1
|
Inbar O, Inbar O, Dlin R, Casaburi R. Transitioning from stress electrocardiogram to cardiopulmonary exercise testing: a paradigm shift toward comprehensive medical evaluation of exercise function. Eur J Appl Physiol 2025:10.1007/s00421-025-05740-2. [PMID: 40116893 DOI: 10.1007/s00421-025-05740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/15/2025] [Indexed: 03/23/2025]
Abstract
Cardiopulmonary exercise testing (CPET) has emerged as a powerful diagnostic tool, providing comprehensive physiological insights into the integrated function of cardiovascular, respiratory, and metabolic systems. Exploiting physiological interactions, CPET allows in-depth diagnostic insights. CPET performance entrains several complexities. Interpreting CPET data can be challenging, requiring significant physiological expertise. The advent of artificial intelligence (AI) has introduced a transformative approach to CPET interpretation, enhancing accuracy, efficiency, and clinical decision-making. This review article explores the current state of AI applications in CPET, highlighting AI's potential to replace the traditional stress electrocardiogram (ECG) test as the preferred diagnostic tool in preventive medicine and medical screening. The article discusses the underlying principles of AI, its integration into CPET interpretation, and the associated benefits, including improved diagnostic accuracy, reduced interobserver variability, and expedited decision-making. Additionally, it addresses the challenges and considerations surrounding the implementation of AI in CPET such as data quality, model interpretability, and ethical concerns. The review concludes by emphasizing the significant promise of AI-assisted CPET interpretation in revolutionizing preventive medicine and medical screening settings and enhancing patient care.
Collapse
Affiliation(s)
- Omri Inbar
- Clinical and Exercise Physiology, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Or Inbar
- Medical Engineering, Medibyt LTD, Yakum, Israel
| | - Ron Dlin
- Exercise Medicine, Health Audit, Links Medical Clinic (Retired), Edmonton, Canada
| | - Richard Casaburi
- Respiratory Research Center, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
2
|
Menezes TCF, Lee MH, Fonseca Balladares DC, Nolan K, Sharma S, Kumar R, Ferreira EVM, Graham BB, Oliveira RKF. Skeletal Muscle Pathology in Pulmonary Arterial Hypertension and Its Contribution to Exercise Intolerance. J Am Heart Assoc 2025; 14:e036952. [PMID: 39921526 DOI: 10.1161/jaha.124.036952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Pulmonary arterial hypertension is a disease of the pulmonary vasculature, resulting in elevated pressure in the pulmonary arteries and disrupting the physiological coordination between the right heart and the pulmonary circulation. Exercise intolerance is one of the primary symptons of pulmonary arterial hypertension, significantly impacting the quality of life. The pathophysiology of exercise intolerance in pulmonary arterial hypertension is complex and likely multifactorial. Although the significance of right ventricle impairment and perfusion/ventilation mismatch is widely acknowledged, recent studies suggest pathophysiology of the skeletal muscle contributes to reduced exercise capacity in pulmonary arterial hypertension, a concept explored herein.
Collapse
Affiliation(s)
- Thaís C F Menezes
- Division of Respiratory Diseases, Department of Medicine, Hospital São Paulo Federal University of São Paulo (UNIFESP) São Paulo Brazil
| | - Michael H Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine University of California, San Francisco San Francisco CA USA
| | - Dara C Fonseca Balladares
- Division of Pulmonary and Critical Care Medicine, Department of Medicine University of California, San Francisco San Francisco CA USA
| | - Kevin Nolan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine University of California, San Francisco San Francisco CA USA
| | - Sankalp Sharma
- Department of Orthopaedic Surgery University of California San Francisco CA USA
- San Francisco Veteran Affairs Health Care System San Francisco CA USA
| | - Rahul Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine University of California, San Francisco San Francisco CA USA
| | - Eloara V M Ferreira
- Division of Respiratory Diseases, Department of Medicine, Hospital São Paulo Federal University of São Paulo (UNIFESP) São Paulo Brazil
| | - Brian B Graham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine University of California, San Francisco San Francisco CA USA
| | - Rudolf K F Oliveira
- Division of Respiratory Diseases, Department of Medicine, Hospital São Paulo Federal University of São Paulo (UNIFESP) São Paulo Brazil
| |
Collapse
|
3
|
Schulze KM, Horn AG, Weber RE, Hageman KS, Scheuermann BC, Ade CJ, Behnke BJ, Poole DC, Musch TI. Bulk and regional diaphragm blood flow during chemical hyperpnea in pulmonary hypertensive rats. Respir Physiol Neurobiol 2025; 335:104414. [PMID: 39971146 DOI: 10.1016/j.resp.2025.104414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Pulmonary hypertension (PH) is a disease characterized by increased pulmonary arterial pressures, impaired gas exchange, dyspnea, and diaphragmatic dysfunction. Specifically, in PH, the diaphragm displays impaired contractility, vascular dysfunction, and blood flow redistribution toward less mechanically advantageous regions such as the ventral costal and crural diaphragm at rest and during submaximal exercise. While diaphragm blood flow is not a limitation to maximal exercise in health, whether it limits diaphragm function in PH is unknown. We hypothesized that, during chemically induced hyperpnea: 1) diaphragm blood flow will be lower in rats with PH compared with healthy controls due to vasodilatory impairments in the diaphragm vasculature, and 2) in PH, blood flow will be redistributed toward less mechanically advantageous regions of the diaphragm. Female Sprague-Dawley rats were randomized into healthy (n = 12) or monocrotaline-induced PH (n = 12) groups. Fluorescent microspheres were used to determine bulk and regional diaphragm blood flow at rest and during hypoxic-hypercapnic gas inhalation (10 % O2-8 % CO2). During chemically induced hyperpnea, diaphragm blood flow was higher in PH compared with healthy controls (483 ± 102 vs. 298 ± 119 ml/min/100 g; P < 0.001), and the ventral costal and crural regions of the diaphragm supported greater perfusion in PH. These results are consistent with previous findings at rest and during submaximal exercise in PH, which may help explain diaphragmatic weakness and dyspnea across a range of ventilatory demands in PH.
Collapse
Affiliation(s)
- Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States.
| | - Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | | | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
4
|
Tarras ES, Singh I, Kreiger J, Joseph P. Exercise Pulmonary Hypertension and Beyond: Insights in Exercise Pathophysiology in Pulmonary Arterial Hypertension (PAH) from Invasive Cardiopulmonary Exercise Testing. J Clin Med 2025; 14:804. [PMID: 39941482 PMCID: PMC11818252 DOI: 10.3390/jcm14030804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive disease of the pulmonary vasculature that is associated with pulmonary vascular remodeling and right heart failure. While there have been recent advances both in understanding pathobiology and in diagnosis and therapeutic options, PAH remains a disease with significant delays in diagnosis and high morbidity and mortality. Information from invasive cardiopulmonary exercise testing (iCPET) presents an important opportunity to evaluate the dynamic interactions within and between the right heart circulatory system and the skeletal muscle during different loading conditions to enhance early diagnosis, phenotype disease subtypes, and personalize treatment in PAH given the shortcomings of contemporary diagnostic and therapeutic approaches. The purpose of this review is to present the current applications of iCPET in PAH and to discuss future applications of the testing methodology.
Collapse
Affiliation(s)
- Elizabeth S. Tarras
- Division of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (I.S.)
| | | | | | | |
Collapse
|
5
|
Kritikou S, Zafeiridis A, Pitsiou G, Gkalgkouranas I, Kastritseas L, Boutou A, Dipla K. Brain Oxygenation During Exercise in Different Types of Chronic Lung Disease: A Narrative Review. Sports (Basel) 2025; 13:9. [PMID: 39852605 PMCID: PMC11769342 DOI: 10.3390/sports13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic lung diseases such as Chronic Obstructive Pulmonary Disease, Interstitial Lung Disease (ILD), and Pulmonary Hypertension (PH) are characterized by progressive symptoms such as dyspnea, fatigue, and muscle weakness, often leading to physical inactivity, and reduced quality of life. Many patients also experience significantly impaired exercise tolerance. While pulmonary, cardiovascular, respiratory, and peripheral muscle dysfunction contribute to exercise limitations, recent evidence suggests that hypoxia and impairments in cerebral oxygenation may also play a role in exercise intolerance. This narrative review (i) summarizes studies investigating cerebral oxygenation responses during exercise in patients with different types of chronic lung diseases and (ii) discusses possible mechanisms behind the blunted cerebral oxygenation during exercise reported in many of these conditions; however, the extent of cerebral desaturation and the intensity at which it occurs can vary. These differences depend on the specific pathophysiology of the lung disease and the presence of comorbidities. Notably, reduced cerebral oxygenation during exercise in fibrotic-ILD has been linked with the development of dyspnea and early exercise termination. Understanding the effects of chronic lung disease on cerebral oxygenation during exercise may improve our understanding of exercise intolerance mechanisms and help identify therapeutic strategies to enhance brain health and exercise capacity in these patients.
Collapse
Affiliation(s)
- Stella Kritikou
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
| | - Georgia Pitsiou
- Department of Respiratory Failure, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Ioannis Gkalgkouranas
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
| | - Leonidas Kastritseas
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
| | - Afroditi Boutou
- Department of Respiratory Medicine, Ippokrateio Hospital of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
- Department of Respiratory Failure, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| |
Collapse
|
6
|
Schulze KM, Weber RE, Horn AG, Hageman KS, Kenney NJ, Behnke BJ, Poole DC, Musch TI. Skeletal and respiratory muscle blood flow redistribution during submaximal exercise in pulmonary hypertensive rats. J Physiol 2025; 603:337-351. [PMID: 39625445 PMCID: PMC11800354 DOI: 10.1113/jp287549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Pulmonary hypertension (PH) is a chronic, progressive disease characterized by pulmonary vascular remodelling, dyspnoea and exercise intolerance. Key facets of dyspnoea and exercise intolerance include skeletal and respiratory muscle contractile and metabolic disturbances; however, muscle perfusion during exercise has not been investigated. We hypothesized that diaphragm blood flow (Q ̇ $\dot{Q}$ ) would be increased and locomotory muscleQ ̇ $\dot{Q}$ would be decreased during submaximal treadmill running in PH rats compared to healthy controls. Female Sprague-Dawley rats were injected (i.p.) with monocrotaline to induce PH (n = 16), or a vehicle control (n = 15). Disease progression was monitored via echocardiography. When moderate disease severity was confirmed, maximal oxygen uptake (V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{{{2}^{{\mathrm{max}}}}}}}}$ ) tests were performed. Rats were given >24 h to recover, and then fluorescent microspheres were infused during treadmill running (20 m/min, 10% grade; ∼40-50% maximal speed attained during theV ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{{{2}^{{\mathrm{max}}}}}}}}$ test) to determine tissueQ ̇ $\dot{Q}$ . In PH rats compared with healthy controls,V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{{{2}^{{\mathrm{max}}}}}}}}$ was lower (84 (7) vs. 67 (11) ml/min/kg; P < 0.001), exercising diaphragmQ ̇ $\dot{Q}$ was 35% higher and soleusQ ̇ $\dot{Q}$ was 28% lower. DiaphragmQ ̇ $\dot{Q}$ was negatively correlated with soleusQ ̇ $\dot{Q}$ andV ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{{{2}^{{\mathrm{max}}}}}}}}$ in PH rats. Furthermore, there was regionalQ ̇ $\dot{Q}$ redistribution in the diaphragm in PH compared to healthy rats, which may represent or underlie diaphragmatic weakness in PH. These findings suggest the presence of a pathological respiratory muscle blood flow steal phenomenon in PH and that this may contribute to the exercise intolerance reported in patients. KEY POINTS: Pulmonary hypertension (PH) impairs exercise tolerance, which is associated with skeletal and respiratory muscle dysfunction. Increased work of breathing in PH may augment diaphragm blood flow and lower locomotory muscle blood flow during exercise, hindering exercise tolerance. Our findings demonstrate that respiratory muscle blood flow is increased while the locomotory muscle is decreased in PH compared to healthy rats during exercise, suggesting that blood flow is preferentially redistributed to sustain ventilatory demand. Furthermore, blood flow is regionally redistributed within the diaphragm in PH, which may underlie diaphragm dysfunction. Greater respiratory muscle work at a given workload in PH commands higher respiratory muscle blood flow, impairing locomotory muscle oxygen delivery and compromising exercise tolerance, which may be improved by therapeutics which target the diaphragm vasculature.
Collapse
Affiliation(s)
- Kiana M. Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Ramona E. Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Andrew G. Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - K. Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Nathan J. Kenney
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Bradley J. Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - David C. Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Timothy I. Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
7
|
Dharmavaram N, Esmaeeli A, Jacobson K, Brailovsky Y, Raza F. Cardiopulmonary Exercise Testing, Rehabilitation, and Exercise Training in Postpulmonary Embolism. Heart Fail Clin 2025; 21:119-135. [PMID: 39550075 DOI: 10.1016/j.hfc.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Long-term exercise intolerance and functional limitations are common after an episode of acute pulmonary embolism (PE), despite 3 to 6 months of anticoagulation. These persistent symptoms are reported in more than half of the patients with acute PE and are referred as "post-PE syndrome." Although these functional limitations can occur from persistent pulmonary vascular occlusion or pulmonary vascular remodeling, significant deconditioning can be a major contributing factor. Herein, the authors review the role of exercise testing to elucidate the mechanisms of exercise limitations to guide next steps in management and exercise training for musculoskeletal deconditioning.
Collapse
Affiliation(s)
- Naga Dharmavaram
- Division of Cardiology, Department of Medicine, University of Wisconsin-Madison, Hospitals and Clinics, 600 Highland Avenue CSC-E5/582B, Madison, WI 53792, USA
| | - Amir Esmaeeli
- Division of Cardiology, Department of Medicine, University of Wisconsin-Madison, Hospitals and Clinics, 600 Highland Avenue CSC-E5/582B, Madison, WI 53792, USA
| | - Kurt Jacobson
- Division of Cardiology, Department of Medicine, University of Wisconsin-Madison, Hospitals and Clinics, 600 Highland Avenue CSC-E5/582B, Madison, WI 53792, USA
| | - Yevgeniy Brailovsky
- Division of Cardiology, Department of Medicine, Jefferson Heart Institute-Sidney Kimmel School of Medicine, Thomas Jefferson University, 111 South 11th Street, Philadelphia, PA 19107, USA
| | - Farhan Raza
- Division of Cardiology, Department of Medicine, University of Wisconsin-Madison, Hospitals and Clinics, 600 Highland Avenue CSC-E5/582B, Madison, WI 53792, USA.
| |
Collapse
|
8
|
Wiedemann J, Paruchuru SK, den Boef LE, Brouwer U, Silljé HHW, Schouten EM, Dickinson MG, van Goethem MJ, Coppes RP, van Luijk P. Sparing of the Heart Facilitates Recovery From Cardiopulmonary Side Effects After Thoracic Irradiation. Int J Radiat Oncol Biol Phys 2025; 121:191-201. [PMID: 39151832 DOI: 10.1016/j.ijrobp.2024.07.2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE When irradiating thoracic tumors, dose to the heart or lung has been associated with survival. We previously showed in a rat model that in addition to known side effects such as pericarditis, pneumonitis and fibrosis, heart and/or lung irradiation also impaired diastolic function and increased pulmonary artery pressure. Simultaneous irradiation of both organs strongly intensified these effects. However, the long-term consequences of these interactions are not yet known. Therefore, here, we investigated the long-term effects of combined heart and lung irradiation. METHODS AND MATERIALS Different regions of the rat thorax containing the heart and/or 50% of the lungs were irradiated with protons. Respiratory rate (RR) was measured biweekly as an overall parameter for cardiopulmonary function. Echocardiography of the heart was performed at 8, 26, and 42 weeks after irradiation. Tissue remodeling and vascular changes were assessed using Masson trichrome and Verhoeff-stained lung and left ventricle tissue collected at 8 and 42 weeks after irradiation. RESULTS During the entire experimental period RR was consistently increased after combined heart/lung irradiation. This coincided with persistent effects on lung vasculature and reduced right-ventricle (RV) contraction. In contrast, recovery of RR, pulmonary remodeling and RV contraction was observed after sparing of the heart. These corresponding temporal patterns suggest that the reduction of RV function is related to vascular remodeling in the lung. CONCLUSIONS Combined irradiation of lung and heart leads to an intensified, persistent reduction of cardiopulmonary function. Recovery of the pulmonary vasculature and RV function requires heart sparing.
Collapse
Affiliation(s)
- Julia Wiedemann
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sai K Paruchuru
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lisette E den Boef
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uilke Brouwer
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth M Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael G Dickinson
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marc-Jan van Goethem
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert P Coppes
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter van Luijk
- Departments of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Giardino F, Douschan P, Paolillo S, Basile C, Cademartiri F, Musella F, Cittadini A, Marra AM. The Non-invasive Assessment of the Pulmonary Circulation-Right Ventricular Functional Unit: Diagnostic and Prognostic Implications. Heart Fail Clin 2025; 21:63-78. [PMID: 39550081 DOI: 10.1016/j.hfc.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
The pulmonary circulation and the right ventricle play a pivotal role in the global hemodynamics of human beings, so much so that their close interaction is encapsulated in the concept of a "morpho-functional unit". In this review we aim to pinpoint the strengths and weaknesses of various noninvasive established techniques. The goal is to detect early morphologic and/or functional changes in the pulmonary circulation and right ventricular unit, which is crucial for tailoring treatments and prognostic assessments. The scope of this review includes resting and stress echocardiography, cardiopulmonary exercise testing, computed tomography, and cardiac magnetic resonance in characterizing the pulmonary circulation-right ventricular unit both morphologically and functionally.
Collapse
Affiliation(s)
- Federica Giardino
- Cardiovascular Pathophysiology and Therapeutics (CardioPath) Program, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; Division of Internal Medicine and Metabolism and Rehabilitation, Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Bld.18, 1st Floor, Naples 80131, Italy
| | - Philipp Douschan
- Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, Graz A-8036, Austria; Division of Pulmonology and Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Graz, Austria; Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, Building. 2, Naples 80131, Italy
| | - Christian Basile
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, Building. 2, Naples 80131, Italy; Division of Cardiology, Department of Medicine, Karolinska Institutet, K2 Medicin, Solna, K2 Kardio Lund L Savarese G, Solnavägen 1, Solna, Stockholm 171 77, Sweden
| | - Filippo Cademartiri
- Department of Imaging, Fondazione Monasterio/CNR, Via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - Francesca Musella
- Division of Cardiology, Department of Medicine, Karolinska Institutet, K2 Medicin, Solna, K2 Kardio Lund L Savarese G, Solnavägen 1, Solna, Stockholm 171 77, Sweden; Cardiology Department, Santa Maria delle Grazie Hospital, Via Domitiana, Pozzuoli, Naples 80078, Italy
| | - Antonio Cittadini
- Division of Internal Medicine and Metabolism and Rehabilitation, Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Bld.18, 1st Floor, Naples 80131, Italy; Department of Internal Medicine and Clinical Complexity, University of Naples Federico II, Via S. Pansini 5, Building.18, 1st Floor, Naples 80131, Italy
| | - Alberto Maria Marra
- Division of Internal Medicine and Metabolism and Rehabilitation, Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Bld.18, 1st Floor, Naples 80131, Italy.
| |
Collapse
|
10
|
Dmytriiev K, Stickland MK, Weatherald J. Cardiopulmonary Exercise Testing in Pulmonary Hypertension. Heart Fail Clin 2025; 21:51-61. [PMID: 39550080 DOI: 10.1016/j.hfc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease that has a high impact on patients' quality of life, morbidity and mortality. PAH is characterized by extensive pulmonary vascular remodeling that results in an increase in pulmonary vascular resistance and right ventricular afterload, and can lead to right heart failure. Patients with PAH exhibit inefficient ventilation, high dead space ventilation, dynamic hyperinflation, and ventricular-arterial uncoupling, which can contribute to high dyspnea and low exercise tolerance. Cardiopulmonary exercise testing can help to diagnose PAH, define prognosis and treatment response in PAH, as well as discriminate between different pulmonary vascular diseases.
Collapse
Affiliation(s)
- Kostiantyn Dmytriiev
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-110 Clinical Sciences Building, 11302 83 Avenue Northwest, Edmonton, Alberta T6G 2G3, Canada
| | - Michael K Stickland
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-110 Clinical Sciences Building, 11302 83 Avenue Northwest, Edmonton, Alberta T6G 2G3, Canada; G.F. MacDonald Centre for Lung Health, Covenant Health, 11111 Jasper Avenue, Edmonton, AB T5K 0L4, Canada
| | - Jason Weatherald
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-110 Clinical Sciences Building, 11302 83 Avenue Northwest, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
11
|
Oliveros E, Mauri M, Pietrowicz R, Sadek A, Lakhter V, Bashir R, Auger WR, Vaidya A, Forfia PR. Invasive Cardiopulmonary Exercise Testing in Chronic Thromboembolic Pulmonary Disease; Obesity and the V E/VCO 2 Relationship. J Clin Med 2024; 13:7702. [PMID: 39768625 PMCID: PMC11677292 DOI: 10.3390/jcm13247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Invasive cardiopulmonary exercise testing (iCPET) provides valuable insight into dyspnea in patients with chronic thromboembolic pulmonary disease, in part through an increased relationship of minute ventilation to CO2 production (VE/VCO2). Obesity lowers the VE/VCO2 in patients without cardiopulmonary disease; however, whether this holds true in obese subjects with chronic thromboembolic pulmonary hypertension (CTEPH) and chronic thromboembolic pulmonary disease (CTEPD) is unknown. Objective: Report on the iCPET findings of patients with CTEPH and CTEPD and investigate the relationship between obesity and gas exchange parameters, especially VE/VCO2 in these patients. Methods: Retrospective analysis of CTEPH and CTEPD patients undergoing iCPET. Results: We studied 60 patients; 34 (56.7%) had CTEPH and 26 (43.3%) had CTEPD. The mean age was 61.2 ± 14 years and the mean BMI was 31.8 ± 8.3 mg/kg2. A higher VE/VCO2 (41.9 ± 10.2 vs. 36.8 ± 8.9; p = 0.045) was observed in CTEPH vs. CTEPD. There was an inverse relationship between the VE/VCO2 slope and BMI. For an increase of 1 point in BMI, the VE/VCO2 slope fell by 0.6 in CTEPD and 0.35 in CTEPH (p < 0.001). The mean VE/VCO2 slope in CTEPH and CTEPD groups was 48.6 ± 10.4 in BMI < 25 and 31.3 ± 6.5 in BMI > 35 (p < 0.001). The lower VE/VCO2 slope in obesity relates to an increased VCO2/work rate relationship; there was no difference in the VE/work relationship. Conclusions: The VE/VCO2 slope is markedly reduced by obesity, independent of the level of pulmonary vascular obstruction in CTEPH or CTEPD. Thus, obesity masks key physiologic evidence of pulmonary vascular obstruction on the gas exchange assessment of obese individuals.
Collapse
Affiliation(s)
- Estefania Oliveros
- Division of Cardiovascular Disease, Department of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA (A.V.)
| | - Madeline Mauri
- Division of Cardiovascular Disease, Department of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA (A.V.)
| | - Rylie Pietrowicz
- Division of Cardiovascular Disease, Department of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA (A.V.)
| | - Ahmed Sadek
- Division of Cardiovascular Disease, Department of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA (A.V.)
| | - Vladimir Lakhter
- Division of Cardiovascular Disease, Department of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA (A.V.)
| | - Riyaz Bashir
- Division of Cardiovascular Disease, Department of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA (A.V.)
| | - William R. Auger
- Department of Medicine, University of California, San Diego, CA 92093, USA;
| | - Anjali Vaidya
- Division of Cardiovascular Disease, Department of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA (A.V.)
| | - Paul R. Forfia
- Division of Cardiovascular Disease, Department of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA (A.V.)
| |
Collapse
|
12
|
Azaredo Raposo M, Inácio Cazeiro D, Guimarães T, Lousada N, Freitas C, Brito J, Martins S, Resende C, Dorfmüller P, Luís R, Moreira S, Alves da Silva P, Moita L, Oliveira M, Pinto FJ, Plácido R. Pulmonary arterial hypertension: Navigating the pathways of progress in diagnosis, treatment, and patient care. Rev Port Cardiol 2024; 43:699-719. [PMID: 38972452 DOI: 10.1016/j.repc.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 03/10/2024] [Indexed: 07/09/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a form of precapillary pulmonary hypertension caused by a complex process of endothelial dysfunction and vascular remodeling. If left untreated, this progressive disease presents with symptoms of incapacitating fatigue causing marked loss of quality of life, eventually culminating in right ventricular failure and death. Patient management is complex and based on accurate diagnosis, risk stratification, and treatment initiation, with close monitoring of response and disease progression. Understanding the underlying pathophysiology has enabled the development of multiple drugs directed at different targets in the pathological chain. Vasodilator therapy has been the mainstay approach for the last few years, significantly improving quality of life, functional status, and survival. Recent advances in therapies targeting dysfunctional pathways beyond endothelial dysfunction may address the fundamental processes underlying the disease, raising the prospect of increasingly effective options for this high-risk group of patients with a historically poor prognosis.
Collapse
Affiliation(s)
- Miguel Azaredo Raposo
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculty of Medicine, Lisbon, Portugal
| | - Daniel Inácio Cazeiro
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculty of Medicine, Lisbon, Portugal
| | - Tatiana Guimarães
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculty of Medicine, Lisbon, Portugal
| | - Nuno Lousada
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculty of Medicine, Lisbon, Portugal
| | - Céline Freitas
- Association for Research and Development of Faculty of Medicine (AIDFM), Cardiovascular Research Support Unit (GAIC), Lisbon, Portugal
| | - Joana Brito
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculty of Medicine, Lisbon, Portugal
| | - Susana Martins
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculty of Medicine, Lisbon, Portugal
| | - Catarina Resende
- Rheumatology Department, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Peter Dorfmüller
- Department of Pathology, University Hospital of Giessen and Marburg, Giessen, Germany; Institute for Lung Health, Giessen, Germany
| | - Rita Luís
- Pathology Department, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal; Pathology Department, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Pathology Institute, Faculdade Medicina Universidade Lisboa, Lisbon, Portugal
| | - Susana Moreira
- Pulmonology Department, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Pedro Alves da Silva
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculty of Medicine, Lisbon, Portugal
| | - Luís Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Fausto J Pinto
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculty of Medicine, Lisbon, Portugal
| | - Rui Plácido
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL, Faculty of Medicine, Lisbon, Portugal; Cardiology Department, CUF Tejo, Lisbon, Portugal.
| |
Collapse
|
13
|
Kim NH, D'Armini AM, Delcroix M, Jaïs X, Jevnikar M, Madani MM, Matsubara H, Palazzini M, Wiedenroth CB, Simonneau G, Jenkins DP. Chronic thromboembolic pulmonary disease. Eur Respir J 2024; 64:2401294. [PMID: 39209473 PMCID: PMC11525345 DOI: 10.1183/13993003.01294-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Chronic thromboembolic pulmonary hypertension is a complication of pulmonary embolism and a treatable cause of pulmonary hypertension. The pathology is a unique combination of mechanical obstruction due to failure of clot resolution, and a variable degree of microvascular disease, that both contribute to pulmonary vascular resistance. Accordingly, multiple treatments have been developed to target the disease components. However, accurate diagnosis is often delayed. Evaluation includes high-quality imaging modalities, necessary for disease confirmation and for appropriate treatment planning. All patients with chronic thromboembolic pulmonary disease, and especially those with pulmonary hypertension, should be referred to expert centres for multidisciplinary team decision on treatment. The first decision remains assessment of operability, and the best improvement in symptoms and survival is achieved by the mechanical therapies, pulmonary endarterectomy and balloon pulmonary angioplasty. With the advances in multimodal therapies, excellent outcomes can be achieved with 3-year survival of >90%.
Collapse
Affiliation(s)
- Nick H Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrea M D'Armini
- Department of Cardio-Thoracic and Vascular Surgery, Heart and Lung Transplantation and Pulmonary Hypertension Unit, Foundation IRCCS Policlinico San Matteo, University of Pavia School of Medicine, Pavia, Italy
| | - Marion Delcroix
- Clinical Department of Respiratory Disease, Pulmonary Hypertension Center, UZ Leuven, Leuven, Belgium
| | - Xavier Jaïs
- AP-HP, Department of Respiratory and Intensive Care Medicine, Bicêtre Hospital, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mitja Jevnikar
- AP-HP, Department of Respiratory and Intensive Care Medicine, Bicêtre Hospital, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Michael M Madani
- Division of Cardiovascular and Thoracic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Hiromi Matsubara
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Massimiliano Palazzini
- Dipartimento DIMEC (Dipartimento di Scienze Mediche e Chirurgiche), Universita di Bologna, Bologna, Italy
| | | | - Gérald Simonneau
- Pneumologie Kremlin Bicetre University Hospital, National Reference Center for Pulmonary Hypertension, Paris Saclay University, Paris, France
| | - David P Jenkins
- Cardiothoracic Surgery and Transplantation, Royal Papworth Hospital, Cambridge, UK
| |
Collapse
|
14
|
Pieles GE, Dorobantu DM, Caterini JE, Cifra B, Reyes J, Roldan Ramos S, Hannon E, Williams CA, Humpl T, Mertens L, Wells GD, Friedberg MK. Biventricular responses to exercise and their relation to cardiorespiratory fitness in pediatric pulmonary hypertension. Am J Physiol Heart Circ Physiol 2024; 327:H749-H764. [PMID: 39058433 PMCID: PMC11482283 DOI: 10.1152/ajpheart.00096.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Despite exercise intolerance being predictive of outcomes in pulmonary arterial hypertension (PAH), its underlying cardiac mechanisms are not well described. The aim of the study was to explore the biventricular response to exercise and its associations with cardiorespiratory fitness in children with PAH. Participants underwent incremental cardiopulmonary exercise testing and simultaneous exercise echocardiography on a recumbent cycle ergometer. Linear mixed models were used to assess cardiac function variance and associations between cardiac and metabolic parameters during exercise. Eleven participants were included with a mean age of 13.4 ± 2.9 yr old. Right ventricle (RV) systolic pressure (RVsp) increased from a mean of 59 ± 25 mmHg at rest to 130 ± 40 mmHg at peak exercise (P < 0.001), whereas RV fractional area change (RV-FAC) and RV-free wall longitudinal strain (RVFW-Sl) worsened (35.2 vs. 27%, P = 0.09 and -16.6 vs. -14.6%, P = 0.1, respectively). At low- and moderate-intensity exercise, RVsp was positively associated with stroke volume and O2 pulse (P < 0.1). At high-intensity exercise, RV-FAC, RVFW-Sl, and left ventricular longitudinal strain were positively associated with oxygen uptake and O2 pulse (P < 0.1), whereas stroke volume decreased toward peak (P = 0.04). In children with PAH, the increase of pulmonary pressure alone does not limit peak exercise, but rather the concomitant reduced RV functional reserve, resulting in RV to pulmonary artery (RV-PA) uncoupling, worsening of interventricular interaction and LV dysfunction. A better mechanistic understanding of PAH exercise physiopathology can inform stress testing and cardiac rehabilitation in this population.NEW & NOTEWORTHY In children with pulmonary arterial hypertension, there is a marked increase in pulmonary artery pressure during physical activity, but this is not the underlying mechanism that limits exercise. Instead, right ventricle-to-pulmonary artery uncoupling occurs at the transition from moderate to high-intensity exercise and correlates with lower peak oxygen uptake. This highlights the more complex underlying pathological responses and the need for multiparametric assessment of cardiac function reserve in these patients when feasible.
Collapse
Affiliation(s)
- Guido E Pieles
- Labatt Family Heart Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Institute of Sport, Exercise and Health, University College London, London, United Kingdom
- Sports Cardiology Department, ASPETAR Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Dan-Mihai Dorobantu
- Children's Health and Exercise Research Center, University of Exeter, Exeter, United Kingdom
- Congenital Heart Disease Unit, Bristol Royal Hospital for Children and Heart Institute, Bristol, United Kingdom
| | - Jessica E Caterini
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Barbara Cifra
- Labatt Family Heart Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Janette Reyes
- Labatt Family Heart Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sara Roldan Ramos
- Labatt Family Heart Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, United Kingdom
| | - Craig A Williams
- Children's Health and Exercise Research Center, University of Exeter, Exeter, United Kingdom
| | - Tilman Humpl
- Labatt Family Heart Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Luc Mertens
- Labatt Family Heart Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Greg D Wells
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Labatt Family Heart Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Gao B, Wang S, Jiang S. The occurrence mechanism, assessment, and non-pharmacological treatment of dyspnea. MEDICAL REVIEW (2021) 2024; 4:395-412. [PMID: 39444798 PMCID: PMC11495473 DOI: 10.1515/mr-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 10/25/2024]
Abstract
Dyspnea is a subjective sensation often described as a feeling of respiratory effort, tightness, or air hunger. The underlying mechanisms of this symptom are multifaceted and involve factors such as respiratory centers, cardiovascular system, airways, neuromuscular components, and metabolic factors, although not fully elucidated. The classical theory of imbalance between inspiratory neural drive (IND) and the simultaneous dynamic responses of the respiratory system posits that the disruption of a normal and harmonious relationship fundamentally shapes the expression of respiratory discomfort. Assessment and comprehensive treatment of dyspnea are crucial for patient rehabilitation, including subjective self-reporting and objective clinical measurements. Non-pharmacological interventions, such as pulmonary rehabilitation, fan therapy, exercise, chest wall vibration, virtual reality technology, traditional Chinese medicine (acupuncture and acupressure), and yoga, have shown promise in alleviating dyspnea symptoms. Additionally, oxygen therapy, has demonstrated short-term benefits for patients with pre-hospital respiratory distress and hypoxemia. This review provides a comprehensive overview of dyspnea, emphasizing the importance of a multifaceted approach for its assessment and management, with a focus on non-pharmacological interventions that contribute to enhanced patient outcomes and quality of life.
Collapse
Affiliation(s)
- Beiyao Gao
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Siyuan Wang
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shan Jiang
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
16
|
Kovacs G, Bartolome S, Denton CP, Gatzoulis MA, Gu S, Khanna D, Badesch D, Montani D. Definition, classification and diagnosis of pulmonary hypertension. Eur Respir J 2024; 64:2401324. [PMID: 39209475 PMCID: PMC11533989 DOI: 10.1183/13993003.01324-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary hypertension (PH) is a haemodynamic condition characterised by elevation of mean pulmonary arterial pressure (mPAP) >20 mmHg, assessed by right heart catheterisation. Pulmonary arterial wedge pressure (PAWP) and pulmonary vascular resistance (PVR) distinguish pre-capillary PH (PAWP ≤15 mmHg, PVR >2 Wood Units (WU)), isolated post-capillary PH (PAWP >15 mmHg, PVR ≤2 WU) and combined post- and pre-capillary PH (PAWP >15 mmHg, PVR >2 WU). Exercise PH is a haemodynamic condition describing a normal mPAP at rest with an abnormal increase of mPAP during exercise, defined as a mPAP/cardiac output slope >3 mmHg/L/min between rest and exercise. The core structure of the clinical classification of PH has been retained, including the five major groups. However, some changes are presented herewith, such as the re-introduction of "long-term responders to calcium channel blockers" as a subgroup of idiopathic pulmonary arterial hypertension, the addition of subgroups in group 2 PH and the differentiation of group 3 PH subgroups based on pulmonary diseases instead of functional abnormalities. Mitomycin-C and carfilzomib have been added to the list of drugs with "definite association" with PAH. For diagnosis of PH, we propose a stepwise approach with the main aim of discerning those patients who need to be referred to a PH centre and who should undergo invasive haemodynamic assessment. In case of high probability of severe pulmonary vascular disease, especially if there are signs of right heart failure, a fast-track referral to a PH centre is recommended at any point during the clinical workup.
Collapse
Affiliation(s)
- Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
| | - Sonja Bartolome
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Michael A Gatzoulis
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton Hospital, Guy's and St Thomas's NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Sue Gu
- Division of Pulmonary Sciences and Critical Care Medicine University of Colorado Anschutz Medical Campus Aurora, Aurora, CO, USA
| | - Dinesh Khanna
- Scleroderma Program, Division of Rheumatology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David Badesch
- Division of Pulmonary Sciences and Critical Care Medicine University of Colorado Anschutz Medical Campus Aurora, Aurora, CO, USA
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
17
|
Ntiloudi D, Kasinos N, Kalesi A, Vagenakis G, Theodosis-Georgilas A, Rammos S. Diagnosis and Management of Pulmonary Hypertension: New Insights. Diagnostics (Basel) 2024; 14:2052. [PMID: 39335731 PMCID: PMC11431164 DOI: 10.3390/diagnostics14182052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Over the last decades, significant progress has been achieved in the pulmonary hypertension (PH) field. Pathophysiology of PH has been studied, leading to the classification of PH patients into five groups, while the hemodynamic definition has been recently revised. A diagnostic algorithm has been established and awareness has been raised in order to minimize diagnosis delay. The pulmonary arterial hypertension (PAH) treatment strategy includes the established three pathways of endothelin, nitric oxide-phosphodiesterase inhibitor, and prostacyclin pathway, but new therapeutic options are now being tested. The aim of this review is to summarize the existing practice and to highlight the novelties in the field of PH.
Collapse
Affiliation(s)
- Despoina Ntiloudi
- Department of Cardiology, Tzaneio General Hospital of Piraeus, 18536 Piraeus, Greece; (D.N.); (N.K.); (A.K.); (A.T.-G.)
- Echocardiography Training Center of Tzaneio ‘D. Beldekos’, 18536 Piraeus, Greece
| | - Nearchos Kasinos
- Department of Cardiology, Tzaneio General Hospital of Piraeus, 18536 Piraeus, Greece; (D.N.); (N.K.); (A.K.); (A.T.-G.)
- Echocardiography Training Center of Tzaneio ‘D. Beldekos’, 18536 Piraeus, Greece
| | - Alkistis Kalesi
- Department of Cardiology, Tzaneio General Hospital of Piraeus, 18536 Piraeus, Greece; (D.N.); (N.K.); (A.K.); (A.T.-G.)
- Echocardiography Training Center of Tzaneio ‘D. Beldekos’, 18536 Piraeus, Greece
| | - Georgios Vagenakis
- Department of Pediatric Cardiology and Adult Congenital Heart Disease, “Onassis” Cardiac Surgery Center, 17674 Athens, Greece;
| | - Anastasios Theodosis-Georgilas
- Department of Cardiology, Tzaneio General Hospital of Piraeus, 18536 Piraeus, Greece; (D.N.); (N.K.); (A.K.); (A.T.-G.)
- Echocardiography Training Center of Tzaneio ‘D. Beldekos’, 18536 Piraeus, Greece
| | - Spyridon Rammos
- Department of Pediatric Cardiology and Adult Congenital Heart Disease, “Onassis” Cardiac Surgery Center, 17674 Athens, Greece;
| |
Collapse
|
18
|
Koyun E, Sahin A, Yilmaz A, Dindas F, Cerik IB, Koyun GB. Electrocardiographic Prognostic Marker in Pulmonary Arterial Hypertension: RS Time. Arq Bras Cardiol 2024; 121:e20240083. [PMID: 39258644 PMCID: PMC11495640 DOI: 10.36660/abc.20240083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/20/2024] [Accepted: 06/12/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Pulmonary hypertension is a condition that involves the remodeling of the right ventricle. Ongoing remodeling is also associated with disease prognosis. During the restructuring process, complex changes such as hypertrophy and dilatation may also be reflected in electrocardiographic parameters. OBJECTIVES Our study aimed to investigate the relationship between prognosis and electrocardiographic parameters in patients with pulmonary arterial hypertension. METHODS The study was designed retrospectively and included patients diagnosed with pulmonary arterial hypertension between 2010 and 2022. The patients were divided into two groups based on their survival outcome. Various parameters, including electrocardiographic, demographic, echocardiographic, catheter, and blood parameters, were compared between the two groups. A p-value of <0.05 was considered statistically significant. RESULTS In the multivariate Cox analyses, the parameters that were found to be independently associated with survival were the 6-minute walk test, mean pulmonary artery pressure, presence of pericardial effusion, and time between the beginning of the QRS and the peak of the S wave (RS time) (p<0.05 for each). Of all the parameters, RS time demonstrated the best diagnostic performance (AUC:0.832). In the survival analysis, a significant correlation was found between RS time and survival when using a cut-off value of 59.5 ms (HR: 0.06 [0.02-0.17], p < 0.001). CONCLUSIONS According to the results of our study, a longer RS time is associated with poor prognosis in patients with pulmonary arterial hypertension. We can obtain information about the course of the disease with a simple, non-invasive parameter.
Collapse
Affiliation(s)
- Emin Koyun
- Sivas Numune HospitalDepartment of CardiologySivasTurquiaSivas Numune Hospital, Department of Cardiology, Sivas – Turquia
| | - Anil Sahin
- Sivas Cumhuriyet University HospitalDepartment of CardiologySivasTurquiaSivas Cumhuriyet University Hospital, Department of Cardiology, Sivas – Turquia
| | - Ahmet Yilmaz
- Sivas Cumhuriyet University HospitalDepartment of CardiologySivasTurquiaSivas Cumhuriyet University Hospital, Department of Cardiology, Sivas – Turquia
| | - Ferhat Dindas
- Usak University Training and Research HospitalDepartment of CardiologyUsakTurquiaUsak University Training and Research Hospital, Department of Cardiology, Usak – Turquia
| | - Idris Bugra Cerik
- Ordu University Training and Research HospitalDepartment of CardiologyOrduTurquiaOrdu University Training and Research Hospital, Department of Cardiology, Ordu – Turquia
| | - Gorkem Berna Koyun
- Sivas Cumhuriyet University HospitalSivasTurquiaSivas Cumhuriyet University Hospital, Department of Chest Disease, Sivas – Turquia
| |
Collapse
|
19
|
Simeone B, Maggio E, Schirone L, Rocco E, Sarto G, Spadafora L, Bernardi M, Ambrosio LD, Forte M, Vecchio D, Valenti V, Sciarretta S, Vizza CD. Chronic thromboembolic pulmonary hypertension: the diagnostic assessment. Front Cardiovasc Med 2024; 11:1439402. [PMID: 39309600 PMCID: PMC11412851 DOI: 10.3389/fcvm.2024.1439402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Chronic Thromboembolic Pulmonary Hypertension (CTEPH) presents a significant diagnostic challenge due to its complex and often nonspecific clinical manifestations. This review outlines a comprehensive approach to the diagnostic assessment of CTEPH, emphasizing the importance of a high index of suspicion in patients with unexplained dyspnea or persistent symptoms post-acute pulmonary embolism. We discuss the pivotal role of multimodal imaging, including echocardiography, ventilation/perfusion scans, CT pulmonary angiography, and magnetic resonance imaging, in the identification and confirmation of CTEPH. Furthermore, the review highlights the essential function of right heart catheterization in validating the hemodynamic parameters indicative of CTEPH, establishing its definitive diagnosis. Advances in diagnostic technologies and the integration of a multidisciplinary approach are critical for the timely and accurate diagnosis of CTEPH, facilitating early therapeutic intervention and improving patient outcomes. This manuscript aims to equip clinicians with the knowledge and tools necessary for the efficient diagnostic workflow of CTEPH, promoting awareness and understanding of this potentially treatable cause of pulmonary hypertension.
Collapse
Affiliation(s)
- Beatrice Simeone
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Enrico Maggio
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Erica Rocco
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Gianmarco Sarto
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Luigi Spadafora
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Marco Bernardi
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Luca D’ Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Maurizio Forte
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Italy
| | - Daniele Vecchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, Latina, Italy
- Department of Cardiology, Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Sebastiano Sciarretta
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Carmine Dario Vizza
- Department of Cardiovascular and Respiratory Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Piamonti D, Panza L, Flore R, Baccolini V, Pellegrino D, Sanna A, Lecci A, Lo Muzio G, Angelone D, Mirabelli FM, Morviducci M, Onorati P, Messina E, Panebianco V, Catalano C, Bonini M, Palange P. Ventilatory efficiency in long-term dyspnoeic patients following COVID-19 pneumonia. Respir Physiol Neurobiol 2024; 327:104285. [PMID: 38825094 DOI: 10.1016/j.resp.2024.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Long COVID is defined as persistency of symptoms, such as exertional dyspnea, twelve weeks after recovery from SARS-CoV-2 infection. OBJECTIVES To investigate ventilatory efficiency by the use of cardiopulmonary exercise testing (CPET) in patients with exertional dyspnea despite normal basal spirometry after 18 (T18) and 36 months (T36) from COVID-19 pneumonia. METHODS One hundred patients with moderate-critical COVID-19 were prospectively enrolled in our Long COVID program. Medical history, physical examination and lung high-resolution computed tomography (HRCT) were obtained at hospitalization (T0), 3 (T3) and 15 months (T15). All HRCTs were revised using a semi-quantitative CT severity score (CSS). Pulmonary function tests were obtained at T3 and T15. CPET was performed in a subset of patients with residual dyspnea (mMRC ≥ 1), at T18 and at T36. RESULTS Remarkably, at CPET, ventilatory efficiency was reduced both at T18 (V'E/V'CO2 slope = 31.4±3.9 SD) and T36 (V'E/V'CO2 slope = 31.28±3.70 SD). Furthermore, we identified positive correlations between V'E/V'CO2 slope at T18 and T36 and both percentage of involvement and CSS at HRCT at T0, T3 and T15. Also, negative linear correlations were found between V'E/V'CO2 slope at T18 and T36 and DLCO at T3 and T15. CONCLUSIONS At eighteen months from COVID-19 pneumonia, 20 % of subjects still complains of exertional dyspnea. At CPET this may be explained by persistently reduced ventilatory efficiency, possibly related to the degree of lung parenchymal involvement in the acute phase of infection, likely reflecting a damage in the pulmonary circulation.
Collapse
Affiliation(s)
- Daniel Piamonti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy.
| | - Luigi Panza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Roberto Flore
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Daniela Pellegrino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Arianna Sanna
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Altea Lecci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Giulia Lo Muzio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Dario Angelone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | | | - Matteo Morviducci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Paolo Onorati
- Alghero City Hospital, Pulmonology and Respiratory Pathophysiology Service, Alghero, Italy
| | - Emanuele Messina
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Italy
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Italy
| | - Carlo Catalano
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Italy
| | - Matteo Bonini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| |
Collapse
|
21
|
Zeder K, Brittain E, Kovacs G, Maron BA. The Management of Mild Pulmonary Hypertension in Clinical Practice. Ann Am Thorac Soc 2024; 21:1115-1123. [PMID: 38747696 PMCID: PMC11298986 DOI: 10.1513/annalsats.202312-1079fr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 08/02/2024] Open
Abstract
The definition of pulmonary hypertension (PH) has been revised recently, with the mean pulmonary artery pressure (mPAP) threshold (assessed by right heart catheterization) reduced from ⩾25 mm Hg to >20 mm Hg. This change reflects the mPAP upper limit of normal and a lower limit that is independently associated with adverse outcomes. To improve the specificity of diagnosing pathogenic increases in mPAP, however, a diagnosis of precapillary PH now also includes pulmonary vascular resistance >2.0 Wood units (WU) (lowered from >3.0 WU). These changes are positioned to capture approximately 55% more patients with PH. Because all clinical trials showing a benefit of pulmonary vasodilator therapy in precapillary PH used the classical hemodynamic definition, the approach to the diagnosis and management of patients with mild PH (i.e., mPAP 21-24 mm Hg and pulmonary vascular resistance 2-3 WU) requires particular consideration. Here, we use a question/answer format to discuss key areas in the management of mild PH, including practical information tailored to clinicians without training in PH.
Collapse
Affiliation(s)
- Katarina Zeder
- Department of Pulmonology, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland; and
- The University of Maryland-Institute for Health Computing, Bethesda, Maryland
| | - Evan Brittain
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gabor Kovacs
- Department of Pulmonology, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Bradley A. Maron
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland; and
- The University of Maryland-Institute for Health Computing, Bethesda, Maryland
| |
Collapse
|
22
|
Schulze KM, Horn AG, Muller-Delp JM, White ZJ, Hall SE, Medarev SL, Weber RE, Poole DC, Musch TI, Behnke BJ. Pulmonary hypertension impairs vasomotor function in rat diaphragm arterioles. Microvasc Res 2024; 154:104686. [PMID: 38614154 PMCID: PMC11198381 DOI: 10.1016/j.mvr.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Pulmonary hypertension (PH) is a chronic, progressive condition in which respiratory muscle dysfunction is a primary contributor to exercise intolerance and dyspnea in patients. Contractile function, blood flow distribution, and the hyperemic response are altered in the diaphragm with PH, and we sought to determine whether this may be attributed, in part, to impaired vasoreactivity of the resistance vasculature. We hypothesized that there would be blunted endothelium-dependent vasodilation and impaired myogenic responsiveness in arterioles from the diaphragm of PH rats. Female Sprague-Dawley rats were randomized into healthy control (HC, n = 9) and monocrotaline-induced PH rats (MCT, n = 9). Endothelium-dependent and -independent vasodilation and myogenic responses were assessed in first-order arterioles (1As) from the medial costal diaphragm in vitro. There was a significant reduction in endothelium-dependent (via acetylcholine; HC, 78 ± 15% vs. MCT, 47 ± 17%; P < 0.05) and -independent (via sodium nitroprusside; HC, 89 ± 10% vs. MCT, 66 ± 10%; P < 0.05) vasodilation in 1As from MCT rats. MCT-induced PH also diminished myogenic constriction (P < 0.05) but did not alter passive pressure responses. The diaphragmatic weakness, impaired hyperemia, and blood flow redistribution associated with PH may be due, in part, to diaphragm vascular dysfunction and thus compromised oxygen delivery which occurs through both endothelium-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America.
| | - Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, United States of America
| | - Zachary J White
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Stephanie E Hall
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Steven L Medarev
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, United States of America
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, United States of America
| |
Collapse
|
23
|
Panza L, Piamonti D, Palange P. Pulmonary gas exchange and ventilatory efficiency during exercise in health and diseases. Expert Rev Respir Med 2024; 18:355-367. [PMID: 38912849 DOI: 10.1080/17476348.2024.2370447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Cardiopulmonary exercise testing (CPET) is nowadays used to study the exercise response in healthy subjects and in disease. Ventilatory efficiency is one of the main determinants in exercise tolerance, and its main variables are a useful tool to guide pathophysiologists toward specific diagnostic pathways, providing prognostic information and improving disease management, treatment, and outcomes. AREAS COVERED This review will be based on today's available scientific evidence, describing the main physiological determinants of ventilatory efficiency at rest and during exercise, and focusing also on how CPET variables are modified in specific diseases, leading to the possibility of early diagnosis and management. EXPERT OPINION Growing knowledge on CPET interpretation and a wider use of this clinical tool is expected in order to offer more precise diagnostic and prognostic information to patients and clinicians, helping in the management of therapeutic decisions. Future research could be able to identify new and more simple markers of ventilatory efficiency, and to individuate new interventions for the improvement of symptoms, such as exertional dyspnea.
Collapse
Affiliation(s)
- Luigi Panza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Daniel Piamonti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Kianzad A, Baccelli A, Braams NJ, Andersen S, van Wezenbeek J, Wessels JN, Celant LR, Vos AE, Davies R, Lo Giudice F, Haji G, Rinaldo RF, Vigo B, Gopalan D, Symersky P, Winkelman JA, Boonstra A, Nossent EJ, Tim Marcus J, Vonk Noordegraaf A, Meijboom LJ, de Man FS, Andersen A, Howard LS, Bogaard HJ. Long-term effects of pulmonary endarterectomy on pulmonary hemodynamics, cardiac function, and exercise capacity in chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant 2024; 43:580-593. [PMID: 38000764 DOI: 10.1016/j.healun.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Long-term changes in exercise capacity and cardiopulmonary hemodynamics after pulmonary endarterectomy (PEA) for chronic thromboembolic pulmonary hypertension (CTEPH) have been poorly described. METHODS We analyzed the data from 2 prospective surgical CTEPH cohorts in Hammersmith Hospital, London, and Amsterdam UMC. A structured multimodal follow-up was adopted, consisting of right heart catheterization, cardiac magnetic resonance imaging, and cardiopulmonary exercise testing before and after PEA. Preoperative predictors of residual pulmonary hypertension (PH; mean pulmonary artery pressure >20 mm Hg and pulmonary vascular resistance ≥2 WU) and long-term exercise intolerance (VO2max <80%) at 18 months were analyzed. RESULTS A total of 118 patients (61 from London and 57 from Amsterdam) were included in the analysis. Both cohorts displayed a significant improvement of pulmonary hemodynamics, right ventricular (RV) function, and exercise capacity 6 months after PEA. Between 6 and 18 months after PEA, there were no further improvements in hemodynamics and RV function, but the proportion of patients with impaired exercise capacity was high and slightly increased over time (52%-59% from 6 to 18 months). Long-term exercise intolerance was common and associated with preoperative diffusion capacity for carbon monoxide (DLCO), preoperative mixed venous oxygen saturation, and postoperative PH and right ventricular ejection fraction (RVEF). Clinically significant RV deterioration (RVEF decline >3%; 5 [9%] of 57 patients) and recurrent PH (5 [14%] of 36 patients) rarely occurred beyond 6 months after PEA. Age and preoperative DLCO were predictors of residual PH post-PEA. CONCLUSIONS Restoration in exercise tolerance, cardiopulmonary hemodynamics, and RV function occurs within 6 months. No substantial changes occurred between 6 and 18 months after PEA in the Amsterdam cohort. Nevertheless, long-term exercise intolerance is common and associated with postoperative RV function.
Collapse
Affiliation(s)
- Azar Kianzad
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Andrea Baccelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Natalia J Braams
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Stine Andersen
- Aarhus University Hospital, Department of Cardiology, Aarhus, Denmark
| | - Jessie van Wezenbeek
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Jeroen N Wessels
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Lucas R Celant
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Anna E Vos
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands
| | - Rachel Davies
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Francesco Lo Giudice
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Gulammehdi Haji
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Rocco F Rinaldo
- Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Beatrice Vigo
- Respiratory Unit, ASST Santi Paolo e Carlo, San Carlo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Deepa Gopalan
- Department of Radiology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Petr Symersky
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Cardiothoracic Surgery, Amsterdam, the Netherlands
| | - Jacobus A Winkelman
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Cardiothoracic Surgery, Amsterdam, the Netherlands
| | - Anco Boonstra
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Esther J Nossent
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - J Tim Marcus
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands; Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Anton Vonk Noordegraaf
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Lilian J Meijboom
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands; Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Frances S de Man
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Asger Andersen
- Aarhus University Hospital, Department of Cardiology, Aarhus, Denmark
| | - Luke S Howard
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Harm Jan Bogaard
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
van Kan C, Tramper J, Bresser P, J. Meijboom L, Symersky P, Winkelman JA, Nossent EJ, Aman J, Bogaard HJ, Vonk Noordegraaf A, van Es J. Patients with CTEPH and mild hemodynamic severity of disease improve to a similar level of exercise capacity after pulmonary endarterectomy compared to patients with severe hemodynamic disease. Pulm Circ 2024; 14:e12316. [PMID: 38274560 PMCID: PMC10808941 DOI: 10.1002/pul2.12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024] Open
Abstract
The correlation between hemodynamics and degree of pulmonary vascular obstruction (PVO) is known to be poor in chronic thromboembolic pulmonary hypertension (CTEPH), which makes the selection of patients eligible for pulmonary endarterectomy (PEA) challenging. It can be postulated that patients with similar PVO but different hemodynamic severity have different postoperative hemodynamics and exercise capacity. Therefore, we aimed to assess the effects of PEA on hemodynamics and exercise physiology in mild and severe CTEPH patients. We retrospectively studied 18 CTEPH patients with a mild hemodynamic profile (mean pulmonary arterial pressure [mPAP] between 25 and 30 mmHg at rest) and CTEPH patients with a more severe hemodynamic profile (mPAP > 30 mmHg), matched by age, gender, and PVO. Cardiopulmonary exercise testing parameters were evaluated at baseline and 18 months following PEA. At baseline, exercise capacity, defined as oxygen uptake, was less severely impaired in the mild CTEPH group compared to the severe CTEPH group. After PEA, in the mild CTEPH group, ventilatory efficiency and oxygen pulse improved significantly (p < 0.05), however, the change in ventilatory efficiency and oxygen pulse was smaller compared to the severe CTEPH group. Only in the severe CTEPH group exercise capacity improved significantly (p < 0.001). Hence, in the present study, postoperative hemodynamic outcome and the CPET-determined recovery of exercise capacity in mild CTEPH patients did not differ from a matched group of severe CTEPH patients.
Collapse
Affiliation(s)
- Coen van Kan
- Department of Pulmonary Medicine, Amsterdam UMC, Cardiovascular SciencesVrije UniversiteitAmsterdamThe Netherlands
- Department of Respiratory MedicineOLVGAmsterdamThe Netherlands
| | - Jelco Tramper
- Department of Pulmonary Medicine, Amsterdam UMC, Cardiovascular SciencesVrije UniversiteitAmsterdamThe Netherlands
| | - Paul Bresser
- Department of Respiratory MedicineOLVGAmsterdamThe Netherlands
| | - Lilian J. Meijboom
- Department of Radiology and Nuclear MedicineAmsterdam UMCAmsterdamThe Netherlands
- Department of Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and ThrombosisAmsterdamThe Netherlands
| | - Petr Symersky
- Department of Cardiothoracic SurgeryAmsterdam UMCAmsterdamThe Netherlands
- Department of Cardiothoracic SurgeryOLVGAmsterdamThe Netherlands
| | | | - Esther J. Nossent
- Department of Pulmonary Medicine, Amsterdam UMC, Cardiovascular SciencesVrije UniversiteitAmsterdamThe Netherlands
- Department of Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and ThrombosisAmsterdamThe Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, Cardiovascular SciencesVrije UniversiteitAmsterdamThe Netherlands
- Department of Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and ThrombosisAmsterdamThe Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, Cardiovascular SciencesVrije UniversiteitAmsterdamThe Netherlands
- Department of Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and ThrombosisAmsterdamThe Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonary Medicine, Amsterdam UMC, Cardiovascular SciencesVrije UniversiteitAmsterdamThe Netherlands
- Department of Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and ThrombosisAmsterdamThe Netherlands
| | - Josien van Es
- Department of Pulmonary Medicine, Amsterdam UMC, Cardiovascular SciencesVrije UniversiteitAmsterdamThe Netherlands
- Department of Respiratory MedicineOLVGAmsterdamThe Netherlands
| |
Collapse
|
26
|
Schulze KM, Horn AG, Weber RE, Behnke BJ, Poole DC, Musch TI. Pulmonary hypertension alters blood flow distribution and impairs the hyperemic response in the rat diaphragm. Front Physiol 2023; 14:1281715. [PMID: 38187132 PMCID: PMC10766809 DOI: 10.3389/fphys.2023.1281715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, respiratory muscle and cardiac impairments, and exercise intolerance. Specifically, impaired gas exchange increases work of the diaphragm; however, compromised contractile function precludes the diaphragm from meeting the increased metabolic demand of chronic hyperventilation in PH. Given that muscle contractile function is in part, dependent upon adequate blood flow (Q ˙ ), diaphragmatic dysfunction may be predicated by an inability to match oxygen delivery with oxygen demand. We hypothesized that PH rats would demonstrate a decreased hyperemic response to contractions compared to healthy controls. Methods: Sprague-Dawley rats were randomized into healthy (HC, n = 7) or PH (n = 7) groups. PH rats were administered monocrotaline (MCT) while HC rats received vehicle. Disease progression was monitored via echocardiography. Regional and total diaphragm blood flow and vascular conductance at baseline and during 3 min of electrically-stimulated contractions were determined using fluorescent microspheres. Results: PH rats displayed morphometric and echocardiographic criteria for disease (i.e., acceleration time/ejection time, right ventricular hypertrophy). In all rats, total costal diaphragm Q ˙ increased during contractions and did not differ between groups. In HC rats, there was a greater increase in medial costal Q ˙ compared to PH rats (55% ± 3% vs. 44% ± 4%, p < 0.05), who demonstrated a redistribution of Q ˙ to the ventral costal region. Conclusion: These findings support a redistribution of regional diaphragm perfusion and an impaired medial costal hyperemic response in PH, suggesting that PH alters diaphragm vascular function and oxygen delivery, providing a potential mechanism for PH-induced diaphragm contractile dysfunction.
Collapse
Affiliation(s)
- Kiana M. Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Andrew G. Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Ramona E. Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Bradley J. Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - David C. Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Timothy I. Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
27
|
Torbicki A, Kurzyna M. The Diagnostic Approach to Pulmonary Hypertension. Semin Respir Crit Care Med 2023; 44:728-737. [PMID: 37487526 DOI: 10.1055/s-0043-1770116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The clinical presentation of pulmonary hypertension (PH) is nonspecific, resulting in significant delays in its detection. In the majority of cases, PH is a marker of the severity of other cardiopulmonary diseases. Differential diagnosis aimed at the early identification of patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) who do require specific and complex therapies is as important as PH detection itself. Despite all efforts aimed at the noninvasive assessment of pulmonary arterial pressure, the formal confirmation of PH still requires catheterization of the right heart and pulmonary artery. The current document will give an overview of strategies aimed at the early diagnosis of PAH and CTEPH, while avoiding their overdiagnosis. It is not intended to be a replica of the recently published European Society of Cardiology (ESC) and European Respiratory Society (ERS) Guidelines on Diagnosis and Treatment of Pulmonary Hypertension, freely available at the Web sites of both societies. While promoting guidelines' recommendations, including those on new definitions of PH, we will try to bring them closer to everyday clinical practice, benefiting from our personal experience in managing patients with suspected PH.
Collapse
Affiliation(s)
- Adam Torbicki
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre for Postgraduate Medical Education at ECZ-Otwock, Otwock, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre for Postgraduate Medical Education at ECZ-Otwock, Otwock, Poland
| |
Collapse
|
28
|
Ley L, Grimminger F, Richter M, Tello K, Ghofrani A, Bandorski D. The Early Detection of Pulmonary Hypertension. DEUTSCHES ARZTEBLATT INTERNATIONAL 2023; 120:823-830. [PMID: 37882345 PMCID: PMC10853922 DOI: 10.3238/arztebl.m2023.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Up to 1% of the world population and 10% of all persons over age 65 suffer from pulmonary hypertension (PH). The latency from the first symptom to the diagnosis is more than one year on average, and more than three years in 20% of patients. 40% seek help from more than four different physicians until their condition is finally diagnosed. METHODS This review is based on publications retrieved by a selective literature search on pulmonary hypertension. RESULTS The most common causes of pulmonary hypertension are left heart diseases and lung diseases. Its cardinal symptom is exertional dyspnea that worsens as the disease progresses. Additional symptoms of right heart failure are seen in advanced stages. Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are rare, difficult to diagnose, and of particular clinical relevance because specific treatments are available. For this reason, strategies for the early detection of PAH and CTEPH have been developed. The clinical suspicion of PH arises in a patient who has nonspecific symptoms, electrocardiographic changes, and an abnormal (NT-pro-)BNP concentration. Once the suspicion of PH has been confirmed by echocardiography and, if necessary, differential-diagnostic evaluation with a cardiopulmonary stress test, and after the exclusion of a primary left heart disease or lung disease, the patient should be referred to a PH center for further diagnostic assessment, classification, and treatment. CONCLUSION If both the (NT-pro-)BNP and the ECG are normal, PH is unlikely. Knowledge of the characteristic clinical manifestations and test results of PH is needed so that patients can be properly selected for referral to specialists and experts in PH.
Collapse
Affiliation(s)
- Lukas Ley
- Justus-Liebig-University Gießen, Campus Kerckhoff, Bad Nauheim
| | | | | | | | | | - Dirk Bandorski
- Semmelweis University, Department of Medicine, 20099 Hamburg
| |
Collapse
|
29
|
Tello K, Richter MJ, Kremer N, Gall H, Egenlauf B, Sorichter S, Heberling M, Douschan P, Hager A, Yogeswaran A, Behr J, Xanthouli P, Held M. [Diagnostic Algorithm and Screening of Pulmonary Hypertension]. Pneumologie 2023; 77:871-889. [PMID: 37963477 DOI: 10.1055/a-2145-4678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The new guidelines for the diagnosis and treatment of pulmonary hypertension include a new diagnostic algorithm and provide specific recommendations for the required diagnostic procedures, including screening methods. These recommendations are commented on by national experts under the auspices of the DACH. These comments provide additional decision support and background information, serving as a further guide for the complex diagnosis of pulmonary hypertension.
Collapse
Affiliation(s)
- Khodr Tello
- Medizinische Klinik II, Justus-Liebig-Universität Gießen, Universitäten Gießen und Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Deutschland
| | - Manuel J Richter
- Medizinische Klinik II, Justus-Liebig-Universität Gießen, Universitäten Gießen und Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Deutschland
| | - Nils Kremer
- Medizinische Klinik II, Justus-Liebig-Universität Gießen, Universitäten Gießen und Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Deutschland
| | - Henning Gall
- Medizinische Klinik II, Justus-Liebig-Universität Gießen, Universitäten Gießen und Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Deutschland
| | - Benjamin Egenlauf
- Zentrum für pulmonale Hypertonie, Thoraxklinik Heidelberg gGmbH am Universitätsklinikum Heidelberg, Heidelberg, Deutschland, Mitglied des Deutschen Zentrums für Lungenforschung (DZL)
| | - Stephan Sorichter
- Klinik für Pneumologie und Beatmungsmedizin, St.-Josefskrankenhaus, Freiburg im Breisgau, Deutschland
| | - Melanie Heberling
- Universitätsklinikum Dresden, Med. Klinik I, Pneumologie, Dresden, Deutschland
| | - Philipp Douschan
- Abteilung für Pulmonologie, Universitätsklinik für Innere Medizin, Graz, Österreich; Ludwig Boltzmann Institut für Lungengefäßforschung, Graz, Österreich
| | - Alfred Hager
- Department of Paediatric Cardiology and Congenital Heart Defects, Deutsches Herzzentrum München, München, Deutschland
| | - Athiththan Yogeswaran
- Medizinische Klinik II, Justus-Liebig-Universität Gießen, Universitäten Gießen und Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Deutschland
| | - Jürgen Behr
- LMU Klinikum München, Medizinische Klinik und Poliklinik V, München, Deutschland. Comprehensive Pneumology Center (CPC-M), Mitglied des Deutschen Zentrums für Lungenforschung (DZL)
| | - Panagiota Xanthouli
- Zentrum für pulmonale Hypertonie, Thoraxklinik Heidelberg gGmbH am Universitätsklinikum Heidelberg, Heidelberg, Deutschland, Mitglied des Deutschen Zentrums für Lungenforschung (DZL)
| | - Matthias Held
- Klinikum Würzburg Mitte, Medizinische Klinik Schwerpunkt Pneumologie & Beatmungsmedizin, Würzburg, Deutschland
| |
Collapse
|
30
|
Mattavelli I, Vignati C, Farina S, Apostolo A, Cattadori G, De Martino F, Pezzuto B, Zaffalon D, Agostoni P. Beyond VO2: the complex cardiopulmonary exercise test. Eur J Prev Cardiol 2023; 30:ii34-ii39. [PMID: 37819225 DOI: 10.1093/eurjpc/zwad154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 10/13/2023]
Abstract
Cardiopulmonary exercise test (CPET) is a valuable diagnostic tool with a specific application in heart failure (HF) thanks to the strong prognostic value of its parameters. The most important value provided by CPET is the peak oxygen uptake (peak VO2), the maximum rate of oxygen consumption attainable during physical exertion. According to the Fick principle, VO2 equals cardiac output (Qc) times the arteriovenous content difference [C(a-v)O2], where Ca is the arterial oxygen and Cv is the mixed venous oxygen content, respectively; therefore, VO2 can be reduced both by impaired O2 delivery (reduced Qc) or extraction (reduced arteriovenous O2 content). However, standard CPET is not capable of discriminating between these different impairments, leading to the need for 'complex' CPET technologies. Among non-invasive methods for Qc measurement during CPET, inert gas rebreathing and thoracic impedance cardiography are the most used techniques, both validated in healthy subjects and patients with HF, at rest and during exercise. On the other hand, the non-invasive assessment of peripheral muscle perfusion is possible with the application of near-infrared spectroscopy, capable of measuring tissue oxygenation. Measuring Qc allows, by having haemoglobin values available, to discriminate how much any VO2 deficit depends on the muscle, anaemia or heart.
Collapse
Affiliation(s)
- Irene Mattavelli
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
| | - Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Stefania Farina
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
- Cytogenetics and Medical Genetics, University of Milano-Bicocca, Milan, Italy
| | - Anna Apostolo
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
| | - Gaia Cattadori
- Multimedica IRCCS, Unità Operativa Cardiologia Riabilitativa, Multimedica IRCCS, Milan, Italy
| | - Fabiana De Martino
- Casa di Cura Tortorella, Dipartimento Medico, Unità funzionale di Cardiologia, Casa di Cura Tortorella, Salerno, Italy
| | - Beatrice Pezzuto
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
| | - Denise Zaffalon
- Cardiovascular Department, 'Azienda Sanitaria Universitaria Giuliano-Isontina', Trieste, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Ozcan Kahraman B, Tanriverdi A, Savci S, Odaman H, Akdeniz B, Sevinc C, Ozsoy I, Acar S, Balci A, Baran A, Ozpelit E. Effects of Inspiratory Muscle Training in Patients With Pulmonary Hypertension. Am J Cardiol 2023; 203:406-413. [PMID: 37523937 DOI: 10.1016/j.amjcard.2023.06.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
The study aimed to examine the effects of inspiratory muscle training (IMT) in patients with pulmonary hypertension (PH). A total of 24 patients with PH were included in the randomized controlled evaluator-blind study. IMT was performed at 40% to 60% of the maximal inspiratory pressure for 30 min/d, 7 d/wk (1 day supervised) for 8 weeks. Respiratory muscle strength, dyspnea, diaphragm thickness (DT), pulmonary functions, 24-hour ambulatory blood pressure (BP), arterial stiffness, exercise capacity, upper extremity functional exercise capacity, physical activity levels, fatigue, anxiety-depression levels, activities of daily living (ADL), and quality of life were evaluated. A total of 24 patients (treatment = 12, control = 12) completed the 8-week follow-up. There was no significant difference between the patient groups in terms of demographic and clinical characteristics (p >0.05). Considering the change between the groups in the treatment and control groups, brachial and central BP, dyspnea, respiratory muscle strength, DT in total lung capacity, knee extension muscle strength, functional exercise capacity, upper extremity functional exercise capacity, physical activity, ADL, fatigue, anxiety, and quality of life improved in favor of the IMT group (p <0.05). In conclusion, IMT has improved brachial and central BP, dyspnea, respiratory muscle strength, DT in total lung capacity, knee extension muscle strength, functional exercise capacity, upper extremity functional exercise capacity, physical activity, ADL, fatigue, anxiety, and quality of life compared with the control group. IMT is an effective method in cardiopulmonary rehabilitation for patients with PH.
Collapse
Affiliation(s)
- Buse Ozcan Kahraman
- Faculty of Physical Therapy and Rehabilitation, Dokuz Eylül University, Izmir, Turkey.
| | - Aylin Tanriverdi
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Cankırı Karatekin University, Cankırı, Turkey
| | - Sema Savci
- Faculty of Physical Therapy and Rehabilitation, Dokuz Eylül University, Izmir, Turkey
| | - Hüseyin Odaman
- Department of Radiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Bahri Akdeniz
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Can Sevinc
- Department of Chest Disease, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ismail Ozsoy
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Selcuk University, Konya, Turkey
| | - Serap Acar
- Faculty of Physical Therapy and Rehabilitation, Dokuz Eylül University, Izmir, Turkey
| | - Ali Balci
- Department of Radiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Agah Baran
- Klinikum Bremerhaven Reinkenheide Diagnostic and Interventional Radiology, Bremerhaven, Germany
| | - Ebru Ozpelit
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
32
|
Farina S, Pezzuto B, Vignati C, Laveneziana P, Agostoni P. Intrapulmonary distribution of blood flow during exercise in pulmonary hypertension assessed by a new combination technique. Front Cardiovasc Med 2023; 10:1241379. [PMID: 37745098 PMCID: PMC10515083 DOI: 10.3389/fcvm.2023.1241379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Background Hyperventilation and inadequate cardiac output (CO) increase are the main causes of exercise limitation in pulmonary hypertension (PH). Intrapulmonary blood flow partitioning between ventilated and unventilated lung zones is unknown. Thoracic impedance cardiography and inert gas rebreathing have been both validated in PH patients for non-invasive measurement of CO and pulmonary blood flow (PBF), respectively. This study sought to evaluate CO behaviour in PH patients during exercise and its partitioning between ventilated and unventilated lung areas, in parallel with ventilation partitioning between ventilated and unventilated lung zones. Methods Eighteen PH patients (group 1 or 4) underwent a cardiopulmonary exercise test (CPET) with a three-step loaded workload protocol. The steps occurred at 0%, 20%, 40%, and 60% of peak workload reached during a preliminary maximum CPET. Ventilatory parameters, arterial blood gases, CO, PBF, and intrapulmonary shunt (calculated as the difference between CO and PBF) were obtained at each step, combining thoracic impedance cardiography and an inert gas rebreathing technique. Results Dead space ventilation observed throughout the exercise was about 40% of total ventilation. A progressive increase of CO from 4.86 ± 1.24 L/min (rest) to 9.41 ± 2.63 L/min (last step), PBF from 3.81 ± 1.41 L/min to 7.21 ± 2.93 L/min, and intrapulmonary shunt from 1.05 ± 0.96 L/min to 2.21 ± 2.28 L/min was observed. Intrapulmonary shunt was approximately 20% of CO at each exercise step. Conclusions Although the study population was small, the combined non-invasive CO measurement seems a promising tool for deepening our knowledge of lung exercise haemodynamics in PH patients. This technique could be applied in future studies to evaluate PH treatment influences on CO partitioning, since a secondary increase of intrapulmonary shunt is undesirable.
Collapse
Affiliation(s)
| | | | | | - Pierantonio Laveneziana
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire APHP-Sorbonne Université, sites Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Boucly A, Gerges C, Savale L, Jaïs X, Jevnikar M, Montani D, Sitbon O, Humbert M. Pulmonary arterial hypertension. Presse Med 2023; 52:104168. [PMID: 37516248 DOI: 10.1016/j.lpm.2023.104168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease characterised by remodelling of the pulmonary arteries and progressive narrowing of the pulmonary vasculature. This leads to a progressive increase in pulmonary vascular resistance and pulmonary arterial pressure and, if left untreated, to right ventricular failure and death. A correct diagnosis requires a complete work-up including right heart catheterisation performed in a specialised centre. Although our knowledge of the epidemiology, pathology and pathophysiology of the disease, as well as the development of innovative therapies, has progressed in recent decades, PAH remains a serious clinical condition. Current treatments for the disease target the three specific pathways of endothelial dysfunction that characterise PAH: the endothelin, nitric oxide and prostacyclin pathways. The current treatment algorithm is based on the assessment of severity using a multiparametric risk stratification approach at the time of diagnosis (baseline) and at regular follow-up visits. It recommends the initiation of combination therapy in PAH patients without cardiopulmonary comorbidities. The choice of therapy (dual or triple) depends on the initial severity of the condition. The main treatment goal is to achieve low-risk status. Further escalation of treatment is required if low-risk status is not achieved at subsequent follow-up assessments. In the most severe patients, who are already on maximal medical therapy, lung transplantation may be indicated. Recent advances in understanding the pathophysiology of the disease have led to the development of promising emerging therapies targeting dysfunctional pathways beyond endothelial dysfunction, including the TGF-β and PDGF pathways.
Collapse
Affiliation(s)
- Athénaïs Boucly
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Christian Gerges
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Laurent Savale
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - Mitja Jevnikar
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| |
Collapse
|
34
|
Forbes LM, Bull TM, Lahm T, Make BJ, Cornwell WK. Exercise Testing in the Risk Assessment of Pulmonary Hypertension. Chest 2023; 164:736-746. [PMID: 37061028 PMCID: PMC10504600 DOI: 10.1016/j.chest.2023.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023] Open
Abstract
TOPIC IMPORTANCE Right ventricular dysfunction in pulmonary hypertension (PH) contributes to reduced exercise capacity, morbidity, and mortality. Exercise can unmask right ventricular dysfunction not apparent at rest, with negative implications for prognosis. REVIEW FINDINGS Among patients with pulmonary vascular disease, right ventricular afterload may increase during exercise out of proportion to increases observed among healthy individuals. Right ventricular contractility must increase to match the demands of increased afterload to maintain ventricular-arterial coupling (the relationship between contractility and afterload) and ultimately cardiac output. Impaired right ventricular contractile reserve leads to ventricular-arterial uncoupling, preventing cardiac output from increasing during exercise and limiting exercise capacity. Abnormal pulmonary vascular response to exercise can signify early pulmonary vascular disease and is associated with increased mortality. Impaired right ventricular contractile reserve similarly predicts poor outcomes, including reduced exercise capacity and death. Exercise provocation can be used to assess pulmonary vascular response to exercise and right ventricular contractile reserve. Noninvasive techniques (including cardiopulmonary exercise testing, transthoracic echocardiography, and cardiac MRI) as well as invasive techniques (including right heart catheterization and pressure-volume analysis) may be applied selectively to the screening, diagnosis, and risk stratification of patients with suspected or established PH. Further research is required to determine the role of exercise stress testing in the management of pulmonary vascular disease. SUMMARY This review describes the current understanding of clinical applications of exercise testing in the risk assessment of patients with suspected or established PH.
Collapse
Affiliation(s)
- Lindsay M Forbes
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Todd M Bull
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Rocky Mountain Regional VA Medical Center, Aurora, Colorado; Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
| | - Barry J Make
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
| | - William K Cornwell
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
35
|
Pezzuto B, Agostoni P. The Current Role of Cardiopulmonary Exercise Test in the Diagnosis and Management of Pulmonary Hypertension. J Clin Med 2023; 12:5465. [PMID: 37685532 PMCID: PMC10487723 DOI: 10.3390/jcm12175465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a poor prognosis if left untreated. Despite remarkable achievements in understanding disease pathophysiology, specific treatments, and therapeutic strategies, we are still far from a definitive cure for the disease, and numerous evidences have underlined the importance of early diagnosis and treatment to improve the prognosis. Cardiopulmonary exercise testing (CPET) is the gold standard for assessing functional capacity and evaluating the pathophysiological mechanisms underlying exercise limitation. As effort dyspnea is the earliest and one of the main clinical manifestations of PAH, CPET has been shown to provide valid support in early detection, differential diagnosis, and prognostic stratification of PAH patients, being a useful tool in both the first approach to patients and follow-up. The purpose of this review is to present the current applications of CPET in pulmonary hypertension and to propose possible future utilization to be further investigated.
Collapse
Affiliation(s)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
36
|
Velidakis N, Khattab E, Gkougkoudi E, Kadoglou NPE. Pulmonary Hypertension in Left Ventricular Valvular Diseases: A Comprehensive Review on Pathophysiology and Prognostic Value. Life (Basel) 2023; 13:1793. [PMID: 37763197 PMCID: PMC10532440 DOI: 10.3390/life13091793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Left ventricular (LV) valvular diseases, make up one of the most common etiologies for pulmonary hypertension (PH), and it is not well understood how and at which degree it affects prognosis. The aim of the present study was a comprehensive review of the pathophysiologic mechanism of PH in patients with LV valvular diseases and the prognostic value of baseline and post-intervention PH in patients undergoing interventional treatment. The pathophysiology of PH in patients with LV valvular diseases involves gradual elevation of left ventricular filling pressure and left atrial pressure, which are passively transmitted to the pulmonary circulation and raise pulmonary artery systolic pressure (PASP). A long-lasting exposure to elevated PASP progressively leads to initially functional and thereafter irreversible structural changes in the pulmonary vasculature, leading up to high pulmonary vascular resistance. Surgical treatment of severe LV valvular diseases is highly effective in patients without resting PH or those with exercise-induced PH (EIPH) before intervention. In the case of pre-operative PH, successful interventional therapy decreases PASP, but the post-operative cardiac and all-cause mortality remain higher compared to patients without pre-operative PH. Hence, it is of paramount importance to detect patients with severe LV valvulopathies before the development of PH, since they will get greater benefits from early intervention.
Collapse
Affiliation(s)
| | | | | | - Nikolaos P. E. Kadoglou
- Medical School, University of Cyprus, Palaios Dromos Lefkosias Lemesou No. 215/62029 Aglantzia, P.O. Box 20537 1678, Nicosia 2024, Cyprus
| |
Collapse
|
37
|
Dharmavaram N, Esmaeeli A, Jacobson K, Brailovsky Y, Raza F. Cardiopulmonary Exercise Testing, Rehabilitation, and Exercise Training in Postpulmonary Embolism. Interv Cardiol Clin 2023; 12:349-365. [PMID: 37290839 DOI: 10.1016/j.iccl.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Long-term exercise intolerance and functional limitations are common after an episode of acute pulmonary embolism (PE), despite 3 to 6 months of anticoagulation. These persistent symptoms are reported in more than half of the patients with acute PE and are referred as "post-PE syndrome." Although these functional limitations can occur from persistent pulmonary vascular occlusion or pulmonary vascular remodeling, significant deconditioning can be a major contributing factor. Herein, the authors review the role of exercise testing to elucidate the mechanisms of exercise limitations to guide next steps in management and exercise training for musculoskeletal deconditioning.
Collapse
Affiliation(s)
- Naga Dharmavaram
- Division of Cardiology, Department of Medicine, University of Wisconsin-Madison, Hospitals and Clinics, 600 Highland Avenue CSC-E5/582B, Madison, WI 53792, USA
| | - Amir Esmaeeli
- Division of Cardiology, Department of Medicine, University of Wisconsin-Madison, Hospitals and Clinics, 600 Highland Avenue CSC-E5/582B, Madison, WI 53792, USA
| | - Kurt Jacobson
- Division of Cardiology, Department of Medicine, University of Wisconsin-Madison, Hospitals and Clinics, 600 Highland Avenue CSC-E5/582B, Madison, WI 53792, USA
| | - Yevgeniy Brailovsky
- Division of Cardiology, Department of Medicine, Jefferson Heart Institute-Sidney Kimmel School of Medicine, Thomas Jefferson University, 111 South 11th Street, Philadelphia, PA 19107, USA
| | - Farhan Raza
- Division of Cardiology, Department of Medicine, University of Wisconsin-Madison, Hospitals and Clinics, 600 Highland Avenue CSC-E5/582B, Madison, WI 53792, USA.
| |
Collapse
|
38
|
Goda A, Yanagisawa Y, Takeuchi S, Takeuchi K, Kikuchi H, Inami T, Kohno T, Satoh T, Soejima K. Characteristics of cardiopulmonary exercise testing in patients with combined post- and pre-capillary pulmonary hypertension due to left heart disease. PLoS One 2023; 18:e0286057. [PMID: 37216326 DOI: 10.1371/journal.pone.0286057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common and morbid complication of left heart disease (LHD), comprising two subtypes: (1) isolated post-capillary pulmonary hypertension (Ipc-PH) and (2) combined post-capillary and pre-capillary pulmonary hypertension (Cpc-PH). Knowledge regarding the physiological characteristics that distinguish Cpc-PH, which has a worse prognosis, from Ipc-PH remains limited. Therefore, this study aimed to assess the utility of cardiopulmonary exercise testing (CPET) variables in detecting Cpc-PH. METHODS AND RESULTS Among 105 consecutive patients with LHD (age: 55 ± 13 years; male/female = 79/26) who underwent right heart catheterization and CPET, 45 (43%) were classified as PH-LHD (mean pulmonary artery pressure >20 mmHg). Ipc-PH (n = 24) was defined as pulmonary vascular resistance (PVR) ≤ 3 WU and Cpc-PH (n = 21) as PVR > 3 WU. Patients with Cpc-PH had a significantly lower peak partial pressure of carbon dioxide (PETCO2) (Non-PH/Ipc-PH/Cpc-PH = 38.2 ± 6.6 vs. 38.3 ± 6.0 vs 33.0 ± 4.4 mmHg, p = 0.006), higher VE vs. VCO2 slope (Non-PH/Ipc-PH/Cpc-PH = 33.0 [28.3, 36.6] vs. 32.5 [28.1, 37.8] vs. 40.6 [33.6, 46.1], p = 0.007), and lower ΔVO2/ΔWR (Non-PH/Ipc-PH/Cpc-PH = 8.5 ± 1.4 vs. 8.0 ± 1.7 vs. 6.8 ± 2.0 mL/min/watt, p = 0.001) than those with Ipc-PH and non-PH. Using multivariable logistic regression analysis, CPET variables were found to be independent predictors of Cpc-PH (lower peak PETCO2: odds ratio, 0.728 [95% confidence interval {CI}: 0.616-0.840], p = 0.003 and lower ΔVO2/ΔWR: odds ratio, 0.747 [95% CI: 0.575-0.872], p = 0.003). CONCLUSION From our exploratory analysis, CPET variables, especially in the lower peak PETCO2 and lower ΔVO2/ΔWR, were associated with Cpc-PH in patients with left heart disease.
Collapse
Affiliation(s)
- Ayumi Goda
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Yoshiaki Yanagisawa
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Shinsuke Takeuchi
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Kaori Takeuchi
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Hanako Kikuchi
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Takumi Inami
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Takashi Kohno
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Toru Satoh
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Kyoko Soejima
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| |
Collapse
|
39
|
Das BB. A Systematic Approach for the Interpretation of Cardiopulmonary Exercise Testing in Children with Focus on Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:178. [PMID: 37103057 PMCID: PMC10143216 DOI: 10.3390/jcdd10040178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Cardiopulmonary exercise testing (CPET) is the clinical standard for children with congenital heart disease (CHD), heart failure (HF) being assessed for transplantation candidacy, and subjects with unexplained dyspnea on exertion. Heart, lung, skeletal muscle, peripheral vasculature, and cellular metabolism impairment frequently lead to circulatory, ventilatory, and gas exchange abnormalities during exercise. An integrated analysis of the multi-system response to exercise can be beneficial for differential diagnosis of exercise intolerance. The CPET combines standard graded cardiovascular stress testing with simultaneous ventilatory respired gas analysis. This review addresses the interpretation and clinical significance of CPET results with specific reference to cardiovascular diseases. The diagnostic values of commonly obtained CPET variables are discussed using an easy-to-use algorithm for physicians and trained nonphysician personnel in clinical practice.
Collapse
Affiliation(s)
- Bibhuti B Das
- Division of Pediatric Cardiology, Department of Pediatrics, McLane Children's Baylor Scott and White Medical Center, Baylor College of Medicine-Temple, Temple, TX 76502, USA
| |
Collapse
|
40
|
Pepplinkhuizen S, Eshuis G, Zijlstra WMH, Timmer CY, Ploegstra MJ, Lelieveld OTHM, Hepping AM, Beenakker EAC, Berger RMF. Muscle strength is reduced in children with pulmonary arterial hypertension. Pulm Circ 2023; 13:e12246. [PMID: 37284521 PMCID: PMC10241349 DOI: 10.1002/pul2.12246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Muscle strength is decreased in adults with pulmonary arterial hypertension (PAH). We aim to investigate muscle strength in children with PAH in relation to a cohort of healthy children, and investigate correlations with disease severity markers. This prospective study included children with PAH aged 4-18 years, who visited the Dutch National Referral Center for Pulmonary Hypertension in Childhood between October 2015 and March 2016. Muscle strength was assessed using handgrip strength and maximum voluntary isometric contractility (MVIC) of four peripheral muscles. Dynamic muscle function was evaluated with the Bruininks-Oseretsky test of motor proficiency (BOT-2). These measurements were compared with those in two cohorts of healthy children and correlated with 6-minute walk distance (6MWD), World Health Organization functional class (WHO-FC), N-terminal pro-brain natriuretic peptide (NT-proBNP), and time since diagnosis. Eighteen children with PAH aged 14.0 [interquartile range: 9.9-16.0] years showed reduced muscle strength. Handgrip strength z-score -2.4 ± 1.2, p < 0.001, total MVIC z-score -2.9 ± 1.2, p < 0.001, and BOT-2 z-score -1.0 ± 0.9, p < 0.001. 6MWD (67 ± 11% predicted) correlated with most muscle measurements (r = 0.49-0.71, p = 0.001). Dynamic muscle function (BOT-2) differed between WHO-FC, whereas handgrip strength and MVIC did not. NT-proBNP and time since diagnosis did not show significant correlations with muscle strength measurements. Muscle strength was significantly reduced in children with PAH and correlated with 6MWD, but not with disease severity markers WHO-FC and NT-pro-BNP. The nature of this reduced muscle strength is yet unclear, but its occurrence in children with seemingly mild or well-controlled PAH supports the concept of PAH being a systemic syndrome involving peripheral skeletal muscles.
Collapse
Affiliation(s)
- Shari Pepplinkhuizen
- Department of Pediatric Cardiology, Center for Congenital Heart Disease, Beatrix Children's Hospital, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Graziella Eshuis
- Department of Pediatric Cardiology, Center for Congenital Heart Disease, Beatrix Children's Hospital, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Willemijn M. H. Zijlstra
- Department of Pediatric Cardiology, Center for Congenital Heart Disease, Beatrix Children's Hospital, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Carola Y. Timmer
- Department of Rehabilitation, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Mark Jan Ploegstra
- Department of Pediatric Cardiology, Center for Congenital Heart Disease, Beatrix Children's Hospital, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Otto T. H. M. Lelieveld
- Department of Rehabilitation, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Ann Marjolein Hepping
- Department of Orthopedics, University Medical Center GroningenUniversity of Groningen, GroningenThe Netherlands
- Roessingh Center for RehabilitationEnschedeThe Netherlands
| | | | - Rolf M. F. Berger
- Department of Pediatric Cardiology, Center for Congenital Heart Disease, Beatrix Children's Hospital, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
41
|
Characteristics of exercise intolerance in different subgroups of pulmonary arterial hypertension associated with congenital heart disease. Int J Cardiol 2023; 375:29-35. [PMID: 36565957 DOI: 10.1016/j.ijcard.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Exercise intolerance is a major manifestation of pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD). We aimed to investigate the characteristics of exercise intolerance in different subgroups of PAH-CHD. METHODS We retrospectively enrolled 171 adult patients with PAH-CHD and 30 age and sex-matched healthy subjects and performed cardiopulmonary exercise testing. Gas exchange parameters, including peak oxygen uptake (peak V̇o2), anaerobic threshold, and the slope of ventilatory equivalent for carbon dioxide (V̇e/V̇co2 slope), were recorded. RESULTS The median age of patients at enrollment was 27.8 years, and 131 (76.6%) were female. Peak V̇o2 was reduced in patients compared to healthy controls (median, 14.8 ml/kg/min versus 26.9 ml/kg/min, p < 0.001). Of all 171 patients, 60 (35.1%) had Eisenmenger syndrome, 35 (20.5%) had PAH associated with systemic-to-pulmonary shunts (PAH-SP), 39 (22.8%) had PAH with small defects (PAH-SD), and 37 (21.6%) had PAH after cardiac defect correction (PAH-CD). Patients with Eisenmenger syndrome had the lowest peak V̇o2 (p = 0.003) and the highest V̇e/V̇co2 slope (p = 0.012), compared with other patients, representing the worst exercise capacity and ventilatory efficiency. Patients with PAH-SP had the best exercise capacity among the four groups, indicated by the highest peak V̇o2 (p = 0.003) compared with other patients. Peak V̇o2 was negatively correlated with pulmonary vascular resistance (r = -0.411, p < 0.001). CONCLUSIONS Exercise capacity was severely reduced in patients with PAH-CHD. Among the four subgroups, patients with Eisenmenger syndrome had the worst exercise capacity and ventilatory efficiency.
Collapse
|
42
|
Han SW, Puelz C, Rusin CG, Penny DJ, Coleman R, Peskin CS. Computer simulation of surgical interventions for the treatment of refractory pulmonary hypertension. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:1-23. [PMID: 35984836 DOI: 10.1093/imammb/dqac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022]
Abstract
This paper describes computer models of three interventions used for treating refractory pulmonary hypertension (RPH). These procedures create either an atrial septal defect, a ventricular septal defect or, in the case of a Potts shunt, a patent ductus arteriosus. The aim in all three cases is to generate a right-to-left shunt, allowing for either pressure or volume unloading of the right side of the heart in the setting of right ventricular failure, while maintaining cardiac output. These shunts are created, however, at the expense of introducing de-oxygenated blood into the systemic circulation, thereby lowering the systemic arterial oxygen saturation. The models developed in this paper are based on compartmental descriptions of human hemodynamics and oxygen transport. An important parameter included in our models is the cross-sectional area of the surgically created defect. Numerical simulations are performed to compare different interventions and various shunt sizes and to assess their impact on hemodynamic variables and oxygen saturations. We also create a model for exercise and use it to study exercise tolerance in simulated pre-intervention and post-intervention RPH patients.
Collapse
Affiliation(s)
- Seong Woo Han
- Courant Institute of Mathematical Sciences, New York University
- Department of Computer and Information Science, University of Pennsylvania
| | - Charles Puelz
- Courant Institute of Mathematical Sciences, New York University
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine and Texas Children's Hospital
| | - Craig G Rusin
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine and Texas Children's Hospital
| | - Daniel J Penny
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine and Texas Children's Hospital
| | - Ryan Coleman
- Department of Pediatrics, Division of Critical Care Medicine, Baylor College of Medicine and Texas Children's Hospital
| | | |
Collapse
|
43
|
Donnelly RP, Smyth AE, Mullan C, Riley MS, Nicholls DP. Responses to exercise in systemic sclerosis-associated interstitial lung disease. Clin Physiol Funct Imaging 2023. [PMID: 36660849 DOI: 10.1111/cpf.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Pulmonary complications in systemic sclerosis (SSc) significantly increase morbidity and mortality. Our aim was to determine the factors limiting exercise capacity in SSc patients with and without interstitial lung disease (ILD), and to identify and quantify abnormalities during exercise that might assist in clinical assessment of this complication. METHODS Fifteen patients with SSc and ILD (SSc-ILD) were compared with 10 patients with SSc without ILD and 9 age- and sex-matched normal volunteers. Subjects performed symptom-limited incremental treadmill exercise with online measurement of respiratory gas exchange, arterial blood gas sampling and measurement of neurohormones in venous blood. RESULTS Patients with SSc-ILD had lower exercise capacity than SSc patients without ILD or normal subjects (peak oxygen consumption (PV̇O2 ) (17.1 [4.2] vs. 22.0 [4.7] and 23.0 [5.4] ml kg-1 min-1 , respectively, mean [SD], p < 0.01 ANOVA), but PV̇O2 did not correlate with static pulmonary function measurements. Ventilatory equivalent for CO2 (V̇E/V̇CO2 ; nadir) was higher in SSc-ILD patients than the other two groups (36.6 [8.0] vs. 29.9 [4.4] and 30.0 [2.5], p < 0.005) as were peak exercise dead-space tidal volume ratio (0.44 [0.06] vs. 0.26 [0.09] and 0.26 [0.05], p < 0.001) and peak exercise alveolar-arterial difference (28.9 [16.9] vs. 18.8 [14.0] and 11.5 [6.9] mmHg, p < 0.05). Atrial natriuretic peptide was elevated in both SSc patient groups. CONCLUSIONS SSc-ILD results in lower exercise capacity than SSc without ILD, and abnormalities of gas exchange are seen. The possible use of cardiopulmonary exercise testing to identify disease and quantify impairment in SSc-ILD merits further study.
Collapse
Affiliation(s)
| | - Anita E Smyth
- Department of Rheumatology, Ulster Hospital, Dundonald, Northern Ireland
| | | | | | | |
Collapse
|
44
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2023; 61:2200879. [PMID: 36028254 DOI: 10.1183/13993003.00879-2022] [Citation(s) in RCA: 775] [Impact Index Per Article: 387.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France, Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gabor Kovacs
- University Clinic of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Marius M Hoeper
- Respiratory Medicine, Hannover Medical School, Hanover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), member of the German Centre of Lung Research (DZL), Hanover, Germany
| | - Roberto Badagliacca
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Roma, Italy
- Dipartimento Cardio-Toraco-Vascolare e Chirurgia dei Trapianti d'Organo, Policlinico Umberto I, Roma, Italy
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Beatrix Children's Hospital, Dept of Paediatric Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Margarita Brida
- Department of Sports and Rehabilitation Medicine, Medical Faculty University of Rijeka, Rijeka, Croatia
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton and Harefield Hospitals, Guys and St Thomas's NHS Trust, London, UK
| | - Jørn Carlsen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J S Coats
- Faculty of Medicine, University of Warwick, Coventry, UK
- Faculty of Medicine, Monash University, Melbourne, Australia
| | - Pilar Escribano-Subias
- Pulmonary Hypertension Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBER-CV (Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pisana Ferrari
- ESC Patient Forum, Sophia Antipolis, France
- AIPI, Associazione Italiana Ipertensione Polmonare, Bologna, Italy
| | - Diogenes S Ferreira
- Alergia e Imunologia, Hospital de Clinicas, Universidade Federal do Parana, Curitiba, Brazil
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
- Department of Pneumology, Kerckhoff Klinik, Bad Nauheim, Germany
- Department of Medicine, Imperial College London, London, UK
| | - George Giannakoulas
- Cardiology Department, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Eckhard Mayer
- Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Gergely Meszaros
- ESC Patient Forum, Sophia Antipolis, France
- European Lung Foundation (ELF), Sheffield, UK
| | - Blin Nagavci
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Karen M Olsson
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Hannover, Germany
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Diseases Unit, Royal Papworth Hospital, Cambridge, UK
| | | | - Göran Rådegran
- Department of Cardiology, Clinical Sciences Lund, Faculty of Medicine, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Gerald Simonneau
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Centre de Référence de l'Hypertension Pulmonaire, Hopital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Olivier Sitbon
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Mark Toshner
- Dept of Medicine, Heart Lung Research Institute, University of Cambridge, Royal Papworth NHS Trust, Cambridge, UK
| | - Jean-Luc Vachiery
- Department of Cardiology, Pulmonary Vascular Diseases and Heart Failure Clinic, HUB Hôpital Erasme, Brussels, Belgium
| | | | - Marion Delcroix
- Clinical Department of Respiratory Diseases, Centre of Pulmonary Vascular Diseases, University Hospitals of Leuven, Leuven, Belgium
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Department of Cardiology, Pulmonology and Intensive Care Medicine), and Cologne Cardiovascular Research Center (CCRC), Heart Center at the University Hospital Cologne, Köln, Germany
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| |
Collapse
|
45
|
Cardiopulmonary Exercise Testing in Pulmonary Arterial Hypertension. Heart Fail Clin 2023; 19:35-43. [DOI: 10.1016/j.hfc.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Neder JA, Phillips DB, O'Donnell DE, Dempsey JA. Excess ventilation and exertional dyspnoea in heart failure and pulmonary hypertension. Eur Respir J 2022; 60:13993003.00144-2022. [PMID: 35618273 DOI: 10.1183/13993003.00144-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Increased ventilation relative to metabolic demands, indicating alveolar hyperventilation and/or increased physiological dead space (excess ventilation), is a key cause of exertional dyspnoea. Excess ventilation has assumed a prominent role in the functional assessment of patients with heart failure (HF) with reduced (HFrEF) or preserved (HFpEF) ejection fraction, pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). We herein provide the key pieces of information to the caring physician to 1) gain unique insights into the seeds of patients' shortness of breath and 2) develop a rationale for therapeutically lessening excess ventilation to mitigate this distressing symptom. Reduced bulk oxygen transfer induced by cardiac output limitation and/or right ventricle-pulmonary arterial uncoupling increase neurochemical afferent stimulation and (largely chemo-) receptor sensitivity, leading to alveolar hyperventilation in HFrEF, PAH and small-vessel, distal CTEPH. As such, interventions geared to improve central haemodynamics and/or reduce chemosensitivity have been particularly effective in lessening their excess ventilation. In contrast, 1) high filling pressures in HFpEF and 2) impaired lung perfusion leading to ventilation/perfusion mismatch in proximal CTEPH conspire to increase physiological dead space. Accordingly, 1) decreasing pulmonary capillary pressures and 2) mechanically unclogging larger pulmonary vessels (pulmonary endarterectomy and balloon pulmonary angioplasty) have been associated with larger decrements in excess ventilation. Exercise training has a strong beneficial effect across diseases. Addressing some major unanswered questions on the link of excess ventilation with exertional dyspnoea under the modulating influence of pharmacological and nonpharmacological interventions might prove instrumental to alleviate the devastating consequences of these prevalent diseases.
Collapse
Affiliation(s)
- J Alberto Neder
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Devin B Phillips
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Denis E O'Donnell
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Dept of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
47
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; 43:3618-3731. [PMID: 36017548 DOI: 10.1093/eurheartj/ehac237] [Citation(s) in RCA: 1668] [Impact Index Per Article: 556.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
48
|
Long GM, Troutman AD, Gray DA, Fisher AJ, Lahm T, Coggan AR, Brown MB. Skeletal muscle blood flow during exercise is reduced in a rat model of pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 2022; 323:R561-R570. [PMID: 36036455 PMCID: PMC9602702 DOI: 10.1152/ajpregu.00327.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min-1·kg-1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON (P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles (r = -0.58 to -0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.
Collapse
Affiliation(s)
- Gary Marshall Long
- Department of Kinesiology, University of Indianapolis, Indianapolis, Indiana
| | - Ashley D Troutman
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Derrick A Gray
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Amanda J Fisher
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Tim Lahm
- Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Indiana University, Indianapolis, Indiana
- Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, Indiana
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Mary Beth Brown
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
49
|
Muacevic A, Adler JR. Comprehensive Review of Pulmonary Hypertension and Treatment Options in the Paediatric Population. Cureus 2022; 14:e30622. [PMID: 36426339 PMCID: PMC9681719 DOI: 10.7759/cureus.30622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/23/2022] [Indexed: 01/25/2023] Open
Abstract
Pulmonary hypertension (PH) is a complex condition that can occur as a result of a wide range of disorders, including left heart disease, lung disease, and chronic pulmonary thromboembolism. Multiple improvements have been made in the diagnosis and treatment of pulmonary arterial hypertension (PAH) including a greater understanding of the involvement of extrapulmonary vascular organ systems, validated point of care, clinical assessment tools, and a focus on the initial exposure of numerous pharmacotherapeutics in the appropriate level of care. To achieve a minimal symptom burden, improve the patient's biochemical, hemodynamic, and functional profile, and reduce adverse impact, early diagnosis of PAH is a key objective today. The preferred method of management for thromboembolic PH, which is chronic, is pulmonary endarterectomy since the majority of affected patients are operable. The timing of pulmonary endarterectomy should never be delayed for medical reasons, and risk stratification can enable us to select patients who have a high chance of success. Patients who are not qualified for endarterectomy should be referred for drug trials. Even though there are more effective ways to guarantee a sufficient, long-lasting septostomy, atrial septostomy is promising but undervalued. The procedure's indications remain the same and need to be taken into account more frequently. Class III or IV patients who are not improving need to be consulted at a transplant centre as soon as possible as they may be candidates for potential recipients of bilateral sequential lung or heart-lung transplants, which is a significant choice for some people. PH is rarely linked to other conditions like connective tissue or thromboembolic disease. It is either idiopathic or linked to congenital heart disease. Infants and children with PH are more frequently recognised in conjunction with a congenital diaphragmatic hernia and developmental lung diseases like bronchopulmonary dysplasia. Although the underlying disease has not yet been treated and advanced structural changes have not yet been reversed, the value of natural life and survival have suggestively increased. Children's haemodynamic and functional outcomes have improved as a result of endothelin receptor antagonists, prostacyclin analogues, and phosphodiesterase type 5 inhibitors, which are examples of targeted pulmonary vasodilator therapies. The health maintenance of paediatric PH is still difficult because treatment decisions are largely based on the findings of adult studies that have been supported by evidence and the clinical expertise of paediatric specialists.
Collapse
|
50
|
Agboola KM, Kowlgi GN, Csecs I, DuBrock HM, Cajigas HR, Allison TG. Bezold-Jarisch reflex mediated syncope in pulmonary arterial hypertension: An illustrative case series. Pulm Circ 2022; 12:e12147. [PMID: 36325510 PMCID: PMC9618286 DOI: 10.1002/pul2.12147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
We present a novel description of Bezold-Jarisch Reflex (BJR) during cardiopulmonary exercise testing (CPET) in three young female patients with Group 1 pulmonary arterial hypertension (PAH). These three cases presented within 26 months, representing only 0.8% of 11,387 tests on patients with PAH undergoing CPET during this time frame.
Collapse
Affiliation(s)
- Kolade M. Agboola
- Department of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Ibolya Csecs
- Department of MedicineJacobi Medical Center, Albert Einstein College of MedicineNew YorkNew YorkUSA
| | - Hilary M. DuBrock
- Department of Internal Medicine, Division of Pulmonary and Critical Care MedicineMayo ClinicRochesterMinnesotaUSA
| | - Hector R. Cajigas
- Department of Internal Medicine, Division of Pulmonary and Critical Care MedicineMayo ClinicRochesterMinnesotaUSA
| | - Thomas G. Allison
- Department of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Pediatric and Adolescent Medicine, Division of Pediatric CardiologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|