1
|
Bell SM, Hariharan R, Laud PJ, Majid A, de Courten B. Histidine-containing dipeptide supplementation improves delayed recall: a systematic review and meta-analysis. Nutr Rev 2024; 82:1372-1385. [PMID: 38013229 DOI: 10.1093/nutrit/nuad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
CONTEXT Histidine-containing dipeptides (carnosine, anserine, beta-alanine and others) are found in human muscle tissue and other organs like the brain. Data in rodents and humans indicate that administration of exogenous carnosine improved cognitive performance. However, RCTs results vary. OBJECTIVES To perform a systematic review and meta-analysis of randomized controlled trials (RCTs) of histidine-containing dipeptide (HCD) supplementation on cognitive performance in humans to assess its utility as a cognitive stabiliser. DATA SOURCES OVID Medline, Medline, EBM Reviews, Embase, and Cumulative Index to Nursing and Allied Health Literature databases from 1/1/1965 to 1/6/2022 for all RCT of HCDs were searched. DATA EXTRACTION 2653 abstracts were screened, identifying 94 full-text articles which were assessed for eligibility. Ten articles reporting the use of HCD supplementation were meta-analysed. DATA ANALYSIS The random effects model has been applied using the DerSimonian-Laird method. HCD treatment significantly increased performance on Wechsler Memory Scale (WMS) -2 Delayed recall (Weighted mean difference (WMD) (95% CI (CI)) = 1.5 (0.6, 2.5), P < .01). Treatment with HCDs had no effect on Alzheimer's Disease Assessment Scale-Cognitive (WMD (95% CI) = -0.2 (-1.1, 0.7), P = .65, I2 = 0%), Mini-Mental State Examination (WMD (95% CI) = 0.7 (-0.2, 1.5), P = .14, I2 = 42%), The Wechsler Adult Intelligence Scale (WAIS) Digit span Backward (WMD (95% CI) = 0.1 (-0.3, 0.5), P = .51, I2 = 0%), WAIS digit span Forward (WMD (95% CI) = 0.0 (-0.3, 0.4), P = .85, I2 = 33%) and the WMS-1 Immediate recall (WMD (95% CI) = .7 (-.2, 1.5), P = .11, I2 = 0%). The effect on delayed recall remained in subgroup meta-analysis performed on studies of patients without mild cognitive impairment (MCI), and in those without MCI where average age in the study was above 65. CONCLUSION HCD, supplementation improved scores on the Delayed recall examination, a neuropsychological test affected early in Alzheimer's disease. Further studies are needed in people with early cognitive impairment with longer follow-up duration and standardization of carnosine doses to delineate the true effect. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42017075354.
Collapse
Affiliation(s)
- Simon M Bell
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Rohit Hariharan
- Department of Medicine, School of Clinical Sciences, Monash University, Australia
| | - Peter J Laud
- Statistical Services Unit, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Australia
- Health & Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Rivi V, Caruso G, Caraci F, Alboni S, Pani L, Tascedda F, Lukowiak K, Blom JMC, Benatti C. Behavioral and transcriptional effects of carnosine in the central ring ganglia of the pond snail Lymnaea stagnalis. J Neurosci Res 2024; 102:e25371. [PMID: 39078068 DOI: 10.1002/jnr.25371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Carnosine is a naturally occurring endogenous dipeptide with well-recognized anti-inflammatory, antioxidant, and neuroprotective effects at the central nervous system level. To date, very few studies have been focused on the ability of carnosine to rescue and/or enhance memory. Here, we used a well-known invertebrate model system, the pond snail Lymnaea stagnalis, and a well-studied associative learning procedure, operant conditioning of aerial respiration, to investigate the ability of carnosine to enhance long-term memory (LTM) formation and reverse memory obstruction caused by an immune challenge (i.e., lipopolysaccharide [LPS] injection). Exposing snails to 1 mM carnosine for 1 h before training in addition to enhancing memory formation resulted in a significant upregulation of the expression levels of key neuroplasticity genes (i.e., glutamate ionotropic receptor N-methyl-d-aspartate [NMDA]-type subunit 1-LymGRIN1, and the transcription factor cAMP-response element-binding protein 1-LymCREB1) in snails' central ring ganglia. Moreover, pre-exposure to 1 mM carnosine before an LPS injection reversed the memory deficit brought about by inflammation, by preventing the upregulation of key targets for immune and stress response (i.e., Toll-like receptor 4-LymTLR4, molluscan defense molecule-LymMDM, heat shock protein 70-LymHSP70). Our data are thus consistent with the hypothesis that carnosine can have positive benefits on cognitive ability and be able to reverse memory aversive states induced by neuroinflammation.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Silvia Alboni
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Deparment of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Singh D, Preetam Ambati A, Aich P. Sex and Time: Important Variables for Understanding the Impact of Constant Darkness on Behavior, Brain, and Physiology. Neuroscience 2023; 519:73-89. [PMID: 36966879 DOI: 10.1016/j.neuroscience.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
The circadian clock can coordinate, regulate and predict physiology and behavior in response to the standard light-dark (LD: 12 h light and 12 h dark) cycle. If we alter the LD cycle by exposing mice to constant darkness (DD: 00 h light and 24 h dark), it can perturb behavior, the brain, and associated physiological parameters. The length of DD exposure and the sex of experimental animals are crucial variables that could alter the impact of DD on the brain, behavior, and physiology, which have not yet been explored. We exposed mice to DD for three and five weeks and studied their impact on (1) behavior, (2) hormones, (3) the prefrontal cortex, and (4) metabolites in male and female mice. We also studied the effect of three weeks of standard light-dark cycle restoration after five weeks of DD on the parameters mentioned above. We found that DD exposure was associated with anxiety-like behavior, increased corticosterone and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), downregulated neurotrophins (BDNF and NGF), and altered metabolites profile in a duration of DD exposure and sex-dependent manner. Females showed a more robust adaptation than males under DD exposure. Three weeks of restoration was adequate to establish homeostasis in both sexes. To the best of our knowledge, this study is the first of its kind to look at how DD exposure impacts physiology and behavior as a function of sex- and time. These findings would have translational value and may help in establishing sex-specific interventions for addressing DD-related psychological issues.
Collapse
Affiliation(s)
- Dhyanendra Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), HBNI, PO - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Abhilash Preetam Ambati
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), HBNI, PO - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), HBNI, PO - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Caruso G, Di Pietro L, Cardaci V, Maugeri S, Caraci F. The therapeutic potential of carnosine: Focus on cellular and molecular mechanisms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023. [DOI: 10.1016/j.crphar.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
5
|
Li M, Tang H, Li Z, Tang W. Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury. Neuroscience 2022; 507:112-124. [PMID: 36341725 DOI: 10.1016/j.neuroscience.2022.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) injury is a common feature of ischemic stroke which occurs when the blood supply is restored after a period of ischemia in the brain. Reduced blood-flow to the brain during CI/RI compromises neuronal cell health as a result of mitochondrial dysfunction, oxidative stress, cytokine production, inflammation and tissue damage. Reperfusion therapy during CI/RI can restore the blood flow to ischemic regions of brain which are not yet infarcted. The long-term goal of CI/RI therapy is to reduce stroke-related neuronal cell death, disability and mortality. A range of drug and interventional therapies have emerged that can alleviate CI/RI mediated oxidative stress, inflammation and apoptosis in the brain. Herein, we review recent studies on CI/RI interventions for which a mechanism of action has been described and the potential of these therapeutic modalities for future use in the clinic.
Collapse
Affiliation(s)
- Mengxing Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Heyong Tang
- College of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhen Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Tang
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
6
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
7
|
Piirsalu M, Taalberg E, Jayaram M, Lilleväli K, Zilmer M, Vasar E. Impact of a High-Fat Diet on the Metabolomics Profile of 129S6 and C57BL6 Mouse Strains. Int J Mol Sci 2022; 23:ijms231911682. [PMID: 36232982 PMCID: PMC9569783 DOI: 10.3390/ijms231911682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Different inbred mouse strains vary substantially in their behavior and metabolic phenotype under physiological and pathological conditions. The purpose of this study was to extend the knowledge of distinct coping strategies under challenging events in two differently adapting mouse strains: C57BL/6NTac (Bl6) and 129S6/SvEvTac (129Sv). Thus, we aimed to investigate possible similarities and differences in the body weight change, behavior, and several metabolic variables in Bl6 and 129Sv strains in response to high-fat diet (HFD) using the AbsoluteIDQ p180 kit. We found that 9 weeks of HFD induced a significant body weight gain in 129Sv, but not in Bl6 mice. Besides that, 129Sv mice displayed anxiety-like behavior in the open-field test. Metabolite profiling revealed that 129Sv mice had higher levels of circulating branched-chain amino acids, which were even more amplified by HFD. HFD also induced a decrease in glycine, spermidine, and t4-OH-proline levels in 129Sv mice. Although acylcarnitines (ACs) dominated in baseline conditions in 129Sv strain, this strain had a significantly stronger AC-reducing effect of HFD. Moreover, 129Sv mice had higher levels of lipids in baseline conditions, but HFD caused more pronounced alterations in lipid profile in Bl6 mice. Taken together, our results show that the Bl6 line is better adapted to abundant fat intake.
Collapse
Affiliation(s)
- Maria Piirsalu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Egon Taalberg
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Mohan Jayaram
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kersti Lilleväli
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Mihkel Zilmer
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Correspondence:
| |
Collapse
|
8
|
Trehalose-Carnosine Prevents the Effects of Spinal Cord Injury Through Regulating Acute Inflammation and Zinc(II) Ion Homeostasis. Cell Mol Neurobiol 2022; 43:1637-1659. [PMID: 36121569 PMCID: PMC10079760 DOI: 10.1007/s10571-022-01273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
Spinal cord injury (SCI) leads to long-term and permanent motor dysfunctions, and nervous system abnormalities. Injury to the spinal cord triggers a signaling cascade that results in activation of the inflammatory cascade, apoptosis, and Zn(II) ion homeostasis. Trehalose (Tre), a nonreducing disaccharide, and L-carnosine (Car), (β-alanyl-L-histidine), one of the endogenous histidine dipeptides have been recognized to suppress early inflammatory effects, oxidative stress and to possess neuroprotective effects. We report on the effects of the conjugation of Tre with Car (Tre-car) in reducing inflammation in in vitro and in vivo models. The in vitro study was performed using rat pheochromocytoma cells (PC12 cell line). After 24 h, Tre-car, Car, Tre, and Tre + Car mixture treatments, cells were collected and used to investigate Zn2+ homeostasis. The in vivo model of SCI was induced by extradural compression of the spinal cord at the T6-T8 levels. After treatments with Tre, Car and Tre-Car conjugate 1 and 6 h after SCI, spinal cord tissue was collected for analysis. In vitro results demonstrated the ionophore effect and chelating features of L-carnosine and its conjugate. In vivo, the Tre-car conjugate treatment counteracted the activation of the early inflammatory cascade, oxidative stress and apoptosis after SCI. The Tre-car conjugate stimulated neurotrophic factors release, and influenced Zn2+ homeostasis. We demonstrated that Tre-car, Tre and Car treatments improved tissue recovery after SCI. Tre-car decreased proinflammatory, oxidative stress mediators release, upregulated neurotrophic factors and restored Zn2+ homeostasis, suggesting that Tre-car may represent a promising therapeutic agent for counteracting the consequences of SCI.
Collapse
|
9
|
Tang W, Liu H, Ooi TC, Rajab NF, Cao H, Sharif R. Zinc carnosine: Frontiers advances of supplement for cancer therapy. Biomed Pharmacother 2022; 151:113157. [PMID: 35605299 DOI: 10.1016/j.biopha.2022.113157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Zinc (Zn) has an existence within large quantities in the human brain, while accumulating within synaptic vesicle. There is growing evidence that Zn metabolic equilibrium breaking participates into different diseases (e.g., vascular dementia, carcinoma, Alzheimer's disease). Carnosine refers to an endogenic dipeptide abundant in skeletal muscle and brains and exerts a variety of positive influences (e.g., carcinoma resistance, crosslinking resistance, metal chelation and oxidation limitation). A complex of Zn and carnosine, called Zinc-L-carnosine (ZnC), has been extensively employed within Zn supplement therapeutic method and the treating approach for ulcers. ZnC has been shown to play a variety of roles in the body, including inhibiting intracellular reactive oxygen species(ROS) and free radical levels, inhibiting inflammation, supplementing zinc enzymes and promoting wound healing and mucosal cell repair. The present study conducting a reviewing process for the advances of ZnC in tumor adjuvant therapy.
Collapse
Affiliation(s)
- Weiwei Tang
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hanyuan Liu
- General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Theng Choon Ooi
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Hongyong Cao
- General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Biocompatibility Laboratory, Centre for Research and Instrumentation, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Jing Y, Bai F, Wang L, Yang D, Yan Y, Wang Q, Zhu Y, Yu Y, Chen Z. Fecal Microbiota Transplantation Exerts Neuroprotective Effects in a Mouse Spinal Cord Injury Model by Modulating the Microenvironment at the Lesion Site. Microbiol Spectr 2022; 10:e0017722. [PMID: 35467388 PMCID: PMC9241636 DOI: 10.1128/spectrum.00177-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/03/2022] [Indexed: 12/21/2022] Open
Abstract
The primary traumatic event that causes spinal cord injury (SCI) is followed by a progressive secondary injury featured by vascular disruption and ischemia, inflammatory responses and the release of cytotoxic debris, which collectively add to the hostile microenvironment of the lesioned cord and inhibit tissue regeneration and functional recovery. In a previous study, we reported that fecal microbiota transplantation (FMT) promotes functional recovery in a contusion SCI mouse model; yet whether and how FMT treatment may impact the microenvironment at the injury site are not well known. In the current study, we examined individual niche components and investigated the effects of FMT on microcirculation, inflammation and trophic factor secretion in the spinal cord of SCI mice. FMT treatment significantly improved spinal cord tissue sparing, vascular perfusion and pericyte coverage and blood-spinal cord-barrier (BSCB) integrity, suppressed the activation of microglia and astrocytes, and enhanced the secretion of neurotrophic factors. Suppression of inflammation and upregulation of trophic factors, jointly, may rebalance the niche homeostasis at the injury site and render it favorable for reparative and regenerative processes, eventually leading to functional recovery. Furthermore, microbiota metabolic profiling revealed that amino acids including β-alanine constituted a major part of the differentially detected metabolites between the groups. Supplementation of β-alanine in SCI mice reduced BSCB permeability and increased the number of surviving neurons, suggesting that β-alanine may be one of the mediators of FMT that participates in the modulation and rebalancing of the microenvironment at the injured spinal cord. IMPORTANCE FMT treatment shows a profound impact on the microenvironment that involves microcirculation, blood-spinal cord-barrier, activation of immune cells, and secretion of neurotrophic factors. Analysis of metabolic profiles reveals around 22 differentially detected metabolites between the groups, and β-alanine was further chosen for functional validation experiments. Supplementation of SCI mice with β-alanine significantly improves neuronal survival, and the integrity of blood-spinal cord-barrier at the lesion site, suggesting that β-alanine might be one of the mediators following FMT that has contributed to the recovery.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Fan Bai
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Limiao Wang
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Degang Yang
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Yitong Yan
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Qiuying Wang
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, People's Republic of China
| | - Yan Yu
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Zhiguo Chen
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Xicheng District, Beijing, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xicheng District, Beijing, People's Republic of China
| |
Collapse
|
11
|
Role of Mitophagy in the Pathogenesis of Stroke: From Mechanism to Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6232902. [PMID: 35265262 PMCID: PMC8898771 DOI: 10.1155/2022/6232902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria can supply adenosine triphosphate (ATP) to the tissue, which can regulate metabolism during the pathologic process and is also involved in the pathophysiology of neuronal injury after stroke. Recent studies have suggested that selective autophagy could play important roles in the pathophysiological process of stroke, especially mitophagy. It is usually mediated by the PINK1/Parkin-independent pathway or PINK1/Parkin-dependent pathway. Moreover, mitophagy may be a potential target in the therapy of stroke because the control of mitophagy is neuroprotective in stroke in vitro and in vivo. In this review, we briefly summarize recent researches in mitophagy, introduce the role of mitophagy in the pathogenesis of stroke, then highlight the strategies targeting mitophagy in the treatment of stroke, and finally propose several issues in the treatment of stroke by targeting mitophagy.
Collapse
|
12
|
Tsuji T, Furuhara K, Gerasimenko M, Shabalova A, Cherepanov SM, Minami K, Higashida H, Tsuji C. Oral Supplementation with L-Carnosine Attenuates Social Recognition Deficits in CD157KO Mice via Oxytocin Release. Nutrients 2022; 14:nu14040803. [PMID: 35215455 PMCID: PMC8879915 DOI: 10.3390/nu14040803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
The outcomes of supplementation with L-carnosine have been investigated in clinical trials in children with autism spectrum disorder (ASD). However, reports on the effects of L-carnosine in humans have been inconsistent, and the efficacy of L-carnosine supplementation for improving ASD symptoms has yet to be investigated in animal studies. Here, we examined the effects of oral supplementation with L-carnosine on social deficits in CD157KO mice, a murine model of ASD. Social deficits in CD157KO mice were assessed using a three-chamber social approach test. Oral supplementation with L-carnosine attenuated social behavioral deficits. The number of c-Fos-positive oxytocin neurons in the supraoptic nucleus and paraventricular nucleus was increased with L-carnosine supplementation in CD157KO mice after the three-chamber social approach test. We observed an increase in the number of c-Fos-positive neurons in the basolateral amygdala, a brain region involved in social behavior. Although the expression of oxytocin and oxytocin receptors in the hypothalamus was not altered by L-carnosine supplementation, the concentration of oxytocin in cerebrospinal fluid was increased in CD157KO mice by L-carnosine supplementation. These results suggest that L-carnosine supplementation restores social recognition impairments by augmenting the level of released oxytocin. Thus, we could imply the possibility of a safe nutritional intervention for at least some types of ASD in the human population.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Correspondence: (T.T.); (C.T.)
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Maria Gerasimenko
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Anna Shabalova
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Stanislav M Cherepanov
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Kana Minami
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Department of Health Development Nursing, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0934, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita 565-0871, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Correspondence: (T.T.); (C.T.)
| |
Collapse
|
13
|
Neuroprotective Potential of Carnosine in Cerebrovascular Diseases. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Al Mamun A, Ara Mimi A, Wu Y, Zaeem M, Abdul Aziz M, Aktar Suchi S, Alyafeai E, Munir F, Xiao J. Pyroptosis in diabetic nephropathy. Clin Chim Acta 2021; 523:131-143. [PMID: 34529985 DOI: 10.1016/j.cca.2021.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy (DN), a sterile inflammatory disease, is a serious complication of diabetes mellitus. However, recent evidence indicates that pyroptosis, a new term for pro-inflammatory cell death featured by gasdermin D (GSDMD)-stimulated plasma membrane pore generation, cell expansion and rapid lysis with the extensive secretion of pro-inflammatory factors, including interleukin-1β (IL-1β) and -18 (IL-18) may be involved in DN. Caspase-1-induced canonical and caspase-4/5/11-induced non-canonical inflammasome-signaling pathways are mainly believed to participate in pyroptosis-mediated cell death. Further research has uncovered that activation of the caspase-3/8 signaling pathway may also activate pyroptosis. Accumulating evidence has shown that NLRP3 inflammasome activation plays a critical role in promoting the pathogenesis of DN. In addition, current studies have suggested that pyroptosis-induced cell death promotes several diabetic complications that include DN. Our present study briefs the cellular mechanisms of pyroptosis-related signaling pathways and their impact on the promotion of DN. In this review, several investigational compounds suppressing pyroptosis-mediated cell death are explored as promising therapeutics in DN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Anjuman Ara Mimi
- Department of Pharmacy, Daffodil International University, Dhanmondi-27, Dhaka 1209, Bangladesh
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, China
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | - Eman Alyafeai
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China; Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated of Hospital Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
15
|
Byun JC, Lee SR, Kim CS. Effects of carnosine and hypothermia combination therapy on hypoxic-ischemic brain injury in neonatal rats. Clin Exp Pediatr 2021; 64:422-428. [PMID: 33677856 PMCID: PMC8342879 DOI: 10.3345/cep.2020.01837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Carnosine has antioxidative and neuroprotective properties against hypoxic-ischemic (HI) brain injury. Hypothermia is used as a therapeutic tool for HI encephalopathy in newborn infants with perinatal asphyxia. However, the combined effects of these therapies are unknown. PURPOSE Here we investigated the effects of combined carnosine and hypothermia therapy on HI brain injury in neonatal rats. METHODS Postnatal day 7 (P7) rats were subjected to HI brain injury and randomly assigned to 4 groups: vehicle; carnosine alone; vehicle and hypothermia; and carnosine and hypothermia. Carnosine (250 mg/kg) was intraperitoneally administered at 3 points: immediately following HI injury, 24 hours later, and 48 hours later. Hypothermia was performed by placing the rats in a chamber maintained at 27°C for 3 hours to induce whole-body cooling. Sham-treated rats were also included as a normal control. The rats were euthanized for experiments at P10, P14, and P35. Histological and morphological analyses, in situ zymography, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, and immunofluorescence studies were conducted to investigate the neuroprotective effects of the various interventional treatments. RESULTS Vehicle-treated P10 rats with HI injury showed an increased infarct volume compared to sham-treated rats during the triphenyltetrazolium chloride staining study. Hematoxylin and eosin staining revealed that vehicle-treated P35 rats with HI injury had decreased brain volume in the affected hemisphere. Compared to the vehicle group, carnosine and hypothermia alone did not result in any protective effects against HI brain injury. However, a combination of carnosine and hypothermia effectively reduced the extent of brain damage. The results of in situ zymography, TUNEL assays, and immunofluorescence studies showed that neuroprotective effects were achieved with combination therapy only. CONCLUSION Carnosine and hypothermia may have synergistic neuroprotective effects against brain damage following HI injury.
Collapse
Affiliation(s)
- Jun Chul Byun
- Department of Pediatrics, Daegu Fatima Hospital, Daegu, Korea
| | - Seong Ryong Lee
- Department of Pharmacology, Keimyung University School of Medicine, Daegu, Korea
| | - Chun Soo Kim
- Department of Pediatrics, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
16
|
Carnosine Protects against Cerebral Ischemic Injury by Inhibiting Matrix-Metalloproteinases. Int J Mol Sci 2021; 22:ijms22147495. [PMID: 34299128 PMCID: PMC8306548 DOI: 10.3390/ijms22147495] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 12/11/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. However, treatment options for ischemic stroke remain limited. Matrix-metalloproteinases (MMPs) contribute to brain damage during ischemic strokes by disrupting the blood-brain barrier (BBB) and causing brain edemas. Carnosine, an endogenous dipeptide, was found by us and others to be protective against ischemic brain injury. In this study, we investigated whether carnosine influences MMP activity. Brain MMP levels and activity were measured by gelatin zymography after permanent occlusion of the middle cerebral artery (pMCAO) in rats and in vitro enzyme assays. Carnosine significantly reduced infarct volume and edema. Gelatin zymography and in vitro enzyme assays showed that carnosine inhibited brain MMPs. We showed that carnosine inhibited both MMP-2 and MMP-9 activity by chelating zinc. Carnosine also reduced the ischemia-mediated degradation of the tight junction proteins that comprise the BBB. In summary, our findings show that carnosine inhibits MMP activity by chelating zinc, an essential MMP co-factor, resulting in the reduction of edema and brain injury. We believe that our findings shed new light on the neuroprotective mechanism of carnosine against ischemic brain damage.
Collapse
|
17
|
Menon K, Cameron JD, de Courten M, de Courten B. Use of carnosine in the prevention of cardiometabolic risk factors in overweight and obese individuals: study protocol for a randomised, double-blind placebo-controlled trial. BMJ Open 2021; 11:e043680. [PMID: 33986049 PMCID: PMC8126302 DOI: 10.1136/bmjopen-2020-043680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Carnosine, an over the counter food supplement, has been shown to improve glucose metabolism as well as cardiovascular risk factors in animal and human studies through its anti-inflammatory, antioxidative, antiglycating and chelating properties. The aim of this study is to establish if carnosine supplementation improves obesity, insulin sensitivity, insulin secretion, cardiovascular risk factors including arterial stiffness and endothelial function, and other risk factors related to diabetes and cardiovascular disease in the overweight and obese population. METHODS AND ANALYSIS Fifty participants will be recruited to be enrolled in a double-blind randomised controlled trial. Eligible participants with a body mass index (BMI) between 25 and 40 kg/m2 will be randomly assigned to the intervention or placebo group. Following a medical review and oral glucose tolerance test to check eligibility, participants will then undergo testing. At baseline, participants will have anthropometric measurements (BMI, dual X-ray absorptiometry and peripheral quantitative CT scan), measurements of glucose metabolism (oral glucose tolerance test, intravenous glucose tolerance test and euglycaemic hyperinsulinaemic clamp), cardiovascular measurements (central blood pressure, endothelial function and arterial stiffness), a muscle and fat biopsy, physical activity measurement, liver fibroscan, cognitive function and questionnaires to assess dietary habits, sleep quality, depression, and quality of life. Following baseline assessments, participants will be randomised to either 2 g carnosine or placebo for 15 weeks. In the 15th week, all assessments will be repeated. The preplanned outcome metric is the change between baseline and follow-up measures. ETHICS AND DISSEMINATION This study is approved by the Human Research Ethics Committee of Monash Health and Monash University, Australia. TRIAL REGISTRATION NUMBER NCT02686996.
Collapse
Affiliation(s)
- Kirthi Menon
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - James D Cameron
- MonashHeart and Monash Cardiovascular Research Centre, Melbourne, Victoria, Australia
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Maximilian de Courten
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Mitchell Institute, Victoria University, Melbourne, Victoria, Australia
| | - Barbora de Courten
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Caruso G, Benatti C, Musso N, Fresta CG, Fidilio A, Spampinato G, Brunello N, Bucolo C, Drago F, Lunte SM, Peterson BR, Tascedda F, Caraci F. Carnosine Protects Macrophages against the Toxicity of Aβ1-42 Oligomers by Decreasing Oxidative Stress. Biomedicines 2021; 9:biomedicines9050477. [PMID: 33926064 PMCID: PMC8146816 DOI: 10.3390/biomedicines9050477] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide has well-known antioxidant, anti-inflammatory, and anti-aggregation activities, and it may be useful for treatment of neurodegenerative disorders such as Alzheimer’s disease (AD). In this disease, peripheral infiltrating macrophages play a substantial role in the clearance of amyloid beta (Aβ) peptides from the brain. Correspondingly, in patients suffering from AD, defects in the capacity of peripheral macrophages to engulf Aβ have been reported. The effects of carnosine on macrophages and oxidative stress associated with AD are consequently of substantial interest for drug discovery in this field. In the present work, a model of stress induced by Aβ1-42 oligomers was investigated using a combination of methods including trypan blue exclusion, microchip electrophoresis with laser-induced fluorescence, flow cytometry, fluorescence microscopy, and high-throughput quantitative real-time PCR. These assays were used to assess the ability of carnosine to protect macrophage cells, modulate oxidative stress, and profile the expression of genes related to inflammation and pro- and antioxidant systems. We found that pre-treatment of RAW 264.7 macrophages with carnosine counteracted cell death and apoptosis induced by Aβ1-42 oligomers by decreasing oxidative stress as measured by levels of intracellular nitric oxide (NO)/reactive oxygen species (ROS) and production of peroxynitrite. This protective activity of carnosine was not mediated by modulation of the canonical inflammatory pathway but instead can be explained by the well-known antioxidant and free-radical scavenging activities of carnosine, enhanced macrophage phagocytic activity, and the rescue of fractalkine receptor CX3CR1. These new findings obtained with macrophages challenged with Aβ1-42 oligomers, along with the well-known multimodal mechanism of action of carnosine in vitro and in vivo, substantiate the therapeutic potential of this dipeptide in the context of AD pathology.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Correspondence: ; Tel.: +39-095-7384265
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Annamaria Fidilio
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
19
|
Menon K, Marquina C, Hoj P, Liew D, Mousa A, de Courten B. Carnosine and histidine-containing dipeptides improve dyslipidemia: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2021; 78:939-951. [PMID: 32594145 DOI: 10.1093/nutrit/nuaa022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CONTEXT Cardiovascular disease is a major public health problem and represents a significant burden of disease globally. Lifestyle interventions have their limitations and an intervention that will effectively address cardiovascular risk factors to help reduce this growing burden of disease is required. OBJECTIVE Carnosine and other histidine-containing dipeptides (HCDs) have exerted positive effects on cardiovascular risk factors and diseases in animal and human studies. The authors conducted a systematic review and meta-analysis examining the effects of HCDs on cardiovascular outcomes in line with the PRISMA guidelines. DATA SOURCES The Medline, Medline in process, Embase, Cumulative Index of Nursing and Allied Health, and All EBM databases were searched from inception until January 25, 2019, for randomized controlled trials (RCTs) examining the effects of HCDs on cardiovascular outcomes, compared with placebo or controls. DATA EXTRACTION Basic characteristics of the study and populations, interventions, and study results were extracted. The grading of recommendations assessment, development, and evaluation approach was used to assess the quality of evidence for each outcome. DATA ANALYSIS A total of 21 studies were included. Of these, 18 were pooled for meta-analysis (n = 913). In low risk of bias studies, HCD-supplemented groups had lower total cholesterol (n = 6 RCTs; n = 401; weighted mean difference [WMD], -0.32 mmol/L [95%CI, -0.57 to -0.07], P = 0.01) and triglyceride levels (n = 6 RCTs; n = 401; WMD, -0.14 mmol/L [95%CI, -0.20 to -0.08], P < 0.001) compared with controls. In studies using carnosine, triglycerides levels were also lower in the intervention group vs controls (n = 5 RCTS; n = 309; P < 0.001). There were no significant differences in blood pressure, heart rate, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C) or the total cholesterol to HDL-C ratio between groups. CONCLUSIONS Carnosine and other HCDs may have a role in improving lipid profiles. Larger studies with sufficient follow-up are necessary to confirm these findings and explore the use of HCDs in the prevention of cardiovascular diseases. SYSTEMIC REVIEW REGISTRATION PROSPERO registration no.: CRD42017075354.
Collapse
Affiliation(s)
- Kirthi Menon
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Clara Marquina
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Pernille Hoj
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Danny Liew
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Aya Mousa
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Barbora de Courten
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
20
|
Banerjee S, Mukherjee B, Poddar MK, Dunbar GL. Carnosine improves aging-induced cognitive impairment and brain regional neurodegeneration in relation to the neuropathological alterations in the secondary structure of amyloid beta (Aβ). J Neurochem 2021; 158:710-723. [PMID: 33768569 DOI: 10.1111/jnc.15357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Aging-induced proteinopathies, including deterioration of amyloid beta (Aβ) conformation, are associated with reductions in endogenous levels of carnosine and cognitive impairments. Carnosine is a well-known endogenous antioxidant, which counteracts aging-induced Aβ plaque formation. The aim of this study was to investigate the effects of exogenous carnosine treatments on aging-induced changes (a) in the steady-state level of endogenous carnosine and conformation of Aβ secondary structure in the different brain regions (cerebral cortex, hippocampus, hypothalamus, pons-medulla, and cerebellum) and (b) cognitive function. Young (4 months) and aged (18 and 24 months) male albino Wistar rats were treated with carnosine (2.0 μg kg-1 day-1 ; i.t.) or equivalent volumes of vehicle (saline) for 21 consecutive days and were tested for cognition using 8-arm radial maze test. Brains were processed to assess the conformational integrity of Aβ plaques using Raman spectroscopy and endogenous levels of carnosine were measured in the brain regions using HPLC. Results indicated that carnosine treatments improved the aging-induced deficits in cognitive function and reduced the β-sheets in the secondary structure of Aβ protein, as well as mitigating the reduction in the steady-state levels of carnosine and spine density in the brain regions examined. These results thus, suggest that carnosine can attenuate the aging-induced: (a) conformational changes in Aβ secondary structure by reducing the abundance of β-sheets and reductions in carnosine content in the brain regions and (b) cognitive impairment.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.,Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Gary L Dunbar
- Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
21
|
Effect of L-Carnosine in children with autism spectrum disorders: a systematic review and meta-analysis of randomised controlled trials. Amino Acids 2021; 53:575-585. [PMID: 33704575 DOI: 10.1007/s00726-021-02960-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorders (ASD) are an emerging health problem worldwide. So far, no definite cure for ASD exists. L-Carnosine is an amino acid containing β-alanine and L-histidine which has been proposed to have neuroprotective, antioxidant and anti-convulsive properties that may benefit affected children with this disorder. This review aimed to assess the effect of L-Carnosine in the management of ASD in children. We systematically reviewed randomised controlled trials (RCTs) which documented the effect of L-Carnosine in children with ASD. A literature search was performed in PubMed, Cochrane Library, Google Scholar, ClinicalTrials.gov, Clinical Trial Registry-India databases from inception to December 20, 2020. Articles were selected based on pre-set inclusion/exclusion criteria. The primary outcomes were changes in social, communication and behavioural responses and the secondary outcomes were improvement in sleep disorders, gastrointestinal problems, oxidative stress markers and adverse effects. Jadad scale was used to assess the quality of RCTs and modified Cochrane risk of bias tool was used to check the risk of bias of the included studies. The meta-analysis was reported based on the fixed-effects model. Four double-blinded, placebo-controlled, RCTs and one open label trial with a total of 215 participants were selected for the review. All the trials were methodological of high quality according to the Jadad scale. The modified Cochrane risk of bias tool showed a low to high risk of bias. Results from the meta-analysis of three studies showed no significant difference between L-Carnosine and placebo groups in the Gilliam autism rating scale (GARS) (MD = - 2.57; 95% CI - 10.30, 5.16, p = 0.52) and in its socialisation (MD = - 1.51; 95% CI - 6.16, 3.14, p = 0.53), behaviour (MD = - 0.48; 95% CI - 4.82, 3.87, p = 0.83) and communication (MD = - 3.94; 95% CI - 10.00, 2.11, p = 0.20) subscales as well as the childhood autism rating scale (CARS) (MD = - 0.88; 95% CI - 6.96, 5.20; p = 0.78). Current data do not support the use of L-Carnosine in the management of children with ASD due to a low number of studies and sample size available. Further studies are warranted to know the effect of L-Carnosine for ASD management.
Collapse
|
22
|
Belity T, Hoffman JR, Horowitz M, Epstein Y, Bruchim Y, Cohen H. β-Alanine Supplementation Attenuates the Neurophysiological Response in Animals Exposed to an Acute Heat Stress. J Diet Suppl 2021; 19:443-458. [PMID: 33615958 DOI: 10.1080/19390211.2021.1889734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The effect of 30 days of β-alanine supplementation on neurophysiological responses of animals exposed to an acute heat stress (HS) was examined. Animals were randomized to one of three groups; exposed to HS (120 min at 40-41 °C) and fed a normal diet (EXP; n = 12); EXP and supplemented with β-alanine (EXP + BA; n = 10); or not exposed (CTL; n = 10). Hippocampal (CA1, CA3 and DG) and hypothalamic (PVN) immunoreactive (ir) cell numbers of COX2, IBA-1, BDNF, NPY and HSP70 were analyzed. Three animals in EXP and one in EXP-BA did not survive the HS, however no significant difference (p = 0.146) was noted in survival rate in EXP + BA. The % change in rectal temperature was significantly lower (p = 0.04) in EXP + BA than EXP. Elevations (p's < 0.05) in COX-2, IBA-1 and HSP70 ir-cell numbers were noted in animals exposed to HS in all subregions. COX-2 ir-cell numbers were attenuated for EXP + BA in CA1 (p = 0.02) and PVN (p = 0.015) compared to EXP. No difference in COX-2 ir-cell numbers was noted between CTL and EXP + BA at CA1. BDNF-ir cell numbers in CA1, DG and PVN were reduced (p's < 0.05) during HS compared to CTL. No difference in BDNF-ir cell numbers was noted between EXP + BA and CTL in CA3 and PVN. NPY-ir density was reduced in exposed animals in all subregions, but NPY-ir density for EXP-BA was greater than EXP in CA3 (p < 0.001) and PVN (p = 0.04). β-Alanine supplementation attenuated the thermoregulatory and inflammatory responses and maintained neurotrophin and neuropeptide levels during acute HS. Further research is necessary to determine whether β-alanine supplementation can increase survival rate during a heat stress.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jay R Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | - Yoram Epstein
- Heller Institute of Medical Research, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
23
|
Ann Abraham D, Narasimhan U, Christy S, Muhasaparur Ganesan R. Effect of L-Carnosine as adjunctive therapy in the management of children with autism spectrum disorder: a randomized controlled study. Amino Acids 2020; 52:1521-1528. [PMID: 33170378 DOI: 10.1007/s00726-020-02909-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
L-Carnosine is an amino acid that acts as an anti-oxidant, anti-toxic and neuroprotective agent. There is a paucity of data about the effectiveness of L-Carnosine in the management of autism spectrum disorder (ASD) in children. This study aimed at investigating the effectiveness of L-Carnosine as adjunctive therapy in the management of ASD. This was a randomized controlled trial. Children aged 3-6 years with a diagnosis of mild to moderate ASD were assigned to standard care arm (occupational and speech therapy) and intervention care arm (L-Carnosine, 10-15 mg/kg in 2 divided doses) plus standard care treatment. The children were assessed at the baseline and the end of 2 months for the scores of Childhood Autism Rating Scale, Second Edition-Standard Version (CARS2-ST), Autism Treatment Evaluation Checklist (ATEC), BEARS sleep screening tool and 6-item Gastrointestinal Severity Index (6-GSI). Of the sixty-seven children enrolled, sixty-three children had completed the study. No statistically significant difference (p > 0.05) was observed for any of the outcome measures assessed. Supplementation of L-Carnosine did not improve the total score of CARS2-ST, ATEC, BEARS sleep screening tool and 6-GSI scores of children with ASD. Further investigations are needed with more objective assessments to critically validate the effectiveness of L-Carnosine on ASD children for more decisive results.
Collapse
Affiliation(s)
- Debi Ann Abraham
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, 600 116, India
| | - Udayakumar Narasimhan
- Department of Paediatric Medicine, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Senta Christy
- Karthikeyan Child Development Unit, Sri Ramachandra Medical Centre, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rajanandh Muhasaparur Ganesan
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, 600 116, India.
| |
Collapse
|
24
|
Banerjee S, Poddar MK. Carnosine research in relation to aging brain and neurodegeneration: A blessing for geriatrics and their neuronal disorders. Arch Gerontol Geriatr 2020; 91:104239. [PMID: 32866926 DOI: 10.1016/j.archger.2020.104239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Carnosine, an endogenous dipeptide (β-Ala-l-His), is enriched in prefrontal cortex and olfactory bulb of the brain, blood and also in muscle. It has mainly antioxidant and antiglycating properties which makes this molecule unique. Its content reduces during aging and aging-induced neurodegenerative diseases. Aging is a progressive biological process that leads to develop the risk factors of diseases and death. During aging the morphological, biochemical, cellular and molecular changes occur in brain and blood including other tissues. The objective of this review is to combine the updated information from the existing literature about the aging-induced neurodegeneration and carnosine research to meet the lacuna of mechanism of carnosine. The grey matter and white matter loses its normal ratio in aging, and hence the brain volume and weight. Different aging related neurodegenerative disorders arise due to loss of neurons, and synapses as a result of proteinopathies in some cases. Carnosine, being an endogenous biomolecule and having antioxidant, antiglycating properties has shown its potency to counteract erroneous protein biosynthesis, stress, activated microglial and astrocyte activity, and different neurodegenerative disorders. It (carnosine) can also inhibit the metal ion-induced degeneration by acting as a metal chelator. In this review the trends in carnosine research in relation to aging brain and neurodegeneration have been discussed with a view to its (carnosine) eligibility (including its mechanism of action) to be used as a promising neurotherapeutic for the betterment of elderly populations of our society at the national and international levels in near future.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India
| | - Mrinal K Poddar
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India.
| |
Collapse
|
25
|
Menini S, Iacobini C, Fantauzzi CB, Pugliese G. L-carnosine and its Derivatives as New Therapeutic Agents for the Prevention and Treatment of Vascular Complications of Diabetes. Curr Med Chem 2020; 27:1744-1763. [PMID: 31296153 DOI: 10.2174/0929867326666190711102718] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 02/01/2023]
Abstract
Vascular complications are among the most serious manifestations of diabetes. Atherosclerosis is the main cause of reduced life quality and expectancy in diabetics, whereas diabetic nephropathy and retinopathy are the most common causes of end-stage renal disease and blindness. An effective therapeutic approach to prevent vascular complications should counteract the mechanisms of injury. Among them, the toxic effects of Advanced Glycation (AGEs) and Lipoxidation (ALEs) end-products are well-recognized contributors to these sequelae. L-carnosine (β-alanyl-Lhistidine) acts as a quencher of the AGE/ALE precursors Reactive Carbonyl Species (RCS), which are highly reactive aldehydes derived from oxidative and non-oxidative modifications of sugars and lipids. Consistently, L-carnosine was found to be effective in several disease models in which glyco/lipoxidation plays a central pathogenic role. Unfortunately, in humans, L-carnosine is rapidly inactivated by serum carnosinase. Therefore, the search for carnosinase-resistant derivatives of Lcarnosine represents a suitable strategy against carbonyl stress-dependent disorders, particularly diabetic vascular complications. In this review, we present and discuss available data on the efficacy of L-carnosine and its derivatives in preventing vascular complications in rodent models of diabetes and metabolic syndrome. We also discuss genetic findings providing evidence for the involvement of the carnosinase/L-carnosine system in the risk of developing diabetic nephropathy and for preferring the use of carnosinase-resistant compounds in human disease. The availability of therapeutic strategies capable to prevent both long-term glucose toxicity, resulting from insufficient glucoselowering therapy, and lipotoxicity may help reduce the clinical and economic burden of vascular complications of diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | | | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| |
Collapse
|
26
|
Comparative Cerebroprotective Potential of d- and l-Carnosine Following Ischemic Stroke in Mice. Int J Mol Sci 2020; 21:ijms21093053. [PMID: 32357505 PMCID: PMC7246848 DOI: 10.3390/ijms21093053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
l-carnosine is an attractive therapeutic agent for acute ischemic stroke based on its robust preclinical cerebroprotective properties and wide therapeutic time window. However, large doses are needed for efficacy because carnosine is rapidly degraded in serum by carnosinases. The need for large doses could be particularly problematic when translating to human studies, as humans have much higher levels of serum carnosinases. We hypothesized that d-carnosine, which is not a substrate for carnosinases, may have a better pharmacological profile and may be more efficacious at lower doses than l-carnosine. To test our hypothesis, we explored the comparative pharmacokinetics and neuroprotective properties of d- and L-carnosine in acute ischaemic stroke in mice. We initially investigated the pharmacokinetics of d- and L-carnosine in serum and brain after intravenous (IV) injection in mice. We then investigated the comparative efficacy of d- and l-carnosine in a mouse model of transient focal cerebral ischemia followed by in vitro testing against excitotoxicity and free radical generation using primary neuronal cultures. The pharmacokinetics of d- and l-carnosine were similar in serum and brain after IV injection in mice. Both d- and l-carnosine exhibited similar efficacy against mouse focal cerebral ischemia. In vitro studies in neurons showed protection against excitotoxicity and the accumulation of free radicals. d- and l-carnosine exhibit similar pharmacokinetics and have similar efficacy against experimental stroke in mice. Since humans have far higher levels of carnosinases, d-carnosine may have more favorable pharmacokinetics in future human studies.
Collapse
|
27
|
Fresta CG, Fidilio A, Lazzarino G, Musso N, Grasso M, Merlo S, Amorini AM, Bucolo C, Tavazzi B, Lazzarino G, Lunte SM, Caraci F, Caruso G. Modulation of Pro-Oxidant and Pro-Inflammatory Activities of M1 Macrophages by the Natural Dipeptide Carnosine. Int J Mol Sci 2020; 21:ijms21030776. [PMID: 31991717 PMCID: PMC7038063 DOI: 10.3390/ijms21030776] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-β1 (TGF-β1) and the down-regulation of the expressions of interleukins 1β and 6 (IL-1β and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases).
Collapse
Affiliation(s)
- Claudia G. Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA; (C.G.F.); (S.M.L.)
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Annamaria Fidilio
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
| | - Giacomo Lazzarino
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy;
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Angela M. Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
- Correspondence: (G.L.); (G.C.)
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA; (C.G.F.); (S.M.L.)
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
- Correspondence: (G.L.); (G.C.)
| |
Collapse
|
28
|
Kim ES, Kim D, Nyberg S, Poma A, Cecchin D, Jain SA, Kim KA, Shin YJ, Kim EH, Kim M, Baek SH, Kim JK, Doeppner TR, Ali A, Redgrave J, Battaglia G, Majid A, Bae ON. LRP-1 functionalized polymersomes enhance the efficacy of carnosine in experimental stroke. Sci Rep 2020; 10:699. [PMID: 31959846 PMCID: PMC6971073 DOI: 10.1038/s41598-020-57685-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Stroke is one of the commonest causes of death with limited treatment options. L-Carnosine has shown great promise as a neuroprotective agent in experimental stroke, but translation to the clinic is impeded by the large doses needed. We developed and evaluated the therapeutic potential of a novel delivery vehicle which encapsulated carnosine in lipoprotein receptor related protein-1 (LRP-1)-targeted functionalized polymersomes in experimental ischemic stroke. We found that following ischemic stroke, polymersomes encapsulating carnosine exhibited remarkable neuroprotective effects with a dose of carnosine 3 orders of magnitude lower than free carnosine. The LRP-1-targeted functionalization was essential for delivery of carnosine to the brain, as non-targeted carnosine polymersomes did not exhibit neuroprotection. Using Cy3 fluorescence in vivo imaging, we showed that unlike non-targeted carnosine polymersomes, LRP-1-targeted carriers accumulated in brain in a time dependent manner. Our findings suggest that these novel carriers have the ability to deliver neuroprotective cargo effectively to the brain.
Collapse
Affiliation(s)
- Eun-Sun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | | | - Alessandro Poma
- Department of Chemistry, London, England.,Institute of Physics of Living System, University College London, London, WC2N 5DU, England
| | - Denis Cecchin
- Department of Chemistry, London, England.,Institute of Physics of Living System, University College London, London, WC2N 5DU, England
| | - Saurabh A Jain
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2TN, England
| | - Kyeong-A Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Young-Jun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Minyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, KS002, Republic of Korea
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, KS002, Republic of Korea
| | - Jin-Ki Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Goettingen, 37075, Germany
| | - Ali Ali
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2TN, England
| | - Jessica Redgrave
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2TN, England
| | - Giuseppe Battaglia
- Department of Chemistry, London, England. .,Institute of Physics of Living System, University College London, London, WC2N 5DU, England.
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2TN, England.
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
29
|
Zhang H, Li CL, Wan F, Wang SJ, Wei XE, Hao YL, Leng HL, Li JM, Yan ZR, Wang BJ, Xu RS, Yu TM, Zhou LC, Fan DS. Efficacy of cattle encephalon glycoside and ignotin in patients with acute cerebral infarction: a randomized, double-blind, parallel-group, placebo-controlled study. Neural Regen Res 2020; 15:1266-1273. [PMID: 31960812 PMCID: PMC7047806 DOI: 10.4103/1673-5374.272616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cattle encephalon glycoside and ignotin (CEGI) injection is a compound preparation formed by a combination of muscle extract from healthy rabbits and brain gangliosides from cattle, and it is generally used as a neuroprotectant in the treatment of central and peripheral nerve injuries. However, there is still a need for high-level clinical evidence from large samples to support the use of CEGI. We therefore carried out a prospective, multicenter, randomized, double-blind, parallel-group, placebo-controlled study in which we recruited 319 patients with acute cerebral infarction from 16 centers in China from October 2013 to May 2016. The patients were randomized at a 3:1 ratio into CEGI (n = 239; 155 male, 84 female; 61.2 ± 9.2 years old) and placebo (n = 80; 46 male, 34 female; 63.2 ± 8.28 years old) groups. All patients were given standard care once daily for 14 days, including a 200 mg aspirin enteric-coated tablet and 20 mg atorvastatin calcium, both taken orally, and intravenous infusion of 250–500 mL 0.9% sodium chloride containing 40 mg sodium tanshinone IIA sulfonate. Based on conventional treatment, patients in the CEGI and placebo groups were given 12 mL CEGI or 12 mL sterile water, respectively, in an intravenous drip of 250 mL 0.9% sodium chloride (2 mL/min) once daily for 14 days. According to baseline National Institutes of Health Stroke Scale scores, patients in the two groups were divided into mild and moderate subgroups. Based on the modified Rankin Scale results, the rate of patients with good outcomes in the CEGI group was higher than that in the placebo group, and the rate of disability in the CEGI group was lower than that in the placebo group on day 90 after treatment. In the CEGI group, neurological deficits were decreased on days 14 and 90 after treatment, as measured by the National Institutes of Health Stroke Scale and the Barthel Index. Subgroup analysis revealed that CEGI led to more significant improvements in moderate stroke patients. No drug-related adverse events occurred in the CEGI or placebo groups. In conclusion, CEGI may be a safe and effective treatment for acute cerebral infarction patients, especially for moderate stroke patients. This study was approved by the Ethical Committee of Peking University Third Hospital, China (approval No. 2013-068-2) on May 20, 2013, and registered in the Chinese Clinical Trial Registry (registration No. ChiCTR1800017937).
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Chuan-Ling Li
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Feng Wan
- Department of Neurology, Huang Gang Central Hospital, Huanggang, Hubei Province, China
| | - Su-Juan Wang
- Department of Neurology, The First People's Hospital of Luoyang City, Luoyang, Henan Province, China
| | - Xiu-E Wei
- Department of Neurology, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu Province, China
| | - Yan-Lei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Hui-Lin Leng
- Department of Neurology, People's Hospital of Yichun City, Yichun, Jiangxi Province, China
| | - Jia-Min Li
- Department of Neurology, The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei Province, China
| | - Zhong-Rui Yan
- Department of Neurology, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Bao-Jun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region, China
| | - Ren-Shi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ting-Min Yu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li-Chun Zhou
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dong-Sheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Attia H, Fadda L, Al-Rasheed N, Al-Rasheed N, Maysarah N. Carnosine and L-arginine attenuate the downregulation of brain monoamines and gamma aminobutyric acid; reverse apoptosis and upregulate the expression of angiogenic factors in a model of hemic hypoxia in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:381-394. [PMID: 31641819 DOI: 10.1007/s00210-019-01738-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of the present study was to investigate the preventive effect of L-arginine (ARG) and carnosine (CAR) on hypoxia-induced neurotoxicity in rats. The impact on neuro-inflammation, apoptosis, angiogenesis, and the brain levels of monoamines and GABA were investigated. METHODS Rats were divided into the following: normal control, hypoxia model induced by sodium nitrite (75 mg/kg s.c), and hypoxic rats pre-treated with CAR (250 mg/kg), ARG (200 mg/kg), and their combination. RESULTS Data revealed that hypoxia induced significant elevation of hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and its receptor reflecting the stimulation of angiogenesis. Hypoxia also resulted in increased inflammatory mediators-including nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). In addition, hypoxia initiates cerebral apoptosis as revealed by increased caspase-3 and BAX with reduced Bcl-2. These changes were associated with reduced brain levels of GABA and monoamines including noradrenaline (NADR), dopamine (DOP), and serotonin (SER). Pre-treatment with ARG and/or CAR significantly mitigated the neural changes induced by hypoxia and attenuated the elevated levels of NF-κB, TNF-α, IL-6, caspase-3, and BAX, while ameliorated the reduced levels of Bcl-2, NADR, DOP, SER, and GABA, with the best improvement observed with the combination. Further elevation of the angiogenic markers was observed indicating their role in boosting oxygen delivery to brain. CONCLUSION CAR, ARG, and, importantly, their combination could effectively protect against hypoxia-induced neurotoxicity, via their angiogenic, anti-inflammatory, and anti-apoptotic properties in addition to reversing the effect on GABA and monoamines.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia. .,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nouf Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nawal Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nadia Maysarah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
31
|
Kim HG, Heo H, Sung MS, Park SW. Carnosine decreases retinal ganglion cell death in a mouse model of optic nerve crushing. Neurosci Lett 2019; 711:134431. [PMID: 31415801 DOI: 10.1016/j.neulet.2019.134431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE The objectives of this study were to investigate whether carnosine can increase retinal ganglion cell (RGC) survival in the mouse retina and to determine the possible association between nuclear factor-kappa B (NF-κB) mediated oxidative stress and neuroprotection of RGCs following optic nerve crushing (ONC). METHODS C57BL/6 J mice underwent ONC and were treated with carnosine (250 mg/kg) or saline intraperitoneally once daily until sacrifice. Peroxisome proliferator activated receptor (PPAR)-γ and glial fibrillary acidic protein (GFAP) expression were assessed at 1, 3, and 7 days after ONC. The effects of carnosine on the expression of PPAR-γ, GFAP, and NF-κB were assessed. To evaluate the effects of carnosine on mitochondrial biogenesis and function, we compared the expression of PPAR gamma coactivator-1α (PGC-1α) and mitochondrial transcription factor A (mtTFA) in retinas from mice that were treated with carnosine or saline at 3 days after ONC. RGC survival was assessed by labeling flat-mounted retinas with Brn3a at 2 weeks after ONC. RESULTS The expression levels of PPAR-γ and GFAP were upregulated in saline-treated retinas for 7 days after ONC, with maximal expression at 3 days, and carnosine treatment effectively attenuated this upregulation. In addition, upregulation of NF-κB, PGC-1α and mtTFA expression was also observed in saline-treated retinas after ONC, and this upregulation was blocked by carnosine treatment, resulting in a significant difference between carnosine-treated and saline-treated retinas after ONC. Immunohistochemical staining for Brn3a also showed that carnosine treatment protected against RGC loss after ONC. CONCLUSIONS Inhibition of NF-κB expression and oxidative stress by carnosine treatment plays a significant role in the prevention of RGC loss after ONC. The results also highlight the potential of carnosine as a neuroprotective agent against RGC loss in optic neuropathy.
Collapse
Affiliation(s)
| | - Hwan Heo
- Department of Ophthalmology, Chonnam National University Medical School & Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, South Korea
| | - Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School & Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, South Korea
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School & Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, South Korea.
| |
Collapse
|
32
|
Zeb A, Cha JH, Noh AR, Qureshi OS, Kim KW, Choe YH, Shin D, Shah FA, Majid A, Bae ON, Kim JK. Neuroprotective effects of carnosine-loaded elastic liposomes in cerebral ischemia rat model. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00462-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Ghanbarinejad V, Ahmadi A, Niknahad H, Ommati MM, Heidari R. Carnosine Mitigates Manganese Mitotoxicity in an In Vitro Model of Isolated Brain Mitochondria. Adv Pharm Bull 2019; 9:294-301. [PMID: 31380256 PMCID: PMC6664115 DOI: 10.15171/apb.2019.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/30/2018] [Accepted: 04/14/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Manganese (Mn) is a neurotoxic chemical which induces a wide range of complications in the brain tissue. Impaired locomotor activity and cognitive dysfunction are associated with high brain Mn content. At the cellular level, mitochondria are potential targets for Mn toxicity. Carnosine is a dipeptide abundantly found in human brain. Several pharmacological properties including mitochondrial protecting and antioxidative effects have been attributed to carnosine. The current study aimed to evaluate the effect of carnosine treatment on Mn-induced mitochondrial dysfunction in isolated brain mitochondria.
Methods: Mice brain mitochondria were isolated based on the differential centrifugation method and exposed to increasing concentrations of Mn (10 µM-10 mM). Carnosine (1 mM) was added as the protective agent. Mitochondrial indices including mitochondrial depolarization, reactive oxygen species (ROS) formation, mitochondrial dehydrogenases activity, ATP content, and mitochondrial swelling and permeabilization were assessed.
Results: Significant deterioration in mitochondrial indices were evident in Mn-exposed brain mitochondria. On the other hand, it was found that carnosine (1 mM) treatment efficiently prevented Mn-induced mitochondrial impairment.
Conclusion: These data propose mitochondrial protection as a fundamental mechanism for the effects of carnosine against Mn toxicity. Hence, this peptide might be applicable against Mn neurotoxicity with different etiologies (e.g., in cirrhotic patients).
Collapse
Affiliation(s)
- Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Ahmadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Parrella E, Porrini V, Benarese M, Pizzi M. The Role of Mast Cells in Stroke. Cells 2019; 8:cells8050437. [PMID: 31083342 PMCID: PMC6562540 DOI: 10.3390/cells8050437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.
Collapse
Affiliation(s)
- Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
35
|
Adnyana IMO, Sudewi R, Samatra P, Suprapta S. Balinese Cultivar of Purple Sweet Potato Improved Neurological Score and BDNF and Reduced Caspase-Independent Apoptosis among Wistar Rats with Ischemic Stroke. Open Access Maced J Med Sci 2019; 7:38-44. [PMID: 30740157 PMCID: PMC6352468 DOI: 10.3889/oamjms.2019.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Ischemic stroke occurs due to the abrupt occlusion in the brain which leads to neuronal death. Neuronal death in ischemic stroke is due to increase production of reactive oxygen species (ROS). Neuronal death occurs via necrosis and apoptosis mechanisms. Apoptosis can either occur via extrinsic or intrinsic pathway. Meanwhile, the intrinsic pathway can be caspase-dependent or independent. Anthocyanin is a natural pigment with antioxidant, anti-inflammatory, anti-cancer, and neuroprotective properties. Balinese cultivate of purple potato extract contains a high level of anthocyanin and has been proven for its antioxidant activity. AIM: Antioxidant effect of Balinese cultivates purple potato extract has not been studied on an animal model with ischemic stroke. Accordingly, we would like to study the effect of antioxidant properties from Balinese cultivate of purple potato extract by assessing the neurological score, BNDF concentration, and caspase-independent apoptosis by measuring AIF concentration on Wistar rats with ischemic stroke. METHODS: This was an experimental study using male Wistar rats age between 12-14 weeks weigh between 200 to 250 g. RESULTS: This study demonstrated a significant difference of neurological score on day 3 among control versus treatment groups. Balinese cultivate of purple potato extract markedly reduced AIF, increased BDNF, and suppressed apoptosis among treatment group when compared with the control group. CONCLUSION: We have proven the efficacy of antioxidant activity of anthocyanin derived from Balinese cultivar of purple sweet potato by elevated AIF levels, lower apoptosis rate, improved neurological score on day-3 to day-7 post-stroke, as well as increased BDNF levels.
Collapse
Affiliation(s)
- I Made Oka Adnyana
- Department of Neurology, Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Raka Sudewi
- Department of Neurology, Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Purwa Samatra
- Department of Neurology, Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Suprapta Suprapta
- Biopesticide Laboratory, Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia
| |
Collapse
|
36
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
37
|
Berezhnoy DS, Stvolinsky SL, Lopachev AV, Devyatov AA, Lopacheva OM, Kulikova OI, Abaimov DA, Fedorova TN. Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions. Amino Acids 2018; 51:139-150. [PMID: 30353356 DOI: 10.1007/s00726-018-2667-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/12/2018] [Indexed: 11/28/2022]
Abstract
Carnosine (b-alanyl-L-histidine) is an endogenous dipeptide widely distributed in excitable tissues, such as muscle and neural tissues-though in minor concentrations in the latter. Multiple benefits have been attributed to carnosine: direct and indirect antioxidant effect, antiglycating, metal-chelating, chaperone and pH-buffering activity. Thus, carnosine turns out to be a multipotent protector against oxidative damage. However, the role of carnosine in the brain remains unclear. The key aspects concerning carnosine in the brain reviewed are as follows: its concentration and bioavailability, mechanisms of action in neuronal and glial cells, beneficial effects in human studies. Recent literature data and the results of our own research are summarized here. This review covers studies of carnosine effects on both in vitro and in vivo models of cerebral damage, such as neurodegenerative disorders and ischemic injuries and the data on its physiological actions on neuronal signaling and cerebral functions. Besides its antioxidant and homeostatic properties, new potential roles of carnosine in the brain are discussed.
Collapse
Affiliation(s)
- D S Berezhnoy
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia. .,Faculty of Biology, Moscow State University, Moscow, 119234, Russia.
| | - S L Stvolinsky
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - A V Lopachev
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - A A Devyatov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - O M Lopacheva
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - O I Kulikova
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia.,Faculty of Ecology, Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - D A Abaimov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - T N Fedorova
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| |
Collapse
|
38
|
Menon K, Mousa A, de Courten B. Effects of supplementation with carnosine and other histidine-containing dipeptides on chronic disease risk factors and outcomes: protocol for a systematic review of randomised controlled trials. BMJ Open 2018; 8:e020623. [PMID: 29567852 PMCID: PMC5875615 DOI: 10.1136/bmjopen-2017-020623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Ageing of populations globally, coupled with the obesity epidemic, has resulted in the rising prevalence of chronic diseases including diabetes, cardiovascular diseases, cancers and neurodegenerative disorders. Prevention of risk factors that contribute to these diseases is key in managing the global burden of chronic diseases. Recent studies suggest that carnosine, a dipeptide with anti-inflammatory, antioxidative and antiglycating properties may have a role in the prevention of chronic diseases; however, no previous reviews have examined the effects of carnosine and other histidine-containing peptides (HCDs) on chronic disease risk factors and outcomes. We aim to conduct a comprehensive systematic review to examine the effects of supplementation with carnosine and other HCDs on chronic disease risk factors and outcomes and to identify relevant knowledge gaps. METHODS AND ANALYSIS Electronic databases including Medline, Cumulative Index of Nursing and Allied Health, Embase and all Evidence-Based Medicine will be systematically searched to identify randomised controlled trials (RCTs) and systematic reviews of RCTs, comparing supplementation with carnosine and/or other HCDs versus placebo, usual care or other pharmacological or non-pharmacological interventions. One reviewer will screen titles and abstracts for eligibility according to prespecified inclusion criteria, after which two independent reviewers will perform data extraction and quality appraisal. Meta-analyses, metaregression and subgroup analyses will be conducted where appropriate. ETHICS AND DISSEMINATION Ethics approval is not required as this review does not involve primary data collection. This review will generate level-one evidence regarding the effects of carnosine supplementation on chronic disease risk factors and outcomes and will be disseminated through peer-reviewed publications and at conference meetings to inform future research on the efficacy of carnosine supplementation for the prevention of chronic diseases. PROSPERO REGISTRATION NUMBER CRD42017075354.
Collapse
Affiliation(s)
- Kirthi Menon
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Hajizadeh-Zaker R, Ghajar A, Mesgarpour B, Afarideh M, Mohammadi MR, Akhondzadeh S. l-Carnosine As an Adjunctive Therapy to Risperidone in Children with Autistic Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. J Child Adolesc Psychopharmacol 2018; 28:74-81. [PMID: 29027815 DOI: 10.1089/cap.2017.0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES This study aimed at investigating the efficacy and tolerability of l-carnosine as an add-on to risperidone in the management of children with autism. METHODS This was a 10-week, randomized, double-blind, placebo-controlled study. Seventy drug-free children aged 4-12 years old with a diagnosis of autism spectrum disorder (ASD), according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition. (DSM-5) who had an Aberrant Behavior Checklist-Community (ABC-C) scale irritability subscale score of ≥12, entered the study. The patients were randomly assigned to l-carnosine (800 mg/day in 2 divided doses) or placebo in addition to risperidone titrated up to 2 mg/day (based on body weight) for 10 weeks. The children were assessed by using ABC-C at baseline and weeks 5 and 10 post-baseline. The primary outcome measure was the mean change in the ABC-C irritability subscale score, and other subscale scores were defined as secondary outcomes. RESULTS Using the general linear model repeated measures, no significant effect was observed for time × treatment interaction on the irritability subscale scores. However, significant effect was detected on the hyperactivity/noncompliance subscale [F (1.62, 64.96) = 3.53, p-value = 0.044]. No significant improvements were obtained on the lethargy/social withdrawal, stereotypic behavior, and inappropriate speech subscale scores. Significantly greater score reduction in the hyperactivity/noncompliance subscale occurred in the l-carnosine group compared with the placebo group at the end of the trial. Extrapyramidal Symptom Rating Scale Scores and its changes did not differ between the two groups. The frequency of other side effects was not significantly different between the two groups. CONCLUSIONS Although no significant difference was detected on the irritability subscale scores, l-carnosine add-on can improve hyperactivity/noncompliance subscales of the ABC-C rating scale in patients with ASD.
Collapse
Affiliation(s)
- Reihaneh Hajizadeh-Zaker
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Alireza Ghajar
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Bita Mesgarpour
- 2 National Institute for Medical Research Development (NIMAD) , Tehran, Iran
| | - Mohsen Afarideh
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad-Reza Mohammadi
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Shahin Akhondzadeh
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
40
|
Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, Carnosine, and Neurodegenerative Diseases. Nutrients 2018; 10:E147. [PMID: 29382141 PMCID: PMC5852723 DOI: 10.3390/nu10020147] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/02/2023] Open
Abstract
Zinc (Zn) is abundantly present in the brain, and accumulates in the synaptic vesicles. Synaptic Zn is released with neuronal excitation, and plays essential roles in learning and memory. Increasing evidence suggests that the disruption of Zn homeostasis is involved in various neurodegenerative diseases including Alzheimer's disease, a vascular type of dementia, and prion diseases. Our and other numerous studies suggest that carnosine (β-alanyl histidine) is protective against these neurodegenerative diseases. Carnosine is an endogenous dipeptide abundantly present in the skeletal muscles and in the brain, and has numerous beneficial effects such as antioxidant, metal chelating, anti-crosslinking, and anti-glycation activities. The complex of carnosine and Zn, termed polaprezinc, is widely used for Zn supplementation therapy and for the treatment of ulcers. Here, we review the link between Zn and these neurodegenerative diseases, and focus on the neuroprotective effects of carnosine. We also discuss the carnosine level in various foodstuffs and beneficial effects of dietary supplementation of carnosine.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
41
|
Ou-yang L, Liu Y, Wang BY, Cao P, Zhang JJ, Huang YY, Shen Y, Lyu JX. Carnosine suppresses oxygen-glucose deprivation/recovery-induced proliferation and migration of reactive astrocytes of rats in vitro. Acta Pharmacol Sin 2018; 39:24-34. [PMID: 28933425 DOI: 10.1038/aps.2017.126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
Glial scar formation resulted from excessive astrogliosis limits axonal regeneration and impairs recovery of function, thus an intervention to ameliorate excessive astrogliosis is crucial for the recovery of neurological function after cerebral ischemia. In this study we investigated the effects of carnosine, an endogenous water-soluble dipeptide (β-alanyl-L-histidine), on astrogliosis of cells exposed to oxygen-glucose deprivation/recovery (OGD/R) in vitro. Primary cultured rat astrocytes exhibited a significant increase in proliferation at 24 h recovery after OGD for 2 h. Pretreatment with carnosine (5 mmol/L) caused G1 arrest of reactive astrocytes, significantly attenuated OGD/R-induced increase in cyclin D1 protein expression and suppressed OGD/R-induced proliferation of reactive astrocytes. Carnosine treatment also reversed glycolysis and ATP production, which was elevated at 24 h recovery after OGD. A marked increase in migration of reactive astrocytes was observed at 24 h after OGD, whereas carnosine treatment reversed the expression levels of MMP-9 and suppressed the migration of astrocytes. Furthermore, carnosine also improved neurite growth of cortical neurons co-cultured with astrocytes under ischemic conditions. These results demonstrate that carnosine may be a promising candidate for inhibiting astrogliosis and promoting neurological function recovery after ischemic stroke.
Collapse
|
42
|
Iacobini C, Menini S, Blasetti Fantauzzi C, Pesce CM, Giaccari A, Salomone E, Lapolla A, Orioli M, Aldini G, Pugliese G. FL-926-16, a novel bioavailable carnosinase-resistant carnosine derivative, prevents onset and stops progression of diabetic nephropathy in db/db mice. Br J Pharmacol 2017; 175:53-66. [PMID: 29053168 DOI: 10.1111/bph.14070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The advanced glycation end products (AGEs) participate in the pathogenesis of diabetic nephropathy (DN) by promoting renal inflammation and injury. L-carnosine acts as a quencher of the AGE precursors reactive carbonyl species (RCS), but is rapidly inactivated by carnosinase. In this study, we evaluated the effect of FL-926-16, a carnosinase-resistant and bioavailable carnosine derivative, on the onset and progression of DN in db/db mice. EXPERIMENTAL APPROACH Adult male db/db mice and coeval db/m controls were left untreated or treated with FL-926-16 (30 mg·kg-1 body weight) from weeks 6 to 20 (prevention protocol) or from weeks 20 to 34 (regression protocol). KEY RESULTS In the prevention protocol, FL-926-16 significantly attenuated increases in creatinine (-80%), albuminuria (-77%), proteinuria (-75%), mean glomerular area (-34%), fractional (-40%) and mean (-42%) mesangial area in db/db mice. This protective effect was associated with a reduction in glomerular matrix protein expression and cell apoptosis, circulating and tissue oxidative and carbonyl stress, and renal inflammatory markers, including the NLRP3 inflammasome. In the regression protocol, the progression of DN was completely blocked, although not reversed, by FL-926-16. In cultured mesangial cells, FL-926-16 prevented NLRP3 expression induced by RCS but not by the AGE Nε -carboxymethyllysine. CONCLUSION AND IMPLICATIONS FL-926-16 is effective at preventing the onset of DN and halting its progression in db/db mice by quenching RCS, thereby reducing the accumulation of their protein adducts and the consequent inflammatory response. In a future perspective, this novel compound may represent a promising AGE-reducing approach for DN therapy.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Stefano Menini
- Department of Clinical Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | | | | | - Andrea Giaccari
- Endo-Metabolic Diseases Unit, Catholic University, Rome, Italy
| | - Enrica Salomone
- Endo-Metabolic Diseases Unit, Catholic University, Rome, Italy
| | | | - Marica Orioli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giuseppe Pugliese
- Department of Clinical Molecular Medicine, 'La Sapienza' University, Rome, Italy
| |
Collapse
|
43
|
Wang AH, Ma Q, Wang X, Xu GH. Protective effects of beef decoction rich in carnosine on cerebral ischemia injury by permanent middle cerebral artery occlusion in rats. Exp Ther Med 2017; 15:1321-1329. [PMID: 29399121 PMCID: PMC5774539 DOI: 10.3892/etm.2017.5524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammation has a role in the cerebral injury induced by ischemia and the present study aimed to determine the mechanism of the protective effect of beef decoction (BD) with carnosine against it. A rat model of permanent middle cerebral artery occlusion was established using a suture method in the vehicle and each of the BD groups. In experiment 1, 72 Sprague Dawley (SD) rats were randomly divided into three groups: Sham, vehicle and BD-treated group. Rats in the BD group were given 600 mg/kg BD by oral gavage for 1, 3 and 7 days. The sham and vehicle group rats received an equivalent amount of normal saline. In experiment 2, 60 SD rats were randomly divided into six groups: Sham-operated I, sham-operated II, vehicle, low-dose BD, medium-dose BD and high-dose BD group. Rats in the low-, medium- and high-dose BD groups were given BD at the dose of 200, 400 and 600 mg/kg, respectively, by oral gavage for 7 days. Rats in the sham-operated II group were given 600 mg/kg BD. Rats in the sham-operated I group and vehicle group were given the same volume of normal saline by oral gavage. The body weight, neurological deficits and infarct volume were recorded at 1, 3 and 7 days after the operation. Furthermore, the effect of different doses of BD on interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-4 (IL-4) levels in peripheral blood was measured at 7 days. BD-treated rats showed less neurological deficits and a smaller infarct volume at 7 days. BD at 400 and 600 mg/kg significantly decreased the infarct volume in rats. At 600 mg/kg BD, a decline in IL-6, TNF-α, IFN-γ and an increase in IL-4 expression was observed in the BD groups, while no difference in body weight and neurological dysfunction was detected. In conclusion, BD is a neuroprotective agent that may be used as a supplement treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ai-Hong Wang
- Department of Basic Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Qian Ma
- Department of Basic Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xin Wang
- Department of Basic Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Gui-Hua Xu
- Department of Chinese Medicine Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
44
|
Jamshidzadeh A, Heidari R, Latifpour Z, Ommati MM, Abdoli N, Mousavi S, Azarpira N, Zarei A, Zarei M, Asadi B, Abasvali M, Yeganeh Y, Jafari F, Saeedi A, Najibi A, Mardani E. Carnosine ameliorates liver fibrosis and hyperammonemia in cirrhotic rats. Clin Res Hepatol Gastroenterol 2017; 41:424-434. [PMID: 28283328 DOI: 10.1016/j.clinre.2016.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 02/04/2023]
Abstract
AIM Chronic liver injury and cirrhosis leads to liver failure. Hyperammonemia is a deleterious consequence of liver failure. On the other hand, oxidative stress seems to play a pivotal role in the pathogenesis of liver fibrosis as well as in the cytotoxic mechanism of ammonia. There is no promising therapeutic agent against ammonia-induced complications. The present study was conducted to evaluate the role of carnosine (CA) administration on liver pathological changes, elevated plasma ammonia, and its consequent events in cirrhotic rats. METHODS Bile duct ligated (BDL) rats were used as a model of cirrhosis. CA (250, 500, and 1000mg/kg, daily, i.p) was administered for 28 consecutive days to BDL animals. At the end of treatments, markers of oxidative stress and liver fibrosis was determined in liver and serum biomarkers of liver injury and plasma ammonia was assessed. Moreover, changes in animals' locomotor activity were monitored. RESULTS Severe bridging fibrosis, inflammation, and necrosis in liver, along with elevated serum biomarkers of liver injury were evident in BDL animals. Furthermore, plasma ammonia was drastically elevated in cirrhotic rats and animals' locomotor activity was suppressed. It was found that CA (250, 500, and 1000mg/kg, daily, i.p) significantly alleviated liver injury and its consequent events in cirrhotic rats. The data suggested that CA is not only a useful and safe agent to preserve liver function, but also prevented hyperammonemia and brain damage as a deleterious consequence of cirrhosis and liver failure.
Collapse
Affiliation(s)
- Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 1583, 71345 Roknabad, Karafarin Street, Shiraz, Fars, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 1583, 71345 Roknabad, Karafarin Street, Shiraz, Fars, Iran.
| | - Zahra Latifpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammed Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 1583, 71345 Roknabad, Karafarin Street, Shiraz, Fars, Iran
| | - Narges Abdoli
- Iran Food and Drug Administration (IFDA), Ministry of Health, Tehran, Iran
| | - Somayeh Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azita Zarei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Zarei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnam Asadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojgan Abasvali
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Yeganeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faezeh Jafari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arastoo Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elnaz Mardani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Carnosine protects brain mitochondria under hyperammonemic conditions: Relevance to hepatic encephalopathy treatment. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Hipkiss AR. On the Relationship between Energy Metabolism, Proteostasis, Aging and Parkinson's Disease: Possible Causative Role of Methylglyoxal and Alleviative Potential of Carnosine. Aging Dis 2017; 8:334-345. [PMID: 28580188 PMCID: PMC5440112 DOI: 10.14336/ad.2016.1030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022] Open
Abstract
Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD). Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG). It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms. MG can induce many of the macromolecular modifications (e.g. protein glycation) which characterise the aged-phenotype. MG can also react with dopamine to generate a salsolinol-like product, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinaline (ADTIQ), which accumulates in the Parkinson's disease (PD) brain and whose effects on mitochondria, analogous to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), closely resemble changes associated with PD. MG can directly damage the intracellular proteolytic apparatus and modify proteins into non-degradable (cross-linked) forms. It is suggested that increased endogenous MG formation may result from either, or both, enhanced glycolytic activity and decreased proteolytic activity and contribute to the macromolecular changes associated with PD. Carnosine, a naturally-occurring dipeptide, may ameliorate MG-induced effects due, in part, to its carbonyl-scavenging activity. The possibility that ingestion of highly glycated proteins could also contribute to age-related brain dysfunction is briefly discussed.
Collapse
Affiliation(s)
- Alan R. Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), School of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
47
|
Kaur I, Kumar A, Jaggi AS, Singh N. Evidence for the role of histaminergic pathways in neuroprotective mechanism of ischemic postconditioning in mice. Fundam Clin Pharmacol 2017; 31:456-470. [DOI: 10.1111/fcp.12275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/12/2017] [Accepted: 02/02/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Indresh Kaur
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Amit Kumar
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Amteshwar S. Jaggi
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Nirmal Singh
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| |
Collapse
|
48
|
Carnosine modulates glutamine synthetase expression in senescent astrocytes exposed to oxygen-glucose deprivation/recovery. Brain Res Bull 2017; 130:138-145. [PMID: 28115195 DOI: 10.1016/j.brainresbull.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Abstract
Carnosine is believed to be neuroprotective in cerebral ischemia. However, few reports concern its function on senescent astrocytes during cerebral ischemia. The aim of this study was to investigate the effects of carnosine on cell damage and glutamine synthetase (GS) expression in D-galactose-induced senescent astrocytes exposed to oxygen-glucose deprivation/recovery (OGD/R). The results showed that OGD/R caused massive cell damage and a significant decrease in GS expression both in the young and senescent astrocytes. The GS expression level was partly recovered whereas it continued to decline in the recovery stage in the young and senescent astrocytes, respectively. Decreased GS expression significantly inhibited glutamate uptake and glutamine production and release. Carnosine prevented the cell damage, rescued the expression of GS and reversed the glutamate uptake activity and glutamine production in the senescent astrocytes exposed to OGD/R. The modulatory effect of carnosine on GS expression was partly antagonized by pyrilamine, a selective histamine H1 receptors antagonist, but not bestatin. Bisindolylmaleimide II, a broad-spectrum inhibitor of PKC could also reverse the action of carnosine on GS expression. Thus, histamine H1 receptors and PKC pathway may be involved in the modulatory action of carnosine in GS expression in the senescent astrocytes exposed to OGD/R.
Collapse
|
49
|
Stvolinsky SL, Fedorova TN, Devyatov AA, Medvedev OS, Belousova MA, Ryzhkov IN, Tutelyan VA. A neuroprotective action of carnosine in conditions of experimental focal cerebral ischemia-reperfusion. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:60-64. [DOI: 10.17116/jnevro201711712260-64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Wang M, Zhang Y, Feng L, Zheng J, Fan S, Liu J, Yang N, Liu Y, Zuo P. Compound porcine cerebroside and ganglioside injection attenuates cerebral ischemia-reperfusion injury in rats by targeting multiple cellular processes. Neuropsychiatr Dis Treat 2017; 13:927-935. [PMID: 28392696 PMCID: PMC5376122 DOI: 10.2147/ndt.s129522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Compound porcine cerebroside and ganglioside injection (CPCGI) is a neurotrophic drug used clinically to treat certain functional disorders of brain. Despite its extensive usage throughout China, the exact mechanistic targets of CPCGI are unknown. This study was carried out to investigate the protective effect of CPCGI against ischemic neuronal damage in rats with middle cerebral artery occlusion (MCAO) reperfusion injury and to investigate the neuroprotective mechanisms of CPCGI. MATERIALS AND METHODS Adult male Sprague-Dawley rats were subjected to MCAO surgery for 2 hours followed by reperfusion. The rats were administered CPCGI once a day for 14 days after reperfusion, and behavioral tests were performed 1, 3, 7, and 14 days post MCAO. Hematoxylin-eosin staining was used to measure infarct volume, and immunohistochemical analysis was performed to determine the number of NeuN-positive neurons in the ischemic cortex penumbra. Finally, the relative expression levels of proteins associated with apoptosis (Bcl-2, Bax, and GADD45α), synaptic function (Synaptophysin, SNAP25, Syntaxin, and Complexin-1/2), and mitochondrial function (KIFC2 and UCP3) were determined by Western blot. RESULTS CPCGI treatment reduced infarct size, decreased neurological deficit scores, and accelerated the recovery of somatosensory function 14 days after MCAO. In addition, CPCGI reduced the loss of NeuN-positive cells in the ischemic cortex penumbra. In the ischemic cortex, CPCGI treatment decreased GADD45α expression, increased the Bcl-2/Bax ratio, augmented Synaptophysin, SNAP25, and Complexin-1/2 expression, and increased the expression of KIFC2 and UCP3 compared with sham rats 14 days after MCAO reperfusion injury. CONCLUSION CPCGI displays neuroprotective properties in rats subjected to MCAO injury by inhibiting apoptosis and improving synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Mingyang Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lu Feng
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ji Zheng
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shujie Fan
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junya Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pingping Zuo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|