1
|
Acharya KR, Gregory KS, Sturrock ED. Advances in the structural basis for angiotensin-1 converting enzyme (ACE) inhibitors. Biosci Rep 2024; 44:BSR20240130. [PMID: 39046229 DOI: 10.1042/bsr20240130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024] Open
Abstract
Human somatic angiotensin-converting enzyme (ACE) is a key zinc metallopeptidase that plays a pivotal role in the renin-angiotensin-aldosterone system (RAAS) by regulating blood pressure and electrolyte balance. Inhibition of ACE is a cornerstone in the management of hypertension, cardiovascular diseases, and renal disorders. Recent advances in structural biology techniques have provided invaluable insights into the molecular mechanisms underlying ACE inhibition, facilitating the design and development of more effective therapeutic agents. This review focuses on the latest advancements in elucidating the structural basis for ACE inhibition. High-resolution crystallographic studies of minimally glycosylated individual domains of ACE have revealed intricate molecular details of the ACE catalytic N- and C-domains, and their detailed interactions with clinically relevant and newly designed domain-specific inhibitors. In addition, the recently elucidated structure of the glycosylated form of full-length ACE by cryo-electron microscopy (cryo-EM) has shed light on the mechanism of ACE dimerization and revealed continuous conformational changes which occur prior to ligand binding. In addition to these experimental techniques, computational approaches have also played a pivotal role in elucidating the structural basis for ACE inhibition. Molecular dynamics simulations and computational docking studies have provided atomic details of inhibitor binding kinetics and energetics, facilitating the rational design of novel ACE inhibitors with improved potency and selectivity. Furthermore, computational analysis of the motions observed by cryo-EM allowed the identification of allosteric binding sites on ACE. This affords new opportunities for the development of next-generation allosteric inhibitors with enhanced pharmacological properties. Overall, the insights highlighted in this review could enable the rational design of novel ACE inhibitors with improved efficacy and safety profiles, ultimately leading to better therapeutic outcomes for patients with hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- K Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Kyle S Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, Republic of South Africa
| |
Collapse
|
2
|
Fadaly WAA, Elshaier YAMM, Ali FEM, El-Bahrawy AH, Abdellatif KRA, Nemr MTM. Vicinal diaryl pyrazole with tetrazole/urea scaffolds as selective angiotensin converting enzyme-1/cyclooxygenase-2 inhibitors: Design, synthesis, anti-hypertensive, anti-fibrotic, and anti-inflammatory. Drug Dev Res 2024; 85:e22217. [PMID: 38845214 DOI: 10.1002/ddr.22217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
As a hybrid weapon, two novel series of pyrazoles, 16a-f and 17a-f, targeting both COX-2 and ACE-1-N-domain, were created and their anti-inflammatory, anti-hypertensive, and anti-fibrotic properties were evaluated. In vitro, 17b and 17f showed COX-2 selectivity (SI = 534.22 and 491.90, respectively) compared to celecoxib (SI = 326.66) and NF-κB (IC50 1.87 and 2.03 μM, respectively). 17b (IC50 0.078 μM) and 17 f (IC50 0.094 μM) inhibited ACE-1 comparable to perindopril (PER) (IC50 0.048 μM). In vivo, 17b decreased systolic blood pressure by 18.6%, 17b and 17f increased serum NO levels by 345.8%, and 183.2%, respectively, increased eNOS expression by 0.97 and 0.52 folds, respectively and reduced NF-κB-p65 and P38-MAPK expression by -0.62, -0.22, -0.53, and -0.24 folds, respectively compared to l-NAME (-0.34, -0.45 folds decline in NF-κB-p65 and P38-MAPK, respectively). 17b reduced ANG-II expression which significantly reversed the cardiac histological changes induced by L-NAME.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yaseen A M M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ali H El-Bahrawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Bernstein KE, Cao D, Shibata T, Saito S, Bernstein EA, Nishi E, Yamashita M, Tourtellotte WG, Zhao TV, Khan Z. Classical and nonclassical effects of angiotensin-converting enzyme: How increased ACE enhances myeloid immune function. J Biol Chem 2024; 300:107388. [PMID: 38763333 PMCID: PMC11208953 DOI: 10.1016/j.jbc.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erika Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tuantuan V Zhao
- Research Oncology, Gilead Sciences, Foster City, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Institute for Myeloma & Bone Cancer Research, West Hollywood, California, USA
| |
Collapse
|
4
|
Shibata T, Bhat SA, Cao D, Saito S, Bernstein EA, Nishi E, Medenilla JD, Wang ET, Chan JL, Pisarska MD, Tourtellotte WG, Giani JF, Bernstein KE, Khan Z. Testicular ACE regulates sperm metabolism and fertilization through the transcription factor PPARγ. J Biol Chem 2024; 300:105486. [PMID: 37992807 PMCID: PMC10788540 DOI: 10.1016/j.jbc.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Testis angiotensin-converting enzyme (tACE) plays a critical role in male fertility, but the mechanism is unknown. By using ACE C-domain KO (CKO) mice which lack tACE activity, we found that ATP in CKO sperm was 9.4-fold lower than WT sperm. Similarly, an ACE inhibitor (ACEi) reduced ATP production in mouse sperm by 72%. Metabolic profiling showed that tACE inactivation severely affects oxidative metabolism with decreases in several Krebs cycle intermediates including citric acid, cis-aconitic acid, NAD, α-ketoglutaric acid, succinate, and L-malic acid. We found that sperms lacking tACE activity displayed lower levels of oxidative enzymes (CISY, ODO1, MDHM, QCR2, SDHA, FUMH, CPT2, and ATPA) leading to a decreased mitochondrial respiration rate. The reduced energy production in CKO sperms leads to defects in their physiological functions including motility, acrosine activity, and fertilization in vitro and in vivo. Male mice treated with ACEi show severe impairment in reproductive capacity when mated with female mice. In contrast, an angiotensin II receptor blocker (ARB) had no effect. CKO sperms express significantly less peroxisome proliferators-activated receptor gamma (PPARγ) transcription factor, and its blockade eliminates the functional differences between CKO and WT sperms, indicating PPARγ might mediate the effects of tACE on sperm metabolism. Finally, in a cohort of human volunteers, in vitro treatment with the ramipril or a PPARγ inhibitor reduced ATP production in human sperm and hence its motility and acrosine activity. These findings may have clinical significance since millions of people take ACEi daily, including men who are reproductively active.
Collapse
Affiliation(s)
- Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shabir A Bhat
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erika Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Juliet D Medenilla
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jessica L Chan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Margareta D Pisarska
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jorge F Giani
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
5
|
Lima H, Zheng J, Wong D, Waserman S, Sussman GL. Pathophysiology of bradykinin and histamine mediated angioedema. FRONTIERS IN ALLERGY 2023; 4:1263432. [PMID: 37920409 PMCID: PMC10619149 DOI: 10.3389/falgy.2023.1263432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Angioedema is characterized by swelling localized to the subcutaneous and submucosal tissues. This review provides an overview of angioedema, including the different types, triggers, and underlying pathophysiologic mechanisms. Hereditary and acquired angioedema are caused by dysregulation of the complement and kinin pathways. In contrast, drug-induced and allergic angioedema involve the activation of the immune system and release of vasoactive mediators. Recent advances in the understanding of the pathophysiology of angioedema have led to the development of targeted therapies, such as monoclonal antibodies, bradykinin receptor antagonists, and complement inhibitors, which promise to improve clinical outcomes in patients with this challenging condition. To accurately diagnose and manage angioedema, an understanding of this condition's complex and varied pathophysiology is both necessary and critical.
Collapse
Affiliation(s)
- Hermenio Lima
- LEADER Research Inc., Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Dennis Wong
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Susan Waserman
- Division of Clinical Immunology and Allergy, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Gordon L. Sussman
- Department of Medicine and Division of Clinical Immunology & Allergy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Teixeira CSS, Villa C, Sousa SF, Costa J, Ferreira IMPLVO, Mafra I. An in silico approach to unveil peptides from Acheta domesticus with potential bioactivity against hypertension, diabetes, cardiac and pulmonary fibrosis. Food Res Int 2023; 169:112847. [PMID: 37254421 DOI: 10.1016/j.foodres.2023.112847] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Entomophagy is a sustainable alternative source of proteins for human nutrition. Acheta domesticus is one of the three insect species that complies with the European Union Regulation on novel foods, but to date, there are no reports on their potential bioactive peptides. In this study, an in silico approach was applied to simulate the gastrointestinal (GI) digestion of six A. domesticus proteins and identify new peptides with potential anti-hypertensive and/or anti-diabetic properties, resulting from their capability to inhibit the somatic Angiotensin-I converting enzyme (sACE) and/or dipeptidyl peptidase 4 (DPP-4), respectively. A molecular docking protocol was applied to evaluate the binding interactions between the 43 peptides ranked with high probability of being bioactive and three drug targets: DPP-4 and two catalytic domains (N- and C-) of sACE. Five peptides (AVQPCF, CAIAW, IIIGW, DATW and QIVW) showed high docking scores for both enzymes, suggesting their potential to inhibit the DPP-4 and both catalytic domains of sACE, thus possessing multifunctional bioactive properties. Two peptides (PIVCF and DVW) showed higher docking scores for the N-domain of sACE, indicating a potential action as selective inhibitors and consequently with anti-cardiac and pulmonary fibrosis bioactivities. This is the first study identifying peptides originated from the simulated GI digestion of A. domesticus with potential activities against hypertension, diabetes, cardiac and pulmonary fibrosis.
Collapse
Affiliation(s)
- Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sérgio F Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel M P L V O Ferreira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Suhail H, Peng H, Xu J, Sabbah HN, Matrougui K, Liao TD, Ortiz PA, Bernstein KE, Rhaleb NE. Knockout of ACE-N facilitates improved cardiac function after myocardial infarction. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 3:100024. [PMID: 36778784 PMCID: PMC9910327 DOI: 10.1016/j.jmccpl.2022.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiotensin-converting enzyme (ACE) hydrolyzes N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) into inactive fragments through its N-terminal site (ACE-N). We previously showed that Ac-SDKP mediates ACE inhibitors' cardiac effects. Whether increased bioavailability of endogenous Ac-SDKP caused by knocking out ACE-N also improves cardiac function in myocardial infarction (MI)-induced heart failure (HF) is unknown. Wild-type (WT) and ACE-N knockout (ACE-NKO) mice were subjected to MI by ligating the left anterior descending artery and treated with vehicle or Ac-SDKP (1.6 mg/kg/day, s.c.) for 5 weeks, after which echocardiography was performed and left ventricles (LV) were harvested for histology and molecular biology studies. ACE-NKO mice showed increased plasma Ac-SDKP concentrations in both sham and MI group compared to WT. Exogenous Ac-SDKP further increased its circulating concentrations in WT and ACE-NKO. Shortening (SF) and ejection (EF) fractions were significantly decreased in both WT and ACE-NKO mice post-MI, but ACE-NKO mice exhibited significantly lesser decrease. Exogenous Ac-SDKP ameliorated cardiac function post-MI only in WT but failed to show any additive improvement in ACE-NKO mice. Sarcoendoplasmic reticulum calcium transport ATPase (SERCA2), a marker of cardiac function and calcium homeostasis, was significantly decreased in WT post-MI but rescued with Ac-SDKP, whereas ACE-NKO mice displayed less loss of SERCA2 expression. Our study demonstrates that gene deletion of ACE-N resulted in improved LV cardiac function in mice post-MI, which is likely mediated by increased circulating Ac-SDKP and minimally reduced expression of SERCA2. Thus, future development of specific and selective inhibitors for ACE-N could represent a novel approach to increase endogenous Ac-SDKP toward protecting the heart from post-MI remodeling.
Collapse
Affiliation(s)
- Hamid Suhail
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Hongmei Peng
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Jiang Xu
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Hani N. Sabbah
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Khalid Matrougui
- Department of Physiology Sciences, Eastern Virginia
Medical School, Norfolk, VA 23501, USA
| | - Tang-Dong Liao
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Pablo A. Ortiz
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| |
Collapse
|
8
|
Diabetes Mellitus and the Kidneys. Vet Clin North Am Small Anim Pract 2023; 53:565-580. [PMID: 36854633 DOI: 10.1016/j.cvsm.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The pathomechanisms implicated in diabetic kidney disease in people are present in dogs and cats and, in theory, could lead to renal complications in companion animals with long-standing diabetes mellitus. However, these renal complications develop during a long period, and there is little to no clinical evidence that they could lead to chronic kidney disease in companion animals.
Collapse
|
9
|
Gao Y, Sun Y, Islam S, Nakamura T, Tomita T, Zou K, Michikawa M. Presenilin 1 deficiency impairs Aβ42-to-Aβ40- and angiotensin-converting activities of ACE. Front Aging Neurosci 2023; 15:1098034. [PMID: 36875692 PMCID: PMC9981673 DOI: 10.3389/fnagi.2023.1098034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is associated with amyloid β-protein 1-42 (Aβ42) accumulation in the brain. Aβ42 and Aβ40 are the major two species generated from amyloid precursor protein. We found that angiotensin-converting enzyme (ACE) converts neurotoxic Aβ42 to neuroprotective Aβ40 in an ACE domain- and glycosylation-dependent manner. Presenilin 1 (PS1) mutations account for most of cases of familial AD and lead to an increased Aβ42/40 ratio. However, the mechanism by which PSEN1 mutations induce a higher Aβ42/40 ratio is unclear. Methods We over expressed human ACE in mouse wild-type and PS1-deficient fibroblasts. The purified ACE protein was used to analysis the Aβ42-to-Aβ40- and angiotensin-converting activities. The distribution of ACE was determined by Immunofluorescence staining. Result We found that ACE purified from PS1-deficient fibroblasts exhibited altered glycosylation and significantly reduced Aβ42-to-Aβ40- and angiotensin-converting activities compared with ACE from wild-type fibroblasts. Overexpression of wild-type PS1 in PS1-deficient fibroblasts restored the Aβ42-to-Aβ40- and angiotensin-converting activities of ACE. Interestingly, PS1 mutants completely restored the angiotensin-converting activity in PS1-deficient fibroblasts, but some PS1 mutants did not restore the Aβ42-to-Aβ40-converting activity. We also found that the glycosylation of ACE in adult mouse brain differed from that of embryonic brain and that the Aβ42-to-Aβ40-converting activity in adult mouse brain was lower than that in embryonic brain. Conclusion PS1 deficiency altered ACE glycosylation and impaired its Aβ42-to-Aβ40- and angiotensin-converting activities. Our findings suggest that PS1 deficiency and PSEN1 mutations increase the Aβ42/40 ratio by reducing the Aβ42-to-Aβ40-converting activity of ACE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo, Japan
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
10
|
Peptide inhibitors of angiotensin-I converting enzyme based on angiotensin (1–7) with selectivity for the C-terminal domain. Bioorg Chem 2022; 129:106204. [DOI: 10.1016/j.bioorg.2022.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
|
11
|
Cozier GE, Newby EC, Schwager SLU, Isaac RE, Sturrock ED, Acharya KR. Structural basis for the inhibition of human angiotensin-1 converting enzyme by fosinoprilat. FEBS J 2022; 289:6659-6671. [PMID: 35653492 PMCID: PMC9796954 DOI: 10.1111/febs.16543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Human angiotensin I-converting enzyme (ACE) has two isoforms, somatic ACE (sACE) and testis ACE (tACE). The functions of sACE are widespread, with its involvement in blood pressure regulation most extensively studied. sACE is composed of an N-domain (nACE) and a C-domain (cACE), both catalytically active but have significant structural differences, resulting in different substrate specificities. Even though ACE inhibitors are used clinically, they need much improvement because of serious side effects seen in patients (~ 25-30%) with long-term treatment due to nonselective inhibition of nACE and cACE. Investigation into the distinguishing structural features of each domain is therefore of vital importance for the development of domain-specific inhibitors with minimal side effects. Here, we report kinetic data and high-resolution crystal structures of both nACE (1.75 Å) and cACE (1.85 Å) in complex with fosinoprilat, a clinically used inhibitor. These structures allowed detailed analysis of the molecular features conferring domain selectivity by fosinoprilat. Particularly, altered hydrophobic interactions were observed to be a contributing factor. These experimental data contribute to improved understanding of the structural features that dictate ACE inhibitor domain selectivity, allowing further progress towards designing novel 2nd-generation domain-specific potent ACE inhibitors suitable for clinical administration, with a variety of potential future therapeutic benefits. DATABASE: The atomic coordinates and structure factors for nACE-fosinoprilat and cACE-fosinoprilat structures have been deposited with codes 7Z6Z and 7Z70, respectively, in the RCSB Protein Data Bank, www.pdb.org.
Collapse
Affiliation(s)
| | - Emma C. Newby
- Department of Biology and BiochemistryUniversity of BathUK
| | - Sylva L. U. Schwager
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | |
Collapse
|
12
|
Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, Liao W, Li J, Ren C. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Front Pharmacol 2022; 13:968104. [PMID: 36386190 PMCID: PMC9664202 DOI: 10.3389/fphar.2022.968104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
Angiotensin-converting enzyme (ACE), a zinc metalloprotein, is a central component of the renin-angiotensin system (RAS). It degrades bradykinin and other vasoactive peptides. Angiotensin-converting-enzyme inhibitors (ACE inhibitors, ACEIs) decrease the formation of angiotensin II and increase the level of bradykinin, thus relaxing blood vessels as well as reducing blood volume, lowering blood pressure and reducing oxygen consumption by the heart, which can be used to prevent and treat cardiovascular diseases and kidney diseases. Nevertheless, ACEIs are associated with a range of adverse effects such as renal insufficiency, which limits their use. In recent years, researchers have attempted to reduce the adverse effects of ACEIs by improving the selectivity of ACEIs for structural domains based on conformational relationships, and have developed a series of novel ACEIs. In this review, we have summarized the research advances of ACE inhibitors, focusing on the development sources, design strategies and analysis of structure-activity relationships and the biological activities of ACE inhibitors.
Collapse
Affiliation(s)
- Wenyue Zheng
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pei Yang
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
13
|
Cordyceps militaris Inhibited Angiotensin-Converting Enzyme through Molecular Interaction between Cordycepin and ACE C-Domain. Life (Basel) 2022; 12:life12091450. [PMID: 36143487 PMCID: PMC9505812 DOI: 10.3390/life12091450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most important therapeutic modalities for the management of hypertension is the inhibition of the angiotensin-converting enzyme (ACE). Cordyceps militaris has received substantial attention because to its therapeutic potential and biological value. To gather information about the antihypertensive properties of C. militaris, the ACE inhibitory activity was evaluated. An ethanolic extract of the fruiting body of C. militaris was obtained, and the extract was separated by UHPLC method with a fluorescence detector for the quantification of cordycepin and adenosine. The ethanolic extract had a considerably higher cordycepin level. Additionally, an in vitro kinetic analysis was carried out to find out how much C. militaris extract inhibited ACE. This extract exhibited non-competitive inhibition on ACE. The Ki value of the C. militaris extract against ACE was found to be 8.7 µg/mL. To the best of our knowledge, this is the first report of the analysis of a protein cavity together with molecular docking carried out to comprehend the intermolecular interactions between cordycepin and the ACE C-domain, which impact the spatial conformation of the enzyme and reduce its capacity to break down the substrate. According to a molecular docking, hydrogen bonding interactions between the chemicals and the ACE S2’ subsite are primarily responsible for cordycepin inhibition at the ACE C domain. All these findings suggest that C. militaris extract are a kind of natural ACE inhibitor, and cordycepin has the potential as an ACE inhibitor.
Collapse
|
14
|
Arendse LB, Cozier GE, Eyermann CJ, Basarab GS, Schwager SL, Chibale K, Acharya KR, Sturrock ED. Probing the Requirements for Dual Angiotensin-Converting Enzyme C-Domain Selective/Neprilysin Inhibition. J Med Chem 2022; 65:3371-3387. [PMID: 35113565 DOI: 10.1021/acs.jmedchem.1c01924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective inhibition of the angiotensin-converting enzyme C-domain (cACE) and neprilysin (NEP), leaving the ACE N-domain (nACE) free to degrade bradykinin and other peptides, has the potential to provide the potent antihypertensive and cardioprotective benefits observed for nonselective dual ACE/NEP inhibitors, such as omapatrilat, without the increased risk of adverse effects. We have synthesized three 1-carboxy-3-phenylpropyl dipeptide inhibitors with nanomolar potency based on the previously reported C-domain selective ACE inhibitor lisinopril-tryptophan (LisW) to probe the structural requirements for potent dual cACE/NEP inhibition. Here we report the synthesis, enzyme kinetic data, and high-resolution crystal structures of these inhibitors bound to nACE and cACE, providing valuable insight into the factors driving potency and selectivity. Overall, these results highlight the importance of the interplay between the S1' and S2' subsites for ACE domain selectivity, providing guidance for future chemistry efforts toward the development of dual cACE/NEP inhibitors.
Collapse
Affiliation(s)
- Lauren B Arendse
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa.,Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Gyles E Cozier
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Charles J Eyermann
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Sylva L Schwager
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa.,Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Kelly Chibale
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa.,Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa.,Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Edward D Sturrock
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa.,Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
15
|
Kılıç İ, Palabıyık O, Taylan G, Sipahi T, Üstündağ S. Ace gene polymorphisms are ineffective on contrast induced nephropathy. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Alves-Lopes R, Montezano AC, Neves KB, Harvey A, Rios FJ, Skiba DS, Arendse LB, Guzik TJ, Graham D, Poglitsch M, Sturrock E, Touyz RM. Selective Inhibition of the C-Domain of ACE (Angiotensin-Converting Enzyme) Combined With Inhibition of NEP (Neprilysin): A Potential New Therapy for Hypertension. Hypertension 2021; 78:604-616. [PMID: 34304582 PMCID: PMC8357049 DOI: 10.1161/hypertensionaha.121.17041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Karla B. Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Adam Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Francisco J. Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Dominik S. Skiba
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Lauren B. Arendse
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, University of Cape Town, South Africa (L.B.A., E.S.)
| | - Tomasz J. Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | | | - Edward Sturrock
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, University of Cape Town, South Africa (L.B.A., E.S.)
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| |
Collapse
|
17
|
Giani JF, Veiras LC, Shen JZY, Bernstein EA, Cao D, Okwan-Duodu D, Khan Z, Gonzalez-Villalobos RA, Bernstein KE. Novel roles of the renal angiotensin-converting enzyme. Mol Cell Endocrinol 2021; 529:111257. [PMID: 33781839 PMCID: PMC8127398 DOI: 10.1016/j.mce.2021.111257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/03/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
The observation that all components of the renin angiotensin system (RAS) are expressed in the kidney and the fact that intratubular angiotensin (Ang) II levels greatly exceed the plasma concentration suggest that the synthesis of renal Ang II occurs independently of the circulating RAS. One of the main components of this so-called intrarenal RAS is angiotensin-converting enzyme (ACE). Although the role of ACE in renal disease is demonstrated by the therapeutic effectiveness of ACE inhibitors in treating several conditions, the exact contribution of intrarenal versus systemic ACE in renal disease remains unknown. Using genetically modified mouse models, our group demonstrated that renal ACE plays a key role in the development of several forms of hypertension. Specifically, although ACE is expressed in different cell types within the kidney, its expression in renal proximal tubular cells is essential for the development of high blood pressure. Besides hypertension, ACE is involved in several other renal diseases such as diabetic kidney disease, or acute kidney injury even when blood pressure is normal. In addition, studies suggest that ACE might mediate at least part of its effect through mechanisms that are independent of the Ang I conversion into Ang II and involve other substrates such as N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), Ang-(1-7), and bradykinin, among others. In this review, we summarize the recent advances in understanding the contribution of intrarenal ACE to different pathological conditions and provide insight into the many roles of ACE besides the well-known synthesis of Ang II.
Collapse
Affiliation(s)
- Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Justin Z Y Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Derick Okwan-Duodu
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
18
|
Emathinger JM, Nelson JW, Gurley SB. Advances in use of mouse models to study the renin-angiotensin system. Mol Cell Endocrinol 2021; 529:111255. [PMID: 33789143 PMCID: PMC9119406 DOI: 10.1016/j.mce.2021.111255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/19/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
The renin-angiotensin system (RAS) is a highly complex hormonal cascade that spans multiple organs and cell types to regulate solute and fluid balance along with cardiovascular function. Much of our current understanding of the functions of the RAS has emerged from a series of key studies in genetically-modified animals. Here, we review key findings from ground-breaking transgenic models, spanning decades of research into the RAS, with a focus on their use in studying blood pressure. We review the physiological importance of this regulatory system as evident through the examination of mouse models for several major RAS components: angiotensinogen, renin, ACE, ACE2, and the type 1 A angiotensin receptor. Both whole-animal and cell-specific knockout models have permitted critical RAS functions to be defined and demonstrate how redundancy and multiplicity within the RAS allow for compensatory adjustments to maintain homeostasis. Moreover, these models present exciting opportunities for continued discovery surrounding the role of the RAS in disease pathogenesis and treatment for cardiovascular disease and beyond.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/deficiency
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensinogen/deficiency
- Angiotensinogen/genetics
- Animals
- Blood Pressure/genetics
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Kidney/cytology
- Kidney/metabolism
- Mice
- Mice, Knockout
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Renin/deficiency
- Renin/genetics
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Jacqueline M Emathinger
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Susan B Gurley
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
19
|
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529:111254. [PMID: 33798633 DOI: 10.1016/j.mce.2021.111254] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - María Dolores Sánchez-Niño
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain.
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
20
|
Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021; 20:1150-1187. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Lu Xue
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rongxin Yin
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Xavier LL, Neves PFR, Paz LV, Neves LT, Bagatini PB, Timmers LFSM, Rasia-Filho AA, Mestriner RG, Wieck A. Does Angiotensin II Peak in Response to SARS-CoV-2? Front Immunol 2021; 11:577875. [PMID: 33519802 PMCID: PMC7842149 DOI: 10.3389/fimmu.2020.577875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Human infection by the SARS-CoV-2 is causing the current COVID-19 pandemic. With the growing numbers of cases and deaths, there is an urgent need to explore pathophysiological hypotheses in an attempt to better understand the factors determining the course of the disease. Here, we hypothesize that COVID-19 severity and its symptoms could be related to transmembrane and soluble Angiotensin-converting enzyme 2 (tACE2 and sACE2); Angiotensin II (ANG II); Angiotensin 1-7 (ANG 1-7) and angiotensin receptor 1 (AT1R) activation levels. Additionally, we hypothesize that an early peak in ANG II and ADAM-17 might represent a physiological attempt to reduce viral infection via tACE2. This viewpoint presents: (1) a brief introduction regarding the renin-angiotensin-aldosterone system (RAAS), detailing its receptors, molecular synthesis, and degradation routes; (2) a description of the proposed early changes in the RAAS in response to SARS-CoV-2 infection, including biological scenarios for the best and worst prognoses; and (3) the physiological pathways and reasoning for changes in the RAAS following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Lisiê Valeria Paz
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Pamela Brambilla Bagatini
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Luís Fernando Saraiva Macedo Timmers
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari-UNIVATES, Lajeado, Brazil
| | - Alberto Antônio Rasia-Filho
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Andrea Wieck
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
22
|
Zoja C, Xinaris C, Macconi D. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Front Pharmacol 2020; 11:586892. [PMID: 33519447 PMCID: PMC7845653 DOI: 10.3389/fphar.2020.586892] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus and the leading cause of end-stage kidney disease. The standard treatments for diabetic patients are glucose and blood pressure control, lipid lowering, and renin-angiotensin system blockade; however, these therapeutic approaches can provide only partial renoprotection if started late in the course of the disease. One major limitation in developing efficient therapies for DN is the complex pathobiology of the diabetic kidney, which undergoes a set of profound structural, metabolic and functional changes. Despite these difficulties, experimental models of diabetes have revealed promising therapeutic targets by identifying pathways that modulate key functions of podocytes and glomerular endothelial cells. In this review we will describe recent advances in the field, analyze key molecular pathways that contribute to the pathogenesis of the disease, and discuss how they could be modulated to prevent or reverse DN.
Collapse
Affiliation(s)
- Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,University of Nicosia Medical School, Nicosia, Cyprus
| | - Daniela Macconi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
23
|
ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clin Sci (Lond) 2020; 134:2851-2871. [PMID: 33146371 PMCID: PMC7642307 DOI: 10.1042/cs20200899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
Abstract
Angiotensin converting enzyme (ACE) is well-known for its role in blood pressure regulation via the renin–angiotensin aldosterone system (RAAS) but also functions in fertility, immunity, haematopoiesis and diseases such as obesity, fibrosis and Alzheimer’s dementia. Like ACE, the human homologue ACE2 is also involved in blood pressure regulation and cleaves a range of substrates involved in different physiological processes. Importantly, it is the functional receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 responsible for the 2020, coronavirus infectious disease 2019 (COVID-19) pandemic. Understanding the interaction between SARS-CoV-2 and ACE2 is crucial for the design of therapies to combat this disease. This review provides a comparative analysis of methodologies and findings to describe how structural biology techniques like X-ray crystallography and cryo-electron microscopy have enabled remarkable discoveries into the structure–function relationship of ACE and ACE2. This, in turn, has enabled the development of ACE inhibitors for the treatment of cardiovascular disease and candidate therapies for the treatment of COVID-19. However, despite these advances the function of ACE homologues in non-human organisms is not yet fully understood. ACE homologues have been discovered in the tissues, body fluids and venom of species from diverse lineages and are known to have important functions in fertility, envenoming and insect–host defence mechanisms. We, therefore, further highlight the need for structural insight into insect and venom ACE homologues for the potential development of novel anti-venoms and insecticides.
Collapse
|
24
|
ACE-domain selectivity extends beyond direct interacting residues at the active site. Biochem J 2020; 477:1241-1259. [PMID: 32195541 PMCID: PMC7148434 DOI: 10.1042/bcj20200060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022]
Abstract
Angiotensin-converting enzyme (ACE) is best known for its formation of the vasopressor angiotensin II that controls blood pressure but is also involved in other physiological functions through the hydrolysis of a variety of peptide substrates. The enzyme contains two catalytic domains (nACE and cACE) that have different affinities for ACE substrates and inhibitors. We investigated whether nACE inhibitor backbones contain a unique property which allows them to take advantage of the hinging of nACE. Kinetic analysis showed that mutation of unique nACE residues, in both the S2 pocket and around the prime subsites (S′) to their C-domain counterparts, each resulted in a decrease in the affinity of nACE specific inhibitors (SG6, 33RE and ketoACE-13) but it required the combined S2_S′ mutant to abrogate nACE-selectivity. However, this was not observed with the non-domain-selective inhibitors enalaprilat and omapatrilat. High-resolution structures were determined for the minimally glycosylated nACE with the combined S2_S′ mutations in complex with the ACE inhibitors 33RE (1.8 Å), omapatrilat (1.8 Å) and SG6 (1.7 Å). These confirmed that the affinities of the nACE-selective SG6, 33RE and ketoACE-13 are not only affected by direct interactions with the immediate environment of the binding site, but also by more distal residues. This study provides evidence for a more general mechanism of ACE inhibition involving synergistic effects of not only the S2, S1′ and S2′ subsites, but also residues involved in the sub-domain interface that effect the unique ways in which the two domains stabilize active site loops to favour inhibitor binding.
Collapse
|
25
|
Nardo AE, Suárez S, Quiroga AV, Añón MC. Amaranth as a Source of Antihypertensive Peptides. FRONTIERS IN PLANT SCIENCE 2020; 11:578631. [PMID: 33101347 PMCID: PMC7546275 DOI: 10.3389/fpls.2020.578631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Amaranth is an ancestral crop used by pre-Columbian cultures for 6000 to 8000 years. Its grains have a relevant chemical composition not only from a nutritional point of view but also due to the contribution of components with good techno-functional properties and important potential as bioactive compounds. Numerous studies have shown that amaranth storage proteins possess encrypted sequences that, once released, exhibit different physiological activities. One of the most studied is antihypertensive activity. This review summarizes the progress made over the last years (2008-2020) related to this topic. Studies related to inhibition of different enzymes of the Renin-Angiotensin-Aldosterone system, in particular Angiotensin Converting Enzyme (ACE) and Renin, as well as those referring to potential modulation mechanisms of tissue or local Renin-Angiotensin-Aldosterone system, are analyzed, including in silico, in vitro, in vivo, and ex vivo assays. Furthermore, the potential use of these bioactive peptides or products containing them, in the elaboration of functional food matrices is discussed. Finally, the most relevant conclusions and future requirements in research and development of food products are presented.
Collapse
Affiliation(s)
| | | | | | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas (CIC-PBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata), La Plata, Argentina
| |
Collapse
|
26
|
Alfaro S, Navarro-Retamal C, Caballero J. Transforming Non-Selective Angiotensin-Converting Enzyme Inhibitors in C- and N-domain Selective Inhibitors by Using Computational Tools. Mini Rev Med Chem 2020; 20:1436-1446. [DOI: 10.2174/1389557520666191224113830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
The two-domain dipeptidylcarboxypeptidase Angiotensin-I-converting enzyme (EC
3.4.15.1; ACE) plays an important physiological role in blood pressure regulation via the reninangiotensin
and kallikrein-kinin systems by converting angiotensin I to the potent vasoconstrictor angiotensin
II, and by cleaving a number of other substrates including the vasodilator bradykinin and the
anti-inflammatory peptide N-acetyl-SDKP. Therefore, the design of ACE inhibitors is within the priorities
of modern medical sciences for treating hypertension, heart failures, myocardial infarction, and
other related diseases. Despite the success of ACE inhibitors for the treatment of hypertension and
congestive heart failure, they have some adverse effects, which could be attenuated by selective domain
inhibition. Crystal structures of both ACE domains (nACE and cACE) reported over the last decades
could facilitate the rational drug design of selective inhibitors. In this review, we refer to the history
of the discovery of ACE inhibitors, which has been strongly related to the development of molecular
modeling methods. We stated that the design of novel selective ACE inhibitors is a challenge
for current researchers which requires a thorough understanding of the structure of both ACE domains
and the help of molecular modeling methodologies. Finally, we performed a theoretical design of potential
selective derivatives of trandolaprilat, a drug approved to treat critical conditions of hypertension,
to illustrate how to use molecular modeling methods such as de novo design, docking, Molecular
Dynamics (MD) simulations, and free energy calculations for creating novel potential drugs with specific
interactions inside nACE and cACE binding sites.
Collapse
Affiliation(s)
- Sergio Alfaro
- Centro de Bioinformatica y Simulacion Molecular, Facultad de Ingenieria, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Carlos Navarro-Retamal
- Centro de Bioinformatica y Simulacion Molecular, Facultad de Ingenieria, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformatica y Simulacion Molecular, Facultad de Ingenieria, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| |
Collapse
|
27
|
Caballero J. Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors. Molecules 2020; 25:molecules25020295. [PMID: 31940798 PMCID: PMC7024173 DOI: 10.3390/molecules25020295] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
The angiotensin-converting enzyme (ACE) is a two-domain dipeptidylcarboxypeptidase, which has a direct involvement in the control of blood pressure by performing the hydrolysis of angiotensin I to produce angiotensin II. At the same time, ACE hydrolyzes other substrates such as the vasodilator peptide bradykinin and the anti-inflammatory peptide N-acetyl-SDKP. In this sense, ACE inhibitors are bioactive substances with potential use as medicinal products for treatment or prevention of hypertension, heart failures, myocardial infarction, and other important diseases. This review examined the most recent literature reporting ACE inhibitors with the help of molecular modeling. The examples exposed here demonstrate that molecular modeling methods, including docking, molecular dynamics (MD) simulations, quantitative structure-activity relationship (QSAR), etc, are essential for a complete structural picture of the mode of action of ACE inhibitors, where molecular docking has a key role. Examples show that too many works identified ACE inhibitory activities of natural peptides and peptides obtained from hydrolysates. In addition, other works report non-peptide compounds extracted from natural sources and synthetic compounds. In all these cases, molecular docking was used to provide explanation of the chemical interactions between inhibitors and the ACE binding sites. For docking applications, most of the examples exposed here do not consider that: (i) ACE has two domains (nACE and cACE) with available X-ray structures, which are relevant for the design of selective inhibitors, and (ii) nACE and cACE binding sites have large dimensions, which leads to non-reliable solutions during docking calculations. In support of the solution of these problems, the structural information found in Protein Data Bank (PDB) was used to perform an interaction fingerprints (IFPs) analysis applied on both nACE and cACE domains. This analysis provides plots that identify the chemical interactions between ligands and both ACE binding sites, which can be used to guide docking experiments in the search of selective natural components or novel drugs. In addition, the use of hydrogen bond constraints in the S2 and S2′ subsites of nACE and cACE are suggested to guarantee that docking solutions are reliable.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile
| |
Collapse
|
28
|
Nani JV, Yonamine CM, Castro Musial D, Dal Mas C, Mari JJ, Hayashi MAF. ACE activity in blood and brain axis in an animal model for schizophrenia: Effects of dopaminergic manipulation with antipsychotics and psychostimulants. World J Biol Psychiatry 2020; 21:53-63. [PMID: 30806143 DOI: 10.1080/15622975.2019.1583372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objectives: Angiotensin I-converting enzyme (ACE) was initially correlated with schizophrenia (SCZ) in studies showing a correlation of ACE increased enzyme activity with memory impairments. Possible role for ACE in SCZ was also suggested by ACE activity interaction with dopaminergic mechanisms to modulate abnormalities of sensorimotor gating. In addition, we have demonstrated higher ACE activity in blood of SCZ subjects, its implication in cognitive performance in SCZ and its power as a predictor for SCZ diagnosis.Methods: ACE activity was determined in the serum and in selected brain regions of an animal model presenting SCZ-like behaviour, before and after the treatment with typical and atypical antipsychotics, and also in the serum of animals receiving the psychostimulants amphetamine/lisdexamphetamine.Results: Dopaminergic manipulations with antipsychotics and psychostimulants influenced the ACE activity, but with no correlation with the animal blood pressure.Conclusions: The validity of measuring ACE activity in animal blood to predict activity in the CNS, as well as the lack of correlation between the activity and blood pressure, before and after the treatment with antipsychotics, were confirmed here. Correlations of the present findings with data from clinical studies also strengthen the value of this animal model for studying several aspects of SCZ.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Camila M Yonamine
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Diego Castro Musial
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Caroline Dal Mas
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Jair J Mari
- Department of Psychiatry, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| |
Collapse
|
29
|
Ali MY, Seong SH, Jung HA, Choi JS. Angiotensin-I-Converting Enzyme Inhibitory Activity of Coumarins from Angelica decursiva. Molecules 2019; 24:molecules24213937. [PMID: 31683604 PMCID: PMC6864762 DOI: 10.3390/molecules24213937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
The bioactivity of ten traditional Korean Angelica species were screened by angiotensin-converting enzyme (ACE) assay in vitro. Among the crude extracts, the methanol extract of Angelica decursiva whole plants exhibited potent inhibitory effects against ACE. In addition, the ACE inhibitory activity of coumarins 1–5, 8–18 was evaluated, along with two phenolic acids (6, 7) obtained from A. decursiva. Among profound coumarins, 11–18 were determined to manifest marked inhibitory activity against ACE with IC50 values of 4.68–20.04 µM. Compounds 12, 13, and 15 displayed competitive inhibition against ACE. Molecular docking studies confirmed that coumarins inhibited ACE via many hydrogen bond and hydrophobic interactions with catalytic residues and zinc ion of C- and N-domain ACE that blocked the catalytic activity of ACE. The results derived from these computational and in vitro experiments give additional scientific support to the anecdotal use of A. decursiva in traditional medicine to treat cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
- Department of Biology, Faculty of Arts and Science, Concordia University, 7141 Sherbrooke St. W., Montreal, QC H4B 1R6, Canada.
- Centre for Structural and Functional Genomic, Department of Biology, Faculty of Arts and Science, Concordia University, 7141 Sherbrooke St. W., Montreal, QC H4B 1R6, Canada.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
30
|
Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol Rev 2019; 71:539-570. [PMID: 31537750 PMCID: PMC6782023 DOI: 10.1124/pr.118.017129] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure-regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides.
Collapse
Affiliation(s)
- Lauren B Arendse
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - A H Jan Danser
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Marko Poglitsch
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Rhian M Touyz
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - John C Burnett
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Catherine Llorens-Cortes
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Mario R Ehlers
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| |
Collapse
|
31
|
Huettner C, Hagemann D, Troschke E, Hippauf F, Borchardt L, Oswald S, Henle T, Kaskel S. Tailoring the Adsorption of ACE-Inhibiting Peptides by Nitrogen Functionalization of Porous Carbons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9721-9731. [PMID: 31280571 DOI: 10.1021/acs.langmuir.9b00996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bioactive peptides, such as isoleucyl-tryptophan (IW), exhibit a high potential to inhibit the angiotensin-converting enzyme (ACE). Adsorption on carbon materials provides a beneficial method to extract these specific molecules from the complex mixture of an α-lactalbumin hydrolysate. This study focuses on the impact of nitrogen functionalization of porous carbon adsorbents, either via pre- or post-treatment, on the adsorption behavior of the ACE-inhibiting peptide IW and the essential amino acid tryptophan (W). The commercially activated carbon Norit ROX 0.8 is compared with pre- and postsynthetically functionalized N-doped carbon in terms of surface area, pore size, and surface functionality. For prefunctionalization, a covalent triazine framework was synthesized by trimerization of an aromatic nitrile under ionothermal conditions. For the postsynthetic approach, the activated carbon ROX 0.8 was functionalized with the nitrogen-rich molecule melamine. The batch adsorption results using model mixtures containing the single components IW and W could be transferred to a more complex mixture of an α-lactalbumin hydrolysate containing a huge number of various peptides. For this purpose, reverse-phase high-pressure liquid chromatography with fluorescence detection was used for identification and quantification. The treatment with the three different carbon materials leads to an increase in the ACE-inhibiting effect in vitro. The modified surface structure of the carbon via pre- or post-treatment allows separation of IW and W due to the certain selectivity for either the amino acid or the dipeptide.
Collapse
Affiliation(s)
| | | | | | - Felix Hippauf
- Fraunhofer Institute for Material and Beam Technology (IWS) , Winterbergstraße 28 , 01277 Dresden , Germany
| | - Lars Borchardt
- Inorganic Chemistry , Ruhr Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany
| | - Steffen Oswald
- Leibniz Institute for Solid State and Materials Research Dresden (IFW) , Helmholtzstraße 20 , 01069 Dresden , Germany
| | | | | |
Collapse
|
32
|
Lubbe L, Sturrock ED. Interacting cogs in the machinery of the renin angiotensin system. Biophys Rev 2019; 11:583-589. [PMID: 31177382 PMCID: PMC6682192 DOI: 10.1007/s12551-019-00555-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/19/2023] Open
Abstract
Somatic angiotensin converting enzyme (sACE) is well-known for its role in blood pressure regulation and consequently, ACE inhibitors are widely prescribed for the treatment of hypertension. More than 60 years after the discovery of sACE, however, the molecular details of its substrate hydrolysis and inhibition are still poorly understood. Isothermal titration calorimetry, molecular dynamics simulations and fine epitope mapping suggest that substrate or inhibitor binding triggers a hinging motion between the two subdomains of each domain. Ligand binding to one domain further induces a conformational change in sACE to negatively affect the second domain's function and can also cause dimerization between sACE molecules. This has been linked to an increase in sACE expression via intracellular signalling. Inhibitor-induced dimerization could thus decrease the efficacy of hypertension treatment. At present, the only structural information available for sACE are crystal structures of the truncated domains in the closed conformation due to the presence of ligands. These structures do not provide any information regarding the open active site conformation prior to ligand binding, the relative orientation of the two domains in full-length sACE, or the dimerization interface. To guarantee effective therapeutic intervention, further research is required to investigate the hinging, negative cooperativity and dimerization of sACE. This review describes our current understanding of these interactions and proposes how recent advances in cryo-electron microscopy could enable structural elucidation of their mechanisms.
Collapse
Affiliation(s)
- Lizelle Lubbe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
33
|
Structural basis for the C-domain-selective angiotensin-converting enzyme inhibition by bradykinin-potentiating peptide b (BPPb). Biochem J 2019; 476:1553-1570. [DOI: 10.1042/bcj20190290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Angiotensin-converting enzyme (ACE) is a zinc metalloprotease best known for its role in blood pressure regulation. ACE consists of two homologous catalytic domains, the N- and C-domain, that display distinct but overlapping catalytic functions in vivo owing to subtle differences in substrate specificity. While current generation ACE inhibitors target both ACE domains, domain-selective ACE inhibitors may be clinically advantageous, either reducing side effects or having utility in new indications. Here, we used site-directed mutagenesis, an ACE chimera and X-ray crystallography to unveil the molecular basis for C-domain-selective ACE inhibition by the bradykinin-potentiating peptide b (BPPb), naturally present in Brazilian pit viper venom. We present the BPPb N-domain structure in comparison with the previously reported BPPb C-domain structure and highlight key differences in peptide interactions with the S4 to S9 subsites. This suggests the involvement of these subsites in conferring C-domain-selective BPPb binding, in agreement with the mutagenesis results where unique residues governing differences in active site exposure, lid structure and dynamics between the two domains were the major drivers for C-domain-selective BPPb binding. Mere disruption of BPPb interactions with unique S2 and S4 subsite residues, which synergistically assist in BPPb binding, was insufficient to abolish C-domain selectivity. The combination of unique S9–S4 and S2′ subsite C-domain residues was required for the favourable entry, orientation and thus, selective binding of the peptide. This emphasizes the need to consider factors other than direct protein–inhibitor interactions to guide the design of domain-selective ACE inhibitors, especially in the case of larger peptides.
Collapse
|
34
|
Kehoe PG. The Coming of Age of the Angiotensin Hypothesis in Alzheimer's Disease: Progress Toward Disease Prevention and Treatment? J Alzheimers Dis 2019; 62:1443-1466. [PMID: 29562545 PMCID: PMC5870007 DOI: 10.3233/jad-171119] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide recognition of a complex association between midlife hypertension and cardiovascular disease and later development of Alzheimer’s disease (AD) and cognitive impairment. While significant progress has been made in reducing rates of mortality and morbidity due to cardiovascular disease over the last thirty years, progress towards effective treatments for AD has been slower. Despite the known association between hypertension and dementia, research into each disease has largely been undertaken in parallel and independently. Yet over the last decade and a half, the emergence of converging findings from pre-clinical and clinical research has shown how the renin angiotensin system (RAS), which is very important in blood pressure regulation and cardiovascular disease, warrants careful consideration in the pathogenesis of AD. Numerous components of the RAS have now been found to be altered in AD such that the multifunctional and potent vasoconstrictor angiotensin II, and similarly acting angiotensin III, are greatly altered at the expense of other RAS signaling peptides considered to contribute to neuronal and cognitive function. Collectively these changes may contribute to many of the neuropathological hallmarks of AD, as well as observed progressive deficiencies in cognitive function, while also linking elements of a number of the proposed hypotheses for the cause of AD. This review discusses the emergence of the RAS and its likely importance in AD, not only because of the multiple facets of its involvement, but also perhaps fortuitously because of the ready availability of numerous RAS-acting drugs, that could be repurposed as interventions in AD.
Collapse
Affiliation(s)
- Patrick Gavin Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
35
|
Antihypertensive Effects of Corn Silk Extract and Its Novel Bioactive Constituent in Spontaneously Hypertensive Rats: The Involvement of Angiotensin-Converting Enzyme Inhibition. Molecules 2019; 24:molecules24101886. [PMID: 31100914 PMCID: PMC6572293 DOI: 10.3390/molecules24101886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Corn silk tea has been used in folk medicine for anti-hypertensive healthcare. Angiotensin-converting enzyme (ACE) plays a crucial role on the homeostasis of blood pressure. However, effects of corn silk tea on ACE activity and the presence of ACE inhibitory constituents in corn silk are still unknown. Here we applied proteomics and bioinformatics approaches to identify corn silk bioactive peptides (CSBps) that target ACE from the boiling water extract of corn silk (CSE). CSE significantly reduced systolic blood pressure (SBP) levels in spontaneously hypertensive rats and inhibited the ACE activity. By proteomics coupled with bioinformatics analyses, we identified a novel ACE inhibitory peptide CSBp5 in CSE. CSBp5 significantly inhibited the ACE activity and decreased SBP levels in a dose-dependent manner. Docking analysis showed that CSBp5 occupied the substrate-binding channel of ACE and interacted with ACE via hydrogen bonds. In conclusion, we identified that CSE exhibited anti-hypertensive effects in SHRs via the inhibition of ACE, the target of most anti-hypertensive drugs. In addition, an ACE inhibitory phytopeptide CSBp5 that decreased SBP levels in rats was newly identified. Our findings supported the ethnomedical use of corn silk tea on hypertension. Moreover, the identification of ACE inhibitory phytopeptide in corn silk further strengthened our findings.
Collapse
|
36
|
Liu S, Ando F, Fujita Y, Liu J, Maeda T, Shen X, Kikuchi K, Matsumoto A, Yokomori M, Tanabe-Fujimura C, Shimokata H, Michikawa M, Komano H, Zou K. A clinical dose of angiotensin-converting enzyme (ACE) inhibitor and heterozygous ACE deletion exacerbate Alzheimer's disease pathology in mice. J Biol Chem 2019; 294:9760-9770. [PMID: 31072831 DOI: 10.1074/jbc.ra118.006420] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Inhibition of angiotensin-converting enzyme (ACE) is a strategy used worldwide for managing hypertension. In addition to converting angiotensin I to angiotensin II, ACE also converts neurotoxic β-amyloid protein 42 (Aβ42) to Aβ40. Because of its neurotoxicity, Aβ42 is believed to play a causative role in the development of Alzheimer's disease (AD), whereas Aβ40 has neuroprotective effects against Aβ42 aggregation and also against metal-induced oxidative damage. Whether ACE inhibition enhances Aβ42 aggregation or impairs human cognitive ability are very important issues for preventing AD onset and for optimal hypertension management. In an 8-year longitudinal study, we found here that the mean intelligence quotient of male, but not female, hypertensive patients taking ACE inhibitors declined more rapidly than that of others taking no ACE inhibitors. Moreover, the sera of all AD patients exhibited a decrease in Aβ42-to-Aβ40-converting activity compared with sera from age-matched healthy individuals. Using human amyloid precursor protein transgenic mice, we found that a clinical dose of an ACE inhibitor was sufficient to increase brain amyloid deposition. We also generated human amyloid precursor protein/ACE+/- mice and found that a decrease in ACE levels promoted Aβ42 deposition and increased the number of apoptotic neurons. These results suggest that inhibition of ACE activity is a risk factor for impaired human cognition and for triggering AD onset.
Collapse
Affiliation(s)
- Shuyu Liu
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan.,the Liaoning Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Shenyang Medical College, Shenyang 110034, China
| | - Fujiko Ando
- the Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagakute 480-1146, Japan
| | - Yu Fujita
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan
| | - Junjun Liu
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan
| | - Tomoji Maeda
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan
| | - Xuefeng Shen
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan
| | - Kota Kikuchi
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan
| | - Aoi Matsumoto
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan
| | - Mirai Yokomori
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan
| | - Chiaki Tanabe-Fujimura
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan
| | - Hiroshi Shimokata
- the Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan, and
| | - Makoto Michikawa
- the Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hiroto Komano
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan,
| | - Kun Zou
- From the Department of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba 028-3694, Japan, .,the Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| |
Collapse
|
37
|
Semis M, Gugiu GB, Bernstein EA, Bernstein KE, Kalkum M. The Plethora of Angiotensin-Converting Enzyme-Processed Peptides in Mouse Plasma. Anal Chem 2019; 91:6440-6453. [PMID: 31021607 DOI: 10.1021/acs.analchem.8b03828] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin-converting enzyme (ACE) converts angiotensin I into the potent vasoconstrictor angiotensin II, which regulates blood pressure. However, ACE activity is also essential for other physiological functions, presumably through processing of peptides unrelated to angiotensin. The goal of this study was to identify novel natural substrates and products of ACE through a series of mass-spectrometric experiments. This included comparing the ACE-treated and untreated plasma peptidomes of ACE-knockout (KO) mice, validation with select synthetic peptides, and a quantitative in vivo study of ACE substrates in mice with distinct genetic ACE backgrounds. In total, 244 natural peptides were identified ex vivo as possible substrates or products of ACE, demonstrating high promiscuity of the enzyme. ACE prefers to cleave substrates with Phe or Leu at the C-terminal P2' position and Gly in the P6 position. Pro in P1' and Iso in P1 are typical residues in peptides that ACE does not cleave. Several of the novel ACE substrates are known to have biological activities, including a fragment of complement C3, the spasmogenic C3f, which was processed by ACE ex vivo and in vitro. Analyses with N-domain-inactive (NKO) ACE allowed clarification of domain selectivity toward substrates. The in vivo ACE-substrate concentrations in WT, transgenic ACE-KO, NKO, and CKO mice correspond well with the in vitro observations in that higher levels of the ACE substrates were observed when the processing domain was knocked out. This study highlights the vast extent of ACE promiscuity and provides a valuable platform for further investigations of ACE functionality.
Collapse
Affiliation(s)
- Margarita Semis
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Gabriel B Gugiu
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States.,Mass Spectrometry & Proteomics Core Facility , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Ellen A Bernstein
- Departments of Biomedical Sciences, Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , California 90048 , United States
| | - Kenneth E Bernstein
- Departments of Biomedical Sciences, Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , California 90048 , United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States.,Mass Spectrometry & Proteomics Core Facility , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| |
Collapse
|
38
|
Talma M, Maślanka M, Mucha A. Recent developments in the synthesis and applications of phosphinic peptide analogs. Bioorg Med Chem Lett 2019; 29:1031-1042. [PMID: 30846252 DOI: 10.1016/j.bmcl.2019.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Abstract
Synthetic pseudopeptides that fit well with the active site architecture allow the most effective binding to enzymes, similar to native substrates in high-energy transition states. Phosphinic acid peptide analogs that comprise the tetrahedral phosphorus moiety introduced to replace an internal amide bond exert such an isosteric or isoelectronic resemblance, combined with providing other advantageous features, for example, metal complexing properties. Accordingly, they are capable of inhibiting metal-dependent enzymes involved in biological functions in eukaryotic and prokaryotic cells. These enzymes are associated with notorious human diseases, such as cancer, e.g., matrix metalloproteinases, or are etiological factors of protozoal and bacterial infections, e.g., metalloaminopeptidases. The affinity and selectivity of these compounds can be conveniently adjusted, either by structural modification of dedicated side chains or by backbone elongation to enhance specific interactions with the corresponding binding pockets. Recent approaches to the synthesis of these compounds are illustrated by examples of the preparation of rationally designed structures of inhibitors of particular enzymes. Activity against appealing enzymatic targets is presented, along with the molecular mechanisms of action and therapeutic implications. Innovative aspects of phosphinic peptide application, e.g., as activity-based probes, and ligands of complexes of radioisotopes for nuclear medicine are also outlined.
Collapse
Affiliation(s)
- Michał Talma
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marta Maślanka
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
39
|
Khan Z, Cao DY, Giani JF, Bernstein EA, Veiras LC, Fuchs S, Wang Y, Peng Z, Kalkum M, Liu GY, Bernstein KE. Overexpression of the C-domain of angiotensin-converting enzyme reduces melanoma growth by stimulating M1 macrophage polarization. J Biol Chem 2019; 294:4368-4380. [PMID: 30670595 DOI: 10.1074/jbc.ra118.006275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) can hydrolyze many peptides and plays a central role in controlling blood pressure. Moreover, ACE overexpression in monocytes and macrophages increases resistance of mice to tumor growth. ACE is composed of two independent catalytic domains. Here, to investigate the specific role of each domain in tumor resistance, we overexpressed either WT ACE (Tg-ACE mice) or ACE lacking N- or C-domain catalytic activity (Tg-NKO and Tg-CKO mice) in the myeloid cells of mice. Tg-ACE and Tg-NKO mice exhibited strongly suppressed growth of B16-F10 melanoma because of increased ACE expression in macrophages, whereas Tg-CKO mice resisted melanoma no better than WT animals. The effect of ACE overexpression reverted to that of the WT enzyme with an ACE inhibitor but not with an angiotensin II type 1 (AT1) receptor antagonist. ACE C-domain overexpression in macrophages drove them toward a pronounced M1 phenotype upon tumor stimulation, with increased activation of NF-κB and signal transducer and activator of transcription 1 (STAT1) and decreased STAT3 and STAT6 activation. Tumor necrosis factor α (TNFα) is important for M1 activation, and TNFα blockade reverted Tg-NKO macrophages to a WT phenotype. Increased ACE C-domain expression increased the levels of reactive oxygen species (ROS) and of the transcription factor C/EBPβ in macrophages, important stimuli for TNFα expression, and decreased expression of several M2 markers, including interleukin-4Rα. Natural ACE C-domain-specific substrates are not well-described, and we propose that the peptide(s) responsible for the striking ACE-mediated enhancement of myeloid function are substrates/products of the ACE C-domain.
Collapse
Affiliation(s)
- Zakir Khan
- From the Departments of Biomedical Sciences and.,Pathology
| | - Duo-Yao Cao
- From the Departments of Biomedical Sciences and
| | | | | | | | - Sebastien Fuchs
- the Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, and
| | - Yizhou Wang
- From the Departments of Biomedical Sciences and.,the Genomic Core, and
| | - Zhenzi Peng
- From the Departments of Biomedical Sciences and
| | - Markus Kalkum
- the Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - George Y Liu
- From the Departments of Biomedical Sciences and.,the Division of Pediatric Infectious Diseases and Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | |
Collapse
|
40
|
Jiang Z, Zhang H, Bian X, Li J, Li J, Zhang H. Insight into the binding of ACE-inhibitory peptides to angiotensin-converting enzyme: a molecular simulation. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1557327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhenyan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Hansi Zhang
- School of Basic Medicine Sciences, Jilin University, Changchun, People's Republic of China
| | - Xuefeng Bian
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Jingfeng Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Jing Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Hui Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, People's Republic of China
| |
Collapse
|
41
|
Eriguchi M, Bernstein EA, Veiras LC, Khan Z, Cao DY, Fuchs S, McDonough AA, Toblli JE, Gonzalez-Villalobos RA, Bernstein KE, Giani JF. The Absence of the ACE N-Domain Decreases Renal Inflammation and Facilitates Sodium Excretion during Diabetic Kidney Disease. J Am Soc Nephrol 2018; 29:2546-2561. [PMID: 30185469 DOI: 10.1681/asn.2018030323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Recent evidence emphasizes the critical role of inflammation in the development of diabetic nephropathy. Angiotensin-converting enzyme (ACE) plays an active role in regulating the renal inflammatory response associated with diabetes. Studies have also shown that ACE has roles in inflammation and the immune response that are independent of angiotensin II. ACE's two catalytically independent domains, the N- and C-domains, can process a variety of substrates other than angiotensin I. METHODS To examine the relative contributions of each ACE domain to the sodium retentive state, renal inflammation, and renal injury associated with diabetic kidney disease, we used streptozotocin to induce diabetes in wild-type mice and in genetic mouse models lacking either a functional ACE N-domain (NKO mice) or C-domain (CKO mice). RESULTS In response to a saline challenge, diabetic NKO mice excreted 32% more urinary sodium compared with diabetic wild-type or CKO mice. Diabetic NKO mice also exhibited 55% less renal epithelial sodium channel cleavage (a marker of channel activity), 55% less renal IL-1β, 53% less renal TNF-α, and 53% less albuminuria than diabetic wild-type mice. This protective phenotype was not associated with changes in renal angiotensin II levels. Further, we present evidence that the anti-inflammatory tetrapeptide N-acetyl-seryl-asparyl-lysyl-proline (AcSDKP), an ACE N-domain-specific substrate that accumulates in the urine of NKO mice, mediates the beneficial effects observed in the NKO. CONCLUSIONS These data indicate that increasing AcSDKP by blocking the ACE N-domain facilitates sodium excretion and ameliorates diabetic kidney disease independent of intrarenal angiotensin II regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastien Fuchs
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, California
| | - Alicia A McDonough
- Department of Integrative Anatomical Sciences, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, University of Buenos Aires, National Scientific and Technical Research Council, Buenos Aires, Argentina; and
| | - Romer A Gonzalez-Villalobos
- Departments of Biomedical Sciences and.,Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, Pennsylvania
| | - Kenneth E Bernstein
- Departments of Biomedical Sciences and.,Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | | |
Collapse
|
42
|
Fan H, Liao W, Wu J. Molecular interactions, bioavailability, and cellular mechanisms of angiotensin-converting enzyme inhibitory peptides. J Food Biochem 2018; 43:e12572. [PMID: 31353484 DOI: 10.1111/jfbc.12572] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022]
Abstract
Food-derived angiotensin-converting enzyme inhibitory (ACEi) peptides have gained substantial interest as potential alternatives to synthetic drugs in the management of hypertension. Peptide size and sequence are two critical factors that determine their potency, bioavailability, and cellular mechanisms. Molecular interaction studies between ACE and ACEi peptides support that potent ACEi peptides are generally composed of hydrophobic, positively charged, and aromatic or cyclic amino acid residues at the third, second, and first position from the C-terminus, respectively. Small peptides containing N-terminal Tyr and/or C-terminal Pro could improve their stability against enterocyte peptidases, thus their bioavailability. Different ACEi peptides can reduce aberrant cellular proliferation, excessive inflammation, and oxidative stress but through different mechanisms. Further understanding the structure-activity-bioavailability relationships will help design novel potent ACEi peptides with improved bioavailability and in vivo efficacy. PRACTICAL APPLICATIONS: ACEi peptides have the potential for uses as functional food ingredients against hypertension.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Wang Liao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
43
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
44
|
Abstract
Angiotensin-converting enzyme (ACE) - a zinc-dependent dicarboxypeptidase with two catalytic domains - plays a major part in blood pressure regulation by converting angiotensin I to angiotensin II. However, ACE cleaves many peptides besides angiotensin I and thereby affects diverse physiological functions, including renal development and male reproduction. In addition, ACE has a role in both innate and adaptive responses by modulating macrophage and neutrophil function - effects that are magnified when these cells overexpress ACE. Macrophages that overexpress ACE are more effective against tumours and infections. Neutrophils that overexpress ACE have an increased production of superoxide, which increases their ability to kill bacteria. These effects are due to increased ACE activity but are independent of angiotensin II. ACE also affects the display of major histocompatibility complex (MHC) class I and MHC class II peptides, potentially by enzymatically trimming these peptides. Understanding how ACE expression and activity affect myeloid cells may hold great promise for therapeutic manipulation, including the treatment of both infection and malignancy.
Collapse
|
45
|
Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol 2018; 14:325-336. [PMID: 29578208 DOI: 10.1038/nrneph.2018.15] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiotensin-converting enzyme (ACE) - a zinc-dependent dicarboxypeptidase with two catalytic domains - plays a major part in blood pressure regulation by converting angiotensin I to angiotensin II. However, ACE cleaves many peptides besides angiotensin I and thereby affects diverse physiological functions, including renal development and male reproduction. In addition, ACE has a role in both innate and adaptive responses by modulating macrophage and neutrophil function - effects that are magnified when these cells overexpress ACE. Macrophages that overexpress ACE are more effective against tumours and infections. Neutrophils that overexpress ACE have an increased production of superoxide, which increases their ability to kill bacteria. These effects are due to increased ACE activity but are independent of angiotensin II. ACE also affects the display of major histocompatibility complex (MHC) class I and MHC class II peptides, potentially by enzymatically trimming these peptides. Understanding how ACE expression and activity affect myeloid cells may hold great promise for therapeutic manipulation, including the treatment of both infection and malignancy.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
| | | | - Xiao Z Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Rai AK, Sanjukta S, Jeyaram K. Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Crit Rev Food Sci Nutr 2018; 57:2789-2800. [PMID: 26463100 DOI: 10.1080/10408398.2015.1068736] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fermented milk is a potential source of various biologically active peptides with specific health benefits. Angiotensin converting enzyme inhibitory (ACE-I) peptides are one of the most studied bioactive peptides produced during milk fermentation. The presence of these peptides is reported in various fermented milk products such as, yoghurt, cheese, sour milk, etc., which are also available as commercial products. Many of the ACE-I peptides formed during milk fermentation are resistant to gastrointestinal digestion and inhibit angiotensin converting enzyme (ACE) in the rennin angiotension system (RAS). There are various factors, which affect the formation ACE-I peptides and their ability to reach the target tissue in active form, which includes type of starters (lactic acid bacteria (LAB), yeast, etc.), substrate composition (casein type, whey protein, etc.), composition of ACE-I peptide, pre and post-fermentation treatments, and its stability during gastrointestinal digestion. The antihypertensive effect of fermented milk products has also been proved by various in vitro and in vivo (animal and human trials) experiments. This paper reviews the literature on fermented milk products as a source of ACE-I peptides and various factors affecting the production and activity of ACE-I peptides.
Collapse
Affiliation(s)
- Amit Kumar Rai
- a Institute of Bioresources and Sustainable Development, Sikkim Centre , Sikkim , India
| | | | - Kumaraswamy Jeyaram
- b Microbial Resource Division , Institute of Bioresources and Sustainable Development , Manipur , India
| |
Collapse
|
47
|
Fienberg S, Cozier GE, Acharya KR, Chibale K, Sturrock ED. The Design and Development of a Potent and Selective Novel Diprolyl Derivative That Binds to the N-Domain of Angiotensin-I Converting Enzyme. J Med Chem 2017; 61:344-359. [PMID: 29206036 DOI: 10.1021/acs.jmedchem.7b01478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angiotensin-I converting enzyme (ACE) is a zinc metalloprotease consisting of two catalytic domains (N- and C-). Most clinical ACE inhibitor(s) (ACEi) have been shown to inhibit both domains nonselectively, resulting in adverse effects such as cough and angioedema. Selectively inhibiting the individual domains is likely to reduce these effects and potentially treat fibrosis in addition to hypertension. ACEi from the GVK Biosciences database were inspected for possible N-domain selective binding patterns. From this set, a diprolyl chemical series was modeled using docking simulations. The series was expanded based on key target interactions involving residues known to impart N-domain selectivity. In total, seven diprolyl compounds were synthesized and tested for N-domain selective ACE inhibition. One compound with an aspartic acid in the P2 position (compound 16) displayed potent inhibition (Ki = 11.45 nM) and was 84-fold more selective toward the N-domain. A high-resolution crystal structure of compound 16 in complex with the N-domain revealed the molecular basis for the observed selectivity.
Collapse
Affiliation(s)
- Stephen Fienberg
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Gyles E Cozier
- Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Observatory 7925, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town , Rondebosch 7701, South Africa
| | - Edward D Sturrock
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Observatory 7925, South Africa.,Department of Integrative Biomedical Sciences, University of Cape Town , Observatory 7925, South Africa
| |
Collapse
|
48
|
Martin M, Deussen A. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension. Crit Rev Food Sci Nutr 2017; 59:1264-1283. [PMID: 29244531 DOI: 10.1080/10408398.2017.1402750] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the leading cause of death. The underlying pathophysiology is largely contributed by an overactivation of the renin-angiotensin-aldosterone-system (RAAS). Herein, angiotensin II (AngII) is a key mediator not only in blood pressure control and vascular tone regulation, but also involved in inflammation, endothelial dysfunction, atherosclerosis, hypertension and congestive heart failure. Since more than three decades suppression of AngII generation by inhibition of the angiotensin-converting enzyme (ACE) or blockade of the AngII-receptor has shown clinical benefit by reducing hypertension, atherosclerosis and other inflammation-associated cardiovascular diseases. Besides pharmaceutical ACE-inhibitors some natural peptides derived from food proteins reduce in vitro ACE activity. Several animal studies and a few human clinical trials have shown antihypertensive effects of such peptides, which might be attractive as food additives to prevent age-related RAAS activation. However, their inhibitory potency on in vitro ACE activity does not always correlate with an antihypertensive impact. While some peptides with high inhibitory activity on ACE-activity in vitro show no antihypertensive effect in vivo, other peptides with only a moderate ACE inhibitory activity in vitro cause such effects. The explanation for this conflicting phenomenon between inhibitory activity and antihypertensive effect remains unclear to date. This review shall critically address the effects of natural peptides derived from different food proteins on the cardiovascular system and the possible underlying mechanisms. A central aspect will be to point to conceptual gaps in the current understanding of the action of these peptides with respect to in vivo blood pressure lowering effects.
Collapse
Affiliation(s)
- Melanie Martin
- a Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Germany
| | - Andreas Deussen
- a Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Germany
| |
Collapse
|
49
|
Vukic VR, Vukic DV, Milanovic SD, Ilicic MD, Kanuric KG, Johnson MS. In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I–converting enzyme inhibitory activity. Nutr Res 2017; 46:22-30. [DOI: 10.1016/j.nutres.2017.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 11/15/2022]
|
50
|
Roles of Angiotensin Peptides and Recombinant Human ACE2 in Heart Failure. J Am Coll Cardiol 2017; 69:805-819. [PMID: 28209222 DOI: 10.1016/j.jacc.2016.11.064] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND The renin-angiotensin system (RAS) is activated in heart failure (HF) and inhibition of RAS is a mainstay therapy for HF. Angiotensin-converting enzyme 2 (ACE2) and its product, angiotensin 1-7 (Ang-[1-7]), are important negative regulators of the RAS. OBJECTIVES A comprehensive examination of angiotensin peptide levels and therapeutic effects of recombinant human ACE2 (rhACE2) on peptide metabolism was evaluated in human plasma and explanted heart tissue from patients with HF. METHODS Using prospective cohorts with chronic (n = 59) and acute (n = 42) HF, plasma angiotensin analysis was performed using a unique liquid chromatography-mass spectrometry/mass spectroscopy method quantifying circulating and equilibrium levels. Angiotensin II (Ang II) metabolism was examined in human explanted hearts with dilated cardiomyopathy (n = 25). RESULTS The dynamic range of the RAS was large, with equilibrium angiotensin levels being 8- to 10-fold higher compared with circulating angiotensin levels. In chronic HF patients receiving ACE inhibition, plasma Ang II was suppressed and plasma Ang-(1-7) was elevated, whereas acute HF and patients receiving angiotensin receptor blocker had higher plasma Ang II with lower Ang-(1-7) levels. Suppressed Ang-(1-7)/Ang II ratio was associated with worsening HF symptoms and longer hospitalization. Recombinant human ACE2 effectively metabolized Ang-(1-10) and Ang II into Ang-(1-9) and Ang-(1-7), respectively. Myocardial Ang II levels in explanted human hearts with dilated cardiomyopathy were elevated despite ACE inhibition with elevated chymase activity, and Ang II was effectively converted to Ang-(1-7) by rhACE2. CONCLUSIONS Plasma angiotensin peptides represent a dynamic network that is altered in HF and in response to rhACE2. An increased plasma Ang-(1-7) level is linked to ACE inhibitor use, whereas acute HF reduced Ang-(1-7) levels and suppressed the Ang-(1-7)/Ang II ratio. Increased chymase activity elevated Ang II levels in failing human hearts. Use of rhACE2 effectively normalized elevated Ang II while increasing Ang-(1-7) and Ang-(1-9) levels.
Collapse
|