1
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
2
|
Martin-Grau M, Monleón D. The Role of Microbiota-Related Co-Metabolites in MASLD Progression: A Narrative Review. Curr Issues Mol Biol 2024; 46:6377-6389. [PMID: 39057023 PMCID: PMC11276081 DOI: 10.3390/cimb46070381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a growing health concern due to its increasing prevalence worldwide. Metabolic homeostasis encompasses the stable internal conditions vital for efficient metabolism. This equilibrium extends to the intestinal microbiota, whose metabolic activities profoundly influence overall metabolic balance and organ health. The metabolites derived from the gut microbiota metabolism can be defined as microbiota-related co-metabolites. They serve as mediators between the gut microbiota and the host, influencing various physiological processes. The recent redefinition of the term MASLD has highlighted the metabolic dysfunction that characterize the disease. Metabolic dysfunction encompasses a spectrum of abnormalities, including impaired glucose regulation, dyslipidemia, mitochondrial dysfunction, inflammation, and accumulation of toxic byproducts. In addition, MASLD progression has been linked to dysregulation in the gut microbiota and associated co-metabolites. Short-chain fatty acids (SCFAs), hippurate, indole derivatives, branched-chain amino acids (BCAAs), and bile acids (BAs) are among the key co-metabolites implicated in MASLD progression. In this review, we will unravel the relationship between the microbiota-related metabolites which have been associated with MASLD and that could play an important role for developing effective therapeutic interventions for MASLD and related metabolic disorders.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| |
Collapse
|
3
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
4
|
Fine KS, Wilkins JT, Sawicki KT. Circulating Branched Chain Amino Acids and Cardiometabolic Disease. J Am Heart Assoc 2024; 13:e031617. [PMID: 38497460 PMCID: PMC11179788 DOI: 10.1161/jaha.123.031617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Branched chain amino acids (BCAAs) are essential for protein homeostasis, energy balance, and signaling pathways. Changes in BCAA homeostasis have emerged as pivotal contributors in the pathophysiology of several cardiometabolic diseases, including type 2 diabetes, obesity, hypertension, atherosclerotic cardiovascular disease, and heart failure. In this review, we provide a detailed overview of BCAA metabolism, focus on molecular mechanisms linking disrupted BCAA homeostasis with cardiometabolic disease, summarize the evidence from observational and interventional studies investigating associations between circulating BCAAs and cardiometabolic disease, and offer valuable insights into the potential for BCAA manipulation as a novel therapeutic strategy for cardiometabolic disease.
Collapse
Affiliation(s)
- Keenan S. Fine
- Northwestern University Feinberg School of MedicineChicagoILUSA
| | - John T. Wilkins
- Northwestern University Feinberg School of MedicineChicagoILUSA
- Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Konrad T. Sawicki
- Northwestern University Feinberg School of MedicineChicagoILUSA
- Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoILUSA
| |
Collapse
|
5
|
Yuan Z, Qiao H, Wang Z, Wang H, Han M, Zhang W, Zhou Y, Hassan HM, Zhao W, Qin T. Taohe Chengqi decoction alleviated metabolic-associated fatty liver disease by boosting branched chain amino acids catabolism in the skeletal muscles of type 2 diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155315. [PMID: 38387274 DOI: 10.1016/j.phymed.2023.155315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/03/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024]
Abstract
OBJECTIVE Metabolic-associated fatty liver disease (MAFLD) is the most prevalent liver disease, whereas type 2 diabetes mellitus (T2DM) is considered an independent risk factor for MAFLD incidence. Taohe Chengqi decoction (THCQ) is clinically prescribed for T2DM treatment; however, the hepatoprotective effect of THCQ against MAFLD is still unknown. This study intended to elucidate the therapeutic effect of THCQ on T2DM-associated MAFLD and to investigate the underlying mechanisms. METHODS THCQ lyophilized powder was prepared and analyzed by UHPLC-MS/MS. A stable T2DM mouse model was established by high-fat diet (HFD) feeding combined with streptozotocin (STZ) injection. The T2DM mice were administered THCQ (2.5 g/kg or 5 g/kg) to explore the pharmacological effects of THCQ on T2DM-associated MAFLD. Liver tissue transcriptome was analyzed and the participatory roles of PPARα/γ pathways were verified both in vivo and in vitro. Serum metabolome analysis was used to explore the metabolome changes and skeletal muscle branched chain amino acid (BCAA) catabolic enzymes were further detected. Moreover, an AAV carrying BCKDHA shRNA was intramuscularly injected to verify the impact of THCQ on skeletal muscle BCAA catabolism and the potential therapeutic outcome on hepatic steatosis. RESULTS THCQ improved hepatic steatosis in MAFLD. RNA-sequencing analysis showed dysregulation in the hepatic PPARγ-related fatty acid synthesis, while PPARα-dependent fatty acid oxidation was elevated following THCQ treatment. Interestingly, in vitro analyses of these findings showed that THCQ had minor effects on fatty acid oxidation and/or synthesis. The metabolomic study revealed that THCQ accelerated BCAA catabolism in the skeletal muscles, in which knockdown of the BCAA catabolic enzyme BCKDHA diminished the THCQ therapeutic effect on hepatic steatosis. CONCLUSION This study highlighted the potential therapeutic effect of THCQ on hepatic steatosis in MALFD. THCQ upregulated fatty acid oxidation and reduced its synthesis via restoration of PPARα/γ pathways in HFD/STZ-induced T2DM mice, which is mediated through augmenting BCKDH activity and accelerating BCAA catabolism in the skeletal muscles. Overall, this study provided in-depth clues for "skeletal muscles-liver communication" in the therapeutic effect of THCQ against hepatic steatosis. These findings suggested THCQ might be a potential candidate against T2DM-associated MAFLD.
Collapse
Affiliation(s)
- Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Hui Qiao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ziwei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoran Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingru Han
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Wen Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
6
|
Vanmaele A, Bouwens E, Hoeks SE, Kindt A, Lamont L, Fioole B, Moelker A, Ten Raa S, Hussain B, Oliveira-Pinto J, Ijpma AS, van Lier F, Akkerhuis KM, Majoor-Krakauer DF, Hankemeier T, de Rijke Y, Verhagen HJ, Boersma E, Kardys I. Targeted proteomics and metabolomics for biomarker discovery in abdominal aortic aneurysm and post-EVAR sac volume. Clin Chim Acta 2024; 554:117786. [PMID: 38246209 DOI: 10.1016/j.cca.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) patients undergo uniform surveillance programs both leading up to, and following surgery. Circulating biomarkers could play a pivotal role in individualizing surveillance. We applied a multi-omics approach to identify relevant biomarkers and gain pathophysiological insights. MATERIALS AND METHODS In this cross-sectional study, 108 AAA patients and 200 post-endovascular aneurysm repair (post-EVAR) patients were separately investigated. We performed partial least squares regression and ingenuity pathway analysis on circulating concentrations of 96 proteins (92 Olink Cardiovascular-III panel, 4 ELISA-assays) and 199 metabolites (measured by LC-TQMS), and their associations with CT-based AAA/sac volume. RESULTS The median (25th-75th percentile) maximal diameter was 50.0 mm (46.0, 53.0) in the AAA group, and 55.4 mm (45.0, 64.2) in the post-EVAR group. Correcting for clinical characteristics in AAA patients, the aneurysm volume Z-score differed 0.068 (95 %CI: (0.042, 0.093)), 0.066 (0.047, 0.085) and -0.051 (-0.064, -0.038) per Z-score valine, leucine and uPA, respectively. After correcting for clinical characteristics and orthogonalization in the post-EVAR group, the sac volume Z-score differed 0.049 (0.034, 0.063) per Z-score TIMP-4, -0.050 (-0.064, -0.037) per Z-score LDL-receptor, -0.051 (-0.062, -0.040) per Z-score 1-OG/2-OG and -0.056 (-0.066, -0.045) per Z-score 1-LG/2-LG. CONCLUSIONS The branched-chain amino acids and uPA were related to AAA volume. For post-EVAR patients, LDL-receptor, monoacylglycerols and TIMP-4 are potential biomarkers for sac volume. Additionally, distinct markers for sac change were identified.
Collapse
Affiliation(s)
- Alexander Vanmaele
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Elke Bouwens
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Sanne E Hoeks
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Lieke Lamont
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Bram Fioole
- Department of Vascular Surgery, Maasstad Hospital, Rotterdam, the Netherlands
| | - Adriaan Moelker
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Sander Ten Raa
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Burhan Hussain
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology, Beatrix hospital, Gorinchem, the Netherlands
| | - José Oliveira-Pinto
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Angiology and Vascular Surgery, Centro Hospitalar São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Oporto, Porto, Portugal
| | - Arne S Ijpma
- Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Felix van Lier
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | | | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Yolanda de Rijke
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, the Netherlands
| | - Hence Jm Verhagen
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Martin-Puig S, Menendez-Montes I. Cardiac Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:365-396. [PMID: 38884721 DOI: 10.1007/978-3-031-44087-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart is composed of a heterogeneous mixture of cellular components perfectly intermingled and able to integrate common environmental signals to ensure proper cardiac function and performance. Metabolism defines a cell context-dependent signature that plays a critical role in survival, proliferation, or differentiation, being a recognized master piece of organ biology, modulating homeostasis, disease progression, and adaptation to tissue damage. The heart is a highly demanding organ, and adult cardiomyocytes require large amount of energy to fulfill adequate contractility. However, functioning under oxidative mitochondrial metabolism is accompanied with a concomitant elevation of harmful reactive oxygen species that indeed contributes to the progression of several cardiovascular pathologies and hampers the regenerative capacity of the mammalian heart. Cardiac metabolism is dynamic along embryonic development and substantially changes as cardiomyocytes mature and differentiate within the first days after birth. During early stages of cardiogenesis, anaerobic glycolysis is the main energetic program, while a progressive switch toward oxidative phosphorylation is a hallmark of myocardium differentiation. In response to cardiac injury, different signaling pathways participate in a metabolic rewiring to reactivate embryonic bioenergetic programs or the utilization of alternative substrates, reflecting the flexibility of heart metabolism and its central role in organ adaptation to external factors. Despite the well-established metabolic pattern of fetal, neonatal, and adult cardiomyocytes, our knowledge about the bioenergetics of other cardiac populations like endothelial cells, cardiac fibroblasts, or immune cells is limited. Considering the close intercellular communication and the influence of nonautonomous cues during heart development and after cardiac damage, it will be fundamental to better understand the metabolic programs in different cardiac cells in order to develop novel interventional opportunities based on metabolic rewiring to prevent heart failure and improve the limited regenerative capacity of the mammalian heart.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Department of Metabolic and Immune Diseases, Institute for Biomedical Research "Sols-Morreale", National Spanish Research Council, CSIC, Madrid, Spain.
- Cardiac Regeneration Program, National Center for Cardiovascular Research, CNIC, Madrid, Spain.
| | - Ivan Menendez-Montes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Zhao JV, Fan B, Burgess S. Using genetics to examine the overall and sex-specific associations of branch-chain amino acids and the valine metabolite, 3-hydroxyisobutyrate, with ischemic heart disease and diabetes: A two-sample Mendelian randomization study. Atherosclerosis 2023; 381:117246. [PMID: 37660674 PMCID: PMC7615055 DOI: 10.1016/j.atherosclerosis.2023.117246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND AND AIMS Branch-chain amino acids (BCAAs) are linked to higher risk of diabetes, whilst the evidence on ischemic heart disease (IHD) is limited. Valine metabolite, 3-hydroxyisobutyrate (3-HIB), also plays an important role in metabolism, whilst its effect has been rarely examined. At the situation of no evidence from large trials, we assessed the role of BCAAs and 3-HIB in IHD and diabetes using Mendelian randomization to minimize confounding. Given their potential role in sex hormones, we also examined sex-specific associations. METHODS We used genetic variants to predict BCAAs and 3-HIB, and obtained their associations with IHD and diabetes in large consortia and cohorts, as well as sex-specific association in the UK Biobank and DIAGRAM. We obtained and combined the Wald estimates using inverse variance weighting, and different analytic methods robust to pleiotropy. RESULTS Genetically predicted BCAAs were associated with higher risk of IHD (odds ratio (OR) 1.19 per standard deviation (SD) increase in BCAAs, 95% confidence interval (CI) 1.05 to 1.35) and diabetes (OR 1.20, 95% CI 1.08 to 1.34). The associations with IHD were stronger in women (OR 1.23, 95% CI 1.03 to 1.48) than men (OR 0.96, 95% CI 0.83 to 1.10). 3-HIB was associated with higher risk of IHD (OR 1.43, 95% CI 1.17 to 1.73) but not diabetes, with no sex disparity. CONCLUSION BCAAs and 3-HIB are potential targets for prevention in IHD and/or diabetes. BCAAs may exert a sex-specific role in IHD. Consideration of the sex disparity and exploration of the underlying pathways would be worthwhile.
Collapse
Affiliation(s)
- Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Bohan Fan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, UK; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK
| |
Collapse
|
9
|
Fung E, Ng KH, Kwok T, Lui LT, Palaniswamy S, Chan Q, Lim LL, Wiklund P, Xie S, Turner C, Elshorbagy AK, Refsum H, Leung JCS, Kong APS, Chan JCN, Järvelin MR, Woo J. Divergent Survival Outcomes Associated with Elevated Branched-Chain Amino Acid Levels among Older Adults with or without Hypertension and Diabetes: A Validated, Prospective, Longitudinal Follow-Up Study. Biomolecules 2023; 13:1252. [PMID: 37627317 PMCID: PMC10452866 DOI: 10.3390/biom13081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Branched-chain amino acids are critical metabolic intermediates that can indicate increased risk of cardiometabolic disease when levels are elevated or, alternatively, suggest sufficient mitochondrial energy metabolism and reserve in old age. The interpretation of BCAA levels can be context-dependent, and it remains unclear whether abnormal levels can inform prognosis. This prospective longitudinal study aimed to determine the interrelationship between mortality hazard and fasting serum BCAA levels among older men and women aged ≥65 years with or without hypertension and diabetes mellitus. At baseline (0Y), fasting serum BCAA concentration in 2997 community-living older men and women were measured. Approximately 14 years later (14Y), 860 study participants returned for repeat measurements. Deaths were analysed and classified into cardiovascular and non-cardiovascular causes using International Classification of Diseases codes. Survival analysis and multivariable Cox regression were performed. During a median follow-up of 17Y, 971 (78.6%) non-cardiovascular and 263 (21.4%) cardiovascular deaths occurred among 1235 (41.2%) deceased (median age, 85.8 years [IQR 81.7-89.7]). From 0Y to 14Y, BCAA levels declined in both sexes, whereas serum creatinine concentration increased (both p < 0.0001). In older adults without hypertension or diabetes mellitus, the relationship between mortality hazard and BCAA level was linear and above-median BCAA levels were associated with improved survival, whereas in the presence of cardiometabolic disease the relationship was U-shaped. Overall, adjusted Cox regression determined that each 10% increment in BCAA concentration was associated with a 7% (p = 0.0002) and 16% (p = 0.0057) reduction in mortality hazard estimated at 0Y and 14Y, respectively. Our findings suggested that abnormally high or low (dyshomeostatic) BCAA levels among older adults with hypertension and/or diabetes mellitus were associated with increased mortality, whereas in those with neither disease, increased BCAA levels was associated with improved survival, particularly in the oldest-old.
Collapse
Affiliation(s)
- Erik Fung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Cardiac Research Centre and Laboratory for Heart Failure + Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR, China
- Neural, Vascular, Metabolic Biology Programme, and Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Cardiology, Department of Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Kwan Hung Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Cardiac Research Centre and Laboratory for Heart Failure + Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK Jockey Club Centre for Osteoporosis Care and Control, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Leong-Ting Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Cardiac Research Centre and Laboratory for Heart Failure + Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Saranya Palaniswamy
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Lee-Ling Lim
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China
| | - Petri Wiklund
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
- The Exercise Translational Medicine Center and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Suyi Xie
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Cardiac Research Centre and Laboratory for Heart Failure + Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Amany K. Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria 21526, Egypt
- Department of Public Health and Primary Healthcare, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Jason C. S. Leung
- CUHK Jockey Club Centre for Osteoporosis Care and Control, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alice P. S. Kong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Unit of Primary Health Care, Oulu University Hospital, 90014 Oulu, Finland
| | - Jean Woo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK Jockey Club Institute of Ageing, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Smith M, Zhang L, Jin Y, Yang M, Bade A, Gillis KD, Jana S, Bypaneni RN, Glass TE, Lin H. A Turn-On Fluorescent Amino Acid Sensor Reveals Chloroquine's Effect on Cellular Amino Acids via Inhibiting Cathepsin L. ACS CENTRAL SCIENCE 2023; 9:980-991. [PMID: 37252359 PMCID: PMC10214525 DOI: 10.1021/acscentsci.2c01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Indexed: 05/31/2023]
Abstract
Maintaining homeostasis of metabolites such as amino acids is critical for cell survival. Dysfunction of nutrient balance can result in human diseases such as diabetes. Much remains to be discovered about how cells transport, store, and utilize amino acids due to limited research tools. Here we developed a novel, pan-amino acid fluorescent turn-on sensor, NS560. It detects 18 of the 20 proteogenic amino acids and can be visualized in mammalian cells. Using NS560, we identified amino acids pools in lysosomes, late endosomes, and surrounding the rough endoplasmic reticulum. Interestingly, we observed amino acid accumulation in large cellular foci after treatment with chloroquine, but not with other autophagy inhibitors. Using a biotinylated photo-cross-linking chloroquine analog and chemical proteomics, we identified Cathepsin L (CTSL) as the chloroquine target leading to the amino acid accumulation phenotype. This study establishes NS560 as a useful tool to study amino acid regulation, identifies new mechanisms of action of chloroquine, and demonstrates the importance of CTSL regulation of lysosomes.
Collapse
Affiliation(s)
- Michael
R. Smith
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Le Zhang
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yizhen Jin
- Graduate
Program of Biochemistry, Molecular and Cell Biology, Department of
Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Min Yang
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Anusha Bade
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin D. Gillis
- Dalton
Cardiovascular Research Center, Department of Bioengineering and Department
of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Sadhan Jana
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Ramesh Naidu Bypaneni
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Timothy E. Glass
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Gerace E, Baldi S, Salimova M, Di Gloria L, Curini L, Cimino V, Nannini G, Russo E, Pallecchi M, Ramazzotti M, Bartolucci G, Occupati B, Lanzi C, Scarpino M, Lanzo G, Grippo A, Lolli F, Mannaioni G, Amedei A. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023; 26:106627. [PMID: 37250301 PMCID: PMC10214473 DOI: 10.1016/j.isci.2023.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The effects of cocaine on microbiota have been scarcely explored. Here, we investigated the gut (GM) and oral (OM) microbiota composition of cocaine use disorder (CUD) patients and the effects of repetitive transcranial magnetic stimulation (rTMS). 16S rRNA sequencing was used to characterize GM and OM, whereas PICRUST2 assessed functional changes in microbial communities, and gas-chromatography was used to evaluate fecal short and medium chain fatty acids. CUD patients reported a significant decrease in alpha diversity and modification of the abundances of several taxa in both GM and OM. Furthermore, many predicted metabolic pathways were differentially expressed in CUD patients' stool and saliva samples, as well as reduced levels of butyric acid that appear restored to normal amounts after rTMS treatment. In conclusion, CUD patients showed a profound dysbiotic fecal and oral microbiota composition and function and rTMS-induced cocaine abstinence determined the restoration of eubiotic microbiota.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maya Salimova
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Virginia Cimino
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Brunella Occupati
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Cecilia Lanzi
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Maenia Scarpino
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Giovanni Lanzo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Antonello Grippo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
12
|
Li H, Xu D, Zhang D, Tan X, Huang D, Ma W, Zhao G, Li Y, Liu Z, Wang Y, Hu X, Wang X. Improve L-isoleucine production in Corynebacterium glutamicum WM001 by destructing the biosynthesis of trehalose dicorynomycolate. Microbiol Res 2023; 272:127390. [PMID: 37087971 DOI: 10.1016/j.micres.2023.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Trehalose dicorynomycolates are structurally important constituents of the cell envelope in Corynebacterium glutamicum. The genes treS, treY, otsA, mytA and mytB are necessary for the biosynthesis of trehalose dicorynomycolates. In this study, the effect of biosynthesis of trehalose dicorynomycolates on L-isoleucine production in C. glutamicum has been investigated by deleting the genes treS, treY, otsA, mytA, and mytB in the L-isoleucine producing C. glutamicum WM001. L-isoleucine production was slightly improved in the mutants ΔtreY, ΔotsA, and ΔtreYA, and not improved in the single deletion mutant ΔtreS , but significantly improved in the triple deletion mutant ΔtreSYA. Deletion of mytA or mytB in ΔtreSYA could further improve L-isoleucine production. However, deletion of both mytA and mytB in ΔtreSYA significantly decreased L-isoleucine production. The final L-isoleucine producing C. glutamicum WL001 was constructed by deletion of treS, treY, otsA, and mytB, insertion of lrp, and replacement of the native promoter of ilvA with the L-isoleucine sensitive promoter PbrnFE7. WL001 grew worse than the control WM001, but produced 36.1% more L-isoleucine after 72 h shake flask cultivation than WM001.
Collapse
Affiliation(s)
- Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Daqing Xu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Dezhi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Guihong Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ziwei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Guixeres-Esteve T, Ponce-Zanón F, Morales JM, Lurbe E, Alvarez-Pitti J, Monleón D. Impact of Maternal Weight Gain on the Newborn Metabolome. Metabolites 2023; 13:561. [PMID: 37110219 PMCID: PMC10142613 DOI: 10.3390/metabo13040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Pre-pregnancy obesity and excessive gestational weight gain (GWG) appear to affect birth weight and the offspring's risk of obesity and disease later in life. However, the identification of the mediators of this relationship, could be of clinical interest, taking into account the presence of other confounding factors, such as genetics and other shared influences. The aim of this study was to evaluate the metabolomic profiles of infants at birth (cord blood) and 6 and 12 months after birth to identify offspring metabolites associated with maternal GWG. Nuclear Magnetic Resonance (NMR) metabolic profiles were measured in 154 plasma samples from newborns (82 cord blood samples) and in 46 and 26 of these samples at 6 months and 12 months of age, respectively. The levels of relative abundance of 73 metabolomic parameters were determined in all the samples. We performed univariate and machine-learning analysis of the association between the metabolic levels and maternal weight gain adjusted for mother's age, Body Mass Index (BMI), diabetes, diet adherence and infant sex. Overall, our results showed differences, both at the univariate level and in the machine-learning models, between the offspring, according to the tertiles of maternal weight gain. Some of these differences were resolved at 6 and 12 months of age, whereas some others remained. Lactate and leucine were the metabolites with the strongest and longest association with maternal weight gain during pregnancy. Leucine, as well as other significant metabolites, have been associated in the past with metabolic wellness in both general and obese populations. Our results suggest that the metabolic changes associated to excessive GWG are present in children from early life.
Collapse
Affiliation(s)
- Teresa Guixeres-Esteve
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (T.G.-E.)
| | - Francisco Ponce-Zanón
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (T.G.-E.)
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Manuel Morales
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| | - Empar Lurbe
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (T.G.-E.)
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Julio Alvarez-Pitti
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (T.G.-E.)
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Daniel Monleón
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
14
|
Zhao S, Zhou L, Wang Q, Cao JH, Chen Y, Wang W, Zhu BD, Wei ZH, Li R, Li CY, Zhou GY, Tan ZJ, Zhou HP, Li CX, Gao HK, Qin XJ, Lian K. Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H2O2-disulfide HMGB1 in macrophages. Redox Biol 2023; 62:102696. [PMID: 37058999 PMCID: PMC10130699 DOI: 10.1016/j.redox.2023.102696] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
As the essential amino acids, branched-chain amino acid (BCAA) from diets is indispensable for health. BCAA supplementation is often recommended for patients with consumptive diseases or healthy people who exercise regularly. Latest studies and ours reported that elevated BCAA level was positively correlated with metabolic syndrome, diabetes, thrombosis and heart failure. However, the adverse effect of BCAA in atherosclerosis (AS) and its underlying mechanism remain unknown. Here, we found elevated plasma BCAA level was an independent risk factor for CHD patients by a human cohort study. By employing the HCD-fed ApoE-/- mice of AS model, ingestion of BCAA significantly increased plaque volume, instability and inflammation in AS. Elevated BCAA due to high dietary BCAA intake or BCAA catabolic defects promoted AS progression. Furthermore, BCAA catabolic defects were found in the monocytes of patients with CHD and abdominal macrophages in AS mice. Improvement of BCAA catabolism in macrophages alleviated AS burden in mice. The protein screening assay revealed HMGB1 as a potential molecular target of BCAA in activating proinflammatory macrophages. Excessive BCAA induced the formation and secretion of disulfide HMGB1 as well as subsequent inflammatory cascade of macrophages in a mitochondrial-nuclear H2O2 dependent manner. Scavenging nuclear H2O2 by overexpression of nucleus-targeting catalase (nCAT) effectively inhibited BCAA-induced inflammation in macrophages. All of the results above illustrate that elevated BCAA promotes AS progression by inducing redox-regulated HMGB1 translocation and further proinflammatory macrophage activation. Our findings provide novel insights into the role of animo acids as the daily dietary nutrients in AS development, and also suggest that restricting excessive dietary BCAA consuming and promoting BCAA catabolism may serve as promising strategies to alleviate and prevent AS and its subsequent CHD.
Collapse
|
15
|
Martin-Grau M, Monleon D. Sex dimorphism and metabolic profiles in management of metabolic-associated fatty liver disease. World J Clin Cases 2023; 11:1236-1244. [PMID: 36926130 PMCID: PMC10013124 DOI: 10.12998/wjcc.v11.i6.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) refers to the build-up of fat in the liver associated with metabolic dysfunction and has been estimated to affect a quarter of the population worldwide. Although metabolism is highly influenced by the effects of sex hormones, studies of sex differences in the incidence and progression of MAFLD are scarce. Metabolomics represents a powerful approach to studying these differences and identifying potential biomarkers and putative mechanisms. First, metabolomics makes it possible to obtain the molecular phenotype of the individual at a given time. Second, metabolomics may be a helpful tool for classifying patients according to the severity of the disease and obtaining diagnostic biomarkers. Some studies demonstrate associations between circulating metabolites and early and established MAFLD, but little is known about how metabolites relate to and encompass sex differences in disease progression and risk management. In this review, we will discuss the epidemiological metabolomic studies for sex differences in the development and progression of MAFLD, the role of metabolic profiles in understanding mechanisms and identifying sex-dependent biomarkers, and how this evidence may help in the future management of the disease.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| | - Daniel Monleon
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
16
|
Hatahet J, Cook TM, Bonomo RR, Elshareif N, Gavini CK, White CR, Jesse J, Mansuy-Aubert V, Aubert G. Fecal microbiome transplantation and tributyrin improves early cardiac dysfunction and modifies the BCAA metabolic pathway in a diet induced pre-HFpEF mouse model. Front Cardiovasc Med 2023; 10:1105581. [PMID: 36844730 PMCID: PMC9944585 DOI: 10.3389/fcvm.2023.1105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
More than 50% of patients with heart failure present with heart failure with preserved ejection fraction (HFpEF), and 80% of them are overweight or obese. In this study we developed an obesity associated pre-HFpEF mouse model and showed an improvement in both systolic and diastolic early dysfunction following fecal microbiome transplant (FMT). Our study suggests that the gut microbiome-derived short-chain fatty acid butyrate plays a significant role in this improvement. Cardiac RNAseq analysis showed butyrate to significantly upregulate ppm1k gene that encodes protein phosphatase 2Cm (PP2Cm) which dephosphorylates and activates branched-chain α-keto acid dehydrogenase (BCKDH) enzyme, and in turn increases the catabolism of branched chain amino acids (BCAAs). Following both FMT and butyrate treatment, the level of inactive p-BCKDH in the heart was reduced. These findings show that gut microbiome modulation can alleviate early cardiac mechanics dysfunction seen in the development of obesity associated HFpEF.
Collapse
Affiliation(s)
- Jomana Hatahet
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Tyler M Cook
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Raiza R Bonomo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Nadia Elshareif
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Chaitanya K Gavini
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States.,Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Chelsea R White
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Jason Jesse
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Virginie Mansuy-Aubert
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States.,Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Gregory Aubert
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States.,Division of Cardiology, Department of Internal Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
17
|
Warner II ER, Satapathy SK. Sarcopenia in the Cirrhotic Patient: Current Knowledge and Future Directions. J Clin Exp Hepatol 2023; 13:162-177. [PMID: 36647414 PMCID: PMC9840086 DOI: 10.1016/j.jceh.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Cirrhosis predisposes to abnormalities in energy, hormonal, and immunological homeostasis. Disturbances in these metabolic processes create susceptibility to sarcopenia or pathological muscle wasting. Sarcopenia is prevalent in cirrhosis and its presence portends significant adverse outcomes including the length of hospital stay, infectious complications, and mortality. This highlights the importance of identification of at-risk individuals with early nutritional, therapeutic and physical therapy intervention. This manuscript summarizes literature relevant to sarcopenia in cirrhosis, describes current knowledge, and elucidates possible future directions.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ACE-I, angiotensin-converting enzyme inhibitor
- AKI, acute kidney injury
- ALM, appendicular lean mass
- ARB, angiotensin receptor blocker
- ASM, appendicular skeletal mass
- AT1R, angiotensin type 1 receptor
- AT2R, angiotensin type 2 receptor
- ATP, adenosine-5′-triphosphate
- AWGS, Asian Working Group for Sarcopenia
- BCAA, branched chained amino acids
- BIA, bioelectrical impedance analysis
- BMI, body mass index
- CART, classification and regression tree
- CKD, chronic kidney disease
- CRP, C-reactive protein
- DEXA, dual energy X-ray absorptiometry
- EAA, essential amino acids
- ESPEN-SIG, European Society for Clinical Nutrition and Metabolism Special Interests Groups
- ESRD, end-stage renal disease
- EWGSOP, European Working Group on Sarcopenia in Older People
- FAD, flavin adenine dinucleotide
- FADH2, flavin adenine dinucleotide +2 hydrogen
- FNIH, Foundation for the National Institutes of Health
- GTP, guanosine-5′-triphosphate
- GnRH, gonadotrophin-releasing hormone
- HCC, hepatocellular carcinoma
- HPT, hypothalamic-pituitary-testicular
- IFN-γ, interferon γ
- IGF-1, insulin-like growth factor 1
- IL-1, interleukin-1
- IL-6, interleukin-6
- IWGS, International Working Group on Sarcopenia
- LH, luteinizing hormone
- MELD, Model for End-Stage Liver Disease
- MuRF1, muscle RING-finger-1
- NAD, nicotinamide adenine dinucleotide
- NADH, nicotinamide adenine dinucleotide + hydrogen
- NADPH, nicotinamide adenine dinucleotide phosphate
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NF-κβ, nuclear factor κβ
- NHANES, National Health and Nutritional Examination Survey
- PMI, psoas muscle index
- PMTH, psoas muscle thickness
- RAAS, renin-angiotensin-aldosterone system
- ROS, reactive oxygen species
- SARC-F, Strength, Assistance with walking, Rise from a chair, Climb stairs, and Falls
- SHBG, sex hormone binding globulin
- SMI, skeletal muscle index
- SNS, sympathetic nervous system
- SPPB, Short Performance Physical Battery
- TNF-α, tumor necrosis factor α
- UCSF, University of California, San Francisco
- UNOS, United Network of Organ Sharing
- cirrhosis
- energy
- mTOR, mammalian target of rapamycin
- metabolism
- muscle
- sarcopenia
Collapse
Affiliation(s)
- Edgewood R. Warner II
- Department of Medicine, Donald and Barbara Zucker School of Medicine/Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Sanjaya K. Satapathy
- Division of Hepatology and Northwell Health Center for Liver Diseases and Transplantation, Department of Medicine, Donald and Barbara Zucker School of Medicine/Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA
| |
Collapse
|
18
|
Identifying a metabolomics profile associated with masked hypertension in two independent cohorts: Data from the African-PREDICT and SABPA studies. Hypertens Res 2022; 45:1781-1793. [PMID: 36056205 DOI: 10.1038/s41440-022-01010-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Individuals with masked hypertension (MHT) have a greater risk of adverse cardiovascular outcomes than normotensive (NT) individuals. Exploring metabolomic differences between NT and MHT individuals may help provide a better understanding of the etiology of MHT. We analyzed data from 910 young participants (83% NT and 17% MHT) (mean age 24 ± 3 years) from the African-PREDICT and 210 older participants (63% NT and 37% MHT) from the SABPA (mean age 42 ± 9.6 years) studies. Clinic and ambulatory blood pressures (BPs) were used to define BP phenotypes. Urinary amino acids and acylcarnitines were measured using liquid chromatography time-of-flight mass spectrometry in SABPA and liquid chromatography tandem mass spectrometry in the African-PREDICT studies. In the SABPA study, amino acids (leucine/isoleucine, valine, methionine, phenylalanine), free carnitine (C0-carnitine), and acylcarnitines C3 (propionyl)-, C4 (butyryl)-carnitine and total acylcarnitine) were higher in MHT than NT adults. In the African-PREDICT study, C0- and C5-carnitines were higher in MHT individuals. With unadjusted analyses in NT adults from the SABPA study, ambulatory SBP correlated positively with only C3-carnitine. In MHT individuals, positive correlations of ambulatory SBP with leucine/isoleucine, valine, methionine, phenylalanine, C0-carnitine and C3-carnitine were evident (all p < 0.05). In the African-PREDICT study, ambulatory SBP correlated positively with C0-carnitine (r = 0.101; p = 0.006) and C5-carnitine (r = 0.195; p < 0.001) in NT adults and C5-carnitine in MHT individuals (r = 0.169; p = 0.034). We demonstrated differences between the metabolomic profiles of NT and MHT adults, which may reflect different stages in the alteration of branched-chain amino acid metabolism early on and later in life.
Collapse
|
19
|
Snytnikova O, Tsentalovich Y, Sagdeev R, Kolosova N, Kozhevnikova O. Quantitative Metabolomic Analysis of Changes in the Rat Blood Serum during Autophagy Modulation: A Focus on Accelerated Senescence. Int J Mol Sci 2022; 23:ijms232112720. [PMID: 36361511 PMCID: PMC9658531 DOI: 10.3390/ijms232112720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Autophagy is involved in the maintenance of cellular homeostasis and the removal of damaged proteins and organelles and is necessary to maintain cell metabolism in conditions of energy and nutrient deficiency. A decrease in autophagic activity plays an important role in age-related diseases. However, the metabolic response to autophagy modulation remains poorly understood. Here, we for the first time explored the effects of (1) autophagy activation by 48 h fasting, (2) inhibition by chloroquine (CQ) treatment, and (3) combined effects of fasting and CQ on the quantitative composition of metabolites in the blood serum of senescent-accelerated OXYS and control Wistar rats at the age of 4 months. By means of high-resolution 1H NMR spectroscopy, we identified the quantitative content of 55 serum metabolites, including amino acids, organic acids, antioxidants, osmolytes, glycosides, purine, and pyrimidine derivatives. Groups of 48 h fasting (induction of autophagy), CQ treatment (inhibition of autophagy), and combined effects (CQ + fasting) are clearly separated from control groups by principal component analysis. Fasting for 48 h led to significant changes in the serum metabolomic profile, primarily affecting metabolic pathways related to fatty acid metabolism, and led to metabolism of several amino acids. Under CQ treatment, the most affected metabolites were citrate, betaine, cytidine, proline, tryptophan, glutamate, and mannose. As shown by two-way ANOVA, for many metabolites the effects of autophagy modulation depend on the animal genotype, indicating a dysregulation of metabolome reactivity in OXYS rats. Thus, the metabolic responses to modulation of autophagy in OXYS rats and Wistar rats are different. Altered metabolites in OXYS rats may serve as potential biomarkers of the manifestation of the signs of accelerated aging. Metabolic signatures characteristic to fasting and CQ treatment revealed in this work might provide a better understanding of the connections between metabolism and autophagy.
Collapse
Affiliation(s)
- Olga Snytnikova
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090 Novosibirsk, Russia
- Correspondence: (O.S.); (O.K.)
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090 Novosibirsk, Russia
| | - Renad Sagdeev
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090 Novosibirsk, Russia
| | - Nataliya Kolosova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Avenue, 10, 630090 Novosibirsk, Russia
| | - Oyuna Kozhevnikova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Avenue, 10, 630090 Novosibirsk, Russia
- Correspondence: (O.S.); (O.K.)
| |
Collapse
|
20
|
Sanz-Ros J, Romero-García N, Mas-Bargues C, Monleón D, Gordevicius J, Brooke RT, Dromant M, Díaz A, Derevyanko A, Guío-Carrión A, Román-Domínguez A, Inglés M, Blasco MA, Horvath S, Viña J, Borrás C. Small extracellular vesicles from young adipose-derived stem cells prevent frailty, improve health span, and decrease epigenetic age in old mice. SCIENCE ADVANCES 2022; 8:eabq2226. [PMID: 36260670 PMCID: PMC9581480 DOI: 10.1126/sciadv.abq2226] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aging is associated with an increased risk of frailty, disability, and mortality. Strategies to delay the degenerative changes associated with aging and frailty are particularly interesting. We treated old animals with small extracellular vesicles (sEVs) derived from adipose mesenchymal stem cells (ADSCs) of young animals, and we found an improvement in several parameters usually altered with aging, such as motor coordination, grip strength, fatigue resistance, fur regeneration, and renal function, as well as an important decrease in frailty. ADSC-sEVs induced proregenerative effects and a decrease in oxidative stress, inflammation, and senescence markers in muscle and kidney. Moreover, predicted epigenetic age was lower in tissues of old mice treated with ADSC-sEVs and their metabolome changed to a youth-like pattern. Last, we gained some insight into the microRNAs contained in sEVs that might be responsible for the observed effects. We propose that young sEV treatment can promote healthy aging.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, Valencia, Spain
| | | | | | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Ana Díaz
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Aksinya Derevyanko
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 28029 Madrid, Spain
| | - Ana Guío-Carrión
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 28029 Madrid, Spain
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Marta Inglés
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, Valencia Spain
| | - María A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 28029 Madrid, Spain
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Corresponding author.
| |
Collapse
|
21
|
Leucine Supplementation in Middle-Aged Male Mice Improved Aging-Induced Vascular Remodeling and Dysfunction via Activating the Sirt1-Foxo1 Axis. Nutrients 2022; 14:nu14183856. [PMID: 36145233 PMCID: PMC9505861 DOI: 10.3390/nu14183856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular aging is associated with metabolic remodeling, and most studies focused on fatty acid and glucose metabolism. Based on our metabolomic data, leucine was significantly reduced in the aortas of aged mice. Whether leucine supplementation can reverse aging-induced vascular remodeling remains unknown. To investigate the effectiveness of leucine, male mice at 15 or 18 months were supplemented with leucine (1.5%) for 3 months. All the aged mice, with or without leucine, were sacrificed at 21 months. Blood pressure and vascular relaxation were measured. H&E, Masson’s trichrome, and Elastica van Gieson staining were used to assess aortic morphology. Vascular inflammation, reactive oxidative stress (ROS), and vascular smooth muscle cell (VSMC) phenotype were also measured in mouse aortas. Compared with the 21-month-old mice without leucine, leucine supplementation from 15 months significantly improved vascular relaxation, maintained the contractile phenotype of VSMCs, and repressed vascular inflammation and ROS levels. These benefits were not observed in the mice supplemented with leucine starting from 18 months, which was likely due to the reduction in leucine transporters Slc3a2 or Slc7a5 at 18 months. Furthermore, we found benefits from leucine via activating the Sirt1-induced Foxo1 deacetylation. Our findings indicated that leucine supplementation in middle-aged mice improved aging-induced vascular remodeling and dysfunction.
Collapse
|
22
|
Shin HE, Won CW, Kim M. Metabolomic profiles to explore biomarkers of severe sarcopenia in older men: A pilot study. Exp Gerontol 2022; 167:111924. [PMID: 35963453 DOI: 10.1016/j.exger.2022.111924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The pathophysiology of sarcopenia is complex and multifactorial; however, it has not yet been fully elucidated. Identifying metabolomic profiles may help clarify the mechanisms underlying sarcopenia. OBJECTIVE This pilot study explored potential noninvasive biomarkers of severe sarcopenia through metabolomic analysis in community-dwelling older men. METHODS Twenty older men (mean age: 81.9 ± 2.8 years) were selected from the Korean Frailty and Aging Cohort Study. Participants with severe sarcopenia (n = 10) were compared with non-sarcopenic, age- and body mass index-matched controls (n = 10). Severe sarcopenia was defined as low muscle mass, low muscle strength, and low physical performance using the Asian Working Group for Sarcopenia 2019 criteria. Non-targeted metabolomic profiling of plasma metabolites was performed using capillary electrophoresis time-of-flight mass spectrometry and absolute quantification was performed in target metabolites. RESULTS Among 191 plasma metabolic peaks, the concentrations of 10 metabolites significantly differed between severe sarcopenia group and non-sarcopenic controls. The plasma concentrations of L-alanine, homocitrulline, N-acetylserine, gluconic acid, N-acetylalanine, proline, and sulfotyrosine were higher, while those of 4-methyl-2-oxovaleric acid, 3-methyl-2-oxovaleric acid, and tryptophan were lower in participants with severe sarcopenia than in non-sarcopenic controls (all, p < 0.05). Among the 53 metabolites quantified as target metabolites, L-alanine (area under the receiver operating characteristic curve [AUC] = 0.760; p = 0.049), gluconic acid (AUC = 0.800; p = 0.023), proline (AUC = 0.785; p = 0.031), and tryptophan (AUC = 0.800; p = 0.023) determined the presence of severe sarcopenia. CONCLUSIONS Plasma metabolomic analysis demonstrated that L-alanine, gluconic acid, proline, and tryptophan may be potential biomarkers of severe sarcopenia. The identified metabolites can provide new insights into the underlying pathophysiology of severe sarcopenia and serve as the basis for preventive interventions.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, South Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
23
|
Liu Y, Zhang C, Zhang Y, Jiang X, Liang Y, Wang H, Li Y, Sun G. Association between Excessive Dietary Branched-Chain Amino Acids Intake and Hypertension Risk in Chinese Population. Nutrients 2022; 14:nu14132582. [PMID: 35807761 PMCID: PMC9268479 DOI: 10.3390/nu14132582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
The dietary intake of branched-chain amino acids (BCAAs) has been reported to be associated with both elevated blood pressure (BP) and hypertension risk, while published findings were inconsistent, and the causality has never been well disclosed. We performed this prospective study aiming to find out the relationship between dietary BCAAs intake and hypertension risk in the Chinese population. A total of 8491 participants (40,285 person-years) were selected. The levels of dietary BCAAs intake were estimated using the 24-h Food Frequency Questionnaire. Associations of both BP values and hypertension risk with per standard deviation increase of BCAAs were estimated using linear and COX regression analysis, respectively. The hazard ratios and 95% confidence interval were given. Restricted cubic spline analysis (RCS) was used to estimate the nonlinearity. Both systolic and diastolic BP values at the end points of follow-up were positively associated with dietary BCAAs intake. Positive associations between BCAAs intake and hypertension risk were shown in both men and women. By performing a RCS analysis, the nonlinear relationship between BCAAs intake and hypertension was shown. As the intake levels of Ile, Leu, and Val, respectively, exceeded 2.49 g/day, 4.91 g/day, and 2.88 g/day in men (2.16 g/day, 3.84 g/day, and 2.56 g/day in women), the hypertension risk increased. Our findings could provide some concrete evidence in the primary prevention of hypertension based on dietary interventions.
Collapse
Affiliation(s)
- Yuyan Liu
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China;
| | - Chengwen Zhang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Yuan Zhang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Xuheng Jiang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Yuanhong Liang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Huan Wang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Yongfang Li
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
- Correspondence:
| | - Guifan Sun
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| |
Collapse
|
24
|
Yoo HS, Shanmugalingam U, Smith PD. Potential roles of branched-chain amino acids in neurodegeneration. Nutrition 2022; 103-104:111762. [DOI: 10.1016/j.nut.2022.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 10/31/2022]
|
25
|
Pisoni S, Marrachelli VG, Morales JM, Maestrini S, Di Blasio AM, Monleón D. Sex Dimorphism in the Metabolome of Metabolic Syndrome in Morbidly Obese Individuals. Metabolites 2022; 12:metabo12050419. [PMID: 35629923 PMCID: PMC9147578 DOI: 10.3390/metabo12050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/10/2022] Open
Abstract
Adult morbid obesity is defined as abnormal or excessive fat accumulation, mostly resulting from a long-term unhealthy lifestyle. Between 10% and 30% of people with obesity exhibit low cardiometabolic risk. The metabolic syndrome has been suggested as an indicator of obesity-related metabolic dysregulation. Although the prevalence of obesity does not seem to be sex-related and metabolic syndrome occurs at all ages, in the last few years, sex-specific differences in the pathophysiology, diagnosis, and treatment of metabolic syndrome have received attention. The aim of this study was to determine the prevalence of metabolic syndrome and its components in different sex and age groups in people with metabolic unhealthy obesity and to compare them with people with metabolic healthy obesity. We analyzed the metabolome in 1350 well-phenotyped morbidly obese individuals and showed that there is a strong sex-dependent association of metabolic syndrome with circulating metabolites. Importantly, we demonstrated that metabolic dysregulation in women and men with severe obesity and metabolic syndrome is age-dependent. The metabolic profiles from our study showed age-dependent sex differences in the impact of MetS which are consistent with the cardiometabolic characterization. Although there is common ground for MetS in the metabolome of severe obesity, men older than 54 are affected in a more extensive and intensive manner. These findings strongly argue for more studies aimed at unraveling the mechanisms that underlie this sex-specific metabolic dysregulation in severe obesity. Moreover, these findings suggest that women and men might benefit from differential sex and age specific interventions to prevent the adverse cardiometabolic effects of severe obesity.
Collapse
Affiliation(s)
- Serena Pisoni
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain; (S.P.); (J.M.M.)
| | - Vannina G. Marrachelli
- Department of Physiology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- Clinical Hospital Research Foundation-INCLIVA and CIBERFES, 46010 Valencia, Spain
| | - Jose M. Morales
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain; (S.P.); (J.M.M.)
- Clinical Hospital Research Foundation-INCLIVA and CIBERFES, 46010 Valencia, Spain
| | - Sabrina Maestrini
- Laboratory of Molecular Genetics, Istituto Auxologico Italiano IRCCS, 20145 Milano, Italy; (S.M.); (A.M.D.B.)
| | - Anna M. Di Blasio
- Laboratory of Molecular Genetics, Istituto Auxologico Italiano IRCCS, 20145 Milano, Italy; (S.M.); (A.M.D.B.)
| | - Daniel Monleón
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain; (S.P.); (J.M.M.)
- Clinical Hospital Research Foundation-INCLIVA and CIBERFES, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
26
|
Zhou C, Wu Q, Ye Z, Liu M, Zhang Z, Zhang Y, Li H, He P, Li Q, Liu C, Qin X. Inverse Association Between Variety of Proteins With Appropriate Quantity From Different Food Sources and New-Onset Hypertension. Hypertension 2022; 79:1017-1027. [PMID: 35264000 DOI: 10.1161/hypertensionaha.121.18222] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The relationships of the variety and quantity of different sources of dietary proteins with hypertension remain uncertain. We aimed to investigate associations between the variety and quantity of proteins intake from 8 major food sources and new-onset hypertension among 12 177 participants from the China Health and Nutrition Survey. Dietary intake was measured by 3 consecutive 24-hour dietary recalls combined with a household food inventory. The variety score of protein sources was defined as the number of protein sources consumed at the appropriate level, accounting for types and quantity of proteins. New-onset hypertension was defined as systolic blood pressure ≥140 mm Hg and diastolic blood pressure ≥90 mm Hg, or physician-diagnosed hypertension or receiving antihypertensive treatment, during the follow-up. During a median follow-up of 6.1 years, there were U-shaped associations of percentages energy from total, unprocessed or processed red meat-derived, whole grain-derived, and poultry-derived proteins with new-onset hypertension; an reverse J-shaped association of fish-derived protein with new-onset hypertension; L-shaped associations of eggs-derived and legumes-derived proteins with new-onset hypertension; and an reverse L-shaped association of refined grain-derived protein with new-onset hypertension (all P values for nonlinearity <0.001). That is, for each protein, there is a window of consumption (appropriate level) where the risk of hypertension is lower. Moreover, a significantly lower risk of new-onset hypertension was found in those with higher variety score of protein sources (per score increment, hazard ratio, 0.74 [95% CI, 0.72-0.76]). In summary, there was an inverse association between the variety of proteins with appropriate quantity from different food sources and new-onset hypertension.
Collapse
Affiliation(s)
- Chun Zhou
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.)
| | - Qimeng Wu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.)
| | - Ziliang Ye
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.)
| | - Mengyi Liu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.)
| | - Zhuxian Zhang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.)
| | - Yuanyuan Zhang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.)
| | - Huan Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.)
| | - Panpan He
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.)
| | - Qinqin Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.).,Department of Epidemiology and Biostatistics, School of Public Health (Q.L., C.L., X.Q.), Anhui Medical University, Hefei, China.,Institute of Biomedicine (Q.L., C.L., X.Q.), Anhui Medical University, Hefei, China
| | - Chengzhang Liu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.).,Department of Epidemiology and Biostatistics, School of Public Health (Q.L., C.L., X.Q.), Anhui Medical University, Hefei, China.,Institute of Biomedicine (Q.L., C.L., X.Q.), Anhui Medical University, Hefei, China
| | - Xianhui Qin
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, China (C.Z., Q.W., Z.Y., M.L., Z.Z., Y.Z., H.L., P.H., Q.L., C.L., X.Q.).,Department of Epidemiology and Biostatistics, School of Public Health (Q.L., C.L., X.Q.), Anhui Medical University, Hefei, China.,Institute of Biomedicine (Q.L., C.L., X.Q.), Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Lind L, Salihovic S, Sundström J, Elmståhl S, Hammar U, Dekkers K, Ärnlöv J, Smith JG, Engström G, Fall T. Metabolic Profiling of Obesity With and Without the Metabolic Syndrome: A Multisample Evaluation. J Clin Endocrinol Metab 2022; 107:1337-1345. [PMID: 34984454 DOI: 10.1210/clinem/dgab922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/31/2022]
Abstract
CONTEXT There is a dispute whether obesity without major metabolic derangements may represent a benign condition or not. OBJECTIVE We aimed to compare the plasma metabolome in obese subjects without metabolic syndrome (MetS) with normal-weight subjects without MetS and with obese subjects with MetS. METHODS This was a cross-sectional study at 2 academic centers in Sweden. Individuals from 3 population-based samples (EpiHealth, n = 2342, SCAPIS-Uppsala, n = 4985, and SCAPIS-Malmö, n = 3978) were divided into groups according to their body mass index (BMI) and presence/absence of MetS (National Cholesterol Education Program [NCEP]/consensus criteria). In total, 791 annotated endogenous metabolites were measured by ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS We observed major differences in metabolite profiles (427 metabolites) between obese (BMI ≥ 30 kg/m2) and normal-weight (BMI < 25 kg/m2) subjects without MetS after adjustment for major lifestyle factors. Pathway enrichment analysis highlighted branch-chained and aromatic amino acid synthesis/metabolism, aminoacyl-tRNA biosynthesis, and sphingolipid metabolism. The same pathways, and similar metabolites, were also highlighted when obese subjects with and without MetS were compared despite adjustment for BMI and waist circumference, or when the metabolites were related to BMI and number of MetS components in a continuous fashion. Similar metabolites and pathways were also related to insulin sensitivity (Matsuda index) in a separate study (POEM, n = 501). CONCLUSION Our data suggest a graded derangement of the circulating metabolite profile from lean to obese to MetS, in particular for metabolites involved in amino acid synthesis/metabolism and sphingolipid metabolism. Insulin resistance is a plausible mediator of this gradual metabolic deterioration.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden
| | - Samira Salihovic
- Inflammatory Response and Infection Susceptibility Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - Sölve Elmståhl
- Department of Clinical Sciences, Division of Geriatric Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Ulf Hammar
- Department of Medical Sciences, Uppsala University, Sweden
| | - Koen Dekkers
- Department of Medical Sciences, Uppsala University, Sweden
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Huddinge, Sweden
- School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital , Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Tove Fall
- Department of Medical Sciences, Uppsala University, Sweden
| |
Collapse
|
28
|
Galvez-Fernandez M, Sanchez-Saez F, Domingo-Relloso A, Rodriguez-Hernandez Z, Tarazona S, Gonzalez-Marrachelli V, Grau-Perez M, Morales-Tatay JM, Amigo N, Garcia-Barrera T, Gomez-Ariza JL, Chaves FJ, Garcia-Garcia AB, Melero R, Tellez-Plaza M, Martin-Escudero JC, Redon J, Monleon D. Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study. Redox Biol 2022; 52:102314. [PMID: 35460952 PMCID: PMC9048061 DOI: 10.1016/j.redox.2022.102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Background Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals. In a population-based sample, cobalt, copper, selenium, zinc, arsenic, cadmium and antimony exposures were related to some metabolic patterns. Carriers of redox-related variants displayed differential susceptibility to metabolic alterations associated to excessive metal exposures. Cobalt and zinc showed a number of statistical interactions with variants from genes sharing biological pathways with a role in chronic diseases. The metabolic impact of metals combined with variation in redox-related genes might be large in the population, given metals widespread exposure.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sanchez-Saez
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Applied Statistics and Operations Research and Quality Politècnica de València, Valencia, Spain
| | - Vannina Gonzalez-Marrachelli
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jose M Morales-Tatay
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain; Department of Basic Medical Sciences, University Rovira I Virgili, Reus, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - F Javier Chaves
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Rebeca Melero
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, Valladolid, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
29
|
Wang Y, Huang K, Liu F, Lu X, Huang J, Gu D. Association of circulating branched-chain amino acids with risk of cardiovascular disease: A systematic review and meta-analysis. Atherosclerosis 2022; 350:90-96. [DOI: 10.1016/j.atherosclerosis.2022.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 01/05/2023]
|
30
|
Wu L, Shi R, Bai H, Wang X, Wei J, Liu C, Wu Y. Porphyromonas gingivalis Induces Increases in Branched-Chain Amino Acid Levels and Exacerbates Liver Injury Through livh/livk. Front Cell Infect Microbiol 2022; 12:776996. [PMID: 35360107 PMCID: PMC8961321 DOI: 10.3389/fcimb.2022.776996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis, a keystone periodontal pathogen, has emerged as a risk factor for systemic chronic diseases, including non-alcoholic fatty liver disease (NAFLD). To clarify the mechanism by which this pathogen induces such diseases, we simultaneously analyzed the transcriptome of intracellular P. gingivalis and infected host cells via dual RNA sequencing. Pathway analysis was also performed to determine the differentially expressed genes in the infected cells. Further, the infection-induced notable expression of P. gingivalis livk and livh genes, which participate in branched-chain amino acid (BCAA) transfer, was also analyzed. Furthermore, given that the results of recent studies have associated NAFLD progression with elevated serum BCAA levels, which reportedly, are upregulated by P. gingivalis, we hypothesized that this pathogen may induce increases in serum BCAA levels and exacerbate liver injury via livh/livk. To verify this hypothesis, we constructed P. gingivalis livh/livk-deficient strains (Δlivk, Δlivh) and established a high-fat diet (HFD)-fed murine model infected with P. gingivalis. Thereafter, the kinetic growth and exopolysaccharide (EPS) production rates as well as the invasion efficiency and in vivo colonization of the mutant strains were compared with those of the parental strain. The serum BCAA and fasting glucose levels of the mice infected with either the wild-type or mutant strains, as well as their liver function were also further investigated. It was observed that P. gingivalis infection enhanced serum BCAA levels and aggravated liver injury in the HFD-fed mice. Additionally, livh deletion had no effect on bacterial growth, EPS production, invasion efficiency, and in vivo colonization, whereas the Δlivk strain showed a slight decrease in invasion efficiency and in vivo colonization. More importantly, however, both the Δlivk and Δlivh strains showed impaired ability to upregulate serum BCAA levels or exacerbate liver injury in HFD-fed mice. Overall, these results suggested that P. gingivalis possibly aggravates NAFLD progression in HFD-fed mice by increasing serum BCAA levels, and this effect showed dependency on the bacterial BCAA transport system.
Collapse
Affiliation(s)
- Leng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
| | - Xingtong Wang
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jian Wei
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yafei Wu,
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yafei Wu,
| |
Collapse
|
31
|
Souders CL, Zubcevic J, Martyniuk CJ. Tumor Necrosis Factor Alpha and the Gastrointestinal Epithelium: Implications for the Gut-Brain Axis and Hypertension. Cell Mol Neurobiol 2022; 42:419-437. [PMID: 33594519 PMCID: PMC8364923 DOI: 10.1007/s10571-021-01044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
The colonic epithelium is the site of production and transport of many vasoactive metabolites and neurotransmitters that can modulate the immune system, affect cellular metabolism, and subsequently regulate blood pressure. As an important interface between the microbiome and its host, the colon can contribute to the development of hypertension. In this critical review, we highlight the role of colonic inflammation and microbial metabolites on the gut brain axis in the pathology of hypertension, with special emphasis on the interaction between tumor necrosis factor α (TNFα) and short chain fatty acid (SCFA) metabolites. Here, we review the current literature and identify novel pathways in the colonic epithelium related to hypertension. A network analysis on transcriptome data previously generated in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats reveals differences in several pathways associated with inflammation involving TNFα (NF-κB and STAT Expression Targets) as well as oxidative stress. We also identify down-regulation of networks associated with gastrointestinal function, cardiovascular function, enteric nervous system function, and cholinergic and adrenergic transmission. The analysis also uncovered transcriptome responses related to glycolysis, butyrate oxidation, and mitochondrial function, in addition to gut neuropeptides that serve as modulators of blood pressure and metabolic function. We present a model for the role of TNFα in regulating bacterial metabolite transport and neuropeptide signaling in the gastrointestinal system, highlighting the complexity of host-microbiota interactions in hypertension.
Collapse
Affiliation(s)
- Christopher L. Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA. .,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO BOX 100274, Gainesville, FL, 32611, USA.
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA,Corresponding authors contact information: Department of Physiological Sciences, College of Veterinary Medicine, University of Florida PO BOX 100274 GAINESVILLE FL 326100274 United States; and
| |
Collapse
|
32
|
Menghini R, Hoyles L, Cardellini M, Casagrande V, Marino A, Gentileschi P, Davato F, Mavilio M, Arisi I, Mauriello A, Montanaro M, Scimeca M, Barton RH, Rappa F, Cappello F, Vinciguerra M, Moreno-Navarrete JM, Ricart W, Porzio O, Fernández-Real JM, Burcelin R, Dumas ME, Federici M. ITCH E3 Ubiquitin Ligase downregulation compromises hepatic degradation of branched-chain amino acids. Mol Metab 2022; 59:101454. [PMID: 35150905 PMCID: PMC8886057 DOI: 10.1016/j.molmet.2022.101454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Metabolic syndrome, obesity, and steatosis are characterized by a range of dysregulations including defects in ubiquitin ligase tagging proteins for degradation. The identification of novel hepatic genes associated with fatty liver disease and metabolic dysregulation may be relevant to unravelling new mechanisms involved in liver disease progression Methods Through integrative analysis of liver transcriptomic and metabolomic obtained from obese subjects with steatosis, we identified itchy E ubiquitin protein ligase (ITCH) as a gene downregulated in human hepatic tissue in relation to steatosis grade. Wild-type or ITCH knockout mouse models of non-alcoholic fatty liver disease (NAFLD) and obesity-related hepatocellular carcinoma were analyzed to dissect the causal role of ITCH in steatosis Results We show that ITCH regulation of branched-chain amino acids (BCAAs) degradation enzymes is impaired in obese women with grade 3 compared with grade 0 steatosis, and that ITCH acts as a gatekeeper whose loss results in elevation of circulating BCAAs associated with hepatic steatosis. When ITCH expression was specifically restored in the liver of ITCH knockout mice, ACADSB mRNA and protein are restored, and BCAA levels are normalized both in liver and plasma Conclusions Our data support a novel functional role for ITCH in the hepatic regulation of BCAA metabolism and suggest that targeting ITCH in a liver-specific manner might help delay the progression of metabolic hepatic diseases and insulin resistance. ITCH expression is reduced in liver during NAFLD. Transcriptomics analysis of liver in obese women highlighted the interplay between ITCH and genes involved in BCAA degradation. Modulation of ITCH in models of metabolic hepatic diseases supported the association between ITCH and BCAA metabolism. Targeting ITCH in a liver specific manner might help to delay the progression of metabolic hepatic diseases and insulin resistance.
Collapse
Affiliation(s)
- Rossella Menghini
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Marina Cardellini
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Arianna Marino
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paolo Gentileschi
- Department of Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Francesca Davato
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", Viale Regina Elena, 295, 00161, Rome, Italy; CNR, Institute of Translational Pharmacology (IFT), Via del Fosso del Cavaliere 100, 00131, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Richard H Barton
- Imperial College London, Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center (FNUSA-ICRC), St Anne University Hospital, Brno, Czech Republic; Institute of Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta' Institut d'Investigacio Biomedica de Girona IdibGi; and CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta' Institut d'Investigacio Biomedica de Girona IdibGi; and CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Ottavia Porzio
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta' Institut d'Investigacio Biomedica de Girona IdibGi; and CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain; Department of Medical Sciences. School of Medicine, University of Girona, Spain
| | - Rémy Burcelin
- INSERM and University Paul Sabatier: Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048 F-31432 Toulouse, France and Université Paul Sabatier, F-31432, Toulouse, France
| | - Marc-Emmanuel Dumas
- Imperial College London, Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom; Section of Genomic and Environmental Medicine, Respiratory Division, National Heart and Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, United Kingdom; European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital, University of Lille, 59045, Lille, France; McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montréal, QC, H3A 0G1, Canada.
| | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; Center for Atherosclerosis, University Hospital "Policlinico Tor Vergata", Italy.
| |
Collapse
|
33
|
Xu C, Huang XP, Guan JF, Chen ZM, Ma YC, Xie DZ, Ning LJ, Li YY. Effects of dietary leucine and valine levels on growth performance, glycolipid metabolism and immune response in Tilapia GIFT Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2022; 121:395-403. [PMID: 35065275 DOI: 10.1016/j.fsi.2022.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
An 8-week feeding trial was performed to evaluate the effects of dietary leucine (Leu) and valine (Val) levels on growth performance, glycolipid metabolism and immune response in Oreochromis niloticus. Fish (15.23 ± 0.05 g) were randomly fed four diets containing two Leu levels (1.2% and 2.3%) and two Val levels (0.7% and 1.4%) as a 2 × 2 experimental design (LL-LV, LL-HV, HL-LV and HL-HV). Compared with LL-LV group, the growth parameters (final weight, daily growth coefficient (DGC) and growth rate per metabolic body weight (GRMBW)), feed conversion rate (FCR), the activities of intestinal amylase, lipase, creatine kinase (CK) and Na+, K+-ATPase, liver NAD+/NADH ratio, as well as the expression of SIRT1, GK, PK, FBPase, PPARα, CPT IA, ACO and IL10 all increased significantly in the HL-LV group; however, in the high Val group, final weight, DGC, GRMBW, intestinal enzyme activities, as well as the expression of PEPCK, SREBP1, FAS, IL8 and IL10 of the HL-HV group were significantly lower than those of the LL-HV group, while the opposite was true for the remaining indicators. Significant interactions between dietary Leu and Val were observed in final weight, DGC, GRMBW, plasma IL1β and IL6 levels, intestinal amylase and CK activities, liver NAD+/NADH ratio, as well as the expression of SIRT1, PK, PEPCK, FBPase, SREBP1, FAS, PPARα, CPT IA, ACO, NF-κB1, IL1β, IL6 and IL10. The highest values of growth parameters, intestinal enzyme activities and expression of SIRT1, FBPase, PPARα, CPT IA and ACO were observed in the HL-LV group, while the opposite was true for the expression of SREBP1, FAS, PPARα, NF-κB1, IL1β and IL6. Overall, our findings indicated that dietary Leu and Val can effect interactively, and fish fed with diets containing 2.3% Leu with 0.7% Val had the best growth performance and hepatic health status of O. niloticus.
Collapse
Affiliation(s)
- Chao Xu
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Xiao-Ping Huang
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Jun-Feng Guan
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Ze-Min Chen
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Yong-Cai Ma
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Di-Zhi Xie
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Li-Jun Ning
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Yuan-You Li
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
34
|
Yu LM, Dong X, Zhao JK, Xu YL, Xu DY, Xue XD, Zhou ZJ, Huang YT, Zhao QS, Luo LY, Wang ZS, Wang HS. Activation of PKG-CREB-KLF15 by melatonin attenuates Angiotensin II-induced vulnerability to atrial fibrillation via enhancing branched-chain amino acids catabolism. Free Radic Biol Med 2022; 178:202-214. [PMID: 34864165 DOI: 10.1016/j.freeradbiomed.2021.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) damage and atrial remodeling serve as the crucial substrates for the genesis of atrial fibrillation (AF). Branched-chain amino acids (BCAAs) catabolic defect plays critical roles in multiple cardiovascular diseases. However, the alteration of atrial BCAA catabolism and its role in AF remain largely unknown. This study aimed to explore the role of BCAA catabolism in the pathogenesis of AF and to further evaluate the therapeutic effect of melatonin with a focus on protein kinase G (PKG)-cAMP response element binding protein (CREB)-Krüppel-like factor 15 (KLF15) signaling. We found that angiotensin II-treated atria exhibited significantly elevated BCAA level, reduced BCAA catabolic enzyme activity, increased AF vulnerability, aggravated atrial electrical and structural remodeling, and enhanced mitochondrial ROS damage. These deleterious effects were attenuated by melatonin co-administration while exacerbated by BCAA oral supplementation. Melatonin treatment ameliorated BCAA-induced atrial damage and reversed BCAA-induced down-regulation of atrial PKGIα expression, CREB phosphorylation as well as KLF15 expression. However, inhibition of PKG partly abolished melatonin-induced beneficial actions. In summary, these data demonstrated that atrial BCAA catabolic defect contributed to the pathogenesis of AF by aggravating tissue fibrosis and mitochondrial ROS damage. Melatonin treatment ameliorated Ang II-induced atrial structural as well as electrical remodeling by activating PKG-CREB-KLF15. The present study reveals additional mechanisms contributing to AF genesis and highlights the opportunity of a novel therapy for AF by targeting BCAA catabolism. Melatonin may serve as a potential therapeutic agent for AF intervention.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xue Dong
- Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, 49 Beiling Road, Shenyang, Liaoning, 110032, PR China
| | - Ji-Kai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yin-Li Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Deng-Yue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xiao-Dong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zi-Jun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yu-Ting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Qiu-Sheng Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Lin-Yu Luo
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zhi-Shang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
35
|
Zhou C, Yang S, Zhang Y, Wu Q, Ye Z, Liu M, He P, Zhang Y, Li R, Liu C, Nie J, Qin X. Relations of Variety and Quantity of Dietary Proteins Intake from Different Sources with Mortality Risk: A Nationwide Population-Based Cohort. J Nutr Health Aging 2022; 26:1078-1086. [PMID: 36519771 DOI: 10.1007/s12603-022-1870-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The relations of variety and quantity of dietary proteins intake from different sources with mortality risk were still controversial. We aimed to examine the associations of variety and quantity of different sourced proteins with all-cause mortality risk in adults and older adults. MATERIALS AND METHODS 17,310 participants (mean age was 44.0 [SD: 15.9] years and 51.0% were females) with utilizable data from the China Health and Nutrition Survey were included. Dietary intake was collected using three consecutive 24-h dietary recalls combined with a household food inventory. The variety score of protein sources was defined as the number of proteins consumed at the appropriate level, accounting for both types and quantity of proteins. The primary outcome was all-cause mortality. RESULTS Over a median follow-up of 9.0 years, 1324 (7.6%) death cases were reported. There were reversed J-shaped relationships of percentages energy from total protein, and protein from legume with all-cause mortality; U-shaped relationships of proteins from unprocessed red meat, processed red meat, poultry and whole grain with all-cause mortality; L-shaped relationships of proteins from egg and fish with all-cause mortality; and a reversed L-shaped relationship of protein from refined grain with all-cause mortality (all P values for nonlinearity < 0.001). Moreover, there was a significant inverse association between the variety score of protein sources with overall mortality risk (per score increment, HR, 0.69; 95%CI, 0.66-0.72). CONCLUSIONS Greater variety of proteins with appropriate quantity from different food sources was associated with significantly lower risk of mortality in Chinese adults and older adults.
Collapse
Affiliation(s)
- C Zhou
- Jing Nie, M.D or Xianhui Qin, M.D, National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China, Emails: or
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
BIX01294 inhibits EGFR signaling in EGFR-mutant lung adenocarcinoma cells through a BCKDHA-mediated reduction in the EGFR level. Exp Mol Med 2021; 53:1877-1887. [PMID: 34876693 PMCID: PMC8741967 DOI: 10.1038/s12276-021-00715-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022] Open
Abstract
BIX01294 (BIX), an inhibitor of the G9a histone methyltransferase, has been reported to have antitumor activity against a variety of cancers. However, the molecular mechanisms underlying its anticancer effects, particularly those against lung cancer, remain unclear. Here, we report that BIX induces apoptotic cell death in EGFR-mutant non-small cell lung cancer (NSCLC) cells but not in their wild-type counterparts. Treatment with BIX resulted in a significant reduction in the EGFR level and inhibition of EGFR signaling only in EGFR-mutant NSCLC cells, leading to apoptosis. BIX also inhibited mitochondrial metabolic function and decreased the cellular energy levels that are critical for maintaining the EGFR level. Furthermore, BIX transcriptionally downregulated the transcription of branched-chain α-keto acid dehydrogenase (BCKDHA), which is essential for fueling the tricarboxylic acid (TCA) cycle. Interestingly, this BCKDHA downregulation was due to inhibition of Jumanji-domain histone demethylases but not the G9a histone methyltransferase. We observed that KDM3A, a Jumonji histone demethylase, epigenetically regulates BCKDHA expression by binding to the BCKDHA gene promoter. BIX exposure also led to a significant decrease in the EGFR level, causing apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Taken together, our current data suggest that BIX triggers apoptosis only in EGFR-mutant NSCLC cells via inhibition of BCKDHA-mediated mitochondrial metabolic function. A drug known as BIX that is effective against bladder and breast cancers may also be effective in fighting non-small cell lung cancer (NSCLC). Although advances have been made in treatment of NSCLC, one of the most effective drugs targets a protein called EGFR, and EGFR gene mutations that lead to acquired drug resistance are common. Jaekyoung Son at the University of Ulsan, Seoul, South Korea, and colleagues investigated whether BIX is effective against NSCLC and attempted to elucidate its mechanism of action. The researchers found that BIX caused death of NSCLC cells, especially those with mutations in the EGFR gene. Further investigation showed that BIX was effective even against drug-resistant NSCLC cells, by acting via a different metabolic pathway. BIX shows promise as an alternative therapy for lung cancer, to overcome drug resistance.
Collapse
|
37
|
Plasma concentrations of branched-chain amino acids differ with Holstein genetic strain in pasture-based dairy systems. Sci Rep 2021; 11:22414. [PMID: 34789813 PMCID: PMC8599868 DOI: 10.1038/s41598-021-01564-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/09/2021] [Indexed: 11/08/2022] Open
Abstract
In pasture-based systems, there are nutritional and climatic challenges exacerbated across lactation; thus, dairy cows require an enhanced adaptive capacity compared with cows in confined systems. We aimed to evaluate the effect of lactation stage (21 vs. 180 days in milk, DIM) and Holstein genetic strain (North American Holstein, NAH, n = 8; New Zealand Holstein, NZH, n = 8) on metabolic adaptations of grazing dairy cows through plasma metabolomic profiling and its association with classical metabolites. Although 67 metabolites were affected (FDR < 0.05) by DIM, no metabolite was observed to differ between genetic strains while only alanine was affected (FDR = 0.02) by the interaction between genetic strain and DIM. However, complementary tools for time-series analysis (ASCA analysis, MEBA ranking) indicated that alanine and the branched-chain amino acids (BCAA) differed between genetic strains in a lactation-stage dependent manner. Indeed, NZH cows had lower (P-Tukey < 0.05) plasma concentrations of leucine, isoleucine and valine than NAH cows at 21 DIM, probably signaling for greater insulin sensitivity. Metabolic pathway analysis also revealed that, independently of genetic strains, AA metabolism might be structurally involved in homeorhetic changes as 40% (19/46) of metabolic pathways differentially expressed (FDR < 0.05) between 21 and 180 DIM belonged to AA metabolism.
Collapse
|
38
|
Ling CW, Miao Z, Xiao ML, Zhou H, Jiang Z, Fu Y, Xiong F, Zuo LSY, Liu YP, Wu YY, Jing LP, Dong HL, Chen GD, Ding D, Wang C, Zeng FF, Zhu HL, He Y, Zheng JS, Chen YM. The Association of Gut Microbiota With Osteoporosis Is Mediated by Amino Acid Metabolism: Multiomics in a Large Cohort. J Clin Endocrinol Metab 2021; 106:e3852-e3864. [PMID: 34214160 DOI: 10.1210/clinem/dgab492] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 01/15/2023]
Abstract
CONTEXT Several small studies have suggested that the gut microbiome might influence osteoporosis, but there is little evidence from human metabolomics studies to explain this association. OBJECTIVE This study examined the association of gut microbiome dysbiosis with osteoporosis and explored the potential pathways through which this association occurs using fecal and serum metabolomics. METHODS We analyzed the composition of the gut microbiota by 16S rRNA profiling and bone mineral density using dual-energy X-ray absorptiometry in 1776 community-based adults. Targeted metabolomics in feces (15 categories) and serum (12 categories) were further analyzed in 971 participants using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. RESULTS This study showed that osteoporosis was related to the beta diversity, taxonomy, and functional composition of the gut microbiota. The relative abundance of Actinobacillus, Blautia, Oscillospira, Bacteroides, and Phascolarctobacterium was positively associated with osteoporosis. However, Veillonellaceae other, Collinsella, and Ruminococcaceae other were inversely associated with the presence of osteoporosis. The association between microbiota biomarkers and osteoporosis was related to levels of peptidases and transcription machinery in microbial function. Fecal and serum metabolomics analyses suggested that tyrosine and tryptophan metabolism and valine, leucine, and isoleucine degradation were significantly linked to the identified microbiota biomarkers and to osteoporosis, respectively. CONCLUSION This large population-based study provided robust evidence connecting gut dysbiosis, fecal metabolomics, and serum metabolomics with osteoporosis. Our results suggest that gut dysbiosis and amino acid metabolism could be targets for intervention in osteoporosis.
Collapse
Affiliation(s)
- Chu-Wen Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zelei Miao
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Mian-Li Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Zengliang Jiang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanqing Fu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Feng Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Luo-Shi-Yuan Zuo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-Ping Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yan-Yan Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Peng Jing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hong-Li Dong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Geng-Dong Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ding Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Cheng Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang-Fang Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ju-Sheng Zheng
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Fonseca MIH, Almeida-Pititto BD, Bittencourt MS, Bensenor IM, Lotufo PA, Ferreira SRG. Menopause Per se Is Associated with Coronary Artery Calcium Score: Results from the ELSA-Brasil. J Womens Health (Larchmt) 2021; 31:23-30. [PMID: 34520264 DOI: 10.1089/jwh.2021.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Menopause and aging deteriorate the metabolic profile, but little is known about how they independently contribute to structural changes in coronary arteries. We compared a broad cardiometabolic risk profile of women according to their menopausal status and investigated if menopause per se is associated with presence of coronary artery calcium (CAC) in the ELSA-Brasil. Materials and Methods: All participants, except perimenopausal women, who had menopause <40 years or from non-natural causes or reported use of hormone therapy were included. Sample was stratified according to menopause and age categories (premenopause ≤45 years, premenopause >45 years, and postmenopause); their clinical profile and computed tomography-determined CAC were compared using Kruskal-Wallis and chi squared test for frequencies. Associations of CAC (binary variable) with menopause categories adjusted for traditional and nontraditional covariables were tested using logistic regression. Results: From 2,047 participants 51 ± 9 years of age, 1,175 were premenopausal (702 ≤ 45 years) and 872 were postmenopausal women. Mean values of anthropometric variables, blood pressure, lipid and glucose parameters, branched-chain amino acids (BCAA), and homeosthasis model assessment (HOMA-IR), as well as frequencies of morbidities, were more favorable in premenopausal, particularly in younger ones. In crude analyses, CAC >0 was associated with triglyceride-rich lipoprotein remnants, dense low-density lipoprotein, BCAA, and other variables, but not with HOMA-IR. Menopause was independently associated with CAC >0 (odds ratios 2.37 [95% confidence interval 1.17-4.81]) when compared to the younger premenopausal group. Conclusion: Associations of menopause with CAC, independent of traditional and nontraditional cardiovascular risk factors, suggest that hormonal decline per se may contribute to calcium deposition in coronary arteries.
Collapse
Affiliation(s)
- Marília I H Fonseca
- Department of Epidemiology, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Bianca de Almeida-Pititto
- Department of Epidemiology, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil.,Department of Preventive Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Márcio S Bittencourt
- Internal Medicine Department, University of Sao Paulo, Sao Paulo, Brazil.,Faculdade Israelita de Ciencias da Saude Albert Einstein, Sao Paulo, Brazil
| | - Isabela M Bensenor
- Internal Medicine Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo A Lotufo
- Internal Medicine Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandra R G Ferreira
- Department of Epidemiology, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
40
|
Martínez-García GG, Pérez RF, Fernández ÁF, Durand S, Kroemer G, Mariño G. Autophagy Deficiency by Atg4B Loss Leads to Metabolomic Alterations in Mice. Metabolites 2021; 11:metabo11080481. [PMID: 34436422 PMCID: PMC8399495 DOI: 10.3390/metabo11080481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.
Collapse
Affiliation(s)
- Gemma G. Martínez-García
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología (IUOPA), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Raúl F. Pérez
- Instituto Universitario de Oncología (IUOPA), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940 El Entrego, Spain
- Departamento de Biología de Organismos y Sistemas (BOS), Facultad de Biología, Universidad de Oviedo, 33006 Oviedo, Spain
- Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sylvere Durand
- Centre de Recherche des Cordeliers, INSERM, U1138, F-75006 Paris, France; (S.D.); (G.K.)
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, F-75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, F-94805 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM, U1138, F-75006 Paris, France; (S.D.); (G.K.)
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, F-75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, F-94805 Villejuif, France
| | - Guillermo Mariño
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología (IUOPA), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Correspondence: ; Tel.: +34-985-652-416; Fax: +349-856-524-19
| |
Collapse
|
41
|
Armandi A, Rosso C, Caviglia GP, Bugianesi E. Insulin Resistance across the Spectrum of Nonalcoholic Fatty Liver Disease. Metabolites 2021; 11:155. [PMID: 33800465 PMCID: PMC8000048 DOI: 10.3390/metabo11030155] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance (IR) is defined as a lower-than-expected response to insulin action from target tissues, leading to the development of type 2 diabetes through the impairment of both glucose and lipid metabolism. IR is a common condition in subjects with nonalcoholic fatty liver disease (NAFLD) and is considered one of the main factors involved in the pathogenesis of nonalcoholic steatohepatitis (NASH) and in the progression of liver disease. The liver, the adipose tissue and the skeletal muscle are major contributors for the development and worsening of IR. In this review, we discuss the sites and mechanisms of insulin action and the IR-related impairment along the spectrum of NAFLD, from simple steatosis to progressive NASH and cirrhosis.
Collapse
Affiliation(s)
| | | | | | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.A.); (C.R.); (G.P.C.)
| |
Collapse
|
42
|
Gambini J, Gimeno-Mallench L, Olaso-Gonzalez G, Mastaloudis A, Traber MG, Monleón D, Borrás C, Viña J. Moderate Red Wine Consumption Increases the Expression of Longevity-Associated Genes in Controlled Human Populations and Extends Lifespan in Drosophila melanogaster. Antioxidants (Basel) 2021; 10:301. [PMID: 33669360 PMCID: PMC7920262 DOI: 10.3390/antiox10020301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/21/2023] Open
Abstract
The beneficial effects of moderate red wine consumption on cardiovascular health are well known. The composition of red wine includes several compounds, such as the phytoestrogen resveratrol, that exert these beneficial effects, although not all the mechanisms by which they act are known. Our aim was to study the effect of red wine consumption on longevity-related genes in controlled human populations, such as cloistered nuns. We found that the expression of catalase, manganese-superoxide dismutase, Sirt1, and p53 was increased in peripheral blood mononuclear cells after 14 days of moderate red wine consumption. This increase was accompanied by an enhanced metabolic wellness: fatty acids, cholesterol, branched chain amino acids (isoleucine and leucine), ketone bodies (acetoacetate), bacterial co-metabolites (trimethylamine), and cellular antioxidants (taurine) contributed to a change in metabolic profile after moderate red wine consumption by the nuns. No serious unwanted side effects were observed. Finally, we tested the effect of moderate red wine consumption on longevity in a controlled animal population, such as D. melanogaster, and found that it increased average life span by 7%. In conclusion, moderate red wine consumption increases the expression of key longevity-related genes and improves metabolic health in humans and increases longevity in flies.
Collapse
Affiliation(s)
- Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| | - Lucia Gimeno-Mallench
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| | - Angela Mastaloudis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA; (A.M.); (M.G.T.)
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA; (A.M.); (M.G.T.)
| | - Daniel Monleón
- Department of Pathology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain;
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| |
Collapse
|
43
|
Mahbub MH, Yamaguchi N, Hase R, Takahashi H, Ishimaru Y, Watanabe R, Saito H, Shimokawa J, Yamamoto H, Kikuchi S, Tanabe T. Plasma Branched-Chain and Aromatic Amino Acids in Relation to Hypertension. Nutrients 2020; 12:nu12123791. [PMID: 33322015 PMCID: PMC7764357 DOI: 10.3390/nu12123791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Findings of the available studies regarding the roles of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in hypertension are inconsistent, conflicting and inconclusive. The purpose of this study was to explore and clarify the existence of any relationships of individual BCAAs and AAAs with hypertension with adjustments for potential relevant confounders. A total of 2805 healthy controls and 2736 hypertensive patients were included in the current analysis. The associations between individual amino acids and hypertension were explored by logistic regression analyses adjusted for potential confounding variables. Among the investigated amino acids, only the BCAAs showed consistently significant positive associations with hypertension in the adjusted models (p-trend < 0.05 to 0.001). However, compared with the corresponding lowest quartile of individual BCAAs, the positive association with hypertension remained significant only in the highest quartile (p < 0.01 to 0.001). We confirmed in a relatively large cohort of subjects that BCAAs, not AAAs, demonstrated consistent positive associations with hypertension. The results display the promising potential for the use of BCAAs as relevant and accessible biomarkers, and provide perspectives on interventions directed towards the reduction in plasma BCAA levels in the prevention and management of hypertension.
Collapse
Affiliation(s)
- M. H. Mahbub
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
- Correspondence: ; Tel.: +81-836-22-2231
| | - Natsu Yamaguchi
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Ryosuke Hase
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Hidekazu Takahashi
- Department of Public Health, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan;
| | - Yasutaka Ishimaru
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Rie Watanabe
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Hiroyuki Saito
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Junki Shimokawa
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Hiroshi Yamamoto
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki, Kanagawa 210-8681, Japan; (H.Y.); (S.K.)
| | - Shinya Kikuchi
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki, Kanagawa 210-8681, Japan; (H.Y.); (S.K.)
| | - Tsuyoshi Tanabe
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| |
Collapse
|
44
|
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ. Branched chain amino acids, aging and age-related health. Ageing Res Rev 2020; 64:101198. [PMID: 33132154 DOI: 10.1016/j.arr.2020.101198] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
Branched chain amino acids (BCAA: leucine, valine, isoleucine) have key physiological roles in the regulation of protein synthesis, metabolism, food intake and aging. Many studies report apparently inconsistent conclusions about the relationships between blood levels of BCAAs or dietary manipulation of BCAAs with age-related changes in body composition, sarcopenia, obesity, insulin and glucose metabolism, and aging biology itself. These divergent results can be resolved by consideration of the role of BCAAs as signalling molecules and the bidirectional mechanistic relationship between BCAAs and some aging phenotypes. The effects of BCAAs are also influenced by the background nutritional composition such as macronutrient ratios and imbalance with other amino acids. Understanding the interaction between BCAAs and other components of the diet may provide new opportunities for influencing age-related outcomes through manipulation of dietary BCAAs together with titration of macronutrient ratios and other amino acids.
Collapse
|
45
|
Chelluboina B, Vemuganti R. Therapeutic potential of nutraceuticals to protect brain after stroke. Neurochem Int 2020; 142:104908. [PMID: 33220386 DOI: 10.1016/j.neuint.2020.104908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Stroke leads to significant neuronal death and long-term neurological disability due to synergistic pathogenic mechanisms. Stroke induces a change in eating habits and in many cases, leads to undernutrition that aggravates the post-stroke pathology. Proper nutritional regimen remains a major strategy to control the modifiable risk factors for cardiovascular and cerebrovascular diseases including stroke. Studies indicate that nutraceuticals (isolated and concentrated form of high-potency natural bioactive substances present in dietary nutritional components) can act as prophylactic as well as adjuvant therapeutic agents to prevent stroke risk, to promote ischemic tolerance and to reduce post-stroke consequences. Nutraceuticals are also thought to regulate blood pressure, delay neurodegeneration and improve overall vascular health. Nutraceuticals potentially mediate these effects by their powerful antioxidant and anti-inflammatory properties. This review discusses the studies that have highlighted the translational potential of nutraceuticals as stroke therapies.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
46
|
Ospina-Rojas IC, Pozza PC, Rodrigueiro RJB, Gasparino E, Khatlab AS, Murakami AE. High leucine levels affecting valine and isoleucine recommendations in low-protein diets for broiler chickens. Poult Sci 2020; 99:5946-5959. [PMID: 33142512 PMCID: PMC7647919 DOI: 10.1016/j.psj.2020.08.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022] Open
Abstract
Four experiments were conducted to estimate the optimal standardized ileal digestible (SID) level of branched-chain amino acids in low-protein diets during the starter, grower, and finisher periods, using the response surface methodology, and to study their effects on performance and mRNA expression of genes involved in the mechanistic target of rapamycin (mTOR) pathway of broiler chickens from 8 to 21 D of age. In experiments 1, 2, and 3, a total of 1,500 Cobb male broiler chickens were assigned to 15 diets of a central composite rotatable design (CCD) of response surface methodology containing 5 levels of SID Leu, Val, and Ile with 5 replicate pens of 20 birds each. A 3-factor, 5-level CCD platform was used to fit the second-order polynomial equation of broiler performance. In experiment 4, a total of 540 8-day-old Cobb male broiler chickens were distributed in a completely randomized 2 x 3 x 3 factorial arrangement with 2 SID Leu levels (1.28 or 1.83%), 3 SID Val levels (0.65, 0.90, or 1.20%), and 3 SID Ile levels (0.54, 0.79, or 1.09%) for a total of 18 treatments with 5 replicate cages of 6 birds each. High Leu levels impaired (P < 0.05) gain:feed when birds were fed marginal Val or Ile diets. However, gain:feed was restored when both Val and Ile were supplemented to reach adequate or high levels. High Leu levels increased (P < 0.05) mRNA expression of S6K1 and eEF2 genes only in birds fed high Ile levels. Dietary SID Leu, Val, and Ile levels required for gain:feed optimization in low-protein diets were estimated at 1.37, 0.94, and 0.87% during the starter period; 1.23, 0.82, and 0.75% during the grower period; and 1.15, 0.77, and 0.70% during the finisher phase, respectively. Higher Val and Ile levels are required to optimize the effect of Leu supplementation on mRNA expression of mTOR pathway genes in the pectoralis major muscle of broilers from day 1 to 21 after hatch.
Collapse
Affiliation(s)
- I C Ospina-Rojas
- CJ Corporation, Av. Engenheiro Luís Carlos Berrini, São Paulo - SP, Brazil
| | - P C Pozza
- Animal Science Department, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - R J B Rodrigueiro
- CJ Corporation, Av. Engenheiro Luís Carlos Berrini, São Paulo - SP, Brazil
| | - E Gasparino
- Animal Science Department, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - A S Khatlab
- Animal Science Department, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - A E Murakami
- Animal Science Department, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| |
Collapse
|
47
|
Affiliation(s)
- Zachary T Hilt
- Aab Cardiovascular Research Institute (Z.T.H., C.N.M.), University of Rochester School of Medicine, New York
| | - Craig N Morrell
- Aab Cardiovascular Research Institute (Z.T.H., C.N.M.), University of Rochester School of Medicine, New York.,Department of Medicine (C.N.M.), University of Rochester School of Medicine, New York.,Department of Microbiology and Immunology (C.N.M.), University of Rochester School of Medicine, New York.,Department of Pathology (C.N.M.), University of Rochester School of Medicine, New York
| |
Collapse
|
48
|
Amino Acids and Developmental Origins of Hypertension. Nutrients 2020; 12:nu12061763. [PMID: 32545526 PMCID: PMC7353289 DOI: 10.3390/nu12061763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
During pregnancy, amino acids are important biomolecules that play essential roles in fetal growth and development. Imbalanced amino acid intake during gestation may produce long-term morphological or functional changes in offspring, for example, developmental programming that increases the risk of developing hypertension in later life. Conversely, supplementation with specific amino acids could reverse the programming processes in early life, which may counteract the rising epidemic of hypertension. This review provides an overview of the evidence supporting the importance of amino acids during pregnancy and fetal development, the impact of amino acids on blood pressure regulation, insight from animal models in which amino acids were used to prevent hypertension of developmental origin, and interactions between amino acids and the common mechanisms underlying development programming of hypertension. A better understanding of the pathophysiological roles of specific amino acids and their interactions in developmental programming of hypertension is essential so that pregnant mothers are able to benefit from accurate amino acid supplementation during pregnancy in order to prevent hypertension development in their children.
Collapse
|
49
|
Mayneris-Perxachs J, Puig J, Burcelin R, Dumas ME, Barton RH, Hoyles L, Federici M, Fernández-Real JM. The APOA1bp-SREBF-NOTCH axis is associated with reduced atherosclerosis risk in morbidly obese patients. Clin Nutr 2020; 39:3408-3418. [PMID: 32199697 DOI: 10.1016/j.clnu.2020.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Atherosclerosis is characterized by an inflammatory disease linked to excessive lipid accumulation in the artery wall. The Notch signalling pathway has been shown to play a key regulatory role in the regulation of inflammation. Recently, in vitro and pre-clinical studies have shown that apolipoprotein A-I binding protein (AIBP) regulates cholesterol metabolism (SREBP) and NOTCH signalling (haematopoiesis) and may be protective against atherosclerosis, but the evidence in humans is scarce. METHODS We evaluated the APOA1bp-SREBF-NOTCH axis in association with atherosclerosis in two well-characterized cohorts of morbidly obese patients (n = 78) within the FLORINASH study, including liver transcriptomics, 1H NMR plasma metabolomics, high-resolution ultrasonography evaluating carotid intima-media thickness (cIMT), and haematological parameters. RESULTS The liver expression levels of APOA1bp were associated with lower cIMT and leukocyte counts, a better plasma lipid profile and higher circulating levels of metabolites associated with lower risk of atherosclerosis (glycine, histidine and asparagine). Conversely, liver SREBF and NOTCH mRNAs were positively associated with atherosclerosis, liver steatosis, an unfavourable lipid profile, higher leukocytes and increased levels of metabolites linked to inflammation and CVD such as branched-chain amino acids and glycoproteins. APOA1bp and NOTCH signalling also had a strong association, as revealed by the negative correlations among APOA1bp expression levels and those of all NOTCH receptors and jagged ligands. CONCLUSIONS We here provide the first evidence in human liver of the putative APOA1bp-SREBF-NOTCH axis signalling pathway and its association with atherosclerosis and inflammation.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Departament de Ciències Mèdiques, University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain; CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Puig
- Department of Radiology, Diagnostic Imaging Institute (IDI), Dr Josep Trueta University Hospital, IDIBGI, Girona, Spain
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Section of Genomic and Environmental Medicine, Respiratory Division, National Heart and Lung Institute, Imperial College London, Dovehouse St, London SW3 6KY, United Kingdom
| | - Richard H Barton
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, United Kingdom
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - José-Manuel Fernández-Real
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Departament de Ciències Mèdiques, University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain; CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
50
|
Lim LL, Lau ESH, Fung E, Lee HM, Ma RCW, Tam CHT, Wong WKK, Ng ACW, Chow E, Luk AOY, Jenkins A, Chan JCN, Kong APS. Circulating branched-chain amino acids and incident heart failure in type 2 diabetes: The Hong Kong Diabetes Register. Diabetes Metab Res Rev 2020; 36:e3253. [PMID: 31957226 DOI: 10.1002/dmrr.3253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
AIM Levels of branched-chain amino acids (BCAAs, namely, isoleucine, leucine, and valine) are modulated by dietary intake and metabolic/genetic factors. BCAAs are associated with insulin resistance and increased risk of type 2 diabetes (T2D). Although insulin resistance predicts heart failure (HF), the relationship between BCAAs and HF in T2D remains unknown. METHODS In this prospective observational study, we measured BCAAs in fasting serum samples collected at inception from 2139 T2D patients free of cardiovascular-renal diseases. The study outcome was the first hospitalization for HF. RESULTS During 29 103 person-years of follow-up, 115 primary events occurred (age: 54.8 ± 11.2 years, 48.2% men, median [interquartile range] diabetes duration: 5 years [1-10]). Patients with incident HF had 5.6% higher serum BCAAs than those without HF (median 639.3 [561.3-756.3] vs 605.2 [524.8-708.7] μmol/L; P = .01). Serum BCAAs had a positive linear association with incident HF (per-SD increase in logarithmically transformed BCAAs: hazard ratio [HR] 1.22 [95% CI 1.07-1.39]), adjusting for age, sex, and diabetes duration. The HR remained significant after sequential adjustment of risk factors including incident coronary heart disease (1.24, 1.09-1.41); blood pressure, low-density lipoprotein cholesterol, and baseline use of related medications (1.31, 1.14-1.50); HbA1c , waist circumference, triglyceride, and baseline use of related medications (1.28, 1.11-1.48); albuminuria and estimated glomerular filtration rate (1.28, 1.11-1.48). The competing risk of death analyses showed similar results. CONCLUSIONS Circulating levels of BCAAs are independently associated with incident HF in patients with T2D. Prospective cohort analysis and randomized trials are needed to evaluate the long-term safety and efficacy of using different interventions to optimize BCAAs levels in these patients.
Collapse
Affiliation(s)
- Lee-Ling Lim
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Asia Diabetes Foundation, Shatin, Hong Kong
- Faculty of Medicine, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eric S H Lau
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Asia Diabetes Foundation, Shatin, Hong Kong
| | - Erik Fung
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Faculty of Medicine, Gerald Choa Cardiac Research Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
- Faculty of Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Heung-Man Lee
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ronald C W Ma
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Claudia H T Tam
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Willy K K Wong
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alex C W Ng
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Elaine Chow
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrea O Y Luk
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alicia Jenkins
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Juliana C N Chan
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Asia Diabetes Foundation, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alice P S Kong
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|