1
|
Mo W, Donahue JK. Gene therapy for atrial fibrillation. J Mol Cell Cardiol 2024; 196:84-93. [PMID: 39270930 PMCID: PMC11534567 DOI: 10.1016/j.yjmcc.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in adults. Current limitations of pharmacological and ablative therapies motivate the development of novel therapies as next generation treatments for AF. The arrhythmia mechanisms creating and sustaining AF are key elements in the development of this novel treatment. Gene therapy provides a useful platform that allows us to regulate the mechanisms of interest using a suitable transgene(s), vector, and delivery method. Effective gene therapy strategies in the literature have targeted maladaptive electrical or structural remodeling that increase vulnerability to AF. In this review, we will summarize key elements of gene therapy for AF, including molecular targets, gene transfer vectors, atrial gene delivery and preclinical efficacy and toxicity testing. Recent advances and challenges in the field will be also discussed.
Collapse
Affiliation(s)
- Weilan Mo
- From the Division of Cardiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - J Kevin Donahue
- From the Division of Cardiology, University of Massachusetts Medical School, Worcester, MA, United States of America.
| |
Collapse
|
2
|
Hegner P, Ofner F, Schaner B, Gugg M, Trum M, Lauerer AM, Maier LS, Arzt M, Lebek S, Wagner S. CaMKIIδ-dependent dysregulation of atrial Na + homeostasis promotes pro-arrhythmic activity in an obstructive sleep apnea mouse model. Front Pharmacol 2024; 15:1411822. [PMID: 38966545 PMCID: PMC11222670 DOI: 10.3389/fphar.2024.1411822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Background Obstructive sleep apnea (OSA) has been linked to various pathologies, including arrhythmias such as atrial fibrillation. Specific treatment options for OSA are mainly limited to symptomatic approaches. We previously showed that increased production of reactive oxygen species (ROS) stimulates late sodium current through the voltage-dependent Na+ channels via Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ), thereby increasing the propensity for arrhythmias. However, the impact on atrial intracellular Na+ homeostasis has never been demonstrated. Moreover, the patients often exhibit a broad range of comorbidities, making it difficult to ascertain the effects of OSA alone. Objective We analyzed the effects of OSA on ROS production, cytosolic Na+ level, and rate of spontaneous arrhythmia in atrial cardiomyocytes isolated from an OSA mouse model free from comorbidities. Methods OSA was induced in C57BL/6 wild-type and CaMKIIδ-knockout mice by polytetrafluorethylene (PTFE) injection into the tongue. After 8 weeks, their atrial cardiomyocytes were analyzed for cytosolic and mitochondrial ROS production via laser-scanning confocal microscopy. Quantifications of the cytosolic Na+ concentration and arrhythmia were performed by epifluorescence microscopy. Results PTFE treatment resulted in increased cytosolic and mitochondrial ROS production. Importantly, the cytosolic Na+ concentration was dramatically increased at various stimulation frequencies in the PTFE-treated mice, while the CaMKIIδ-knockout mice were protected. Accordingly, the rate of spontaneous Ca2+ release events increased in the wild-type PTFE mice while being impeded in the CaMKIIδ-knockout mice. Conclusion Atrial Na+ concentration and propensity for spontaneous Ca2+ release events were higher in an OSA mouse model in a CaMKIIδ-dependent manner, which could have therapeutic implications.
Collapse
Affiliation(s)
- Philipp Hegner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Florian Ofner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Benedikt Schaner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
- Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg, Augsburg, Germany
| | - Mathias Gugg
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Maximilian Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Anna-Maria Lauerer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Lars Siegfried Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Pizzo E, Cervantes DO, Ketkar H, Ripa V, Nassal DM, Buck B, Parambath SP, Di Stefano V, Singh K, Thompson CI, Mohler PJ, Hund TJ, Jacobson JT, Jain S, Rota M. Phosphorylation of cardiac sodium channel at Ser571 anticipates manifestations of the aging myopathy. Am J Physiol Heart Circ Physiol 2024; 326:H1424-H1445. [PMID: 38639742 DOI: 10.1152/ajpheart.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Diastolic dysfunction and delayed ventricular repolarization are typically observed in the elderly, but whether these defects are intimately associated with the progressive manifestation of the aging myopathy remains to be determined. In this regard, aging in experimental animals is coupled with increased late Na+ current (INa,L) in cardiomyocytes, raising the possibility that INa,L conditions the modality of electrical recovery and myocardial relaxation of the aged heart. For this purpose, aging male and female wild-type (WT) C57Bl/6 mice were studied together with genetically engineered mice with phosphomimetic (gain of function, GoF) or ablated (loss of function, LoF) mutations of the sodium channel Nav1.5 at Ser571 associated with, respectively, increased and stabilized INa,L. At ∼18 mo of age, WT mice developed prolonged duration of the QT interval of the electrocardiogram and impaired diastolic left ventricular (LV) filling, defects that were reversed by INa,L inhibition. Prolonged repolarization and impaired LV filling occurred prematurely in adult (∼5 mo) GoF mutant mice, whereas these alterations were largely attenuated in aging LoF mutant animals. Ca2+ transient decay and kinetics of myocyte shortening/relengthening were delayed in aged (∼24 mo) WT myocytes, with respect to adult cells. In contrast, delayed Ca2+ transients and contractile dynamics occurred at adult stage in GoF myocytes and further deteriorated in old age. Conversely, myocyte mechanics were minimally affected in aging LoF cells. Collectively, these results document that Nav1.5 phosphorylation at Ser571 and the late Na+ current modulate the modality of myocyte relaxation, constituting the mechanism linking delayed ventricular repolarization and diastolic dysfunction.NEW & NOTEWORTHY We have investigated the impact of the late Na current (INa,L) on cardiac and myocyte function with aging by using genetically engineered animals with enhanced or stabilized INa,L, due to phosphomimetic or phosphoablated mutations of Nav1.5. Our findings support the notion that phosphorylation of Nav1.5 at Ser571 prolongs myocardial repolarization and impairs diastolic function, contributing to the manifestations of the aging myopathy.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Daniel O Cervantes
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valentina Ripa
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Benjamin Buck
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sreema P Parambath
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valeria Di Stefano
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Kanwardeep Singh
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Carl I Thompson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, United States
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
4
|
Sha R, Baines O, Hayes A, Tompkins K, Kalla M, Holmes AP, O'Shea C, Pavlovic D. Impact of Obesity on Atrial Fibrillation Pathogenesis and Treatment Options. J Am Heart Assoc 2024; 13:e032277. [PMID: 38156451 PMCID: PMC10863823 DOI: 10.1161/jaha.123.032277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. AF increases the risk of stroke, heart failure, dementia, and hospitalization. Obesity significantly increases AF risk, both directly and indirectly, through related conditions, like hypertension, diabetes, and heart failure. Obesity-driven structural and electrical remodeling contribute to AF via several reported mechanisms, including adiposity, inflammation, fibrosis, oxidative stress, ion channel alterations, and autonomic dysfunction. In particular, expanding epicardial adipose tissue during obesity has been suggested as a key driver of AF via paracrine signaling and direct infiltration. Weight loss has been shown to reverse these changes and reduce AF risk and recurrence after ablation. However, studies on how obesity affects pharmacologic or interventional AF treatments are limited. In this review, we discuss mechanisms by which obesity mediates AF and treatment outcomes, aiming to provide insight into obesity-drug interactions and guide personalized treatment for this patient subgroup.
Collapse
Affiliation(s)
- Rina Sha
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Olivia Baines
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Abbie Hayes
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Katie Tompkins
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Manish Kalla
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
5
|
Tchou G, Ponce-Balbuena D, Liu N, Gore-Panter S, Hsu J, Liu F, Opoku E, Brubaker G, Schumacher SM, Moravec CS, Barnard J, Van Wagoner DR, Chung MK, Smith JD. Decreased FAM13B Expression Increases Atrial Fibrillation Susceptibility by Regulating Sodium Current and Calcium Handling. JACC Basic Transl Sci 2023; 8:1357-1378. [PMID: 38094680 PMCID: PMC10714175 DOI: 10.1016/j.jacbts.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 04/17/2024]
Abstract
A specific genetic variant associated with atrial fibrillation risk, rs17171731, was identified as a regulatory variant responsible for controlling FAM13B expression. The atrial fibrillation risk allele decreases FAM13B expression, whose knockdown alters the expression of many genes in stem cell-derived cardiomyocytes, including SCN2B, and led to pro-arrhythmogenic changes in the late sodium current and Ca2+ cycling. Fam13b knockout mice had increased P-wave and QT interval duration and were more susceptible to pacing-induced arrhythmias vs control mice. FAM13B expression, its regulation, and downstream effects are potential targets for investigation of patient-specific therapeutics.
Collapse
Affiliation(s)
- Gregory Tchou
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Nana Liu
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shamone Gore-Panter
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeffrey Hsu
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fang Liu
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emmanuel Opoku
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gregory Brubaker
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah M. Schumacher
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine S. Moravec
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - David R. Van Wagoner
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mina K. Chung
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jonathan D. Smith
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Sharma AK, Singh S, Bhat M, Gill K, Zaid M, Kumar S, Shakya A, Tantray J, Jose D, Gupta R, Yangzom T, Sharma RK, Sahu SK, Rathore G, Chandolia P, Singh M, Mishra A, Raj S, Gupta A, Agarwal M, Kifayat S, Gupta A, Gupta P, Vashist A, Vaibhav P, Kathuria N, Yadav V, Singh RP, Garg A. New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models. Sci Rep 2023; 13:16420. [PMID: 37775650 PMCID: PMC10541452 DOI: 10.1038/s41598-023-41942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
- Ashish Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India.
| | - Shivam Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mehvish Bhat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Kartik Gill
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohammad Zaid
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anjali Shakya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Junaid Tantray
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Divyamol Jose
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rashmi Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Tsering Yangzom
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rajesh Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | | | - Gulshan Rathore
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Priyanka Chandolia
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Shobhit Raj
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Archita Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sumaiya Kifayat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anamika Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Prashant Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ankit Vashist
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Parth Vaibhav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Nancy Kathuria
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Vipin Yadav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Arun Garg
- MVN University, Palwal, Haryana, India
| |
Collapse
|
7
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
8
|
Asfaw TN, Bondarenko VE. A compartmentalized mathematical model of the β 1- and β 2-adrenergic signaling systems in ventricular myocytes from mouse in heart failure. Am J Physiol Cell Physiol 2023; 324:C263-C291. [PMID: 36468844 DOI: 10.1152/ajpcell.00366.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse models of heart failure are extensively used to research human cardiovascular diseases. In particular, one of the most common is the mouse model of heart failure resulting from transverse aortic constriction (TAC). Despite this, there are no comprehensive compartmentalized mathematical models that describe the complex behavior of the action potential, [Ca2+]i transients, and their regulation by β1- and β2-adrenergic signaling systems in failing mouse myocytes. In this paper, we develop a novel compartmentalized mathematical model of failing mouse ventricular myocytes after TAC procedure. The model describes well the cell geometry, action potentials, [Ca2+]i transients, and β1- and β2-adrenergic signaling in the failing cells. Simulation results obtained with the failing cell model are compared with those from the normal ventricular myocytes. Exploration of the model reveals the sarcoplasmic reticulum Ca2+ load mechanisms in failing ventricular myocytes. We also show a larger susceptibility of the failing myocytes to early and delayed afterdepolarizations and to a proarrhythmic behavior of Ca2+ dynamics upon stimulation with isoproterenol. The mechanisms of the proarrhythmic behavior suppression are investigated and sensitivity analysis is performed. The developed model can explain the existing experimental data on failing mouse ventricular myocytes and make experimentally testable predictions of a failing myocyte's behavior.
Collapse
Affiliation(s)
- Tesfaye Negash Asfaw
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Vladimir E Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia.,Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
9
|
Ko TH, Jeong D, Yu B, Song JE, Le QA, Woo SH, Choi JI. Inhibition of late sodium current via PI3K/Akt signaling prevents cellular remodeling in tachypacing-induced HL-1 atrial myocytes. Pflugers Arch 2023; 475:217-231. [PMID: 36274100 PMCID: PMC9849166 DOI: 10.1007/s00424-022-02754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
An aberrant late sodium current (INa,Late) caused by a mutation in the cardiac sodium channel (Nav1.5) has emerged as a contributor to electrical remodeling that causes susceptibility to atrial fibrillation (AF). Although downregulation of phosphoinositide 3-kinase (PI3K)/Akt signaling is associated with AF, the molecular mechanisms underlying the negative regulation of INa,Late in AF remain unclear, and potential therapeutic approaches are needed. In this work, we constructed a tachypacing-induced cellular model of AF by exposing HL-1 myocytes to rapid electrical stimulation (1.5 V/cm, 4 ms, 10 Hz) for 6 h. Then, we gathered data using confocal Ca2+ imaging, immunofluorescence, patch-clamp recordings, and immunoblots. The tachypacing cells displayed irregular Ca2+ release, delayed afterdepolarization, prolonged action potential duration, and reduced PI3K/Akt signaling compared with controls. Those detrimental effects were related to increased INa,Late and were significantly mediated by treatment with the INa,Late blocker ranolazine. Furthermore, decreased PI3K/Akt signaling via PI3K inhibition increased INa,Late and subsequent aberrant myocyte excitability, which were abolished by INa,Late inhibition, suggesting that PI3K/Akt signaling is responsible for regulating pathogenic INa,Late. These results indicate that PI3K/Akt signaling is critical for regulating INa,Late and electrical remodeling, supporting the use of PI3K/Akt-mediated INa,Late as a therapeutic target for AF.
Collapse
Affiliation(s)
- Tae Hee Ko
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea ,Ion Channel Research Unit, Cardiovascular Research Institute, Korea University, Seoul, Republic of Korea
| | - Daun Jeong
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Byeongil Yu
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Ji Eun Song
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Qui Anh Le
- Laboratory of Pathophysiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Sun-Hee Woo
- Laboratory of Pathophysiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea ,Ion Channel Research Unit, Cardiovascular Research Institute, Korea University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Hu CC, Wei X, Liu JM, Han LL, Xia CK, Wu J, You T, Zhu AF, Yao SL, Yuan SY, Xu HD, Xia ZY, Wang TT, Mao WK. Cardiac-targeted PIASy gene silencing mediates deSUMOylation of caveolin-3 and prevents ischemia/reperfusion-induced Na v1.5 downregulation and ventricular arrhythmias. Mil Med Res 2022; 9:58. [PMID: 36229865 PMCID: PMC9563440 DOI: 10.1186/s40779-022-00415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 09/07/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Abnormal myocardial Nav1.5 expression and function cause lethal ventricular arrhythmias during myocardial ischemia-reperfusion (I/R). Protein inhibitor of activated STAT Y (PIASy)-mediated caveolin-3 (Cav-3) SUMO modification affects Cav-3 binding to the voltage-gated sodium channel 1.5 (Nav1.5). PIASy activity is increased after myocardial I/R, but it is unclear whether this is attributable to plasma membrane Nav1.5 downregulation and ventricular arrhythmias. METHODS Using recombinant adeno-associated virus subtype 9 (AAV9), rat cardiac PIASy was silenced using intraventricular injection of PIASy short hairpin RNA (shRNA). After two weeks, rat hearts were subjected to I/R and electrocardiography was performed to assess malignant arrhythmias. Tissues from peri-infarct areas of the left ventricle were collected for molecular biological measurements. RESULTS PIASy was upregulated by I/R (P < 0.01), with increased SUMO2/3 modification of Cav-3 and reduced membrane Nav1.5 density (P < 0.01). AAV9-PIASy shRNA intraventricular injection into the rat heart downregulated PIASy after I/R, at both mRNA and protein levels (P < 0.05 vs. Scramble-shRNA + I/R group), decreased SUMO-modified Cav-3 levels, enhanced Cav-3 binding to Nav1.5, and prevented I/R-induced decrease of Nav1.5 and Cav-3 co-localization in the intercalated disc and lateral membrane. PIASy silencing in rat hearts reduced I/R-induced fatal arrhythmias, which was reflected by a modest decrease in the duration of ventricular fibrillation (VF; P < 0.05 vs. Scramble-shRNA + I/R group) and a significantly reduced arrhythmia score (P < 0.01 vs. Scramble-shRNA + I/R group). The anti-arrhythmic effects of PIASy silencing were also evidenced by decreased episodes of ventricular tachycardia (VT), sustained VT and VF, especially at the time 5-10 min after ischemia (P < 0.05 vs. Scramble-shRNA + IR group). Using in vitro human embryonic kidney 293 T (HEK293T) cells and isolated adult rat cardiomyocyte models exposed to hypoxia/reoxygenation (H/R), we confirmed that increased PIASy promoted Cav-3 modification by SUMO2/3 and Nav1.5/Cav-3 dissociation after H/R. Mutation of SUMO consensus lysine sites in Cav-3 (K38R or K144R) altered the membrane expression levels of Nav1.5 and Cav-3 before and after H/R in HEK293T cells. CONCLUSIONS I/R-induced cardiac PIASy activation increased Cav-3 SUMOylation by SUMO2/3 and dysregulated Nav1.5-related ventricular arrhythmias. Cardiac-targeted PIASy silencing mediated Cav-3 deSUMOylation and partially prevented I/R-induced Nav1.5 downregulation in the plasma membrane of cardiomyocytes, and subsequent ventricular arrhythmias in rats. PIASy was identified as a potential therapeutic target for life-threatening arrhythmias in patients with ischemic heart diseases.
Collapse
Affiliation(s)
- Chen-Chen Hu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Wei
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin-Min Liu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin-Lin Han
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Kun Xia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Wu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao You
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - A-Fang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, CAMS and PUMC, Beijing, 100730, China
| | - Shang-Long Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shi-Ying Yuan
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao-Dong Xu
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Zheng-Yuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, 999077, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Ting-Ting Wang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei-Ke Mao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Blackwell DJ, Schmeckpeper J, Knollmann BC. Animal Models to Study Cardiac Arrhythmias. Circ Res 2022; 130:1926-1964. [PMID: 35679367 DOI: 10.1161/circresaha.122.320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
12
|
Li T, Ginkel M, Yee AX, Foster L, Chen J, Heyse S, Steigele S. An efficient and scalable data analysis solution for automated electrophysiology platforms. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:278-285. [PMID: 35058183 DOI: 10.1016/j.slasd.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion channels are drug targets for neurologic, cardiac, and immunologic diseases. Many disease-associated mutations and drugs modulate voltage-gated ion channel activation and inactivation, suggesting that characterizing state-dependent effects of test compounds at an early stage of drug development can be of great benefit. Historically, the effects of compounds on ion channel biophysical properties and voltage-dependent activation/inactivation could only be assessed by using low-throughput, manual patch clamp recording techniques. In recent years, automated patch clamp (APC) platforms have drastically increased in throughput. In contrast to their broad utilization in compound screening, APC platforms have rarely been used for mechanism of action studies, in large part due to the lack of sophisticated, scalable analysis methods for processing the large amount of data generated by APC platforms. In the current study, we developed a highly efficient and scalable software workflow to overcome this challenge. This method, to our knowledge the first of its kind, enables automated curve fitting and complex analysis of compound effects. Using voltage-gated sodium channels as an example, we were able to immediately assess the effects of test compounds on a spectrum of biophysical properties, including peak current, voltage-dependent steady state activation/inactivation, and time constants of activation and fast inactivation. Overall, this automated data analysis method provides a novel solution for in-depth analysis of large-scale APC data, and thus will significantly impact ion channel research and drug discovery.
Collapse
Affiliation(s)
- Tianbo Li
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA.
| | | | | | | | - Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
13
|
Zou T, Chen Q, Chen C, Liu G, Ling Y, Pang Y, Xu Y, Cheng K, Zhu W, Wang RX, Qian LL, Ge J. Moricizine prevents atrial fibrillation by late sodium current inhibition in atrial myocytes. J Thorac Dis 2022; 14:2187-2200. [PMID: 35813708 PMCID: PMC9264100 DOI: 10.21037/jtd-22-534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
Background Enhanced late sodium current (INaL) is reportedly related to an increased risk of atrial fibrillation (AF). Moricizine, as a widely used anti-arrhythmia drug for suppressing ventricular tachycardia, has also been shown to prevent paroxysmal AF. However, the mechanism of its therapeutic effect remains poorly understood. Methods Angiotensin II (Ang II) was induced in C57Bl/6 mice (male wild-type) for 4 weeks to increase the susceptibility of AF, and acetylcholine-calcium chloride was used to induce AF. The whole-cell patch-clamp technique was used to detect INaL from isolated atrial myocytes. The expression of proteins in atrial of mice and HL-1 cells were examined by Western-blot. Results The results showed that moricizine significantly inhibited Ang II-mediated atrial enlargement and reduced AF vulnerability. We found that the densities of INaL were enhanced in Ang II-treated left and right atrial cardiomyocytes. Simultaneously, the Ang II-induced increase in INaL currents density was alleviated by the administration of moricizine, and no alteration in Nav1.5 expression was observed. In normal isolated atrial myocytes, moricizine significantly reduced Sea anemone toxin II (ATX II)-enhanced INaL density with a reduction of peak sodium currents. In addition, moricizine reduced the Ang II-induced upregulation of phosphorylated calcium/calmodulin-dependent protein kinase-II (p-CaMKII) in both the left and right atria. In HL-1 cells, moricizine also reduced the upregulation of p-CaMKII with Ang II and ATX II intervention, respectively. Conclusions Our results indicate that Ang II enhances the INaL via activation of CaMKII. Moricizine inhibits INaL and reduces CaMKII activation, which may be one of the mechanisms of moricizine suppression of AF.
Collapse
Affiliation(s)
- Tian Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Qingxing Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Chaofeng Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Guijian Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Yunlong Ling
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Yang Pang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Ye Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Kuan Cheng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Wenqing Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| |
Collapse
|
14
|
Chakouri N, Rivas S, Roybal D, Yang L, Diaz J, Hsu A, Mahling R, Chen BX, Owoyemi JO, DiSilvestre D, Sirabella D, Corneo B, Tomaselli GF, Dick IE, Marx SO, Ben-Johny M. Fibroblast growth factor homologous factors serve as a molecular rheostat in tuning arrhythmogenic cardiac late sodium current. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1-13. [PMID: 35662881 PMCID: PMC9161660 DOI: 10.1038/s44161-022-00060-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2022] [Indexed: 05/20/2023]
Abstract
Voltage-gated sodium (Nav1.5) channels support the genesis and brisk spatial propagation of action potentials in the heart. Disruption of NaV1.5 inactivation results in a small persistent Na influx known as late Na current (I Na,L), which has emerged as a common pathogenic mechanism in both congenital and acquired cardiac arrhythmogenic syndromes. Here, using low-noise multi-channel recordings in heterologous systems, LQTS3 patient-derived iPSCs cardiomyocytes, and mouse ventricular myocytes, we demonstrate that the intracellular fibroblast growth factor homologous factors (FHF1-4) tune pathogenic I Na,L in an isoform-specific manner. This scheme suggests a complex orchestration of I Na,L in cardiomyocytes that may contribute to variable disease expressivity of NaV1.5 channelopathies. We further leverage these observations to engineer a peptide-inhibitor of I Na,L with a higher efficacy as compared to a well-established small-molecule inhibitor. Overall, these findings lend insights into molecular mechanisms underlying FHF regulation of I Na,L in pathophysiology and outline potential therapeutic avenues.
Collapse
Affiliation(s)
- Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Sharen Rivas
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Daniel Roybal
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Johanna Diaz
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Allen Hsu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Ryan Mahling
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Bi-Xing Chen
- Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | | | - Deborah DiSilvestre
- Department Physiology, University of Maryland, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Dario Sirabella
- Columbia Stem Cell Initiative, Stem Cell Core, Columbia University Irving Medical Center, NY, USA
| | - Barbara Corneo
- Columbia Stem Cell Initiative, Stem Cell Core, Columbia University Irving Medical Center, NY, USA
| | - Gordon F. Tomaselli
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ivy E. Dick
- Department Physiology, University of Maryland, Baltimore, MD, USA
| | - Steven O. Marx
- Department of Pharmacology, Columbia University, New York, NY, USA
- Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Su KN, Ma Y, Cacheux M, Ilkan Z, Raad N, Muller GK, Wu X, Guerrera N, Thorn SL, Sinusas AJ, Foretz M, Viollet B, Akar JG, Akar FG, Young LH. Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation. JCI Insight 2022; 7:141213. [PMID: 35451373 PMCID: PMC9089788 DOI: 10.1172/jci.insight.141213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolic stress is an important cause of pathological atrial remodeling and atrial fibrillation. AMPK is a ubiquitous master metabolic regulator, yet its biological function in the atria is poorly understood in both health and disease. We investigated the impact of atrium-selective cardiac AMPK deletion on electrophysiological and structural remodeling in mice. Loss of atrial AMPK expression caused atrial changes in electrophysiological properties and atrial ectopic activity prior to the onset of spontaneous atrial fibrillation. Concomitant transcriptional downregulation of connexins and atrial ion channel subunits manifested with delayed left atrial activation and repolarization. The early molecular and electrophysiological abnormalities preceded left atrial structural remodeling and interstitial fibrosis. AMPK inactivation induced downregulation of transcription factors (Mef2c and Pitx2c) linked to connexin and ion channel transcriptional reprogramming. Thus, AMPK plays an essential homeostatic role in atria, protecting against adverse remodeling potentially by regulating key transcription factors that control the expression of atrial ion channels and gap junction proteins.
Collapse
Affiliation(s)
- Kevin N Su
- Department of Cellular & Molecular Physiology and
| | - Yina Ma
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marine Cacheux
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zeki Ilkan
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nour Raad
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Xiaohong Wu
- Department of Cellular & Molecular Physiology and
| | - Nicole Guerrera
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephanie L Thorn
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Foretz
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Joseph G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fadi G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lawrence H Young
- Department of Cellular & Molecular Physiology and.,Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Rotors anchored by refractory islands drive torsades de pointes in an experimental model of electrical storm. Heart Rhythm 2022; 19:318-329. [PMID: 34678525 PMCID: PMC8810573 DOI: 10.1016/j.hrthm.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Electrical storm (ES) is a life-threatening emergency in patients at high risk of ventricular tachycardia/ventricular fibrillation (VF), but the pathophysiology and molecular basis are poorly understood. OBJECTIVE The purpose of this study was to explore the electrophysiological substrate for experimental ES. METHODS A model was created by inducing chronic complete atrioventricular block in defibrillator-implanted rabbits, which recapitulates QT prolongation, torsades des pointes (TdP), and VF episodes. RESULTS Optical mapping revealed island-like regions with action potential duration (APD) prolongation in the left ventricle, leading to increased spatial APD dispersion, in rabbits with ES (defined as ≥3 VF episodes/24 h). The maximum APD and its dispersion correlated with the total number of VF episodes in vivo. TdP was initiated by an ectopic beat that failed to enter the island and formed a reentrant wave and perpetuated by rotors whose centers swirled in the periphery of the island. Epinephrine exacerbated the island by prolonging APD and enhancing APD dispersion, which was less evident after late Na+ current blockade with 10 μM ranolazine. Nonsustained ventricular tachycardia in a non-ES rabbit heart with homogeneous APD prolongation resulted from multiple foci with an electrocardiographic morphology different from TdP driven by drifting rotors in ES rabbit hearts. The neuronal Na+-channel subunit NaV1.8 was upregulated in ES rabbit left ventricular tissues and expressed within the myocardium corresponding to the island location in optically mapped ES rabbit hearts. The NaV1.8 blocker A-803467 (10 mg/kg, intravenously) attenuated QT prolongation and suppressed epinephrine-evoked TdP. CONCLUSION A tissue island with enhanced refractoriness contributes to the generation of drifting rotors that underlies ES in this model. NaV1.8-mediated late Na+ current merits further investigation as a contributor to the substrate for ES.
Collapse
|
17
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
18
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
19
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
20
|
Detrimental proarrhythmogenic interaction of Ca 2+/calmodulin-dependent protein kinase II and Na V1.8 in heart failure. Nat Commun 2021; 12:6586. [PMID: 34782600 PMCID: PMC8593192 DOI: 10.1038/s41467-021-26690-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
An interplay between Ca2+/calmodulin-dependent protein kinase IIδc (CaMKIIδc) and late Na+ current (INaL) is known to induce arrhythmias in the failing heart. Here, we elucidate the role of the sodium channel isoform NaV1.8 for CaMKIIδc-dependent proarrhythmia. In a CRISPR-Cas9-generated human iPSC-cardiomyocyte homozygous knock-out of NaV1.8, we demonstrate that NaV1.8 contributes to INaL formation. In addition, we reveal a direct interaction between NaV1.8 and CaMKIIδc in cardiomyocytes isolated from patients with heart failure (HF). Using specific blockers of NaV1.8 and CaMKIIδc, we show that NaV1.8-driven INaL is CaMKIIδc-dependent and that NaV1.8-inhibtion reduces diastolic SR-Ca2+ leak in human failing cardiomyocytes. Moreover, increased mortality of CaMKIIδc-overexpressing HF mice is reduced when a NaV1.8 knock-out is introduced. Cellular and in vivo experiments reveal reduced ventricular arrhythmias without changes in HF progression. Our work therefore identifies a proarrhythmic CaMKIIδc downstream target which may constitute a prognostic and antiarrhythmic strategy.
Collapse
|
21
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
22
|
Takla M, Edling CE, Zhang K, Saadeh K, Tse G, Salvage SC, Huang CL, Jeevaratnam K. Transcriptional profiles of genes related to electrophysiological function in Scn5a +/- murine hearts. Physiol Rep 2021; 9:e15043. [PMID: 34617689 PMCID: PMC8495800 DOI: 10.14814/phy2.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
The Scn5a gene encodes the major pore-forming Nav 1.5 (α) subunit, of the voltage-gated Na+ channel in cardiomyocytes. The key role of Nav 1.5 in action potential initiation and propagation in both atria and ventricles predisposes organisms lacking Scn5a or carrying Scn5a mutations to cardiac arrhythmogenesis. Loss-of-function Nav 1.5 genetic abnormalities account for many cases of the human arrhythmic disorder Brugada syndrome (BrS) and related conduction disorders. A murine model with a heterozygous Scn5a deletion recapitulates many electrophysiological phenotypes of BrS. This study examines the relationships between its Scn5a+/- genotype, resulting transcriptional changes, and the consequent phenotypic presentations of BrS. Of 62 selected protein-coding genes related to cardiomyocyte electrophysiological or homeostatic function, concentrations of mRNA transcribed from 15 differed significantly from wild type (WT). Despite halving apparent ventricular Scn5a transcription heterozygous deletion did not significantly downregulate its atrial expression, raising possibilities of atria-specific feedback mechanisms. Most of the remaining 14 genes whose expression differed significantly between WT and Scn5a+/- animals involved Ca2+ homeostasis specifically in atrial tissue, with no overlap with any ventricular changes. All statistically significant changes in expression were upregulations in the atria and downregulations in the ventricles. This investigation demonstrates the value of future experiments exploring for and clarifying links between transcriptional control of Scn5a and of genes whose protein products coordinate Ca2+ regulation and examining their possible roles in BrS.
Collapse
Affiliation(s)
- Michael Takla
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Christ’s CollegeUniversity of CambridgeCambridgeUK
| | | | - Kevin Zhang
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- School of MedicineImperial College LondonLondonUK
| | - Khalil Saadeh
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Clinical SchoolUniversity of CambridgeCambridgeUK
| | - Gary Tse
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Second Hospital of Tianjin Medical UniversityTianjinChina
| | | | - Christopher L.‐H. Huang
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
23
|
Rivaud MR, Delmar M, Remme CA. Heritable arrhythmia syndromes associated with abnormal cardiac sodium channel function: ionic and non-ionic mechanisms. Cardiovasc Res 2021; 116:1557-1570. [PMID: 32251506 PMCID: PMC7341171 DOI: 10.1093/cvr/cvaa082] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
The cardiac sodium channel NaV1.5, encoded by the SCN5A gene, is responsible for the fast upstroke of the action potential. Mutations in SCN5A may cause sodium channel dysfunction by decreasing peak sodium current, which slows conduction and facilitates reentry-based arrhythmias, and by enhancing late sodium current, which prolongs the action potential and sets the stage for early afterdepolarization and arrhythmias. Yet, some NaV1.5-related disorders, in particular structural abnormalities, cannot be directly or solely explained on the basis of defective NaV1.5 expression or biophysics. An emerging concept that may explain the large disease spectrum associated with SCN5A mutations centres around the multifunctionality of the NaV1.5 complex. In this alternative view, alterations in NaV1.5 affect processes that are independent of its canonical ion-conducting role. We here propose a novel classification of NaV1.5 (dys)function, categorized into (i) direct ionic effects of sodium influx through NaV1.5 on membrane potential and consequent action potential generation, (ii) indirect ionic effects of sodium influx on intracellular homeostasis and signalling, and (iii) non-ionic effects of NaV1.5, independent of sodium influx, through interactions with macromolecular complexes within the different microdomains of the cardiomyocyte. These indirect ionic and non-ionic processes may, acting alone or in concert, contribute significantly to arrhythmogenesis. Hence, further exploration of these multifunctional effects of NaV1.5 is essential for the development of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mathilde R Rivaud
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC (location AMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Meigberdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, 435 E 30th St, NSB 707, New York, NY 10016, USA
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC (location AMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Meigberdreef 15, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
24
|
Ca 2+/calmodulin kinase II-dependent regulation of β IV-spectrin modulates cardiac fibroblast gene expression, proliferation, and contractility. J Biol Chem 2021; 297:100893. [PMID: 34153319 PMCID: PMC8294584 DOI: 10.1016/j.jbc.2021.100893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/26/2023] Open
Abstract
Fibrosis is a pronounced feature of heart disease and the result of dysregulated activation of resident cardiac fibroblasts (CFs). Recent work identified stress-induced degradation of the cytoskeletal protein βIV-spectrin as an important step in CF activation and cardiac fibrosis. Furthermore, loss of βIV-spectrin was found to depend on Ca2+/calmodulin-dependent kinase II (CaMKII). Therefore, we sought to determine the mechanism for CaMKII-dependent regulation of βIV-spectrin and CF activity. Computational screening and MS revealed a critical serine residue (S2250 in mouse and S2254 in human) in βIV-spectrin phosphorylated by CaMKII. Disruption of βIV-spectrin/CaMKII interaction or alanine substitution of βIV-spectrin Ser2250 (βIV-S2254A) prevented CaMKII-induced degradation, whereas a phosphomimetic construct (βIV-spectrin with glutamic acid substitution at serine 2254 [βIV-S2254E]) showed accelerated degradation in the absence of CaMKII. To assess the physiological significance of this phosphorylation event, we expressed exogenous βIV-S2254A and βIV-S2254E constructs in βIV-spectrin-deficient CFs, which have increased proliferation and fibrotic gene expression compared with WT CFs. βIV-S2254A but not βIV-S2254E normalized CF proliferation, gene expression, and contractility. Pathophysiological targeting of βIV-spectrin phosphorylation and subsequent degradation was identified in CFs activated with the profibrotic ligand angiotensin II, resulting in increased proliferation and signal transducer and activation of transcription 3 nuclear accumulation. While therapeutic delivery of exogenous WT βIV-spectrin partially reversed these trends, βIV-S2254A completely negated increased CF proliferation and signal transducer and activation of transcription 3 translocation. Moreover, we observed βIV-spectrin phosphorylation and associated loss in total protein within human heart tissue following heart failure. Together, these data illustrate a considerable role for the βIV-spectrin/CaMKII interaction in activating profibrotic signaling.
Collapse
|
25
|
Cellular Mechanisms of the Anti-Arrhythmic Effect of Cardiac PDE2 Overexpression. Int J Mol Sci 2021; 22:ijms22094816. [PMID: 34062838 PMCID: PMC8125727 DOI: 10.3390/ijms22094816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to β-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. Methods: Cellular arrhythmia, ion currents, and Ca2+-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. Results: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in ICaL seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in INaL and Ca2+-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. Conclusion: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF.
Collapse
|
26
|
Regulation of Cardiac Conduction and Arrhythmias by Ankyrin/Spectrin-Based Macromolecular Complexes. J Cardiovasc Dev Dis 2021; 8:jcdd8050048. [PMID: 33946725 PMCID: PMC8146975 DOI: 10.3390/jcdd8050048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
The cardiac conduction system is an extended network of excitable tissue tasked with generation and propagation of electrical impulses to signal coordinated contraction of the heart. The fidelity of this system depends on the proper spatio-temporal regulation of ion channels in myocytes throughout the conduction system. Importantly, inherited or acquired defects in a wide class of ion channels has been linked to dysfunction at various stages of the conduction system resulting in life-threatening cardiac arrhythmia. There is growing appreciation of the role that adapter and cytoskeletal proteins play in organizing ion channel macromolecular complexes critical for proper function of the cardiac conduction system. In particular, members of the ankyrin and spectrin families have emerged as important nodes for normal expression and regulation of ion channels in myocytes throughout the conduction system. Human variants impacting ankyrin/spectrin function give rise to a broad constellation of cardiac arrhythmias. Furthermore, chronic neurohumoral and biomechanical stress promotes ankyrin/spectrin loss of function that likely contributes to conduction disturbances in the setting of acquired cardiac disease. Collectively, this review seeks to bring attention to the significance of these cytoskeletal players and emphasize the potential therapeutic role they represent in a myriad of cardiac disease states.
Collapse
|
27
|
Safabakhsh S, Panwar P, Barichello S, Sangha SS, Hanson PJ, Van Petegem F, Laksman Z. THE ROLE OF PHOSPHORYLATION IN ATRIAL FIBRILLATION: A FOCUS ON MASS SPECTROMETRY APPROACHES. Cardiovasc Res 2021; 118:1205-1217. [PMID: 33744917 DOI: 10.1093/cvr/cvab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide. It is associated with significant increases in morbidity in the form of stroke and heart failure, and a doubling in all-cause mortality. The pathophysiology of AF is incompletely understood, and this has contributed to a lack of effective treatments and disease-modifying therapies. An important cellular process that may explain how risk factors give rise to AF includes post-translational modification (PTM) of proteins. As the most commonly occurring PTM, protein phosphorylation is especially relevant. Although many methods exist for studying protein phosphorylation, a common and highly resolute technique is mass spectrometry (MS). This review will discuss recent evidence surrounding the role of protein phosphorylation in the pathogenesis of AF. MS-based technology to study phosphorylation and uses of MS in other areas of medicine such as oncology will also be presented. Based on these data, future goals and experiments will be outlined that utilize MS technology to better understand the role of phosphorylation in AF and elucidate its role in AF pathophysiology. This may ultimately allow for the development of more effective AF therapies.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pankaj Panwar
- AbCellera Biologicals Inc., Vancouver, British Columbia, Canada
| | - Scott Barichello
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarabjit S Sangha
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - Paul J Hanson
- UBC Heart Lung Innovation Centre, Vancouver, British Columbia, Canada.,UBC Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk. Pflugers Arch 2021; 473:363-375. [PMID: 33590296 PMCID: PMC7940337 DOI: 10.1007/s00424-021-02533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2) in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
Collapse
|
29
|
Lorenzini M, Burel S, Lesage A, Wagner E, Charrière C, Chevillard PM, Evrard B, Maloney D, Ruff KM, Pappu RV, Wagner S, Nerbonne JM, Silva JR, Townsend RR, Maier LS, Marionneau C. Proteomic and functional mapping of cardiac NaV1.5 channel phosphorylation sites. J Gen Physiol 2021; 153:211660. [PMID: 33410863 PMCID: PMC7797897 DOI: 10.1085/jgp.202012646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation of the voltage-gated Na+ (NaV) channel NaV1.5 regulates cardiac excitability, yet the phosphorylation sites regulating its function and the underlying mechanisms remain largely unknown. Using a systematic, quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from nonfailing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines S664 and S667 regulate the voltage dependence of channel activation in a cumulative manner, whereas the nearby S671, the phosphorylation of which is increased in failing hearts, regulates cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, our results demonstrate that ventricular NaV1.5 is highly phosphorylated and that the phosphorylation-dependent regulation of NaV1.5 channels is highly complex, site specific, and dynamic.
Collapse
Affiliation(s)
- Maxime Lorenzini
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Sophie Burel
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Adrien Lesage
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Emily Wagner
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Camille Charrière
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Pierre-Marie Chevillard
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Bérangère Evrard
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Dan Maloney
- Bioinformatics Solutions Inc., Waterloo, Ontario, Canada
| | - Kiersten M Ruff
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Stefan Wagner
- Department of Internal Medicine II, University Heart Center, University Hospital Regensburg, Regensburg, Germany
| | - Jeanne M Nerbonne
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO.,Department of Medicine, Washington University Medical School, St. Louis, MO
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - R Reid Townsend
- Department of Medicine, Washington University Medical School, St. Louis, MO.,Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - Lars S Maier
- Department of Internal Medicine II, University Heart Center, University Hospital Regensburg, Regensburg, Germany
| | - Céline Marionneau
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| |
Collapse
|
30
|
Hu Y, Kaschitza DR, Essers M, Arullampalam P, Fujita T, Abriel H, Inoue R. Pathological activation of CaMKII induces arrhythmogenicity through TRPM4 overactivation. Pflugers Arch 2021; 473:507-519. [PMID: 33392831 DOI: 10.1007/s00424-020-02507-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
TRPM4 is a Ca2+-activated nonselective cation channel involved in cardiovascular physiology and pathophysiology. Based on cellular experiments and numerical simulations, the present study aimed to explore the potential arrhythmogenicity of CaMKII-mediated TRPM4 channel overactivation linked to Ca2+ dysregulation in the heart. The confocal immunofluorescence microscopy, western blot, and proximity ligation assay (PLA) in HL-1 atrial cardiomyocytes and/or TRPM4-expressing TSA201 cells suggested that TRPM4 and CaMKII proteins are closely localized. Co-expression of TRPM4 and CaMKIIδ or a FRET-based sensor Camui in HEK293 cells showed that the extent of TRPM4 channel activation was correlated with that of CaMKII activity, suggesting their functional interaction. Both expressions and interaction of the two proteins were greatly enhanced by angiotensin II treatment, which induced early afterdepolarizations (EADs) at the repolarization phase of action potentials (APs) recorded from HL-1 cells by the current clamp mode of patch clamp technique. This arrhythmic change disappeared after treatment with the TRPM4 channel blocker 9-phenanthrol or CaMKII inhibitor KN-62. In order to quantitatively assess how CaMKII modulates the gating behavior of TRPM4 channel, the ionomycin-permeabilized cell-attached recording was employed to obtain the voltage-dependent parameters such as steady-state open probability and time constants for activation/deactivation at different [Ca2+]i. Numerical simulations incorporating these kinetic data into a modified HL-1 model indicated that > 3-fold increase in TRPM4 current density induces EADs at the late repolarization phase and CaMKII inhibition (by KN-62) completely eliminates them. These results collectively suggest a novel arrhythmogenic mechanism involving excessive CaMKII activity that causes TRPM4 overactivation in the stressed heart.
Collapse
Affiliation(s)
- Yaopeng Hu
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Daniela Ross Kaschitza
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bern, Switzerland
| | - Maria Essers
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bern, Switzerland
| | - Prakash Arullampalam
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bern, Switzerland
| | - Takayuki Fujita
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bern, Switzerland
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
31
|
Dewal RS, Greer-Short A, Lane C, Nirengi S, Manzano PA, Hernández-Saavedra D, Wright KR, Nassal D, Baer LA, Mohler PJ, Hund TJ, Stanford KI. Phospho-ablation of cardiac sodium channel Na v1.5 mitigates susceptibility to atrial fibrillation and improves glucose homeostasis under conditions of diet-induced obesity. Int J Obes (Lond) 2021; 45:795-807. [PMID: 33500550 PMCID: PMC8005377 DOI: 10.1038/s41366-021-00742-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common sustained arrhythmia, with growing evidence identifying obesity as an important risk factor for the development of AF. Although defective atrial myocyte excitability due to stress-induced remodeling of ion channels is commonly observed in the setting of AF, little is known about the mechanistic link between obesity and AF. Recent studies have identified increased cardiac late sodium current (INa,L) downstream of calmodulin-dependent kinase II (CaMKII) activation as an important driver of AF susceptibility. METHODS Here, we investigated a possible role for CaMKII-dependent INa,L in obesity-induced AF using wild-type (WT) and whole-body knock-in mice that ablates phosphorylation of the Nav1.5 sodium channel and prevents augmentation of the late sodium current (S571A; SA mice). RESULTS A high-fat diet (HFD) increased susceptibility to arrhythmias in WT mice, while SA mice were protected from this effect. Unexpectedly, SA mice had improved glucose homeostasis and decreased body weight compared to WT mice. However, SA mice also had reduced food consumption compared to WT mice. Controlling for food consumption through pair feeding of WT and SA mice abrogated differences in weight gain and AF inducibility, but not atrial fibrosis, premature atrial contractions or metabolic capacity. CONCLUSIONS These data demonstrate a novel role for CaMKII-dependent regulation of Nav1.5 in mediating susceptibility to arrhythmias and whole-body metabolism under conditions of diet-induced obesity.
Collapse
Affiliation(s)
- Revati S. Dewal
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Center for Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Amara Greer-Short
- grid.261331.40000 0001 2285 7943Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Cemantha Lane
- grid.261331.40000 0001 2285 7943Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Shinsuke Nirengi
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Center for Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Pedro Acosta Manzano
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Center for Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Diego Hernández-Saavedra
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Center for Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Katherine R. Wright
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Center for Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Drew Nassal
- grid.261331.40000 0001 2285 7943Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Lisa A. Baer
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Center for Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Peter J. Mohler
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Thomas J. Hund
- grid.261331.40000 0001 2285 7943Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Kristin I. Stanford
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Center for Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| |
Collapse
|
32
|
Left Ventricular Hypertrophy Increases Susceptibility to Bupivacaine-induced Cardiotoxicity through Overexpression of Transient Receptor Potential Canonical Channels in Rats. Anesthesiology 2020; 133:1077-1092. [PMID: 32915958 DOI: 10.1097/aln.0000000000003554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Local anesthetics, particularly potent long acting ones such as bupivacaine, can cause cardiotoxicity by inhibiting sodium ion channels; however, the impact of left ventricular hypertrophy on the cardiotoxicity and the underlying mechanisms remain undetermined. Transient receptor potential canonical (TRPC) channels are upregulated in left ventricular hypertrophy. Some transient receptor potential channel subtypes have been reported to pass relatively large cations, including protonated local anesthetics; this is known as the "pore phenomenon." The authors hypothesized that bupivacaine-induced cardiotoxicity is more severe in left ventricular hypertrophy due to upregulated TRPC channels. METHODS The authors used a modified transverse aortic constriction model as a left ventricular hypertrophy. Cardiotoxicity caused by bupivacaine was compared between sham and aortic constriction male rats, and the underlying mechanisms were investigated by recording sodium ion channel currents and immunocytochemistry of TRPC protein in cardiomyocytes. RESULTS The time to cardiac arrest by bupivacaine was shorter in aortic constriction rats (n =11) than in sham rats (n = 12) (mean ± SD, 1,302 ± 324 s vs. 1,034 ± 211 s; P = 0.030), regardless of its lower plasma concentration. The half-maximal inhibitory concentrations of bupivacaine toward sodium ion currents were 4.5 and 4.3 μM, which decreased to 3.9 and 2.6 μM in sham and aortic constriction rats, respectively, upon coapplication of 1-oleoyl-2-acetyl-sn-glycerol, a TRPC3 channel activator. In both groups, sodium ion currents were unaffected by QX-314, a positively charged lidocaine derivative, that hardly permeates the cell membrane, but was significantly decreased with QX-314 and 1-oleoyl-2-acetyl-sn-glycerol coapplication (sham: 79 ± 10% of control; P = 0.004; aortic constriction: 47± 27% of control; P = 0.020; n = 5 cells per group). Effects of 1-oleoyl-2-acetyl-sn-glycerol were antagonized by a specific TRPC3 channel inhibitor. CONCLUSIONS Left ventricular hypertrophy exacerbated bupivacaine-induced cardiotoxicity, which could be a consequence of the "pore phenomenon" of TRPC3 channels upregulated in left ventricular hypertrophy. EDITOR’S PERSPECTIVE
Collapse
|
33
|
Comelli M, Meo M, Cervantes DO, Pizzo E, Plosker A, Mohler PJ, Hund TJ, Jacobson JT, Meste O, Rota M. Rhythm dynamics of the aging heart: an experimental study using conscious, restrained mice. Am J Physiol Heart Circ Physiol 2020; 319:H893-H905. [PMID: 32886003 DOI: 10.1152/ajpheart.00379.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart rate variability (HRV) is a measure of variation in time interval between heartbeats and reflects the influence of autonomic nervous system and circulating/locally released factors on sinoatrial node discharge. Here, we tested whether electrocardiograms (ECGs) obtained in conscious, restrained mice, a condition that affects sympathovagal balance, reveal alterations of heart rhythm dynamics with aging. Moreover, based on emergence of sodium channels as modulators of pacemaker activity, we addressed consequences of altered sodium channels on heart rhythm. C57Bl/6 mice and mice with enhanced late sodium current due to Nav1.5 mutation at Ser571 (S571E) at ~4 to ~24 mo of age, were studied. HRV was assessed using time- and frequency-domain and nonlinear parameters. For C57Bl/6 and S571E mice, standard deviation of RR intervals (SDRR), total power of RR interval variation, and nonlinear standard deviation 2 (SD2) were maximal at ~4 mo and decreased at ~18 and ~24 mo, together with attenuation of indexes of sympathovagal balance. Modulation of sympathetic and/or parasympathetic divisions revealed attenuation of autonomic tone at ~24 mo. At ~4 mo, S571E mice presented lower heart rate and higher SDRR, total power, and SD2 with respect to C57Bl/6, properties reversed by late sodium current inhibition. At ~24 mo, heart rate decreased in C57Bl/6 but increased in S571E, a condition preserved after autonomic blockade. Collectively, our data indicate that aging is associated with reduced HRV. Moreover, sodium channel function conditions heart rate and its age-related adaptations, but does not interfere with HRV decline occurring with age.NEW & NOTEWORTHY We have investigated age-associated alterations of heart rate properties in mice using conscious electrocardiographic recordings. Our findings support the notion that aging is coupled with altered sympathovagal balance with consequences on heart rate variability. Moreover, by using a genetically engineered mouse line, we provide evidence that sodium channels modulate heart rate and its age-related adaptations.
Collapse
Affiliation(s)
- Martina Comelli
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Marianna Meo
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux University Foundation, F-33600 Pessac-Bordeaux, France, with Univ. Bordeaux and INSERM, CRCTB, U1045, Bordeaux, France
| | | | - Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Aaron Plosker
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York.,Division of Cardiology, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, New York
| | - Olivier Meste
- Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis, Université Côte d'Azur, CNRS, I3S, France
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
34
|
Gerull B, Brodehl A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front Physiol 2020; 11:624. [PMID: 32670084 PMCID: PMC7327121 DOI: 10.3389/fphys.2020.00624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center Wuerzburg, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospitals of the Ruhr-University of Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
35
|
Contribution of the neuronal sodium channel Na V1.8 to sodium- and calcium-dependent cellular proarrhythmia. J Mol Cell Cardiol 2020; 144:35-46. [PMID: 32418916 DOI: 10.1016/j.yjmcc.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In myocardial pathology such as heart failure a late sodium current (INaL) augmentation is known to be involved in conditions of arrhythmogenesis. However, the underlying mechanisms of the INaL generation are not entirely understood. By now evidence is growing that non-cardiac sodium channel isoforms could also be involved in the INaL generation. The present study investigates the contribution of the neuronal sodium channel isoform NaV1.8 to arrhythmogenesis in a clearly-defined setting of enhanced INaL by using anemone toxin II (ATX-II) in the absence of structural heart disease. METHODS Electrophysiological experiments were performed in order to measure INaL, action potential duration (APD), SR-Ca2+-leak and cellular proarrhythmic triggers in ATX-II exposed wild-type (WT) and SCN10A-/- mice cardiomyocytes. In addition, WT cardiomyocytes were stimulated with ATX-II in the presence or absence of NaV1.8 inhibitors. INCX was measured by using the whole cell patch clamp method. RESULTS In WT cardiomyocytes exposure to ATX-II augmented INaL, prolonged APD, increased SR-Ca2+-leak and induced proarrhythmic triggers such as early afterdepolarizations (EADs) and Ca2+-waves. All of them could be significantly reduced by applying NaV1.8 blockers PF-01247324 and A-803467. Both blockers had no relevant effects on cellular electrophysiology of SCN10A-/- cardiomyocytes. Moreover, in SCN10A-/--cardiomyocytes, the ATX-II-dependent increase in INaL, SR-Ca2+-leak and APD prolongation was less than in WT and comparable to the results which were obtained with WT cardiomyocytes being exposed to ATX-II and NaV1.8 inhibitors in parallel. Moreover, we found a decrease in reverse mode NCX current and reduced CaMKII-dependent RyR2-phosphorylation after application of PF-01247324 as an underlying explanation for the Na+-mediated Ca2+-dependent proarrhythmic triggers. CONCLUSION The current findings demonstrate that NaV1.8 is a significant contributor for INaL-induced arrhythmic triggers. Therefore, NaV1.8 inhibition under conditions of an enhanced INaL constitutes a promising antiarrhythmic strategy which merits further investigation.
Collapse
|
36
|
Hegyi B, Chen-Izu Y, Izu LT, Rajamani S, Belardinelli L, Bers DM, Bányász T. Balance Between Rapid Delayed Rectifier K + Current and Late Na + Current on Ventricular Repolarization: An Effective Antiarrhythmic Target? Circ Arrhythm Electrophysiol 2020; 13:e008130. [PMID: 32202931 PMCID: PMC7331791 DOI: 10.1161/circep.119.008130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Rapid delayed rectifier K+ current (IKr) and late Na+ current (INaL) significantly shape the cardiac action potential (AP). Changes in their magnitudes can cause either long or short QT syndromes associated with malignant ventricular arrhythmias and sudden cardiac death. METHODS Physiological self AP-clamp was used to measure INaL and IKr during the AP in rabbit and porcine ventricular cardiomyocytes to test our hypothesis that the balance between IKr and INaL affects repolarization stability in health and disease conditions. RESULTS We found comparable amount of net charge carried by IKr and INaL during the physiological AP, suggesting that outward K+ current via IKr and inward Na+ current via INaL are in balance during physiological repolarization. Remarkably, IKr and INaL integrals in each control myocyte were highly correlated in both healthy rabbit and pig myocytes, despite high overall cell-to-cell variability. This close correlation was lost in heart failure myocytes from both species. Pretreatment with E-4031 to block IKr (mimicking long QT syndrome 2) or with sea anemone toxin II to impair Na+ channel inactivation (mimicking long QT syndrome 3) prolonged AP duration (APD); however, using GS-967 to inhibit INaL sufficiently restored APD to control in both cases. Importantly, INaL inhibition significantly reduced the beat-to-beat and short-term variabilities of APD. Moreover, INaL inhibition also restored APD and repolarization stability in heart failure. Conversely, pretreatment with GS-967 shortened APD (mimicking short QT syndrome), and E-4031 reverted APD shortening. Furthermore, the amplitude of AP alternans occurring at high pacing frequency was decreased by INaL inhibition, increased by IKr inhibition, and restored by combined INaL and IKr inhibitions. CONCLUSIONS Our data demonstrate that IKr and INaL are counterbalancing currents during the physiological ventricular AP and their integrals covary in individual myocytes. Targeting these ionic currents to normalize their balance may have significant therapeutic potential in heart diseases with repolarization abnormalities. Visual Overview: A visual overview is available for this article.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis
- Department of Biomedical Engineering, University of California, Davis
- Department of Internal Medicine/Cardiology, University of California, Davis
| | | | - Sridharan Rajamani
- Amgen, Inc., South San Francisco, University of Debrecen, Debrecen, Hungary
| | - Luiz Belardinelli
- InCarda Therapeutics, Inc., Newark, CA, University of Debrecen, Debrecen, Hungary
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis
| | - Tamás Bányász
- Department of Pharmacology, University of California, Davis
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
37
|
Zaitsev AV, Warren M. "Heart Oddity": Intrinsically Reduced Excitability in the Right Ventricle Requires Compensation by Regionally Specific Stress Kinase Function. Front Physiol 2020; 11:86. [PMID: 32132931 PMCID: PMC7040197 DOI: 10.3389/fphys.2020.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
The traditional view of ventricular excitation and conduction is an all-or-nothing response mediated by a regenerative activation of the inward sodium channel, which gives rise to an essentially constant conduction velocity (CV). However, whereas there is no obvious biological need to tune-up ventricular conduction, the principal molecular components determining CV, such as sodium channels, inward-rectifier potassium channels, and gap junctional channels, are known targets of the “stress” protein kinases PKA and calcium/calmodulin dependent protein kinase II (CaMKII), and are thus regulatable by signal pathways converging on these kinases. In this mini-review we will expose deficiencies and controversies in our current understanding of how ventricular conduction is regulated by stress kinases, with a special focus on the chamber-specific dimension in this regulation. In particular, we will highlight an odd property of cardiac physiology: uniform CV in ventricles requires co-existence of mutually opposing gradients in cardiac excitability and stress kinase function. While the biological advantage of this peculiar feature remains obscure, it is important to recognize the clinical implications of this phenomenon pertinent to inherited or acquired conduction diseases and therapeutic interventions modulating activity of PKA or CaMKII.
Collapse
Affiliation(s)
- Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
38
|
Bare DJ, Yan J, Ai X. Evidence of CaMKII-Regulated Late I Na in Atrial Fibrillation Patients With Sleep Apnea: One-Step Closer to Finding Plausible Therapeutic Targets for Atrial Fibrillation? Circ Res 2020; 126:616-618. [PMID: 32105580 PMCID: PMC7772714 DOI: 10.1161/circresaha.120.316613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dan J Bare
- From the Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL
| | - Jiajie Yan
- From the Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL
| | - Xun Ai
- From the Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL
| |
Collapse
|
39
|
Lebek S, Pichler K, Reuthner K, Trum M, Tafelmeier M, Mustroph J, Camboni D, Rupprecht L, Schmid C, Maier LS, Arzt M, Wagner S. Enhanced CaMKII-Dependent Late I
Na
Induces Atrial Proarrhythmic Activity in Patients With Sleep-Disordered Breathing. Circ Res 2020; 126:603-615. [DOI: 10.1161/circresaha.119.315755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rationale:
Sleep-disordered breathing (SDB) is frequently associated with atrial arrhythmias. Increased CaMKII (Ca/calmodulin-dependent protein kinase II) activity has been previously implicated in atrial arrhythmogenesis.
Objective:
We hypothesized that CaMKII-dependent dysregulation of Na current (I
Na
) may contribute to atrial proarrhythmic activity in patients with SDB.
Methods and Results:
We prospectively enrolled 113 patients undergoing elective coronary artery bypass grafting for cross-sectional study and collected right atrial appendage biopsies. The presence of SDB (defined as apnea-hypopnea index ≥15/h) was assessed with a portable SDB monitor the night before surgery. Compared with 56 patients without SDB, patients with SDB (57) showed a significantly increased level of activated CaMKII. Patch clamp was used to measure I
Na
. There was a significantly enhanced late I
Na
, but reduced peak I
Na
due to enhanced steady-state inactivation in atrial myocytes of patients with SDB consistent with significantly increased CaMKII-dependent cardiac Na channel phosphorylation (Na
V
1.5, at serine 571, Western blotting). These gating changes could be fully reversed by acute CaMKII inhibition (AIP [autocamtide-2 related inhibitory peptide]). As a consequence, we observed significantly more cellular afterdepolarizations and more severe premature atrial contractions in atrial trabeculae of patients with SDB, which could be blocked by either AIP or KN93 (N-[2-[[[(E)-3-(4-chlorophenyl)prop-2-enyl]-methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide). In multivariable linear regression models incorporating age, sex, body mass index, existing atrial fibrillation, existing heart failure, diabetes mellitus, and creatinine levels, apnea-hypopnea index was independently associated with increased CaMKII activity, enhanced late I
Na
and correlated with premature atrial contraction severity.
Conclusions:
In atrial myocardium of patients with SDB, increased CaMKII-dependent phosphorylation of Na
V
1.5 results in dysregulation of I
Na
with proarrhythmic activity that was independent from preexisting comorbidities. Inhibition of CaMKII may be useful for prevention or treatment of arrhythmias in SDB.
Clinical Trial Registration:
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT02877745.
Visual Overview:
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Simon Lebek
- From the Department of Internal Medicine II (S.L., K.P., K.R., M. Trum, M. Tafelmeier, J.M., L.S.M., M.A., S.W.), University Hospital Regensburg, Germany
| | - Konstantin Pichler
- From the Department of Internal Medicine II (S.L., K.P., K.R., M. Trum, M. Tafelmeier, J.M., L.S.M., M.A., S.W.), University Hospital Regensburg, Germany
| | - Kathrin Reuthner
- From the Department of Internal Medicine II (S.L., K.P., K.R., M. Trum, M. Tafelmeier, J.M., L.S.M., M.A., S.W.), University Hospital Regensburg, Germany
| | - Maximillian Trum
- From the Department of Internal Medicine II (S.L., K.P., K.R., M. Trum, M. Tafelmeier, J.M., L.S.M., M.A., S.W.), University Hospital Regensburg, Germany
| | - Maria Tafelmeier
- From the Department of Internal Medicine II (S.L., K.P., K.R., M. Trum, M. Tafelmeier, J.M., L.S.M., M.A., S.W.), University Hospital Regensburg, Germany
| | - Julian Mustroph
- From the Department of Internal Medicine II (S.L., K.P., K.R., M. Trum, M. Tafelmeier, J.M., L.S.M., M.A., S.W.), University Hospital Regensburg, Germany
| | - Daniele Camboni
- Department of Cardiothoracic Surgery (D.C., L.R., C.S.), University Hospital Regensburg, Germany
| | - Leopold Rupprecht
- Department of Cardiothoracic Surgery (D.C., L.R., C.S.), University Hospital Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery (D.C., L.R., C.S.), University Hospital Regensburg, Germany
| | - Lars S. Maier
- From the Department of Internal Medicine II (S.L., K.P., K.R., M. Trum, M. Tafelmeier, J.M., L.S.M., M.A., S.W.), University Hospital Regensburg, Germany
| | - Michael Arzt
- From the Department of Internal Medicine II (S.L., K.P., K.R., M. Trum, M. Tafelmeier, J.M., L.S.M., M.A., S.W.), University Hospital Regensburg, Germany
| | - Stefan Wagner
- From the Department of Internal Medicine II (S.L., K.P., K.R., M. Trum, M. Tafelmeier, J.M., L.S.M., M.A., S.W.), University Hospital Regensburg, Germany
| |
Collapse
|
40
|
Unudurthi SD, Nassal DM, Patel NJ, Thomas E, Yu J, Pierson CG, Bansal SS, Mohler PJ, Hund TJ. Fibroblast growth factor-inducible 14 mediates macrophage infiltration in heart to promote pressure overload-induced cardiac dysfunction. Life Sci 2020; 247:117440. [PMID: 32070706 DOI: 10.1016/j.lfs.2020.117440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
AIMS Heart failure (HF) is characterized by compromised cardiac structure and function. Previous work has identified a link between upregulation of pro-inflammatory cytokines and HF. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a pro-inflammatory cytokine, which binds to fibroblast growth factor inducible 14 (Fn14), a ubiquitously expressed cell-surface receptor. The objective of this study was to investigate the role of TWEAK/Fn14 pathway in promoting cardiac inflammation under non ischemic stress conditions. MAIN METHODS Wild type (WT) and Fn14 knock out (Fn14-/-) mice were subjected to pressure overload [transaortic constriction (TAC)] for 1 or 6 weeks. A subset of WT TAC animals were treated with the Fn14 antagonist L524-0366. Cardiac function was measured by echocardiography. Cardiac fibrosis and macrophage infiltration were quantified using immunohistochemistry and flow cytometry, respectively. Cardiac fibroblasts were isolated for quantifying TWEAK-induced chemokine release. KEY FINDINGS Fn14-/- mice displayed improved cardiac function, reduced fibrosis and lower macrophage infiltration in heart compared to WT following TAC. L524-0366 mitigated maladaptive remodeling with TAC. TWEAK induced secretion of the pro-inflammatory chemokine, monocyte chemoattractant protein 1 from WT but not Fn14-/- fibroblasts in vitro, in part through activation of non-canonical NF-κB signaling. Finally, Fn14 expression was increased in mouse following TAC and in human failing hearts. SIGNIFICANCE Our findings support an important role for the TWEAK/Fn14 promoting macrophage infiltration and fibrosis in heart under non-ischemic stress, with potential for therapeutic intervention to improve cardiac function in the setting of HF.
Collapse
Affiliation(s)
- Sathya D Unudurthi
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA.
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Nehal J Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Evelyn Thomas
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Jane Yu
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Curtis G Pierson
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Shyam S Bansal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology & Cell Biology, USA
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology & Cell Biology, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
41
|
Nassal D, Gratz D, Hund TJ. Challenges and Opportunities for Therapeutic Targeting of Calmodulin Kinase II in Heart. Front Pharmacol 2020; 11:35. [PMID: 32116711 PMCID: PMC7012788 DOI: 10.3389/fphar.2020.00035] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Heart failure remains a major health burden around the world. Despite great progress in delineation of molecular mechanisms underlying development of disease, standard therapy has not advanced at the same pace. The multifunctional signaling molecule Ca2+/calmodulin-dependent protein kinase II (CaMKII) has received considerable attention over recent years for its central role in maladaptive remodeling and arrhythmias in the setting of chronic disease. However, these basic science discoveries have yet to translate into new therapies for human patients. This review addresses both the promise and barriers to developing translational therapies that target CaMKII signaling to abrogate pathologic remodeling in the setting of chronic disease. Efforts in small molecule design are discussed, as well as alternative targeting approaches that exploit novel avenues for compound delivery and/or genetic approaches to affect cardiac CaMKII signaling. These alternative strategies provide hope for overcoming some of the challenges that have limited the development of new therapies.
Collapse
Affiliation(s)
- Drew Nassal
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
42
|
Takla M, Huang CLH, Jeevaratnam K. The cardiac CaMKII-Na v1.5 relationship: From physiology to pathology. J Mol Cell Cardiol 2020; 139:190-200. [PMID: 31958466 DOI: 10.1016/j.yjmcc.2019.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
The SCN5A gene encodes Nav1.5, which, as the cardiac voltage-gated Na+ channel's pore-forming α subunit, is crucial for the initiation and propagation of atrial and ventricular action potentials. The arrhythmogenic propensity of inherited SCN5A mutations implicates the Na+ channel in determining cardiomyocyte excitability under normal conditions. Cytosolic kinases have long been known to alter the kinetic profile of Nav1.5 inactivation via phosphorylation of specific residues. Recent substantiation of both the role of calmodulin-dependent kinase II (CaMKII) in modulating the properties of the Nav1.5 inactivation gate and the significant rise in oxidation-dependent autonomous CaMKII activity in structural heart disease has raised the possibility of a novel pathway for acquired arrhythmias - the CaMKII-Nav1.5 relationship. The aim of this review is to: (1) outline the relationship's translation from physiological adaptation to pathological vicious circle; and (2) discuss the relative merits of each of its components as pharmacological targets.
Collapse
Affiliation(s)
- Michael Takla
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom
| | - Christopher L-H Huang
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| |
Collapse
|
43
|
El Refaey M, Musa H, Murphy NP, Lubbers ER, Skaf M, Han M, Cavus O, Koenig SN, Wallace MJ, Gratz D, Bradley E, Alsina KM, Wehrens XHT, Hund TJ, Mohler PJ. Protein Phosphatase 2A Regulates Cardiac Na + Channels. Circ Res 2019; 124:737-746. [PMID: 30602331 DOI: 10.1161/circresaha.118.314350] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE Voltage-gated Na+ channel ( INa) function is critical for normal cardiac excitability. However, the Na+ channel late component ( INa,L) is directly associated with potentially fatal forms of congenital and acquired human arrhythmia. CaMKII (Ca2+/calmodulin-dependent kinase II) enhances INa,L in response to increased adrenergic tone. However, the pathways that negatively regulate the CaMKII/Nav1.5 axis are unknown and essential for the design of new therapies to regulate the pathogenic INa,L. OBJECTIVE To define phosphatase pathways that regulate INa,L in vivo. METHODS AND RESULTS A mouse model lacking a key regulatory subunit (B56α) of the PP (protein phosphatase) 2A holoenzyme displayed aberrant action potentials after adrenergic stimulation. Unbiased computational modeling of B56α KO (knockout) mouse myocyte action potentials revealed an unexpected role of PP2A in INa,L regulation that was confirmed by direct INa,L recordings from B56α KO myocytes. Further, B56α KO myocytes display decreased sensitivity to isoproterenol-induced induction of arrhythmogenic INa,L, and reduced CaMKII-dependent phosphorylation of Nav1.5. At the molecular level, PP2A/B56α complex was found to localize and coimmunoprecipitate with the primary cardiac Nav channel, Nav1.5. CONCLUSIONS PP2A regulates Nav1.5 activity in mouse cardiomyocytes. This regulation is critical for pathogenic Nav1.5 late current and requires PP2A-B56α. Our study supports B56α as a novel target for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Mona El Refaey
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Hassan Musa
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Nathaniel P Murphy
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Ellen R Lubbers
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Michel Skaf
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Mei Han
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Omer Cavus
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Sara N Koenig
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Michael J Wallace
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Daniel Gratz
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Biomedical Engineering, Ohio State University College of Engineering, Columbus (D.G., T.J.H.)
| | - Elisa Bradley
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Internal Medicine, Ohio State University College of Medicine, Columbus (E.B., T.J.H., P.J.M.)
| | - Katherina M Alsina
- Department of Molecular Physiology and Biophysics (K.M.A.), Baylor College of Medicine, Houston, TX.,Division of Cardiology, Department of Medicine (K.M.A.), Baylor College of Medicine, Houston, TX.,Division of Cardiology, Department of Pediatrics (K.M.A.), Baylor College of Medicine, Houston, TX
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.H.T.W.)
| | - Thomas J Hund
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Internal Medicine, Ohio State University College of Medicine, Columbus (E.B., T.J.H., P.J.M.).,Department of Biomedical Engineering, Ohio State University College of Engineering, Columbus (D.G., T.J.H.)
| | - Peter J Mohler
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Internal Medicine, Ohio State University College of Medicine, Columbus (E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| |
Collapse
|
44
|
Gratz D, Winkle AJ, Dalic A, Unudurthi SD, Hund TJ. Computational tools for automated histological image analysis and quantification in cardiac tissue. MethodsX 2019; 7:22-34. [PMID: 31890644 PMCID: PMC6931069 DOI: 10.1016/j.mex.2019.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/30/2019] [Indexed: 12/25/2022] Open
Abstract
Image processing and quantification is a routine and important task across disciplines in biomedical research. Understanding the effects of disease on the tissue and organ level often requires the use of images, however the process of interpreting those images into data which can be tested for significance is often time intensive, tedious and prone to inaccuracy or bias. When working within resource constraints, these different issues often present a trade-off between time invested in analysis and accuracy. To address these issues, we present two novel open source and publically available tools for automated analysis of histological cardiac tissue samples: Automated Fibrosis Analysis Tool (AFAT) for quantifying fibrosis; and Macrophage Analysis Tool (MAT) for quantifying infiltrating macrophages.
Collapse
Affiliation(s)
- Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Alexander J Winkle
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Alyssa Dalic
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Sathya D Unudurthi
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
45
|
Eichel CA, Ríos-Pérez EB, Liu F, Jameson MB, Jones DK, Knickelbine JJ, Robertson GA. A microtranslatome coordinately regulates sodium and potassium currents in the human heart. eLife 2019; 8:52654. [PMID: 31670657 PMCID: PMC6867827 DOI: 10.7554/elife.52654] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Catastrophic arrhythmias and sudden cardiac death can occur with even a small imbalance between inward sodium currents and outward potassium currents, but mechanisms establishing this critical balance are not understood. Here, we show that mRNA transcripts encoding INa and IKr channels (SCN5A and hERG, respectively) are associated in defined complexes during protein translation. Using biochemical, electrophysiological and single-molecule fluorescence localization approaches, we find that roughly half the hERG translational complexes contain SCN5A transcripts. Moreover, the transcripts are regulated in a way that alters functional expression of both channels at the membrane. Association and coordinate regulation of transcripts in discrete ‘microtranslatomes’ represents a new paradigm controlling electrical activity in heart and other excitable tissues.
Collapse
Affiliation(s)
- Catherine A Eichel
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Erick B Ríos-Pérez
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Fang Liu
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Margaret B Jameson
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - David K Jones
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Jennifer J Knickelbine
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Gail A Robertson
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
46
|
Greer-Short A, Musa H, Alsina KM, Ni L, Word TA, Reynolds JO, Gratz D, Lane C, El-Refaey M, Unudurthi S, Skaf M, Li N, Fedorov VV, Wehrens XHT, Mohler PJ, Hund TJ. Calmodulin kinase II regulates atrial myocyte late sodium current, calcium handling, and atrial arrhythmia. Heart Rhythm 2019; 17:503-511. [PMID: 31622781 DOI: 10.1016/j.hrthm.2019.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common type of arrhythmia. Abnormal atrial myocyte Ca2+ handling promotes aberrant membrane excitability and remodeling that are important for atrial arrhythmogenesis. The sequence of molecular events leading to loss of normal atrial myocyte Ca2+ homeostasis is not established. Late Na+ current (INa,L) is increased in atrial myocytes from AF patients together with an increase in activity of Ca2+/calmodulin-dependent kinase II (CaMKII). OBJECTIVE The purpose of this study was to determine whether CaMKII-dependent phosphorylation at Ser571 on NaV1.5 increases atrial INa,L, leading to aberrant atrial Ca2+ cycling, altered electrophysiology, and increased AF risk. METHODS Atrial myocyte electrophysiology, Ca2+ handling, and arrhythmia susceptibility were studied in wild-type and Scn5a knock-in mice expressing phosphomimetic (S571E) or phosphoresistant (S571A) NaV1.5 at Ser571. RESULTS Atrial myocytes from S571E but not S571A mice displayed an increase in INa,L and action potential duration, and with adrenergic stress have increased delayed afterdepolarizations. Frequency of Ca2+ sparks and waves was increased in S571E atrial myocytes compared to wild type. S571E mice showed an increase in atrial events induced by adrenergic stress and AF inducibility in vivo. Isolated S571E atria were more susceptible to spontaneous atrial events, which were abrogated by inhibiting sarcoplasmic reticulum Ca2+ release, CaMKII, or the Na+/Ca2+ exchanger. Expression of phospho-NaV1.5 at Ser571 and autophosphorylated CaMKII were increased in atrial samples from human AF patients. CONCLUSION This study identified CaMKII-dependent regulation of NaV1.5 as an important upstream event in Ca2+ handling defects and abnormal impulse generation in the setting of AF.
Collapse
Affiliation(s)
- Amara Greer-Short
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - Hassan Musa
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Katherina M Alsina
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), and Neuroscience, Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| | - Li Ni
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), and Neuroscience, Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| | - Tarah A Word
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), and Neuroscience, Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| | - Julia O Reynolds
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), and Neuroscience, Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - Cemantha Lane
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - Mona El-Refaey
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sathya Unudurthi
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - Michel Skaf
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ning Li
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Physiology & Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Vadim V Fedorov
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Physiology & Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), and Neuroscience, Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Physiology & Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
47
|
Affiliation(s)
- Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | | |
Collapse
|
48
|
Johnson CN, Pattanayek R, Potet F, Rebbeck RT, Blackwell DJ, Nikolaienko R, Sequeira V, Le Meur R, Radwański PB, Davis JP, Zima AV, Cornea RL, Damo SM, Györke S, George AL, Knollmann BC. The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of Na V1.5 and RyR2 function. Cell Calcium 2019; 82:102063. [PMID: 31401388 DOI: 10.1016/j.ceca.2019.102063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
Here we report the structure of the widely utilized calmodulin (CaM)-dependent protein kinase II (CaMKII) inhibitor KN93 bound to the Ca2+-sensing protein CaM. KN93 is widely believed to inhibit CaMKII by binding to the kinase. The CaM-KN93 interaction is significant as it can interfere with the interaction between CaM and it's physiological targets, thereby raising the possibility of ascribing modified protein function to CaMKII phosphorylation while concealing a CaM-protein interaction. NMR spectroscopy, stopped-flow kinetic measurements, and x-ray crystallography were used to characterize the structure and biophysical properties of the CaM-KN93 interaction. We then investigated the functional properties of the cardiac Na+ channel (NaV1.5) and ryanodine receptor (RyR2). We find that KN93 disrupts a high affinity CaM-NaV1.5 interaction and alters channel function independent of CaMKII. Moreover, KN93 increases RyR2 Ca2+ release in cardiomyocytes independent of CaMKII. Therefore, when interpreting KN93 data, targets other than CaMKII need to be considered.
Collapse
Affiliation(s)
- Christopher N Johnson
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Rekha Pattanayek
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Franck Potet
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Blackwell
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood IL, 60153, USA
| | - Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Remy Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville TN 37204, USA
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jonathan P Davis
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood IL, 60153, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Sandor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alfred L George
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Björn C Knollmann
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
49
|
Nof E, Vysochek L, Meisel E, Burashnikov E, Antzelevitch C, Clatot J, Beinart R, Luria D, Glikson M, Oz S. Mutations in Na V1.5 Reveal Calcium-Calmodulin Regulation of Sodium Channel. Front Physiol 2019; 10:700. [PMID: 31231243 PMCID: PMC6560087 DOI: 10.3389/fphys.2019.00700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SCN5A gene, encoding the cardiac voltage-gated sodium channel NaV1.5, are associated with inherited cardiac arrhythmia and conduction disease. Ca2+-dependent mechanisms and the involvement of β-subunit (NaVβ) in NaV1.5 regulation are not fully understood. A patient with severe sinus-bradycardia and cardiac conduction-disease was genetically evaluated and compound heterozygosity in the SCN5A gene was found. Mutations were identified in the cytoplasmic DIII-IV linker (K1493del) and the C-terminus (A1924T) of NaV1.5, both are putative CaM-binding domains. These mutants were functionally studied in human embryonic kidney (HEK) cells and HL-1 cells using whole-cell patch clamp technique. Calmodulin (CaM) interaction and cell-surface expression of heterologously expressed NaV1.5 mutants were studied by pull-down and biotinylation assays. The mutation K1493del rendered NaV1.5 non-conductive. NaV1.5K1493del altered the gating properties of co-expressed functional NaV1.5, in a Ca2+ and NaVβ1-dependent manner. NaV1.5A1924T impaired NaVβ1-dependent gating regulation. Ca2+-dependent CaM-interaction with NaV1.5 was blunted in NaV1.5K1493del. Electrical charge substitution at position 1493 did not affect CaM-interaction and channel functionality. Arrhythmia and conduction-disease -associated mutations revealed Ca2+-dependent gating regulation of NaV1.5 channels. Our results highlight the role of NaV1.5 DIII-IV linker in the CaM-binding complex and channel function, and suggest that the Ca2+-sensing machinery of NaV1.5 involves NaVβ1.
Collapse
Affiliation(s)
- Eyal Nof
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Eshcar Meisel
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elena Burashnikov
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, United States.,Lankenau Heart Institute, Wynnewood, PA, United States.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jerome Clatot
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Roy Beinart
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Luria
- Heart Center, Sheba Medical Center, Ramat Gan, Israel
| | - Michael Glikson
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimrit Oz
- Heart Center, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
50
|
Zaitsev AV, Torres NS, Cawley KM, Sabry AD, Warren JS, Warren M. Conduction in the right and left ventricle is differentially regulated by protein kinases and phosphatases: implications for arrhythmogenesis. Am J Physiol Heart Circ Physiol 2019; 316:H1507-H1527. [PMID: 30875259 PMCID: PMC6620685 DOI: 10.1152/ajpheart.00660.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
The "stress" kinases cAMP-dependent protein kinase (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII), phosphorylate the Na+ channel Nav1.5 subunit to regulate its function. However, how the channel regulation translates to ventricular conduction is poorly understood. We hypothesized that the stress kinases positively and differentially regulate conduction in the right (RV) and the left (LV) ventricles. We applied the CaMKII blocker KN93 (2.75 μM), PKA blocker H89 (10 μM), and broad-acting phosphatase blocker calyculin (30 nM) in rabbit hearts paced at a cycle length (CL) of 150-8,000 ms. We used optical mapping to determine the distribution of local conduction delays (inverse of conduction velocity). Control hearts exhibited constant and uniform conduction at all tested CLs. Calyculin (15-min perfusion) accelerated conduction, with greater effect in the RV (by 15.3%) than in the LV (by 4.1%; P < 0.05). In contrast, both KN93 and H89 slowed down conduction in a chamber-, time-, and CL-dependent manner, with the strongest effect in the RV outflow tract (RVOT). Combined KN93 and H89 synergistically promoted conduction slowing in the RV (KN93: 24.7%; H89: 29.9%; and KN93 + H89: 114.2%; P = 0.0016) but not the LV. The progressive depression of RV conduction led to conduction block and reentrant arrhythmias. Protein expression levels of both the CaMKII-δ isoform and the PKA catalytic subunit were higher in the RVOT than in the apical LV (P < 0.05). Thus normal RV conduction requires a proper balance between kinase and phosphatase activity. Dysregulation of this balance due to pharmacological interventions or disease is potentially proarrhythmic. NEW & NOTEWORTHY We show that uniform ventricular conduction requires a precise physiological balance of the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and phosphatases, which involves region-specific expression of CaMKII and PKA. Inhibiting CaMKII and/or PKA activity elicits nonuniform conduction depression, with the right ventricle becoming vulnerable to the development of conduction disturbances and ventricular fibrillation/ventricular tachycardia.
Collapse
Affiliation(s)
- Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Keiko M Cawley
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Amira D Sabry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Junco S Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Internal Medicine, School of Medicine, University of Utah , Salt Lake City, Utah
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| |
Collapse
|