1
|
Stappenbeck F, Wang F, Sinha SK, Hui ST, Farahi L, Mukhamedova N, Fleetwood A, Murphy AJ, Sviridov D, Lusis AJ, Parhami F. Anti-Inflammatory Oxysterol, Oxy210, Inhibits Atherosclerosis in Hyperlipidemic Mice and Inflammatory Responses of Vascular Cells. Cells 2024; 13:1632. [PMID: 39404395 PMCID: PMC11475996 DOI: 10.3390/cells13191632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND AIMS We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.
Collapse
Affiliation(s)
| | - Feng Wang
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| | - Satyesh K. Sinha
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Simon T. Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Lia Farahi
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew Fleetwood
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Farhad Parhami
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| |
Collapse
|
2
|
Lun H, Li P, Li J, Liu F. The effect of intestinal flora metabolites on macrophage polarization. Heliyon 2024; 10:e35755. [PMID: 39170251 PMCID: PMC11337042 DOI: 10.1016/j.heliyon.2024.e35755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Intestinal flora metabolites played a crucial role in immunomodulation by influencing host immune responses through various pathways. Macrophages, as a type of innate immune cell, were essential in chemotaxis, phagocytosis, inflammatory responses, and microbial elimination. Different macrophage phenotypes had distinct biological functions, regulated by diverse factors and mechanisms. Advances in intestinal flora sequencing and metabolomics have enhanced understanding of how intestinal flora metabolites affect macrophage phenotypes and functions. These metabolites had varying effects on macrophage polarization and different mechanisms of influence. This study summarized the impact of gut microbiota metabolites on macrophage phenotype and function, along with the underlying mechanisms associated with different metabolites produced by intestinal flora.
Collapse
Affiliation(s)
- Hengzhong Lun
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenfen Liu
- Department of Nephrology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
3
|
Snodgrass RG, Stephensen CB, Laugero KD. Atypical monocyte dynamics in healthy humans in response to fasting and refeeding are distinguished by fasting HDL and postprandial cortisol. Am J Physiol Endocrinol Metab 2024; 327:E229-E240. [PMID: 38958546 PMCID: PMC11427091 DOI: 10.1152/ajpendo.00158.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Monocytes are innate immune cells that are continuously produced in bone marrow which enter and circulate the vasculature. In response to nutrient scarcity, monocytes migrate back to bone marrow, where, upon refeeding, they are rereleased back into the bloodstream to replenish the circulation. In humans, the variability in monocyte behavior in response to fasting and refeeding has not been characterized. To investigate monocyte dynamics in humans, we measured blood monocyte fluctuations in 354 clinically healthy individuals after a 12-h overnight fast and at 3 and 6 h after consuming a mixed macronutrient challenge meal. Using cluster analysis, we identified three distinct monocyte behaviors. Group 1 was characterized by relatively low fasting monocyte counts that markedly increased after consuming the test meal. Group 2 was characterized by relatively high fasting monocyte counts that decreased after meal consumption. Group 3, like Group 1, was characterized by lower fasting monocyte counts but increased to a lesser extent after consuming the meal. Although monocyte fluctuations observed in Groups 1 and 3 align with the current paradigm of monocyte dynamics in response to fasting and refeeding, the atypical dynamic observed in Group 2 does not. Although generally younger in age, Group 2 subjects had lower whole body carbohydrate oxidation rates, lower HDL-cholesterol levels, delayed postprandial declines in salivary cortisol, and reduced postprandial peripheral microvascular endothelial function. These unique characteristics were not explained by group differences in age, sex, or body mass index (BMI). Taken together, these results highlight distinct patterns of monocyte responsiveness to natural fluctuations in dietary fuel availability.NEW & NOTEWORTHY Our study composed of adult volunteers revealed that monocyte dynamics exhibit a high degree of individual variation in response to fasting and refeeding. Although circulating monocytes in most volunteers behaved in ways that align with previous reports, many exhibited atypical dynamics demonstrated by elevated fasting blood monocyte counts that sharply decreased after meal consumption. This group was also distinguished by lower HDL levels, reduced postprandial endothelial function, and a delayed postprandial decline in salivary cortisol.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Immunity and Disease Prevention Research Unit, Western Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Davis, California, United States
- Department of Nutrition, University of California, Davis, California, United States
| | - Charles B Stephensen
- Immunity and Disease Prevention Research Unit, Western Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Davis, California, United States
- Department of Nutrition, University of California, Davis, California, United States
| | - Kevin D Laugero
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Davis, California, United States
- Department of Nutrition, University of California, Davis, California, United States
| |
Collapse
|
4
|
Ekawati W, Heriansyah T, Kamarlis RK, Purnawarman A, Sofyan H, Enitan SS. Immunoexpression of aortic endothelial P-selectin and serum apolipoprotein A-1 levels after administration of arabica ( Coffea arabica) and robusta ( Coffea canephora) coffee bean extracts: In vivo study in atherosclerosis rat model. NARRA J 2024; 4:e794. [PMID: 39280317 PMCID: PMC11391985 DOI: 10.52225/narra.v4i2.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/08/2024] [Indexed: 09/18/2024]
Abstract
Atherosclerosis is a leading cause of cardiovascular disease-related death worldwide. Some studies suggested that the natural ingredients in coffee may negatively affect cardiovascular diseases, while other studies indicated that coffee contains anti-inflammatory compounds that are beneficial for cardiovascular diseases. The aim of this study was to measure the expression of P-selectin in aortic endothelial cells and the level of serum apolipoprotein A-1 (ApoA-1) in an atherosclerosis rat model after the administration of arabica and robusta coffee bean extracts at mild-moderate and high doses. An experimental study was conducted with a complete randomized design using 36 adult male white rats (Rattus norvegicus) divided into six groups: negative control (NC), positive control (PC), arabica mild-moderate dose (A1), arabica high dose (A2), robusta mild-moderate dose (R1), and robusta high dose (R2). Animals were induced atherosclerosis with atherogenic feed and then were treated with arabica and robusta coffee bean extracts at two different doses for four weeks. The results showed that the expression of P-selectin in the group of rats treated with robusta coffee bean extract was lower than arabica coffee bean extract group. Rats with robusta coffee bean extract mild-moderate dose had the highest ApoA-1 levels compared to other groups significantly (p<0.05). The level of ApoA-1 was higher in both mild-moderate and high dose of robusta coffee groups compared to the negative control group (both with p<0.001). In conclusion, mild-moderate intake of robusta coffee bean extract could reduce aortic P-selectin immunoexpression and increase serum ApoA-1 levels in an atherosclerosis rat model.
Collapse
Affiliation(s)
- Wahyu Ekawati
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Teuku Heriansyah
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Reno K. Kamarlis
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Adi Purnawarman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Hamny Sofyan
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Seyi S. Enitan
- Department of Medical Laboratory Science, Babcock University, Ilishan-Remo, Nigeria
| |
Collapse
|
5
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Kothari V, Ho TW, Cabodevilla AG, He Y, Kramer F, Shimizu-Albergine M, Kanter JE, Snell-Bergeon J, Fisher EA, Shao B, Heinecke JW, Wobbrock JO, Lee WL, Goldberg IJ, Vaisar T, Bornfeldt KE. Imbalance of APOB Lipoproteins and Large HDL in Type 1 Diabetes Drives Atherosclerosis. Circ Res 2024; 135:335-349. [PMID: 38828596 PMCID: PMC11223987 DOI: 10.1161/circresaha.123.323100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDL particles relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.
Collapse
MESH Headings
- Adult
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Apolipoprotein A-I/blood
- Apolipoprotein A-I/metabolism
- Apolipoprotein B-100/metabolism
- Apolipoprotein B-100/genetics
- Apolipoprotein B-100/blood
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/blood
- Atherosclerosis/pathology
- Cholesterol Ester Transfer Proteins/genetics
- Cholesterol Ester Transfer Proteins/metabolism
- Cholesterol Ester Transfer Proteins/blood
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/blood
- Disease Models, Animal
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/metabolism
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Tse W.W. Ho
- Keenan Centre for Biomedical Research, St. Michael’s Hospital, Toronto, Canada (T.W.W.H., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (T.W.W.H., W.L.L.)
| | | | - Yi He
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Farah Kramer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Masami Shimizu-Albergine
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Jenny E. Kanter
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Janet Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora (J.S.-B.)
| | - Edward A. Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (E.A.F.)
| | - Baohai Shao
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Jay W. Heinecke
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | | | - Warren L. Lee
- Keenan Centre for Biomedical Research, St. Michael’s Hospital, Toronto, Canada (T.W.W.H., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (T.W.W.H., W.L.L.)
- Interdepartmental Division of Critical Care and the Department of Biochemistry, University of Toronto, Canada (W.L.L.)
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism (A.G.C., I.J.G.)
| | - Tomas Vaisar
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
| | - Karin E. Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.)
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle (K.E.B.)
| |
Collapse
|
7
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
8
|
Zervopoulou E, Grigoriou M, Doumas SA, Yiannakou D, Pavlidis P, Gasparoni G, Walter J, Filia A, Gakiopoulou H, Banos A, Mitroulis I, Boumpas DT. Enhanced medullary and extramedullary granulopoiesis sustain the inflammatory response in lupus nephritis. Lupus Sci Med 2024; 11:e001110. [PMID: 38471723 DOI: 10.1136/lupus-2023-001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVES In SLE, deregulation of haematopoiesis is characterised by inflammatory priming and myeloid skewing of haematopoietic stem and progenitor cells (HSPCs). We sought to investigate the role of extramedullary haematopoiesis (EMH) as a key player for tissue injury in systemic autoimmune disorders. METHODS Transcriptomic analysis of bone marrow (BM)-derived HSPCs from patients with SLE and NZBW/F1 lupus-prone mice was performed in combination with DNA methylation profile. Trained immunity (TI) was induced through β-glucan administration to the NZBW/F1 lupus-prone model. Disease activity was assessed through lupus nephritis (LN) histological grading. Colony-forming unit assay and adoptive cell transfer were used to assess HSPCs functionalities. RESULTS Transcriptomic analysis shows that splenic HSPCs carry a higher inflammatory potential compared with their BM counterparts. Further induction of TI, through β-glucan administration, exacerbates splenic EMH, accentuates myeloid skewing and worsens LN. Methylomic analysis of BM-derived HSPCs demonstrates myeloid skewing which is in part driven by epigenetic tinkering. Importantly, transcriptomic analysis of human SLE BM-derived HSPCs demonstrates similar findings to those observed in diseased mice. CONCLUSIONS These data support a key role of granulocytes derived from primed HSPCs both at medullary and extramedullary sites in the pathogenesis of LN. EMH and TI contribute to SLE by sustaining the systemic inflammatory response and increasing the risk for flare.
Collapse
Affiliation(s)
- Eleni Zervopoulou
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Grigoriou
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Stavros A Doumas
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Danae Yiannakou
- Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Gilles Gasparoni
- Department of Genetics-Epigenetics, Saarland University, Saarbrucken, Germany
| | - Jörn Walter
- Department of Genetics-Epigenetics, Saarland University, Saarbrucken, Germany
| | - Anastasia Filia
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggelos Banos
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ioannis Mitroulis
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Dimitrios T Boumpas
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
10
|
Fan X, Wang X, Zhao H, Xiong D, Hu M, Wang L, Pan A, Gabelli C, Budoff MJ, Yuan H. Reference intervals for cardiometabolic risk factors in China: a national multicenter cross-sectional study on an adult population sample. Cardiovasc Diagn Ther 2024; 14:174-192. [PMID: 38434556 PMCID: PMC10904295 DOI: 10.21037/cdt-23-369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
Background The reference intervals (RIs) of adult blood lipid parameters currently used in China are not derived from the results of research in local populations and have not been adjusted for age and sex. In this study, we aimed to determine accurate RIs for blood lipid parameters and blood glucose (GluG) for Chinese adults using a national multicenter study. Methods A total of 11,333 adults between 18 and 90 years of age were recruited in seven representative regions in China between June 2020 and December 2020. Hospitals participating in the study were regrouped into two geographical regions, southern China (Changsha, Chengdu, Hangzhou, and Nanning) and northern China (Beijing, Shenyang, and Ningxia), according to their geographical and administrative location. All samples were freshly collected and measured collectively in one laboratory on the Mindray full Automatic biochemical analyzer chemistry BS2000 analytical systems. Outliers were removed using the Tukey test. Three-level nested analysis of variance and scatter plot were used to explore the variations in sex, age, and region. Percentile curves of each indicator were plotted using the least mean square (LMS) method. The lower limit (2.5th percentile) and the upper limit (97.5th percentile) of the RI were determined by using nonparametric statistical methods. We also calculated the 90% confidence interval (CI) for the lower and upper limits. Results A total of 8,283 participants were enrolled in the final analysis, with 3,593 (43.4%) men and 4,690 (56.6%) women. Regionality was observed in three analytes [small dense low density lipoprotein cholesterol (sd-LDLC), GluG, and apolipoprotein A1 (ApoA1)]. In northern China, the sd-LDLC and GluG levels in Shenyang were significantly higher than those in Ningxia and Beijing (P<0.05). In southern China, the sd-LDLC and GluG levels in Nanning were significantly higher than those in the three other cities (P<0.05), whereas the sd-LDLC and GluG levels in Chengdu were significantly lower than those in the three other cities (P<0.05). The level of ApoA1 in Chengdu was significantly higher than that in the three other cities. The homocysteine (HCY) level in male participants was clearly higher than that in female participants [ratio of standard deviation (SDR)sex =0.56], whereas the levels of high density lipoprotein cholesterol (HDLC) (SDRsex =0.40) and ApoA1 (SDRsex =0.27) in males were lower. The GluG and HCY level increased gradually with age. In females aged 45-55 years, there was an interesting change in scatter charts, where triglyceride (TG) and total cholesterol (TC) increased rapidly. We also found that for the age group of >55 years, the levels of TG and TC in females gradually surpassed those in males. Conclusions The findings of this study may help establish age- and sex-specific reference values for the blood lipids of Chinese adults and serve as a valuable guide for the screening, diagnosis, treatment, prevention, and monitoring of cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Xuesong Fan
- Department of Clinical Laboratory Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xianjun Wang
- Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Hongmei Zhao
- Department of Laboratory Medicine, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Daqian Xiong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Hu
- Department of Clinical Laboratory, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lixin Wang
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Aiping Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Carlo Gabelli
- CRIC, Department of Medicine, University Hospital of Padova, Padova, Italy
| | | | - Hui Yuan
- Department of Clinical Laboratory Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
11
|
Pinos I, Coronel J, Albakri A, Blanco A, McQueen P, Molina D, Sim J, Fisher EA, Amengual J. β-Carotene accelerates the resolution of atherosclerosis in mice. eLife 2024; 12:RP87430. [PMID: 38319073 PMCID: PMC10945528 DOI: 10.7554/elife.87430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
β-Carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Asma'a Albakri
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Amparo Blanco
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - JaeYoung Sim
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University Grossman School of Medicine, NYU Langone Medical CenterNew YorkUnited States
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| |
Collapse
|
12
|
Wu D, Chen G, Lan Y, Chen S, Ding X, Wei C, Balmer L, Wang W, Wu S, Xu W. Measurement of cumulative high-sensitivity C-reactive protein and monocyte to high-density lipoprotein ratio in the risk prediction of type 2 diabetes: a prospective cohort study. J Transl Med 2024; 22:110. [PMID: 38281997 PMCID: PMC10822164 DOI: 10.1186/s12967-024-04895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/14/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Converging data have suggested that monocytic inflammation and C-reactive protein (CRP) are biologically intertwined processes and are involved in diabetogenesis. This study aimed to investigate the association between systemic inflammation assessed by joint cumulative high-sensitivity C-reactive protein (CumCRP) and monocyte to high-density lipoprotein ratio (CumMHR) and incident type 2 diabetes (T2D) and their predictive value for T2D in a general population. METHODS A total of 40,813 nondiabetic participants from a prospective real-life cohort (Kailuan Study, China) were followed biennially from 2010/2011 until December 31, 2020. Multivariable Cox regression analyses were conducted to evaluate the adjusted hazard ratios (aHRs) of incident diabetes. RESULTS During a median follow-up of 7.98 (IQR: 5.74-8.87) years, 4848 T2D cases developed. CumMHR and CumCRP were alone or jointly associated with incident T2D after adjusting for potential confounders. Elevated CumMHR levels significantly increased the risk of incident diabetes in each CumCRP strata (P-interaction: 0.0278). Participants with concomitant elevations in CumMHR and CumCRP levels had the highest risk (aHR: 1.71, 95% CI 1.52-1.91) compared to both in the low strata. Notably, the coexposure-associated T2D risk was modified by age, sex, hypertension, dyslipidemia, and prediabetes status. C-statistics increased from 0.7377 to 0.7417 when CumMHR and CumCRP were added into the multivariable-adjusted model, with a net reclassification improvement (%) of 12.39 (9.39-15.37) (P < 0.0001). CONCLUSIONS Cumulative hsCRP and MHR were both independently and jointly associated with an increased risk of T2D and their addition to established risk factors should improve risk prediction and reclassification of diabetes.
Collapse
Affiliation(s)
- Dan Wu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, NO. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia
| | - Genyuan Chen
- Department of Endocrinology, Chaoan People's Hospital, Longhua Road, Chaoan, Chaozhou, 515647, China
| | - Yulong Lan
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Xinghua East Road, Tangshan, 063000, Hebei, China
| | - Xiong Ding
- School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Chiju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, 515041, China
| | - Lois Balmer
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia.
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, 100069, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China.
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Xinghua East Road, Tangshan, 063000, Hebei, China.
| | - Wencan Xu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, NO. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China.
| |
Collapse
|
13
|
Pinos I, Coronel J, Albakri A, Blanco A, McQueen P, Molina D, Sim J, Fisher EA, Amengual J. β-carotene accelerates the resolution of atherosclerosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.07.531563. [PMID: 36945561 PMCID: PMC10028884 DOI: 10.1101/2023.03.07.531563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
β-carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| | - Asma'a Albakri
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Amparo Blanco
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| | - JaeYoung Sim
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University Grossman School of Medicine, NYU Langone Medical Center, NY
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| |
Collapse
|
14
|
Nagesh PT, Nishi H, Rawal S, Zahr T, Miano JM, Sorci-Thomas M, Xu H, Akbar N, Choudhury RP, Misra A, Fisher EA. HDL regulates TGFß-receptor lipid raft partitioning, restoring contractile features of cholesterol-loaded vascular smooth muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.562786. [PMID: 37905061 PMCID: PMC10614922 DOI: 10.1101/2023.10.19.562786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Cholesterol-loading of mouse aortic vascular smooth muscle cells (mVSMCs) downregulates miR-143/145, a master regulator of the contractile state downstream of TGFβ signaling. In vitro, this results in transitioning from a contractile mVSMC to a macrophage-like state. This process likely occurs in vivo based on studies in mouse and human atherosclerotic plaques. Objectives To test whether cholesterol-loading reduces VSMC TGFβ signaling and if cholesterol efflux will restore signaling and the contractile state in vitro and in vivo. Methods Human coronary artery (h)VSMCs were cholesterol-loaded, then treated with HDL (to promote cholesterol efflux). For in vivo studies, partial conditional deletion of Tgfβr2 in lineage-traced VSMC mice was induced. Mice wild-type for VSMC Tgfβr2 or partially deficient (Tgfβr2+/-) were made hypercholesterolemic to establish atherosclerosis. Mice were then treated with apoA1 (which forms HDL). Results Cholesterol-loading of hVSMCs downregulated TGFβ signaling and contractile gene expression; macrophage markers were induced. TGFβ signaling positively regulated miR-143/145 expression, increasing Acta2 expression and suppressing KLF4. Cholesterol-loading localized TGFβ receptors into lipid rafts, with consequent TGFβ signaling downregulation. Notably, in cholesterol-loaded hVSMCs HDL particles displaced receptors from lipid rafts and increased TGFβ signaling, resulting in enhanced miR-145 expression and decreased KLF4-dependent macrophage features. ApoA1 infusion into Tgfβr2+/- mice restored Acta2 expression and decreased macrophage-marker expression in plaque VSMCs, with evidence of increased TGFβ signaling. Conclusions Cholesterol suppresses TGFβ signaling and the contractile state in hVSMC through partitioning of TGFβ receptors into lipid rafts. These changes can be reversed by promotion of cholesterol efflux, consistent with evidence in vivo.
Collapse
Affiliation(s)
- Prashanth Thevkar Nagesh
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Hitoo Nishi
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Shruti Rawal
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Tarik Zahr
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Mary Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| |
Collapse
|
15
|
Gindri dos Santos B, Goedeke L. Macrophage immunometabolism in diabetes-associated atherosclerosis. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00032. [PMID: 37849988 PMCID: PMC10578522 DOI: 10.1097/in9.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Macrophages play fundamental roles in atherosclerotic plaque formation, growth, and regression. These cells are extremely plastic and perform different immune functions depending on the stimuli they receive. Initial in vitro studies have identified specific metabolic pathways that are crucial for the proper function of pro-inflammatory and pro-resolving macrophages. However, the plaque microenvironment, especially in the context of insulin resistance and type 2 diabetes, constantly challenges macrophages with several simultaneous inflammatory and metabolic stimuli, which may explain why atherosclerosis is accelerated in diabetic patients. In this mini review, we discuss how macrophage mitochondrial function and metabolism of carbohydrates, lipids, and amino acids may be affected by this complex plaque microenvironment and how risk factors associated with type 2 diabetes alter the metabolic rewiring of macrophages and disease progression. We also briefly discuss current challenges in assessing macrophage metabolism and identify future tools and possible strategies to alter macrophage metabolism to improve treatment options for diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bernardo Gindri dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
17
|
Li J, Liu Y, Lai W, Song L, Deng J, Li C, Jiang S. MicroRNA-126 regulates macrophage polarization to prevent the resorption of alveolar bone in diabetic periodontitis. Arch Oral Biol 2023; 150:105686. [PMID: 36947912 DOI: 10.1016/j.archoralbio.2023.105686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE This study aims to investigate the effects of microRNA-126 (miR-126) on the macrophage polarization in vitro and alveolar bone resorption in vivo. DESIGN The relationship between miR-126 and MEK/ERK kinase 2 (MEKK2) was confirmed by dual-luciferase reporter assay. Real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay or Western blot was used to detect the changes of miR-126, inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1), tumor necrosis factor (TNF)-α, interleukin (IL)-10, MEKK2 and MEKK2-related pathways: mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) in RAW264.7 macrophages challenged with Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and/or high glucose and/or miR-126 mimic. In mice with diabetic periodontitis, the expressions of iNOS and Arg-1 in gingiva, and alveolar bone level were detected after miR-126 mimic injection. RESULTS MiR-126 could directly bind with MEKK2 3'-untranslated region (UTR). MEKK2, phosphorylation of NF-κB and MAPK signaling proteins, TNF-α and iNOS increased (P < 0.05), while miR-126, Arg-1 and IL-10 were inhibited (P < 0.05) in macrophage challenged with high glucose and/or P. gingivalis LPS, however, miR-126 mimic reversed these effects (P < 0.05). The expressions of iNOS in gingiva and alveolar bone resorption were elevated (P < 0.05), the expression of Arg-1 in gingiva decreased (P < 0.05) in mice with diabetic periodontitis, which could be inhibited by miR-126 mimic. CONCLUSIONS miR-126 might prevent alveolar bone resorption in diabetic periodontitis and inhibit macrophage M1 polarization via regulating MEKK2 signaling pathway.
Collapse
Affiliation(s)
- Jiajun Li
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Yue Liu
- School of Stomatology, Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China; Stomatological Center, Peking University Shenzhen Hospital, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Provincial High-level Clinical Key Specialty, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 5180036, Guangdong, People's Republic of China
| | - Wen Lai
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Liting Song
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Jiayin Deng
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Changyi Li
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China.
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Provincial High-level Clinical Key Specialty, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 5180036, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
HDL-Based Therapy: Vascular Protection at All Stages. Biomedicines 2023; 11:biomedicines11030711. [PMID: 36979690 PMCID: PMC10045384 DOI: 10.3390/biomedicines11030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is known that lipid metabolism disorders are involved in a wide range of pathologies. These pathologies include cardiovascular, metabolic, neurodegenerative diseases, and even cancer. All these diseases lead to serious health consequences, which makes it impossible to ignore them. Unfortunately, these diseases most often have a complex pathogenesis, which makes it difficult to study them and, in particular, diagnose and treat them. HDL is an important part of lipid metabolism, performing many functions under normal conditions. One of such functions is the maintaining of the reverse cholesterol transport. These functions are also implicated in pathology development. Thus, HDL contributes to vascular protection, which has been demonstrated in various conditions: Alzheimer’s disease, atherosclerosis, etc. Many studies have shown that serum levels of HDL cholesterol correlate negatively with CV risk. With these data, HDL-C is a promising therapeutic target. In this manuscript, we reviewed HDL-based therapeutic strategies that are currently being used or may be developed soon.
Collapse
|
19
|
Zhao W, Zhou LY, Kong J, Huang ZH, Gao YD, Zhang ZX, Zhou YJ, Wu RY, Xu HJ, An SJ. Expression of recombinant human Apolipoprotein A-I Milano in Nicotiana tabacum. BIORESOUR BIOPROCESS 2023; 10:4. [PMID: 38647895 PMCID: PMC10992485 DOI: 10.1186/s40643-023-00623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023] Open
Abstract
Apolipoprotein A-IMilano (Apo A-IMilano) is a natural mutant of Apolipoprotein. It is currently the only protein that can clear arterial wall thrombus deposits and promptly alleviate acute myocardial ischemia. Apo A-IMilano is considered as the most promising therapeutic protein for treating atherosclerotic diseases without obvious toxic or side effects. However, the current biopharmaceutical platforms are not efficient for developing Apo A-IMilano. The objectives of this research were to express Apo A-IMilano using the genetic transformation ability of N. tabacum. The method is to clone the coding sequence of Apo A-IMilano into the plant binary expression vector pCHF3 with a Flag/His6/GFP tag. The constructed plasmid was transformed into N. tabacum by a modified agrobacterium-mediated method, and transformants were selected under antibiotic stress. PCR, RT-qPCR, western blot and co-localization analysis was used to further verify the resistant N. tabacum. The stable expression and transient expression of N. tabacum were established, and the pure product of Apo A-IMilano was obtained through protein A/G agarose. The results showed that Apo A-IMilano was expressed in N. tabacum with a yield of 0.05 mg/g leaf weight and the purity was 90.58% ± 1.65. The obtained Apo A-IMilano protein was subjected to amino acid sequencing. Compared with the theoretical sequence of Apo A-IMilano, the amino acid coverage was 86%, it is also found that Cysteine replaces Arginine at position 173, which indicates that Apo A-IMilano, a mutant of Apo A-I, is accurately expressed in N. tabacum. The purified Apo A-IMilano protein had a lipid binding activity. The established genetic modification N. tabacum will provide a cost-effective system for the production of Apo A-IMilano. Regarding the rapid propagation of N. tabacum, this system provides the possibility of large-scale production and accelerated clinical translation of Apo A-IMilano.
Collapse
Affiliation(s)
- Wei Zhao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
| | - Lu-Yang Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
| | - Jing Kong
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
- School of Nursing of Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
| | - Ze-Hao Huang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
| | - Ya-Di Gao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
| | - Zhong-Xia Zhang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
- School of Nursing of Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
| | - Yong-Jie Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
| | - Ruo-Yu Wu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China
| | - Hong-Jun Xu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China.
| | - Sheng-Jun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Shijiazhuang, 050090, Hebei, China.
| |
Collapse
|
20
|
Babu M, Devi D, Mäkinen P, Örd T, Aavik E, Kaikkonen M, Ylä-Herttuala S. ApoA-I Nanotherapy Rescues Postischemic Vascular Maladaptation by Modulating Endothelial Cell and Macrophage Phenotypes in Type 2 Diabetic Mice. Arterioscler Thromb Vasc Biol 2023; 43:e46-e61. [PMID: 36384268 DOI: 10.1161/atvbaha.122.318196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Diabetes is a major risk factor for peripheral arterial disease. Clinical and preclinical studies suggest an impaired collateral remodeling and angiogenesis in response to atherosclerotic arterial occlusion in diabetic conditions, although the underlying mechanisms are poorly understood. OBJECTIVE To clarify the cellular and molecular mechanisms underlying impaired postischemic adaptive vascular responses and to evaluate rHDL (reconstituted HDL)-ApoA-I nanotherapy to rescue the defect in type 2 diabetic mouse model of hindlimb ischemia. METHODS AND RESULTS Hindlimb ischemia was induced by unilateral femoral artery ligation. Collateral and capillary parameters together with blood flow recovery were analyzed from normoxic adductor and ischemic gastrocnemius muscles, respectively, at day 3 and 7 post-ligation. In response to femoral artery ligation, collateral lumen area was significantly reduced in normoxic adductor muscles. Distally, ischemic gastrocnemius muscles displayed impaired perfusion recovery and angiogenesis paralleled with persistent inflammation. Muscle-specific mRNA sequencing revealed differential expression of genes critical for smooth muscle proliferation and sprouting angiogenesis in normoxic adductor and ischemic gastrocnemius, respectively, at day 7 post-ligation. Genes typical for macrophage (Mϕ) subsets were differentially expressed across both muscle types. Cell-specific gene expression, flow cytometry, and immunohistochemistry revealed persistent IFN-I response gene upregulation in arterial endothelial cells, ECs and Mϕs from T2DM mice associated with impaired collateral remodeling, angiogenesis and perfusion recovery. Furthermore, rHDL nanotherapy rescued impaired collateral remodeling and angiogenesis through dampening EC and Mϕ inflammation in T2DM mice. CONCLUSIONS Our results suggest that an impaired collateral remodeling and sprouting angiogenesis in T2DM mice is associated with persistent IFN-I response in ECs and Mϕs. Dampening persistent inflammation and skewing ECs and Mϕ phenotype toward less inflammatory ones using rHDL nanotherapy may serve as a potential therapeutic target for T2DM peripheral arterial disease.
Collapse
Affiliation(s)
- Mohan Babu
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio (M.B., D.D., P.M., T.O., E.A., M.K., S.Y.-H.)
| | - Durga Devi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio (M.B., D.D., P.M., T.O., E.A., M.K., S.Y.-H.)
| | - Petri Mäkinen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio (M.B., D.D., P.M., T.O., E.A., M.K., S.Y.-H.)
| | - Tiit Örd
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio (M.B., D.D., P.M., T.O., E.A., M.K., S.Y.-H.)
| | - Einari Aavik
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio (M.B., D.D., P.M., T.O., E.A., M.K., S.Y.-H.)
| | - Minna Kaikkonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio (M.B., D.D., P.M., T.O., E.A., M.K., S.Y.-H.)
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio (M.B., D.D., P.M., T.O., E.A., M.K., S.Y.-H.).,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
21
|
Suemanotham N, Photcharatinnakorn P, Chantong B, Buranasinsup S, Phochantachinda S, Sakcamduang W, Reamtong O, Thiangtrongjit T, Chatchaisak D. Curcuminoid supplementation in canine diabetic mellitus and its complications using proteomic analysis. Front Vet Sci 2022; 9:1057972. [PMID: 36619946 PMCID: PMC9816143 DOI: 10.3389/fvets.2022.1057972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Inflammation and oxidative stress contribute to diabetes pathogenesis and consequences. Therapeutic approaches for canine diabetes remain a challenge. Curcumin has anti-inflammatory and anti-oxidative effects and is beneficial for humans with diabetes mellitus (DM); however, data on its impact on canine diabetes is limited. This study aimed to evaluate the potential for causing adverse effects, anti-inflammatory effects, anti-oxidative effects and proteomic patterns of curcuminoid supplementation on canine DM. Methods Altogether, 18 dogs were divided into two groups: DM (n = 6) and healthy (n = 12). Curcuminoid 250 mg was given to the DM group orally daily for 180 days. Blood and urine sample collection for hematological parameters, blood biochemistry, urinalysis, oxidative stress parameters, inflammatory markers and proteomics were performed every 6 weeks. Results and discussion Curcuminoid supplementation with standard therapy significantly decreased oxidative stress with the increased glutathione/oxidized glutathione ratio, but cytokine levels were unaffected. According to the proteomic analysis, curcuminoid altered the expression of alpha-2-HS-glycoprotein, transthyretin, apolipoprotein A-I and apolipoprotein A-IV, suggesting that curcuminoid improves insulin sensitivity and reduces cardiovascular complications. No negative impact on clinical symptoms, kidneys or liver markers was identified. This study proposed that curcuminoids might be used as a targeted antioxidant strategy as an adjunctive treatment to minimize diabetes complications in dogs.
Collapse
Affiliation(s)
- Namphung Suemanotham
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Boonrat Chantong
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,*Correspondence: Duangthip Chatchaisak ✉
| |
Collapse
|
22
|
Bidirectional regulation role of PARP-1 in high glucose-induced endothelial injury. Exp Cell Res 2022; 421:113400. [PMID: 36283454 DOI: 10.1016/j.yexcr.2022.113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022]
Abstract
Loss of poly (ADP-ribose) polymerase-1 (PARP-1) has been found to slow the progression of diabetes and diabetic angiopathy. In our study, we found bidirectional regulation of PARP-1 in high glucose induced endothelial injury, which promoting repair at the early stage of injury and inhibiting repair at the late stage of injury. To further investigate the mechanism of PARP-1 regulation, we first examined the expression of PARP-1 in aortic tissues and cultured cells at early, middle, and late stages of injury, PARP-1 expression was significantly greater than that of control group. Overexpression of PARP-1 in HUVECs significantly reduced the number of apoptotic cells 12 h after high glucose injury, while reducing the level of reactive oxygen species (ROS)/malondialdehyde (MDA)/inducible nitric oxide synthase (iNOS), increasing the level of endothelial nitric oxide synthase (eNOS); however, when the injury extended to 3 days, the number of apoptosis in HUVECs overexpressing PARP-1 was significantly higher than that in the injury group, and the level of ROS/MDA/iNOS was significantly higher, while the secretion of eNOS was significantly lower. Similarly, PARP-1 inhibitors aggravate early damage and inhibit late damage. We found that PARP-1 promoted the activation of P53 and P53R2 in endothelial cells after 12 h of injury, and PARP-1 promoted the activation of P53 and caspas3 in endothelial cells after 3 days of injury. Therefore, we suggest that PARP-1 plays a dual regulatory role in promoting repair or aggravating injury.
Collapse
|
23
|
Wu D, Lan Y, Xu Y, Xu S, Huang Y, Balmer L, Maharra G, Xu W, Wang W, Wu S. Association of cumulative monocyte to high-density lipoprotein ratio with the risk of type 2 diabetes: a prospective cohort study. Cardiovasc Diabetol 2022; 21:268. [PMID: 36463212 PMCID: PMC9719154 DOI: 10.1186/s12933-022-01701-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Recent studies have established that monocyte-derived inflammation plays a central role in the pathogenesis of type 2 diabetes mellitus (T2DM). It is unclear whether chronic metabolic inflammation, reflected by the cumulative monocyte to high-density lipoprotein ratio (CumMHR), predisposes the general population to T2DM. METHODS This study included 40,813 participants without diabetes from a real-life, community-based cohort (the Kailuan Study) attending a 2-year cycle of health survey since 2006. Cumulative exposure was obtained from 2006/2007 to 2010/2011. Follow-up started at 2010/2011 and through 2020. Multivariable-adjusted Cox regression models were used to calculate the CumMHR-associated risk of incident T2DM. RESULTS Over a median follow-up period of 7.98 (IQR: 5.74-8.87) years, 4,848 T2DM cases occurred. The CumMHR was positively associated with the risk of incident T2DM after adjusting for age, sex, smoking, drinking habits, physical activities, BMI, triglyceride-glycemia index, log(leukocyte count), log(hsCRP), blood pressure, renal function, and medication uses with adjusted HRs of 1.0 (ref.), 1.18 (1.05‒1.25), 1.17 (1.07‒1.27), 1.38 (1.26‒1.50), respectively, in CumMHR Quartiles 1, 2, 3 and 4. When follow-up ended at 2014/2015, the short-term (4‒year) adjusted T2DM risks in CumMHR Quartiles 2, 3, and 4 were 1.14 (1.01‒1.29), 1.17 (1.04‒1.32), 1.40 (1.25‒1.58), respectively, relative to Quartile 1. A significant interaction between CumMHR and cumulative high-sensitivity C-reactive protein (CumCRP) was observed (P-interaction: 0.0109). The diabetic risk in the highest quartile of CumMHR was higher (1.53 [1.28‒1.84]) when CumCRP < 1 mg/L, attenuated with increasing CumCRP levels (1 ~ 10 mg/L) and disappeared in CumCRP ≥ 10 mg/L. Hypertension, overweight, or smoking habits further modified the CumMHR-associated diabetic risk. CONCLUSIONS Cumulative MHR may be a promising supplement to hsCRP for more comprehensively assessing the influence of metabolic inflammation on T2DM susceptibility. For primary prevention, targeting high CumMHR, especially in cases at low risk of diabetes defined by traditional risk factors, may further help reduce the diabetic risk.
Collapse
Affiliation(s)
- Dan Wu
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, NO. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Room 521, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
| | - Yulong Lan
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Room 521, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
| | - Yuancheng Xu
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Haiyuan Road, Shenzhen, 518053, China
| | - Songna Xu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, NO. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Yuejun Huang
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, NO. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Room 521, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
| | | | - Wencan Xu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, NO. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Wei Wang
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Room 521, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
- Shantou University Medical College, Shantou, 515041, China
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, 100069, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Xinghua East Road, Tangshan, 063000, China
| |
Collapse
|
24
|
Jones WL, Ramos CR, Banerjee A, Moore EE, Hansen KC, Coleman JR, Kelher M, Neeves KB, Silliman CC, Di Paola J, Branchford BR. Apolipoprotein A-I, elevated in trauma patients, inhibits platelet activation and decreases clot strength. Platelets 2022; 33:1119-1131. [PMID: 35659185 PMCID: PMC9547822 DOI: 10.1080/09537104.2022.2078488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is elevated in the plasma of a subgroup of trauma patients with systemic hyperfibrinolysis. We hypothesize that apoA-I inhibits platelet activation and clot formation. The effects of apoA-I on human platelet activation and clot formation were assessed by whole blood thrombelastography (TEG), platelet aggregometry, P-selectin surface expression, microfluidic adhesion, and Akt phosphorylation. Mouse models of carotid artery thrombosis and pulmonary embolism were used to assess the effects of apoA-I in vivo. The ApoA-1 receptor was investigated with transgenic mice knockouts (KO) for the scavenger receptor class B member 1 (SR-BI). Compared to controls, exogenous human apoA-I inhibited arachidonic acid and collagen-mediated human and mouse platelet aggregation, decreased P-selectin surface expression and Akt activation, resulting in diminished clot strength and increased clot lysis by TEG. ApoA-I also decreased platelet aggregate size formed on a collagen surface under flow. In vivo, apoA-I delayed vessel occlusion in an arterial thrombosis model and conferred a survival advantage in a pulmonary embolism model. SR-BI KO mice significantly reduced apoA-I inhibition of platelet aggregation versus wild-type platelets. Exogenous human apoA-I inhibits platelet activation, decreases clot strength and stability, and protects mice from arterial and venous thrombosis via the SR-BI receptor.
Collapse
Affiliation(s)
- Wilbert L Jones
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Christopher R. Ramos
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Anirban Banerjee
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Ernest E. Moore
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Dept. of Surgery, Denver Health Medical Center, Denver CO
| | - Kirk C. Hansen
- Department of Biochemistry/Molecular Genetics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Julia R. Coleman
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Marguerite Kelher
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Vitalant Research Institute, Denver, CO
| | - Keith B. Neeves
- Department of Pediatrics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Department of Bioengineering, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Christopher C. Silliman
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Vitalant Research Institute, Denver, CO
| | - Jorge Di Paola
- Dept. of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
25
|
Luo XM, Lam SM, Dong Y, Ma XJ, Yan C, Zhang YJ, Cao Y, Su L, Lu G, Yang JK, Shui G, Feng YM. The purine metabolite inosine monophosphate accelerates myelopoiesis and acute pancreatitis progression. Commun Biol 2022; 5:1088. [PMID: 36224248 PMCID: PMC9556615 DOI: 10.1038/s42003-022-04041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperglycemia-induced myelopoiesis and atherosclerotic progression occur in mice with type I diabetes. However, less is known about the effects of metabolites on myelopoesis in type 2 diabetes. Here, we use fluorescence-activated cell sorting to analyze the proliferation of granulocyte/monocyte progenitors (GMP) in db/db mice. Using targeted metabolomics, we identify an increase in inosine monophosphate (IMP) in GMP cells of 24-week-old mice. We show that IMP treatment stimulates cKit expression, ribosomal S6 activation, GMP proliferation, and Gr-1+ granulocyte production in vitro. IMP activates pAkt in non-GMP cells. In vivo, using an established murine acute pancreatitis (AP) model, administration of IMP-treated bone marrow cells enhances the severity of AP. This effect is abolished in the presence of a pAkt inhibitor. Targeted metabolomics show that plasma levels of guanosine monophosphate are significantly higher in diabetic patients with AP. These findings provid a potential therapeutic target for the control of vascular complications in diabetes. Metabolomics analysis reveals that inosine monophosphate, a purine metabolite, promotes myelopoiesis and contributes to severe acute pancreatitis in db/db mice.
Collapse
Affiliation(s)
- Xiao-Min Luo
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, 100069, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuan Dong
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, 100069, Beijing, China
| | - Xiao-Juan Ma
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, 100191, Beijing, China
| | - Cen Yan
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, 100069, Beijing, China
| | - Yue-Jie Zhang
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, 100069, Beijing, China
| | - Yu Cao
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, 100069, Beijing, China
| | - Li Su
- Neuroscience Research Institute, Peking University Center of Medical and Health Analysis, Peking University, 100191, Beijing, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, 225099, Yangzhou, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Ying-Mei Feng
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
26
|
Chen Q, Lei C, Zhao T, Dai Z, Zhang J, Jin Y, Xia C. Relationship between sarcopenia/paravertebral muscles and the incidence of vertebral refractures following percutaneous kyphoplasty: a retrospective study. BMC Musculoskelet Disord 2022; 23:879. [PMID: 36138369 PMCID: PMC9494877 DOI: 10.1186/s12891-022-05832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study aimed to reveal the associations of osteoporotic vertebral compression refracture (OVCRF) incidence with sarcopenia and paravertebral muscles (PVM). METHODS A total of 214 elderly patients who underwent percutaneous kyphoplasty in our hospital between January 2017 and December 2019 were analyzed. Data on possible risk factors, including sex, age, weight, height, diabetes, treated vertebral levels (thoracolumbar junction [(T10-L2]), vacuum clefts, and body mass index (BMI), were collected. Preoperative bone mineral density (BMD) and appendicular muscle mass were evaluated using dual-energy X-ray absorptiometry. Nutritional status was evaluated using the Mini Nutritional Assessment. Magnetic resonance imaging was performed to evaluate the physiological cross-sectional area of the PVM. RESULTS Overall, 74 (15 men and 59 women) and 60 (55 women and 14 men) patients developed OVCRF and sarcopenia, respectively. Sarcopenia is related to advanced age, ower BMD and BMI values. Sarcopenia-related indicators (PVM fat rate, appendicular muscle mass index, grip strength) were significantly lower in the sarcopenia group. Univariate analysis showed a correlation between OVCRF and BMD, BMI, diabetes, sarcopenia, and age. Multivariate analysis suggested that fatty infiltration of the PVM, BMD, sarcopenia, diabetes, BMI, and treated vertebral level remained as the independent predictors of OVCRF (p < 0.05). CONCLUSIONS The association between sarcopenia and PVM as independent risk factors for OVCRF was established in this study; therefore, sarcopenia should be greatly considered in OVCRF prevention.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Chenyang Lei
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Tingxiao Zhao
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhanqiu Dai
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jun Zhang
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China.
| | - Yongming Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affifiliated Hospital, Medical College of Zhejiang University, Hangzhou, China.
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
27
|
Abstract
The lymphatic vessels play an essential role in maintaining immune and fluid homeostasis and in the transport of dietary lipids. The discovery of lymphatic endothelial cell-specific markers facilitated the visualization and mechanistic analysis of lymphatic vessels over the past two decades. As a result, lymphatic vessels have emerged as a crucial player in the pathogenesis of several cardiovascular diseases, as demonstrated by worsened disease progression caused by perturbations to lymphatic function. In this review, we discuss the major findings on the role of lymphatic vessels in cardiovascular diseases such as hypertension, obesity, atherosclerosis, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Dakshnapriya Balasubbramanian
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas 77807, USA
| |
Collapse
|
28
|
Nanodisc delivery of liver X receptor agonist for the treatment of diabetic nephropathy. J Control Release 2022; 348:1016-1027. [PMID: 35750132 DOI: 10.1016/j.jconrel.2022.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 01/02/2023]
Abstract
Dyslipidemia is recognized to be an important contributor to the progression of diabetic nephropathy (DN), leading to lipoprotein dysregulation, excessive mesangium expansion as well as inflammation in the glomeruli. Thus, dual targeting of abnormal cholesterol metabolism and inflammatory responses of mesangial cells represents an alternative approach for DN treatment. Herein, we sought to develop a renal-targeting therapeutic strategy for diabetic nephropathy by modifying synthetic high-density lipoprotein (sHDL) nanodiscs with a kidney targeting ligand (KT peptide) and encapsulating a liver X receptor (LXR) agonist in the modified sHDL. LXR agonists delivered by sHDL can facilitate the removal of excessive lipids from mesangial cells, ameliorate inflammation and restore normal renal function. Overall, our data suggests that our optimized KT-targeted sHDL/TO nanodiscs (KT-sHDL/TO) generate potent therapeutic efficacy not only by more efficient cholesterol efflux, but also by suppressing mesangial cell proliferation. Most importantly, in a DN murine model, KT-sHDL/TO ameliorated dyslipidemia and inflammation superior to blank sHDL and non-targeting sHDL/TO formulations, showing promise for future clinical translation in DN treatment.
Collapse
|
29
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Poloxamer 407 Induces Hypertriglyceridemia but Decreases Atherosclerosis in Ldlr -/- Mice. Cells 2022; 11:cells11111795. [PMID: 35681489 PMCID: PMC9179832 DOI: 10.3390/cells11111795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Hypertriglyceridemia (HTG) increases the risk for atherosclerotic cardiovascular disease, but underlying mechanisms are incompletely understood. Circulating monocytes play an important role in atherogenesis by infiltrating arterial walls, where they differentiate into macrophages. We tested the hypothesis that HTG is mechanistically linked to atherogenesis by altering the monocyte phenotype and infiltration into atherosclerotic lesions in a model of diet-induced atherogenesis in Ldlr−/− mice. Methods: HTG was induced in male Ldlr−/− mice, fed a Western, high-fat high-cholesterol diet, by daily injection of poloxamer 407 (P407), a lipoprotein lipase inhibitor, for seven weeks. Atherosclerosis, monocyte phenotypes, and monocyte migration into atherosclerotic lesions were determined by well-validated methods. Results: Compared with the saline control, P407 injection in Ldlr−/− mice rapidly induced profound and persistent HTG, modestly elevated plasma cholesterol levels, and increased levels of triglyceride and cholesterol carried in very-low-density lipoprotein and low-density lipoprotein. Unexpectedly, mice receiving P407 versus saline control showed less atherosclerosis. Following induction of HTG by P407, CD36+ (also CD11c+), but not CD36− (CD11c−), monocytes showed early increases in lipid accumulation, but the number of CD36+ (not CD36−) monocytes was dramatically decreased afterwards in the circulation until the end of the test. Concurrently, CD36+ (CD11c+) monocyte migration into atherosclerotic lesions was also reduced in mice receiving P407 versus controls. Conclusions: P407 induced severe HTG, but reduced atherosclerosis, in Ldlr−/− mice, possibly because of profound reductions of circulating CD36+ (CD11c+) monocytes, leading to decreased monocyte migration into atherosclerotic lesions.
Collapse
|
31
|
Zhao Y, Lin S, Chen K, Chen D, Lai J. Ultrasonic characteristics and influencing factors of atherosclerosis in diabetic patients. Am J Transl Res 2022; 14:3113-3120. [PMID: 35702108 PMCID: PMC9185038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The purpose of this research was to observe the characteristics of atherosclerosis in diabetic patients by ultrasound and analyze the factors influencing the development of atherosclerosis in these patients. METHODS Ninety diabetic patients treated in our hospital from January 2019 to December 2019 were enrolled in this retrospective analysis. The transcranial Doppler ultrasound (TCD) and carotid ultrasound were used to determine the presence of intracranial (stenosis) and extracranial (plaque) atherosclerosis. The differences in characteristics of different lesions and risk factors for the development of atherosclerosis were compared. RESULTS Ultrasound examination of the 90 enrolled patients showed that 5 (5.56%) had only intracranial artery stenosis, 30 (33.33%) had only extracranial atherosclerosis, 20 (22.22%) had intracranial artery stenosis combined with extracranial atherosclerosis, and 35 (38.89%) had no lesions. The intracranial stenosis rate (27.78%) was significantly higher than that of extracranial carotid stenosis or occlusion (2.22%) (P < 0.001). Logistic regression analysis revealed that the duration of diabetes mellitus and concomitant hypertension were independent risk factors for intracranial and extracranial atherosclerosis (P < 0.05). Compared with the control group, the study group showed reduced carotid plaque, decreased inflammatory response, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) as well as elevated high-density lipoprotein cholesterol (HDL-C) (P < 0.05). CONCLUSION Diabetic patients have a higher incidence of atherosclerosis, which is related to the duration of the diabetes mellitus and concomitant hypertension, so the monitoring of these patients needs to be strengthened. In addition, the administration of atorvastatin can better improve hyperlipidemia and slow down the development of atherosclerosis.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Shibin Lin
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Kailiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Die Chen
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Jineng Lai
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| |
Collapse
|
32
|
Karagiannidis E, Moysidis DV, Papazoglou AS, Panteris E, Deda O, Stalikas N, Sofidis G, Kartas A, Bekiaridou A, Giannakoulas G, Gika H, Theodoridis G, Sianos G. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease. Cardiovasc Diabetol 2022; 21:70. [PMID: 35525960 PMCID: PMC9077877 DOI: 10.1186/s12933-022-01494-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
Background Diabetes mellitus (DM) and coronary artery disease (CAD) constitute inter-related clinical entities. Biomarker profiling emerges as a promising tool for the early diagnosis and risk stratification of either DM or CAD. However, studies assessing the predictive capacity of novel metabolomics biomarkers in coexistent CAD and DM are scarce. Methods This post-hoc analysis of the CorLipid trial (NCT04580173) included 316 patients with CAD and comorbid DM who underwent emergency or elective coronary angiography due to acute or chronic coronary syndrome. Cox regression analyses were performed to identify metabolomic predictors of the primary outcome, which was defined as the composite of major adverse cardiovascular or cerebrovascular events (MACCE: cardiovascular death, myocardial infarction, stroke, major bleeding), repeat unplanned revascularizations and cardiovascular hospitalizations. Linear regression analyses were also performed to detect significant predictors of CAD complexity, as assessed by the SYNTAX score. Results After a median 2-year follow up period (IQR = 0.7 years), the primary outcome occurred in 69 (21.8%) of patients. Acylcarnitine ratio C4/C18:2, apolipoprotein (apo) B, history of heart failure (HF), age > 65 years and presence of acute coronary syndrome were independent predictors of the primary outcome in diabetic patients with CAD (aHR = 1.89 [1.09, 3.29]; 1.02 [1.01, 1.04]; 1.28 [1.01, 1.41]; 1.04 [1.01, 1.05]; and 1.12 [1.05–1.21], respectively). Higher levels of ceramide ratio C24:1/C24:0, acylcarnitine ratio C4/C18:2, age > 65 and peripheral artery disease were independent predictors of higher CAD complexity (adjusted β = 7.36 [5.74, 20.47]; 3.02 [0.09 to 6.06]; 3.02 [0.09, 6.06], respectively), while higher levels of apoA1 were independent predictors of lower complexity (adjusted β= − 0.65 [− 1.31, − 0.02]). Conclusions In patients with comorbid DM and CAD, novel metabolomic biomarkers and metabolomics-based prediction models could be recruited to predict clinical outcomes and assess the complexity of CAD, thereby enabling the integration of personalized medicine into routine clinical practice. These associations should be interpreted taking into account the observational nature of this study, and thus, larger trials are needed to confirm its results and validate them in different and larger diabetic populations.
Collapse
Affiliation(s)
- Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece.
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Andreas S Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Eleftherios Panteris
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, 57001, Thermi, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, 57001, Thermi, Greece
| | - Nikolaos Stalikas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Georgios Sofidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Anastasios Kartas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Alexandra Bekiaridou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - George Giannakoulas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, 57001, Thermi, Greece
| | - George Theodoridis
- Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, 57001, Thermi, Greece.,Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Sianos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece.
| |
Collapse
|
33
|
Lipid metabolism and neutrophil function. Cell Immunol 2022; 377:104546. [DOI: 10.1016/j.cellimm.2022.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
|
34
|
Ramasamy R, Shekhtman A, Schmidt AM. The RAGE/DIAPH1 Signaling Axis & Implications for the Pathogenesis of Diabetic Complications. Int J Mol Sci 2022; 23:ijms23094579. [PMID: 35562970 PMCID: PMC9102165 DOI: 10.3390/ijms23094579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence links the RAGE (receptor for advanced glycation end products)/DIAPH1 (Diaphanous 1) signaling axis to the pathogenesis of diabetic complications. RAGE is a multi-ligand receptor and through these ligand-receptor interactions, extensive maladaptive effects are exerted on cell types and tissues targeted for dysfunction in hyperglycemia observed in both type 1 and type 2 diabetes. Recent evidence indicates that RAGE ligands, acting as damage-associated molecular patterns molecules, or DAMPs, through RAGE may impact interferon signaling pathways, specifically through upregulation of IRF7 (interferon regulatory factor 7), thereby heralding and evoking pro-inflammatory effects on vulnerable tissues. Although successful targeting of RAGE in the clinical milieu has, to date, not been met with success, recent approaches to target RAGE intracellular signaling may hold promise to fill this critical gap. This review focuses on recent examples of highlights and updates to the pathobiology of RAGE and DIAPH1 in diabetic complications.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY 12222, USA;
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Correspondence:
| |
Collapse
|
35
|
Effects of oral wound on the neutrophil lineage in murine bone-marrow: Modulation mechanism hindered by chlorhexidine. Int Immunopharmacol 2022; 105:108544. [DOI: 10.1016/j.intimp.2022.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/18/2022]
|
36
|
Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. Int J Mol Sci 2022; 23:ijms23042234. [PMID: 35216355 PMCID: PMC8879433 DOI: 10.3390/ijms23042234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.
Collapse
|
37
|
Adoptive transfer of metabolically reprogrammed macrophages for atherosclerosis treatment in diabetic ApoE−/- mice. Bioact Mater 2022; 16:82-94. [PMID: 35386323 PMCID: PMC8958426 DOI: 10.1016/j.bioactmat.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 01/02/2023] Open
Abstract
Atherosclerosis is characterized by inflammation in the arterial wall, which is known to be exacerbated by diabetes. Therapeutic repression of inflammation is a promising strategy for treating atherosclerosis. In this study, we showed that diabetes aggravated atherosclerosis in apolipoproteinE knockout (ApoE−/-) mice, in which increased expression of long-chain acyl-CoA synthetase 1 (Acsl1) in macrophages played an important role. Knockdown of Acsl1 in macrophages (MφshAcsl1) reprogrammed macrophages to an anti-inflammatory phenotype, especially under hyperglycemic conditions. Injection of MφshAcsl1 reprogrammed macrophages into streptozotocin (STZ)-induced diabetic ApoE−/- mice (ApoE−/-+ STZ) alleviated inflammation locally in the plaque, liver and spleen. Consistent with the reduction in inflammation, plaques became smaller and more stable after the adoptive transfer of reprogrammed macrophages. Taken together, our findings indicate that increased Acsl1 expression in macrophages play a key role in aggravated atherosclerosis of diabetic mice, possibly by promoting inflammation. Adoptive transfer of Acsl1 silenced macrophages may serve as a potential therapeutic strategy for atherosclerosis. Increased Acsl1 in macrophages is responsible for the exacerbated inflammation in diabetes MφshAcsl1 is characterized as anti-inflammatory phenotype Adoptive transfer of MφshAcsl1 alleviates atherosclerosis in diabetic ApoE−/- mice MφshAcsl1 inhibits both local and systemic inflammation in vivo
Collapse
|
38
|
Daeshiho-tang Attenuates Atherosclerosis by Regulating Cholesterol Metabolism and Inducing M2 Macrophage Polarization. Life (Basel) 2022; 12:life12020197. [PMID: 35207485 PMCID: PMC8879110 DOI: 10.3390/life12020197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Dyslipidemia, the commonest cause of cardiovascular disease, leads to lipid deposits on the arterial wall, thereby aggravating atherosclerosis. DSHT (Daeshiho-tang) has long been used as an anti-dyslipidemia agent in oriental medicine. However, the anti-atherosclerotic effects of DSHT have not been fully investigated. Therefore, this study was designed to evaluate whether DSHT could exert beneficial anti-atherosclerotic effects. We fed apolipoprotein E-deficient (ApoE-/-) mice on a high-fat diet and treated them with atorvastatin (AT) or DSHT, or the combination of DSHT and AT for 12 weeks. To determine the role of DSHT, atherosclerotic lesions in the aorta, aortic root, and aortic arch; lipids and apolipoprotein levels in serum; and macrophage polarization markers in aorta tissues were examined. We show here that the DSHT decreased the atherosclerotic plaque ratio in the aortic arch, aorta, and aortic root. DSHT also regulated lipid levels by decreasing the ApoB level and increasing the ApoA1 level. Moreover, DSHT effectively regulated cholesterol metabolism by increasing the levels of PPARγ, ABCA1 and ABCG1, and the LDL receptor genes. We further found that DSHT promoted polarization to the M2 phenotype by increasing the levels of M2 macrophage (ARG1, CD163, and PPARγ) markers. Our data suggested that DSHT enhances the anti-atherosclerotic effect by regulating cholesterol metabolism through the activation of the PPARγ signaling pathway and by promoting anti-inflammatory M2 macrophage polarization.
Collapse
|
39
|
Gibson CM, Kazmi SHA, Korjian S, Chi G, Phillips AT, Montazerin SM, Duffy D, Zheng B, Heise M, Liss C, Deckelbaum LI, Wright SD, Gille A. CSL112 (Apolipoprotein A-I [Human]) Strongly Enhances Plasma Apoa-I and Cholesterol Efflux Capacity in Post-Acute Myocardial Infarction Patients: A PK/PD Substudy of the AEGIS-I Trial. J Cardiovasc Pharmacol Ther 2022; 27:10742484221121507. [DOI: 10.1177/10742484221121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction: Cholesterol efflux capacity (CEC) is impaired following acute myocardial infarction (AMI). CSL112 is an intravenous preparation of human plasma-derived apoA-I formulated with phosphatidylcholine (PC). CSL112 is intended to improve CEC and thereby prevent early recurrent cardiovascular events following AMI. AEGIS-I (ApoA-I Event Reducing in Ischemic Syndromes I) was a multicenter, randomized, double-blind, placebo-controlled, dose-ranging phase 2b study, designed to evaluate the hepatic and renal safety of CSL112. Here, we report an analysis of a pharmacokinetic (PK) and pharmacodynamic (PD) substudy of AEGIS-I. Methods: AMI patients were stratified by renal function and randomized 3:3:2 to 4, weekly, 2-hour infusions of low- and high-dose (2 g and 6 g) CSL112, or placebo. PK/PD assessments included plasma concentrations of apoA-I and PC, and measures of total and ABCA1-dependent CEC, as well as lipids/lipoproteins including high density lipoprotein cholesterol (HDL-C), non-HDL-C, low density lipoprotein cholesterol (LDL-C), ApoB, and triglycerides. Inflammatory and cardio-metabolic biomarkers were also evaluated. Results: The substudy included 63 subjects from AEGIS-I. CSL112 infusions resulted in rapid, dose-dependent increases in baseline corrected apoA-I and PC, which peaked at the end of the infusion (Tmax ≈ 2 hours). Similarly, there was a dose-dependent elevation in both total CEC and ABCA1-mediated CEC. Mild renal impairment did not affect the PK or PD of CSL112. CSL112 administration was also associated with an increase in plasma levels of HDL-C but not non-HDL-C, LDL-C, apoB, or triglycerides. No dose-effects on inflammatory or cardio-metabolic biomarkers were observed. Conclusion: Among patients with AMI, impaired CEC was rapidly elevated by CSL112 infusions in a dose-dependent fashion, along with an increase in apoA-I plasma concentrations. Findings from the current sub-study of the AEGIS-I support a potential atheroprotective benefit of CSL112 for AMI patients.
Collapse
Affiliation(s)
- C. Michael Gibson
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Syed Hassan A. Kazmi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Serge Korjian
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerald Chi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adam T. Phillips
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sahar Memar Montazerin
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Bo Zheng
- CSL Behring, King of Prussia, PA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Cui H, Du Q. HDL and ASCVD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:109-118. [DOI: 10.1007/978-981-19-1592-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Zhang X, Nie Y, Gong Z, Zhu M, Qiu B, Wang Q. Plasma Apolipoproteins Predicting the Occurrence and Severity of Diabetic Retinopathy in Patients With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:915575. [PMID: 35937834 PMCID: PMC9353260 DOI: 10.3389/fendo.2022.915575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Apolipoproteins are amphipathic molecules and the major components of plasma lipoproteins. This study aims to investigate the effects of dysregulated apolipoprotein (apo) profiles and their ratios on type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR) further to test the hypothesis that altered serum level of apolipoproteins is strong biomarkers for DR. RESEARCH DESIGN AND METHODS This case-control study consists of 157 patients with T2DM including DM without DR, non-proliferative DR (NPDR), and proliferative DR (PDR). Fifty-eight age- and sex-matched healthy subjects were enrolled as normal controls. Blood biochemistry profile including serum levels of glucose, glycated hemoglobin (HbA1c), lipid profile [total cholesterol (TC), Triglycerides (TG), high and low-density lipoprotein (HDL-C and LDL-C)] was estimated. Apolipoproteins (apos, A-I, A-II, B, C-II, C-III, and E) was evaluated by protein chips (Luminex technology). Apolipoprotein ratios and arteriosclerosis-associated plasma indices were calculated. The Kruskal-Wallis test, independent sample t-test or Mann-Whitney U test, and multivariate regression analysis were performed to investigate the association of serum lipid biomarkers and the DR severity. RESULTS Serum level of apoA-I was negatively correlated with TC-(HDL-C)/HDL-C (p < 0.001), fasting glucose (p < 0.001), HbA1c (p < 0.001), and (p<0.001), while apoE, apoC-II/apoC-III, apoA-II/apoA-I were positively correlated with above traditional biomarkers (p < 0.001). Single variable logistic analysis results showed that body mass index (BMI) (p = 0.023), DM duration (p < 0.001), apoE (p < 0.001), apoC-II/apo C-III (p < 0.001), apoE/apoC-II (p < 0.001), atherogenic index (p = 0.013), fasting glucose (p < 0.001), HbA1c (p < 0.001), LPA (p = 0.001), and LDL-C/HDL-C (p = 0.031) were risk factors for the occurrence and severity of DR. Multivariate logistic regression mode showed that apoC-II/apoC-III and apoB/non-HDL-C (p < 0.001) as well as apoE/apoC-II (p = 0.001) were the independent risk factors for the occurrence and severity of DR-apopA-I and apoA-II are protective factors for DR-after controlling for the duration of DM, HbA1c, fasting glucose, and LPA. CONCLUSIONS apoE, apoC-II/apoC-III, apoE/apoC-II, and apoB/non-HDL-C could be used as novel biomarkers for occurrence and severity of DR, whereas apoA-I and apoA-II resulted as protective factors for DR.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing, China
- *Correspondence: Xinyuan Zhang,
| | - Yao Nie
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing, China
| | - Zhizhong Gong
- Division of Medical Affairs, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Meidong Zhu
- New South Wales Tissue Bank, New South Wales Organ and Tissue Donation Service, Sydney, NSW, Australia
- Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, NSW, Australia
| | - Bingjie Qiu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing, China
| | - Qiyun Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing, China
| |
Collapse
|
42
|
Mc Auley MT. Modeling cholesterol metabolism and atherosclerosis. WIREs Mech Dis 2021; 14:e1546. [PMID: 34931487 DOI: 10.1002/wsbm.1546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality among Western populations. Many risk factors have been identified for ASCVD; however, elevated low-density lipoprotein cholesterol (LDL-C) remains the gold standard. Cholesterol metabolism at the cellular and whole-body level is maintained by an array of interacting components. These regulatory mechanisms have complex behavior. Likewise, the mechanisms which underpin atherogenesis are nontrivial and multifaceted. To help overcome the challenge of investigating these processes mathematical modeling, which is a core constituent of the systems biology paradigm has played a pivotal role in deciphering their dynamics. In so doing models have revealed new insights about the key drivers of ASCVD. The aim of this review is fourfold; to provide an overview of cholesterol metabolism and atherosclerosis, to briefly introduce mathematical approaches used in this field, to critically discuss models of cholesterol metabolism and atherosclerosis, and to highlight areas where mathematical modeling could help to investigate in the future. This article is categorized under: Cardiovascular Diseases > Computational Models.
Collapse
|
43
|
CRISPR/dCas9 Transcriptional Activation of Endogenous Apolipoprotein AI and Paraoxonase 1 in Enterocytes Alleviates Endothelial Cell Dysfunction. Biomolecules 2021; 11:biom11121769. [PMID: 34944413 PMCID: PMC8698862 DOI: 10.3390/biom11121769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases with high prevalence worldwide. A promising therapeutic strategy to reverse atherosclerotic process is to improve the athero-protective potential of high-density lipoproteins (HDL). Since the small intestine is a source of HDL, we aimed to activate transcription of the endogenous HDL major proteins, apolipoprotein AI (ApoAI) and paraoxonase 1 (PON1), in enterocytes, and to evaluate their potential to correct the pro-inflammatory status of endothelial cells (EC). Caco-2 enterocytes were transfected with CRISPR activation plasmids targeting ApoAI or PON1, and their gene and protein expression were measured in cells and conditioned medium (CM). ATP binding cassette A1 and G8 transporters (ABCA1, ABCG8), scavenger receptor BI (SR-BI), and transcription regulators peroxisome proliferator-activated receptor γ (PPARγ), liver X receptors (LXRs), and sirtuin-1 (SIRT1) were assessed. Anti-inflammatory effects of CM from transfected enterocytes were estimated through its ability to inhibit tumor necrosis factor α (TNFα) activation of EC. Transcriptional activation of ApoAI or PON1 in enterocytes induces: (i) increase of their gene and protein expression, and secretion in CM; (ii) stimulation of ABCA1/G8 and SR-BI; (iii) upregulation of PPARγ, LXRs, and SIRT1. CM from transfected enterocytes attenuated the TNFα-induced inflammatory and oxidative stress in EC, by decreasing TNF receptor 1, monocyte chemoattractant protein-1, and p22phox. In conclusion, transcriptional activation of endogenous ApoAI or PON1 in enterocytes by CRISPR/dCas9 system is a realistic approach to stimulate biogenesis and function of major HDL proteins which can regulate cholesterol efflux transporters and reduce the inflammatory stress in activated EC.
Collapse
|
44
|
Murphy AJ, Febbraio MA. Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nat Rev Immunol 2021; 21:669-679. [PMID: 34285393 DOI: 10.1038/s41577-021-00580-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/02/2023]
Abstract
Cardiometabolic disorders were originally thought to be driven primarily by changes in lipid metabolism that cause the accumulation of lipids in organs, thereby impairing their function. Thus, in the setting of cardiovascular disease, statins - a class of lipid-lowering drugs - have remained the frontline therapy. In the past 20 years, seminal discoveries have revealed a central role of both the innate and adaptive immune system in driving cardiometabolic disorders. As such, it is now appreciated that immune-based interventions may have an important role in reducing death and disability from cardiometabolic disorders. However, to date, there have been a limited number of clinical trials exploring this interventional strategy. Nonetheless, elegant preclinical research suggests that immune-targeted therapies can have a major impact in treating cardiometabolic disease. Here, we discuss the history and recent advancements in the use of immunotherapies to treat cardiometabolic disorders.
Collapse
Affiliation(s)
- Andrew J Murphy
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
45
|
Checkouri E, Blanchard V, Meilhac O. Macrophages in Atherosclerosis, First or Second Row Players? Biomedicines 2021; 9:biomedicines9091214. [PMID: 34572399 PMCID: PMC8465019 DOI: 10.3390/biomedicines9091214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages represent a cell type that has been widely described in the context of atherosclerosis since the earliest studies in the 17th century. Their role has long been considered to be preponderant in the onset and aggravation of atherosclerosis, in particular by participating in the establishment of a chronic inflammatory state by the release of pro-inflammatory cytokines and by uncontrolled engorgement of lipids resulting in the formation of foam cells and later of the necrotic core. However, recent evidence from mouse models using an elegant technique of tracing vascular smooth muscle cells (VSMCs) during plaque development revealed that resident VSMCs display impressive plastic properties in response to an arterial injury, allowing them to switch into different cell types within the plaque, including mesenchymal-like cells, macrophage-like cells and osteochondrogenic-like cells. In this review, we oppose the arguments in favor or against the influence of macrophages versus VSMCs in all stages of atherosclerosis including pre-atherosclerosis, formation of lipid-rich foam cells, development of the necrotic core and the fibrous cap as well as calcification and rupture of the plaque. We also analyze the relevance of animal models for the investigation of the pathophysiological mechanisms of atherosclerosis in humans, and discuss potential therapeutic strategies targeting either VSMCs or macrophage to prevent the development of cardiovascular events. Overall, although major findings have been made from animal models, efforts are still needed to better understand and therefore prevent the development of atherosclerotic plaques in humans.
Collapse
Affiliation(s)
- Eloïse Checkouri
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Habemus Papam, Food Industry, 97470 Saint-Benoit, France
| | - Valentin Blanchard
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Departments of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Olivier Meilhac
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- CHU de La Réunion, INSERM, CIC1410, 97500 Saint-Pierre, France
- Correspondence: ; Tel.: +33-262-93-8811
| |
Collapse
|
46
|
Eckel RH, Bornfeldt KE, Goldberg IJ. Cardiovascular disease in diabetes, beyond glucose. Cell Metab 2021; 33:1519-1545. [PMID: 34289375 PMCID: PMC8411849 DOI: 10.1016/j.cmet.2021.07.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Despite the decades-old knowledge that diabetes mellitus is a major risk factor for cardiovascular disease, the reasons for this association are only partially understood. While this association is true for both type 1 and type 2 diabetes, different pathophysiological processes may be responsible. Lipids and other risk factors are indeed important, whereas the role of glucose is less clear. This lack of clarity stems from clinical trials that do not unambiguously show that intensive glycemic control reduces cardiovascular events. Animal models have provided mechanisms that link diabetes to increased atherosclerosis, and evidence consistent with the importance of factors beyond hyperglycemia has emerged. We review clinical, pathological, and animal studies exploring the pathogenesis of atherosclerosis in humans living with diabetes and in mouse models of diabetes. An increased effort to identify risk factors beyond glucose is now needed to prevent the increased cardiovascular disease risk associated with diabetes.
Collapse
Affiliation(s)
- Robert H Eckel
- Divisions of Endocrinology, Metabolism and Diabetes, and Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | - Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, and Department of Laboratory Medicine and Pathology, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
47
|
Ran D, Hong W, Yan W, Mengdie W. Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113958. [PMID: 33639206 DOI: 10.1016/j.jep.2021.113958] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is ubiquitous in nearly 40 species of plants, among which Gardenia jasminoides J. Ellis has the highest content, and has been used ethnopharmacologically to treat chronic inflammatory diseases. As a traditional Chinese medicine, Gardenia jasminoides J. Ellis has a long history of usage in detumescence and sedation, liver protection and cholestasis, hypotension and hemostasis. It is commonly used in the treatment of diabetes, hypertension, jaundice hepatitis, sprain and contusion. As a type of iridoid glycosides extracted from Gardenia jasminoides J. Ellis, GE has many pharmacological effects, such as anti-inflammatory, anti-angiogenesic, anti-oxidative, etc. AIM OF THE REVIEW: In this article, we reviewed the sources, traditional usage, pharmacokinetics, toxicity and therapeutic effect of GE on chronic inflammatory diseases, and discussed its potential regulatory mechanisms and clinical application. RESULTS GE is a common iridoid glycoside in medicinal plants, which has strong activity in the treatment of chronic inflammatory diseases. A large number of in vivo and in vitro experiments confirmed that GE has certain therapeutic value for a variety of chronic inflammation disease. Its mechanism of function is mainly based on its anti-inflammatory, anti-oxidant, neuroprotective properties, as well as regulation of apoptotsis. GE plays a role in the treatment of chronic inflammatory diseases by regulating cell proliferation and apoptosis, realizing the dynamic balance of pro/anti-inflammatory factors, improving the state of oxidative stress, and restoring abnormally expressed inflammation-related pathways. CONCLUSION According to its extensive pharmacological effects, GE is a promising drug for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Deng Ran
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wu Hong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Wang Yan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wang Mengdie
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
48
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
49
|
Lin FY, Lin YW, Shih CM, Lin SJ, Tung YT, Li CY, Chen YH, Lin CY, Tsai YT, Huang CY. A Novel Relative High-Density Lipoprotein Index to Predict the Structural Changes in High-Density Lipoprotein and Its Ability to Inhibit Endothelial-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22105210. [PMID: 34069162 PMCID: PMC8157136 DOI: 10.3390/ijms22105210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic elevation of high-density lipoprotein (HDL) is thought to minimize atherogenesis in subjects with dyslipidemia. However, this is not the case in clinical practice. The function of HDL is not determined by its concentration in the plasma but by its specific structural components. We previously identified an index for the prediction of HDL functionality, relative HDL (rHDL) index, and preliminarily explored that dysfunctional HDL (rHDL index value > 2) failed to rescue the damage to endothelial progenitor cells (EPCs). To confirm the effectiveness of the rHDL index for predicting HDL functions, here we evaluated the effects of HDL from patients with different rHDL index values on the endothelial–mesenchymal transition (EndoMT) of EPCs. We also analyzed the lipid species in HDL with different rHDL index values and investigated the structural differences that affect HDL functions. The results indicate that HDL from healthy adults and subjects with an rHDL index value < 2 protected transforming growth factor (TGF)-β1-stimulated EndoMT by modulating Smad2/3 and Snail activation. HDL from subjects with an rHDL index value > 2 failed to restore the functionality of TGF-β1-treated EPCs. Lipidomic analysis demonstrated that HDL with different rHDL index values may differ in the composition of triglycerides, phosphatidylcholine, and phosphatidylinositol. In conclusion, we confirmed the applicability of the rHDL index value to predict HDL function and found structural differences that may affect the function of HDL, which warrants further in-depth studies.
Collapse
Affiliation(s)
- Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Shing-Jong Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 238, Taiwan;
| | - Chi-Yuan Li
- Department of Anesthesiology and Graduate Institute of Clinical Medical Science, China Medical University and Hospital, Taichung 406, Taiwan;
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 406, Taiwan;
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Cheng-Yen Lin
- Healthcare Information and Management Department, Ming Chuan University, Taoyuan 333, Taiwan;
| | - Yi-Ting Tsai
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan
- Correspondence: (Y.-T.T.); (C.-Y.H.)
| | - Chun-Yao Huang
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (Y.-T.T.); (C.-Y.H.)
| |
Collapse
|
50
|
Song L, Zhang J, Lai R, Li Q, Ju J, Xu H. Chinese Herbal Medicines and Active Metabolites: Potential Antioxidant Treatments for Atherosclerosis. Front Pharmacol 2021; 12:675999. [PMID: 34054550 PMCID: PMC8155674 DOI: 10.3389/fphar.2021.675999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a complex chronic disease that occurs in the arterial wall. Oxidative stress plays a crucial role in the occurrence and progression of atherosclerotic plaques. The dominance of oxidative stress over antioxidative capacity generates excess reactive oxygen species, leading to dysfunctions of the endothelium and accelerating atherosclerotic plaque progression. Studies showed that Chinese herbal medicines and traditional Chinese medicine (TCM) might regulate oxidative stress; they have already been used to treat diseases related to atherosclerosis, including stroke and myocardial infarction. This review will summarize the mechanisms of oxidative stress in atherosclerosis and discuss studies of Chinese herbal medicines and TCM preparations treating atherosclerosis, aiming to increase understanding of TCM and stimulate research for new drugs to treat diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyi Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|