart from glucose levels, increased glucose values can be mainly related to the acute inflammatory response (as indicated to leukocyte count and C-RP), to age and to the degree of myocardial damage (as inferred by CK-MB).
Collapse
Affiliation(s)
- Chiara Lazzeri
- Intensive Cardiac Coronary Unit, Heart and Vessel Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| | | | | | | | | |
Collapse
|
36
|
Lethal myocardial reperfusion injury: a necessary evil? Int J Cardiol 2010; 151:3-11. [PMID: 21093938 DOI: 10.1016/j.ijcard.2010.10.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 10/23/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022]
Abstract
Despite being the most effective means of limiting infarct size, coronary reperfusion comes at a price and induces additional damage to the myocardium. Lethal reperfusion injury (death of myocytes that were viable at the time of reperfusion) is an increasingly acknowledged phenomenon. There are many interconnected mechanisms involved in this type of cell death. Calcium overload (generating myocyte hypercontracture), rapid recovery of physiological pH, neutrophil infiltration of the ischemic area, opening of the mitochondrial permeability-transition-pore (PTP), and apoptotic cell death are among the more important mechanisms involved in reperfusion injury. The activation of a group of proteins called reperfusion injury salvage kinases (RISK) pathway confers protection against reperfusion injury, mainly by inhibiting the opening of the mitochondrial PTP. Many interventions have been tested in human trials triggered by encouraging animal studies. In the present review we will explain in detail the main mechanism involved in reperfusion injury, as well as the various approaches (pre-clinical and human trials) performed targeting these mechanisms. Currently, no intervention has been consistently shown to reduce reperfusion injury in large randomized multicenter trials, but the research in this field is intense and the future is highly promising.
Collapse
|
37
|
In-hospital peak glycemia and prognosis in STEMI patients without earlier known diabetes. ACTA ACUST UNITED AC 2010; 17:419-23. [PMID: 20517158 DOI: 10.1097/hjr.0b013e328335f26f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Acute myocardial infarction is known as an acute metabolic stress, but clinicians currently have limited guidance regarding the evaluation and management of hyperglycemia after revascularization. METHODS AND RESULTS We assessed the prognostic role of three different ranges of in-hospital peak glycemia (<140, 140-180, and >180 mg/dl) in 252 acute ST-segment elevation myocardial infarction patients without earlier known diabetes submitted to percutaneous coronary intervention consecutively admitted to our intensive cardiac care unit (ICCU). Patients with highest peak glycemia showed the highest intra-ICCU mortality (7/44, 15.9%), which was significantly higher with respect to the other two subgroups (P=0.001 and 0.034, respectively). At backward stepwise logistic regression analysis, peak glycemia (odds ratio: 3.14; 95% confidence interval: 1.01-9.74, P=0.047) was an independent predictor of intra-ICCU mortality. CONCLUSION In acute ST-segment elevation myocardial infarction patients without earlier known diabetes submitted to mechanical revascularization, the poorer in-hospital glucose control was associated with higher mortality; peak glycemia greater than 180 mg/dl was associated with the highest mortality, whereas patients with peak glycemia comprised between 140 and 180 mg/dl exhibited intermediate mortality rates. According to our data during hospitalization intensivists should achieve glucose control values less than 140 mg/dl, as peak glycemia resulted in the independent predictor of intra-ICCU mortality.
Collapse
|
38
|
Devine MJ, Chandrasekara WMHS, Hardy KJ. Review: Management of hyperglycaemia in acute coronary syndrome. ACTA ACUST UNITED AC 2010. [DOI: 10.1177/1474651409357480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To review the management of blood glucose in acute coronary syndrome (ACS) a literature search was undertaken using Medline and Embase databases (January 1950—July 2008), bibliographies of retrieved articles, review articles and Department of Health reports. Trials were eligible for inclusion in the review if they (i) included patients with ACS and hyperglycaemia with or without diabetes or compared insulin infusion or glucose-potassium-insulin infusion with active controls, (ii) were randomised, and (iii) assessed mortality and morbidity. Eight trials met the above criteria (two of which have yet to report). Only two of the remaining six trials reported that insulin therapy significantly reduces mortality in ACS patients with hyperglycaemia. In conclusion ACS is of major public health importance in the UK and hyperglycaemia in the setting of ACS is associated with worse outcome. Current variability in management of blood glucose in ACS reflects a paucity of robust evidence to guide practice. Two ongoing trials may resolve the uncertainty about optimum blood glucose management in ACS.
Collapse
Affiliation(s)
- Matthew J Devine
- School of Medical Education, University of Liverpool, Liverpool, UK
| | - Wasala MHS Chandrasekara
- Diabetes and Endocrinology, St Helens & Knowsley Teaching Hospitals, St Helens Hospital, St Helens, Merseyside, UK
| | - Kevin J Hardy
- Diabetes and Endocrinology, St Helens & Knowsley Teaching Hospitals, St Helens Hospital, St Helens, Merseyside, UK,
| |
Collapse
|
39
|
Lazzeri C, Valente S, Chiostri M, Picariello C, Gensini GF. Acute glucose dysmetabolism in the early phase of ST-elevation myocardial infarction: the age response. Diab Vasc Dis Res 2010; 7:131-7. [PMID: 20382776 DOI: 10.1177/1479164109353369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In elderly patients with AMI, hyperglycaemia is associated with increased mortality. Recently it has been observed that insulin resistance, as assessed by the HOMA index, proved an independent predictor of in-hospital mortality. The interaction between age and glucose metabolism response in the acute phase of patients with STEMI without previously known diabetes has not yet been explored. We aimed to assess this relationship in 346 consecutive patients with STEMI admitted to our ICCU after primary PCI. When compared with the other age subgroups, the very oldest patients (aged > 79 years) showed the lowest LVEF (p=0.011), the highest incidence of 2- and 3-vessel coronary artery disease (p=0.002), and, finally, the highest mortality (p=0.037). Advancing age was associated with increased values of fibrinogen (p=0.022) and ESR (p=0.001), as well as of NT-pro-BNP (p<0.001). The very oldest patients (aged > 79 years) exhibited the highest values of glycaemia and peak glycaemia, while the incidence of insulin resistance (as inferred by HOMA index) remained unchanged across the age subgroups. This glycaemic pattern was confirmed after exclusion of patients with HbA(1c) > 6.5%, that is patients with a poor glycaemic control in the previous 2-3 months. In the acute phase of STEMI acute glucose metabolism is affected by age, since older patients showed the highest glucose levels and the poorest glycaemic control during ICCU stay despite the lack of differences in insulin resistance incidence.
Collapse
Affiliation(s)
- Chiara Lazzeri
- Intensive Cardiac Coronary Unit, Heart and Vessel Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| | | | | | | | | |
Collapse
|
40
|
Lazzeri C, Chiostri M, Sori A, Valente S, Gensini GF. Postprocedural hyperglycemia in ST elevation myocardial infarction submitted to percutaneous coronary intervention: a prognostic indicator and a marker of metabolic derangement. J Cardiovasc Med (Hagerstown) 2010; 11:7-13. [PMID: 19829142 DOI: 10.2459/jcm.0b013e32832d83b3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hyperglycemia in acute coronary syndrome is associated with an increased risk of death in patients without previously known diabetes but the prognostic role of postrevascularization hyperglycemia in these patients is so far incompletely elucidated. MATERIALS AND METHODS In 175 consecutive patients without previously known diabetes and with ST elevation myocardial infarction treated with primary angioplasty, we evaluated the relation between acute and chronic glucose dysmetabolism and early and late mortality and the relation between hyperglycemia and extension of myocardial damage [creatine phosphokinase-MB (CPK-MB), troponin I levels, ejection fraction], inflammation (leukocyte count, erythrocyte sedimentation rate, C-reactive protein) and prognostic biohumoral markers [N-terminal brain natriuretic peptide (NT-proBNP) and lactic acid]. RESULTS Highest glucose levels were associated with higher Killip class, lower ejection fraction and increased values of CPK, CPK-MB, troponin I, proBNP, lactic acid, leukocytes and insulin. At multivariate logistic regression analysis, the following variables were independent predictors of intraintensive cardiac care unit mortality: postprocedural glycemia [odds ratio (OR) 8.79; 95% confidence interval (CI) 1.41-54.94; P = 0.020] and troponin I (OR 1.003; 95% CI 1.0004-1.006; P = 0.023) when adjusted for insulinemia [OR 0.98; 95% CI 0.92-1.06; P = not significant (NS)], HbA1c (OR 0.51; 95% CI 0.11-2.37; P = NS), ST elevation myocardial infarction location (OR 1.27; 95% CI 0.44-3.66; P = NS) and creatininemia (OR 1.48; 95% CI 0.90-2.45; P = NS). CONCLUSION In ST elevation myocardial infarction patients without previously known diabetes submitted to percutaneous coronary intervention, glucose serum levels measured after mechanical revascularization were independent predictors of in-hospital mortality.
Collapse
Affiliation(s)
- Chiara Lazzeri
- Department of Heart and Vessel Disease, Intensive Cardiac Care Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| | | | | | | | | |
Collapse
|
41
|
Lazzeri C, Tarquini R, Valente S, Abbate R, Gensini GF. Emerging drugs for acute myocardial infarction. Expert Opin Emerg Drugs 2010; 15:87-105. [PMID: 20055689 DOI: 10.1517/14728210903405619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IMPORTANCE OF THE FIELD The present review is aimed at going over the pharmacological profile (and the clinical impact) of the emerging drugs involved in the management of patients with ST-elevation myocardial infarction (STEMI) in order to provide the cardiologists who deal with these patients in the early phase with the most recent evidence on this topic. AREAS COVERED IN THIS REVIEW Anticoagulant and antiplatelet drugs are the main cornerstones of therapy in the treatment of STEMI patients undergoing primary percutaneous coronary intervention (PCI). The main issues that clinicians have to deal with are represented by balancing thrombotic and bleeding risks. In tailoring therapy, variables such as age, sex and previous disease should be taken into account, as well as ongoing complications (such as acute renal failure) that could affect hemostasis. Despite the well-established clinical benefits of antiplatelet agents, questions remain, mainly surrounding potential for variable platelet response, which are strictly related to non-genetic (i.e., diet, drug-drug interaction, clinical factors such as obesity, diabetes mellitus, and inflammation) and genetic determinants. WHAT THE READER WILL GAIN In their daily practice, cardiologists cannot abstract from the knowledge and updating on the ongoing research fields as well as the newly developed drugs, which they should frame in the very patient in the attempt to the develop a personalized medical strategy. These include also the pharmacological option(s) in the treatment of the reperfusion injury, the metabolic aspects and the stem cell therapy. TAKE HOME MASSAGE: In our opinion, the goal of ongoing research on the pharmacological approach to STEMI patients is a personalized medical strategy that relies on critical clinicians who merge newly developed acquisitions on this topic and a more complete, systemic and critical approach to the patient.
Collapse
Affiliation(s)
- Chiara Lazzeri
- University of Florence, Department of Heart and Vessels, Florence, Italy
| | | | | | | | | |
Collapse
|
42
|
Opie LH, Knuuti J. The Adrenergic-Fatty Acid Load in Heart Failure. J Am Coll Cardiol 2009; 54:1637-46. [DOI: 10.1016/j.jacc.2009.07.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/15/2009] [Accepted: 07/27/2009] [Indexed: 12/19/2022]
|
43
|
Marfella R, Di Filippo C, Portoghese M, Ferraraccio F, Rizzo MR, Siniscalchi M, Musacchio E, D'Amico M, Rossi F, Paolisso G. Tight Glycemic Control Reduces Heart Inflammation and Remodeling During Acute Myocardial Infarction in Hyperglycemic Patients. J Am Coll Cardiol 2009; 53:1425-36. [PMID: 19371826 DOI: 10.1016/j.jacc.2009.01.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/09/2009] [Accepted: 01/19/2009] [Indexed: 01/08/2023]
|
44
|
Goyal A, Nerenberg K, Gerstein HC, Umpierrez G, Wilson PWF. Insulin therapy in acute coronary syndromes: an appraisal of completed and ongoing randomised trials with important clinical end points. Diab Vasc Dis Res 2008; 5:276-84. [PMID: 18958837 PMCID: PMC3746495 DOI: 10.3132/dvdr.2008.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Insulin therapy was first proposed as an adjunctive therapy in patients with acute coronary syndromes (ACS) in the 1960s. Since then, numerous randomised clinical trials have been conducted to determine the efficacy and to define the role of insulin therapy in ACS. This review will discuss: 1) completed trials of insulin therapy in ACS, including both glucose-insulin-potassium (GIK) approaches and non-GIK approaches; 2) trials of insulin therapy in critically ill non-ACS patients and the lessons from these trials that can be applied to trials of insulin in ACS patients; and 3) a summary of ongoing and planned trials of insulin in ACS patients.
Collapse
Affiliation(s)
- Abhinav Goyal
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|
45
|
Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion. Basic Res Cardiol 2008; 103:444-53. [PMID: 18500485 DOI: 10.1007/s00395-008-0728-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 04/23/2008] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate the significance of the JAK-STAT pathway in insulin-induced cardioprotection from reperfusion injury. METHODS In isolated perfused rat hearts subjected to insulin therapy (0.3 mU/ml) +/- AG490 (5 microM, JAK-STAT inhibitor), the phosphorylation state of STAT3 and Akt was determined after 15 min of reperfusion. Infarct size was measured after 120 min of reperfusion. Isolated cardiac myocytes from wild type (WT) and cardiac specific STAT3 deficient mice were treated with insulin at reoxygenation following simulated ischemia (SI, 26 h). Cell viability was measured after 120 min of reoxygenation following SI, whereas phosphorylation state of Akt was measured after 15 min of reoxygenation following SI. RESULTS Insulin given at reperfusion led to phosphorylation of STAT3 and Akt both of which were inhibited by AG490. AG490 also blocked the insulin-dependent decrease in infarct size, supporting a role for JAK-STAT in cardioprotection. In addition, insulin protection from SI was blocked in myocytes from the STAT3 deficient mice, or in WT mice treated with AG490. Furthermore, insulin failed to phosphorylate Akt in the STAT3 deficient cardiomyocytes. CONCLUSION Insulin-induced cardioprotection at reperfusion occurs through activation of STAT3. Inhibiting STAT3 by AG490, or STAT3 depletion in cardiac myocytes affects activation of Akt, suggesting close interaction between STAT3 and Akt in the cardioprotective signalling pathway activated by insulin treatment at reperfusion.
Collapse
|