1
|
Wypych M, Domitrz I, Kochanowski J. Insulin-like growth factor 1 and its prognostic value in the course of acute ischemic cerebrovascular events. Arch Med Sci Atheroscler Dis 2023; 8:e146-e154. [PMID: 38283930 PMCID: PMC10811535 DOI: 10.5114/amsad/172970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The aim of the study was to evaluate insulin-like growth factor 1 (IGF-1) as a predictor of the course of an acute cerebral ischemic event (AICE). This polypeptide, by activating receptors that are present in most tissues, including the brain, mediates the anabolic activity of growth hormone (GH) and its impact on growth and maturation processes, as well as organisms' survival time. AICE can occur in the form of a transient ischemic attack (TIA) or an ischemic stroke (IS). Material and methods The study included 86 participants. The correlation between serum IGF-1 concentration and the clinical status of 56 patients on days 1 and 9 of AICE, as well as risk factors and the course of the disease, were prospectively analyzed. The control group consisted of 30 healthy volunteers. Results Patients with a minor baseline neurological syndrome had higher serum IGF-1 concentrations than patients with severe baseline neurological dysfunctions. Multidimensional analyses showed that high IGF-1 values independently determined the worse course of the disease, especially in patients with a severe neurological deficit present on the first day of AICE. Conclusions Our results indicate that the high level of circulating IGF-1 on the first day of AICE is an independent factor determining the unfavorable course of the stroke, and this relationship is proportional to the severity of the baseline neurological deficit. The study also revealed a positive correlation between the decreased plasma IGF-1 concentration on the first day of AICE and the severity of neurological symptoms.
Collapse
Affiliation(s)
- Martyna Wypych
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Izabela Domitrz
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Jan Kochanowski
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
da Cunha MJ, Pires Dorneles G, Peres A, Maurer S, Horn K, Souza Pagnussat A. tDCS does not add effect to foot drop stimulator and gait training in improving clinical parameters and neuroplasticity biomarkers in chronic post-stroke: randomized controlled trial. Int J Neurosci 2023:1-10. [PMID: 37855112 DOI: 10.1080/00207454.2023.2272041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) and foot drop stimulators (FDS) are widely used for stroke rehabilitation. However, no study has investigated if tDCS could boost the effects of FDS and gait training in improving clinical parameters and neuroplasticity biomarkers of chronic post-stroke subjects. OBJECTIVE To investigate the effects of combining tDCS and FDS on motor impairment, functional mobility, and brain-derived neurotrophic factor (BDNF) serum levels. Also, to evaluate the effects of this protocol on the insulin-like growth factor-1 (IGF-1), insulin growth factor-binding proteins-3 (IGFBP-3), interleukin (IL) 6 and 10, and tumor necrosis factor-α (TNF-α) levels. METHODS Thirty-two chronic post-stroke individuals were randomized to tDCS plus FDS or sham tDCS plus FDS groups. Both groups underwent ten gait training sessions for two weeks using a FDS device and real or sham tDCS. Blood samples and clinical data were acquired before and after the intervention. Motor impairment was assessed by the Fugl-Meyer Assessment and functional mobility using the Timed up and Go test. RESULTS Both groups improved the motor impairment and functional mobility and increased the BDNF levels. Both groups also increased the IL-10 and decreased the cortisol, IL-6, and TNF-α levels. No difference was observed between groups. CONCLUSION tDCS did not add effect to FDS and gait training in improving clinical parameters and neuroplasticity biomarkers in chronic post-stroke individuals. Only FDS and gait training might be enough for people with chronic stroke to modify some clinical parameters and neuroplasticity biomarkers.
Collapse
Affiliation(s)
- Maira Jaqueline da Cunha
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
| | - Gilson Pires Dorneles
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alessandra Peres
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Simone Maurer
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
| | - Keli Horn
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
| | - Aline Souza Pagnussat
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
- Department of Physical Therapy, GA State University, Atlanta, GA, USA
| |
Collapse
|
3
|
Zorina II, Avrova NF, Zakharova IO, Shpakov AO. Prospects for the Use of Intranasally Administered Insulin and Insulin-Like Growth Factor-1 in Cerebral Ischemia. BIOCHEMISTRY (MOSCOW) 2023; 88:374-391. [PMID: 37076284 DOI: 10.1134/s0006297923030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Current approaches to the treatment of stroke have significant limitations, and neuroprotective therapy is ineffective. In view of this, searching for effective neuroprotectors and developing new neuroprotective strategies remain a pressing topic in research of cerebral ischemia. Insulin and insulin-like growth factor-1 (IGF-1) play a key role in the brain functioning by regulating the growth, differentiation, and survival of neurons, neuronal plasticity, food intake, peripheral metabolism, and endocrine functions. Insulin and IGF-1 produce multiple effects in the brain, including neuroprotective action in cerebral ischemia and stroke. Experiments in animals and cell cultures have shown that under hypoxic conditions, insulin and IGF-1 improve energy metabolism in neurons and glial cells, promote blood microcirculation in the brain, restore nerve cell functions and neurotransmission, and produce the anti-inflammatory and antiapoptotic effects on brain cells. The intranasal route of insulin and IGF-1 administration is of particular interest in the clinical practice, since it allows controlled delivery of these hormones directly to the brain, bypassing the blood-brain barrier. Intranasally administered insulin alleviated cognitive impairments in elderly people with neurodegenerative and metabolic disorders; intranasally administered insulin and IGF-1 promoted survival of animals with ischemic stroke. The review discusses the published data and results of our own studies on the mechanisms of neuroprotective action of intranasally administered insulin and IGF-1 in cerebral ischemia, as well as the prospects of using these hormones for normalization of CNS functions and reduction of neurodegenerative changes in this pathology.
Collapse
Affiliation(s)
- Inna I Zorina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia.
| | - Natalia F Avrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Irina O Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| |
Collapse
|
4
|
Javaid MA, Selim M, Ortega-Gutierrez S, Lattanzi S, Zargar S, Alaouieh DA, Hong E, Divani AA. Potential application of intranasal insulin delivery for treatment of intracerebral hemorrhage: A review of the literature. J Stroke Cerebrovasc Dis 2022; 31:106489. [PMID: 35489182 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 12/01/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke associated with high morbidity and mortality that is considered a medical emergency, mainly managed with adequate blood pressure control and creating a favorable hemostatic condition. However, to date, none of the randomized clinical trials have led to an effective treatment for ICH. It is vital to better understand the mechanisms underlying brain injury to effectively decrease ICH-associated morbidity and mortality. It is well known that initial hematoma formation and its expansion have detrimental consequences. The literature has recently focused on other pathological processes, including oxidative stress, neuroinflammation, blood-brain barrier disruption, edema formation, and neurotoxicity, that constitute secondary brain injury. Since conventional management has failed to improve clinical outcomes significantly, various neuroprotective therapies are tested in preclinical and clinical settings. Unlike intravenous administration, intranasal insulin can reach a higher concentration in the cerebrospinal fluid without causing systemic side effects. Intranasal insulin delivery has been introduced as a novel neuroprotective agent for certain neurological diseases, including ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury. Since there is an overlap of mechanisms causing neuroinflammation in these neurological diseases and ICH, we believe that preclinical studies testing the role of intranasal insulin therapy in ICH are warranted.
Collapse
Affiliation(s)
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Shima Zargar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | | | - Emily Hong
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Jansen van Vuuren J, Pillay S, Naidoo A. Circulating Biomarkers in Long-Term Stroke Prognosis: A Scoping Review Focusing on the South African Setting. Cureus 2022; 14:e23971. [PMID: 35547443 PMCID: PMC9090128 DOI: 10.7759/cureus.23971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular disease, including both ischaemic and haemorrhagic strokes, remains one of the highest causes of global morbidity and mortality. Developing nations, such as South Africa (SA), are affected disproportionately. Early identification of stroke patients at risk of poor clinical prognosis may result in improved outcomes. In addition to conventional neuroimaging, the role of predictive biomarkers has been shown to be important. Little data exist on their applicability within SA. This scoping review aimed to evaluate the currently available data pertaining to blood biomarkers that aid in the long-term prognostication of patients following stroke and its potential application in the South African setting. This scoping review followed a 6-stage process to identify and critically review currently available literature pertaining to prognostic biomarkers in stroke. An initial 1191 articles were identified and, following rigorous review, 41 articles were included for the purposes of the scoping review. A number of potential biomarkers were identified and grouped according to the function or origin of the marker. Although most biomarkers showed great prognostic potential, the cost and availability will likely limit their application within SA. The burden of stroke is increasing worldwide and appears to be affecting developing countries disproportionately. Access to neuroradiological services is not readily available in all settings and the addition of biomarkers to assist in the long-term prognostication of patients following a stroke can be of great clinical value. The cost and availability of many of the reviewed biomarkers will likely hinder their use in the South African setting.
Collapse
Affiliation(s)
- Juan Jansen van Vuuren
- Department of Neurology, Grey's Hospital, Pietermaritzburg, ZAF
- School of Clinical Medicine, PhD programme, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Member, Royal Society of South Africa, Cape Town, ZAF
| | | | - Ansuya Naidoo
- Neurology, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Department of Neurology, Grey's Hospital, University of KwaZulu-Natal, Pietermaritzburg, ZAF
| |
Collapse
|
6
|
Zakharova IO, Bayunova LV, Zorina II, Shpakov AO, Avrova NF. Insulin and Brain Gangliosides Prevent Metabolic Disorders Caused by Activation of Free Radical Reactions after Two-Vessel Ischemia–Reperfusion Injury to the Rat Forebrain. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gong P, Zou Y, Zhang W, Tian Q, Han S, Xu Z, Chen Q, Wang X, Li M. The neuroprotective effects of Insulin-Like Growth Factor 1 via the Hippo/YAP signaling pathway are mediated by the PI3K/AKT cascade following cerebral ischemia/reperfusion injury. Brain Res Bull 2021; 177:373-387. [PMID: 34717965 DOI: 10.1016/j.brainresbull.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) has neuroprotective actions, including vasodilatory, anti-inflammatory, and antithrombotic effects, following ischemic stroke. However, the molecular mechanisms underlying the neuroprotective effects of IGF-1 following ischemic stroke remain unknown. Therefore, in the present study, we investigated whether IGF-1 exerted its neuroprotective effects by regulating the Hippo/YAP signaling pathway, potentially via activation of the PI3K/AKT cascade, following ischemic stroke. In the in vitro study, we exposed cultured PC12 and SH-5YSY cells, and cortical primary neurons, to oxygen-glucose deprivation. Cell viability was measured using CCK-8 assay. In the in vivo study, Sprague-Dawley rats were subjected to middle cerebral artery occlusion. Neurological function was assessed using a modified neurologic scoring system and the modified neurological severity score (mNSS) test, brain edema was detected by brain water content measurement, infarct volume was measured using triphenyltetrazolium chloride staining, and neuronal death and apoptosis were evaluated by TUNEL/NeuN double staining, HE and Nissl staining, and immunohistochemistry staining for NeuN. Finally, western blot analysis was used to measure the level of IGF-1 in vivo and levels of YAP/TAZ, PI3K and phosphorylated AKT (p-AKT) both in vitro and in vivo. IGF-1 induced activation of YAP/TAZ, which resulted in improved cell viability in vitro, and reduced neurological deficits, brain water content, neuronal death and apoptosis, and cerebral infarct volume in vivo. Notably, the neuroprotective effects of IGF-1 were blocked by an inhibitor of the PI3K/AKT cascade, LY294002. LY294002 treatment not only downregulated PI3K and p-AKT, but YAP/TAZ as well, leading to aggravation of neurological dysfunction and worsening of brain damage. Our findings indicate that the neuroprotective effects of IGF-1 are, at least in part mediated by upregulation of YAP/TAZ via activation of the PI3K/AKT cascade following cerebral ischemic stroke.
Collapse
Affiliation(s)
- Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Wei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Shoumeng Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
8
|
Thiebaut AM, Buendia I, Ginet V, Lemarchand E, Boudjadja MB, Hommet Y, Lebouvier L, Lechevallier C, Maillasson M, Hedou E, Déglon N, Oury F, Rubio M, Montaner J, Puyal J, Vivien D, Roussel BD. Thrombolysis by PLAT/tPA increases serum free IGF1 leading to a decrease of deleterious autophagy following brain ischemia. Autophagy 2021; 18:1297-1317. [PMID: 34520334 DOI: 10.1080/15548627.2021.1973339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cerebral ischemia is a pathology involving a cascade of cellular mechanisms, leading to the deregulation of proteostasis, including macroautophagy/autophagy, and finally to neuronal death. If it is now accepted that cerebral ischemia induces autophagy, the effect of thrombolysis/energy recovery on proteostasis remains unknown. Here, we investigated the effect of thrombolysis by PLAT/tPA (plasminogen activator, tissue) on autophagy and neuronal death. In two in vitro models of hypoxia reperfusion and an in vivo model of thromboembolic stroke with thrombolysis by PLAT/tPA, we found that ischemia enhances neuronal deleterious autophagy. Interestingly, PLAT/tPA decreases autophagy to mediate neuroprotection by modulating the PI3K-AKT-MTOR pathways both in vitro and in vivo. We identified IGF1R (insulin-like growth factor I receptor; a tyrosine kinase receptor) as the effective receptor and showed in vitro, in vivo and in human stroke patients and that PLAT/tPA is able to degrade IGFBP3 (insulin-like growth factor binding protein 3) to increase IGF1 (insulin-like growth factor 1) bioavailability and thus IGF1R activation.Abbreviations: AKT/protein kinase B: thymoma viral proto-oncogene 1; EGFR: epidermal growth factor receptor; Hx: hypoxia; IGF1: insulin-like growth factor 1; IGF1R: insulin-like growth factor I receptor; IGFBP3: insulin-like growth factor binding protein 3; Ka: Kainate; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OGD: oxygen and glucose deprivation; OGDreox: oxygen and glucose deprivation + reoxygentation; PepA: pepstatin A1; PI3K: phosphoinositide 3-kinase; PLAT/tPA: plasminogen activator, tissue; PPP: picropodophyllin; SCH77: SCH772984; ULK1: unc-51 like kinase 1; Wort: wortmannin.
Collapse
Affiliation(s)
- Audrey M Thiebaut
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Izaskun Buendia
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Eloise Lemarchand
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Yannick Hommet
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Laurent Lebouvier
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Charlotte Lechevallier
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Mike Maillasson
- Université de Nantes, CNRS, Inserm, CRCINA, F-44000 Nantes, France; LabEx IGO, Immunotherapy, Graft, Oncology, Nantes, France; Université de Nantes, Inserm, CNRS, CHU Nantes, SFR Santé, FED 4203Inserm UMS 016, CNRS, UMS 3556, IMPACT Platform, Nantes, France
| | - Elodie Hedou
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Franck Oury
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Team 14, Université Paris Descartes-Sorbonne-Paris Cité, Paris, France
| | - Marina Rubio
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Joan Montaner
- Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France.,Department of Clinical Research, CHU Caen, Caen University Hospital, Caen, France
| | - Benoit D Roussel
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| |
Collapse
|
9
|
Cytokine-Laden Extracellular Vesicles Predict Patient Prognosis after Cerebrovascular Accident. Int J Mol Sci 2021; 22:ijms22157847. [PMID: 34360613 PMCID: PMC8345931 DOI: 10.3390/ijms22157847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: A major contributor to disability after hemorrhagic stroke is secondary brain damage induced by the inflammatory response. Following stroke, global increases in numerous cytokines—many associated with worse outcomes—occur within the brain, cerebrospinal fluid, and peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged tissue within the brain, as well as peripheral sources, across the blood–brain barrier, and they may be a critical component of post-stroke neuroinflammatory signaling. Methods: We performed a comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered within the vesicles themselves. These concentrations were correlated to patient acute neurological condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow Outcome Scale-Extended (GOS-E). Results: Pro-inflammatory cytokines detected from plasma EVs were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines detected within EVs were still correlated to poor outcomes despite their putative neuroprotective properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulating factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9) were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes. Conclusions: These findings correlate plasma-derived EV cytokine content with detrimental outcomes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering recovery.
Collapse
|
10
|
Positive Association Between Serum Insulin-Like Growth Factor-1 and Cognition in Patients with Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis 2021; 30:105790. [PMID: 33878547 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cognitive impairment is one of the main complications of cerebral small vessel disease (CSVD). Serum insulin-like growth factor-1 (IGF-1) might serve as a marker for the risk of cognitive decline in patients with CSVD. We investigated the association of IGF-1 with the development of cognitive impairment in patients with CSVD. We included 216 patients with CVSD (mean age, 67.57 ± 8.53 years; 31.9% female). We compared 117 (54.2%) patients who developed cognitive impairment with 99 (45.8%) patients without cognitive impairment. Patients who developed cognitive impairment had significantly lower levels of IGF-I (p < 0 .001), suggesting that altered IGF-1 signaling may be a risk factor for cognitive decline in patients with CSVD.
Collapse
|
11
|
Zheng Y, Sun Q, Xu X, Wang W. Novel peptide derived from IGF-2 displays anti-angiogenic activity in vitro and inhibits retinal angiogenesis in a model of oxygen-induced retinopathy. Clin Exp Ophthalmol 2020; 48:1261-1275. [PMID: 33026147 DOI: 10.1111/ceo.13864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Retinopathy of prematurity (ROP), a major cause of significant visual morbidity and blindness in preterm infants, is closely related to pathological angiogenesis. The aim of the study is to evaluate the effect of a new 12-aa peptide (named peptide CW-703) from human insulin-like growth factor-2, against angiogenesis in ROP. METHODS In order to evaluate the inhibitory effect of CW-703 on the proliferation, migration, tube formation and apoptosis of human umbilical vein endothelial cells (ScienCell) in vitro, we used MTS assays, a modified Boyden chamber, Matrigel system and TUNEL assays. Effects in vivo were assayed using chorioallantoic membrane assays and oxygen-induced retinopathy (OIR) models in mice. We also performed eletrophysiological and histologic examinations to evaluate the possible toxicity of the peptide. Real-time PCR, ELISA and western blotting were used to elucidate the mechanism of CW-703. RESULTS CW-703 inhibited angiogenesis in vitro by suppressing endothelial cell proliferation, migration and tube formation. CW-703 also prevented angiogenesis in chicken chorioallantoic membrane assays and OIR assays in mice. No evident functional or morphologic abnormalities in neuroretina after CW-703 injection were revealed in electrophysiological tests and histological examinations. Moreover, we elucidated that CW-703 competed for binding to IGF-1R and inhibited angiogenesis by inhibiting IGF-1R/PI3K/AKT activation and downregulating vascular endothelial growth factor expression. CONCLUSION The novel peptide CW-703 may act as an effective inhibitor of ocular pathologic angiogenesis, especially in treating ROP.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Qiao Sun
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Weijun Wang
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
12
|
Janowska J, Gargas J, Ziemka-Nalecz M, Zalewska T, Sypecka J. Oligodendrocyte Response to Pathophysiological Conditions Triggered by Episode of Perinatal Hypoxia-Ischemia: Role of IGF-1 Secretion by Glial Cells. Mol Neurobiol 2020; 57:4250-4268. [PMID: 32691304 PMCID: PMC7467917 DOI: 10.1007/s12035-020-02015-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Differentiation of oligodendrocyte progenitors towards myelinating cells is influenced by a plethora of exogenous instructive signals. Insulin-like growth factor 1 (IGF-1) is one of the major factors regulating cell survival, proliferation, and maturation. Recently, there is an ever growing recognition concerning the role of autocrine/paracrine IGF-1 signaling in brain development and metabolism. Since oligodendrocyte functioning is altered after the neonatal hypoxic-ischemic (HI) insult, a question arises if the injury exerts any influence on the IGF-1 secreted by neural cells and how possibly the change in IGF-1 concentration affects oligodendrocyte growth. To quantify the secretory activity of neonatal glial cells, the step-wise approach by sequentially using the in vivo, ex vivo, and in vitro models of perinatal asphyxia was applied. A comparison of the results of in vivo and ex vivo studies allowed evaluating the role of autocrine/paracrine IGF-1 signaling. Accordingly, astroglia were indicated to be the main local source of IGF-1 in the developing brain, and the factor secretion was shown to be significantly upregulated during the first 24 h after the hypoxic-ischemic insult. And conversely, the IGF-1 amounts released by oligodendrocytes and microglia significantly decreased. A morphometric examination of oligodendrocyte differentiation by means of the Sholl analysis showed that the treatment with low IGF-1 doses markedly improved the branching of oligodendroglial cell processes and, in this way, promoted their differentiation. The changes in the IGF-1 amounts in the nervous tissue after HI might contribute to the resulting white matter disorders, observed in newborn children who experienced perinatal asphyxia. Pharmacological modulation of IGF-1 secretion by neural cells could be reasonable solution in studies aimed at searching for therapies alleviating the consequences of perinatal asphyxia.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Justyna Gargas
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
13
|
Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, Isgaard J, Åberg ND. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:606089. [PMID: 33488521 PMCID: PMC7821093 DOI: 10.3389/fendo.2020.606089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, evidence for hemoglobin (Hb) synthesis in both animal and human brains has been accumulating. While circulating Hb originating from cerebral hemorrhage or other conditions is toxic, there is also substantial production of neuronal Hb, which is influenced by conditions such as ischemia and regulated by growth hormone (GH), insulin-like growth factor-I (IGF-I), and other growth factors. In this review, we discuss the possible functions of circulating and brain Hb, mainly the neuronal form, with respect to the neuroprotective activities of GH and IGF-I against ischemia and neurodegenerative diseases. The molecular pathways that link Hb to the GH/IGF-I system are also reviewed, although the limited number of reports on this topic suggests a need for further studies. In summary, GH and/or IGF-I appear to be significant determinants of systemic and local brain Hb concentrations through mediating responses to oxygen and metabolic demand, as part of the neuroprotective effects exerted by GH and IGF-I. The nature and quantity of the latter deserve further exploration in specific experiments.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Marion Walser,
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Karlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- School of Public Health and Community Medicine at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
14
|
Zhang Y, Yan N, Wang X, Chang Y, Wang Y. MiR-129-5p regulates cell proliferation and apoptosis via IGF-1R/Src/ERK/Egr-1 pathway in RA-fibroblast-like synoviocytes. Biosci Rep 2019; 39:BSR20192009. [PMID: 31661546 PMCID: PMC6893169 DOI: 10.1042/bsr20192009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/13/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
It is reported that miR-129-5p plays an important role in various diseases, but its effect on rheumatoid arthritis (RA) and the potential mechanism remain to be clarified. In the present research, we aimed to investigate the effect of miR-129-5p on RA and the special molecular mechanism. First, the expression of miR-129-5p was analyzed in RA patients and RA Fibroblast-like synoviocytes (RA-FLSs) by RT-PCR assay. The cell viability, apoptotic rate and the relative expression of caspase-3 and caspase-8 were measured by CCK-8, Annexin-FITC/propidium iodide (PI) and ELISA, respectively. Luciferase reporter assay was performed to investigate the target of miR-129-5p. The results revealed that the expression of miR-129-5p was down-regulated in RA patients and RA-FLSs. In addition, miR-129-5p inhibited cell proliferation and induced apoptosis of RA-FLS. Furthermore, luciferase reporter assay demonstrated that insulin-like growth factor-1 receptor (IGF-1R) was the direct target of miR-129-5p, and IGF-1R promoted cell proliferation and inhibited apoptosis by activating Src/ERK/Egr-1 signaling. Furthermoremore, the Src/ERK/Egr-1 signaling pathway was suppressed by miR-129-5p. Collectively, the results of the present study suggested that miR-129-5p regulated cell proliferation and apoptosis via IGF-1R/Src/ERK/Egr-1 signaling pathway in RA.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Ni Yan
- Department of Endocrinology, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Xiaoqing Wang
- Outpatient Office, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Yanhai Chang
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Yu Wang
- Department of Orthopaedics, Xi’an Central Hospital, Xi’an 710003, China
| |
Collapse
|
15
|
Influencing neuroplasticity in stroke treatment with advanced biomaterials-based approaches. Adv Drug Deliv Rev 2019; 148:204-218. [PMID: 30579882 DOI: 10.1016/j.addr.2018.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Since the early 1990s, we have known that the adult brain is not static and has the capacity to repair itself. The delivery of various therapeutic factors and cells have resulted in some exciting pre-clinical and clinical outcomes in stroke models by targeting post-injury plasticity to enhance recovery. Developing a deeper understanding of the pathways that modulate plasticity will enable us to optimize delivery strategies for therapeutics and achieve more robust effects. Biomaterials are a key tool for the optimization of these potential treatments, owing to their biocompatibility and tunability. In this review, we identify factors and targets that impact plastic processes known to contribute to recovery, discuss the role of biomaterials in enhancing the efficacy of treatment strategies, and suggest combinatorial approaches based on the stage of injury progression.
Collapse
|
16
|
Gervois P, Lambrichts I. The Emerging Role of Triggering Receptor Expressed on Myeloid Cells 2 as a Target for Immunomodulation in Ischemic Stroke. Front Immunol 2019; 10:1668. [PMID: 31379859 PMCID: PMC6650572 DOI: 10.3389/fimmu.2019.01668] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/03/2019] [Indexed: 01/18/2023] Open
Abstract
Stroke is the second most common cause of death and permanent disability. It is characterized by loss of neural tissue in which inflammation plays a crucial role in both the acute contribution to ischemic damage as in the late-stage impact on post-ischemic tissue regeneration. Microglia play a key role in the inflammatory stroke microenvironment as they can adapt a disease-promoting pro-inflammatory- or pro-regenerative phenotype thereby contributing to the exacerbation or alleviation of ischemic damage, respectively. Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell surface receptor which in the central nervous system is mainly expressed on microglia. This receptor has been shown to play an essential role in microglial phagocytosis and function but its contribution in stroke pathobiology remains unclear. TREM2 was shown to be activated by nucleotides and lipid mediators, key factors that are secreted in the extracellular stroke environment by apoptotic neurons and cell/myelin debris. These factors in turn stimulate TREM2 signaling which mediates microglial migration toward- and phagocytosis of myelin debris and apoptotic cells. Moreover, microglial TREM2 appears to counteract the toll-like receptor response, thereby decreasing the production of pro-inflammatory cytokines. Finally, TREM2 is involved in microglial migration, survival, and is suggested to directly stimulate pro-regenerative phenotype shift. Therefore, this receptor is an attractive target for microglial modulation in the treatment of ischemic stroke and it provides additional information on microglial effector functions. This short review aims to elaborate on these TREM2-mediated microglial functions in the pathobiology and resolving of ischemic stroke.
Collapse
Affiliation(s)
- Pascal Gervois
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
17
|
Mizuma A, You JS, Yenari MA. Targeting Reperfusion Injury in the Age of Mechanical Thrombectomy. Stroke 2018; 49:1796-1802. [PMID: 29760275 DOI: 10.1161/strokeaha.117.017286] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Atsushi Mizuma
- From the Department of Neurology, University of California, San Francisco (A.M., J.S.Y., M.A.Y.).,San Francisco Veterans Affairs Medical Center, CA (A.M., J.S.Y., M.A.Y.).,Department of Neurology, Tokai University School of Medicine, Isehara, Japan (A.M.)
| | - Je Sung You
- From the Department of Neurology, University of California, San Francisco (A.M., J.S.Y., M.A.Y.).,San Francisco Veterans Affairs Medical Center, CA (A.M., J.S.Y., M.A.Y.).,Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea (J.S.Y.)
| | - Midori A Yenari
- From the Department of Neurology, University of California, San Francisco (A.M., J.S.Y., M.A.Y.) .,San Francisco Veterans Affairs Medical Center, CA (A.M., J.S.Y., M.A.Y.)
| |
Collapse
|
18
|
Tahsili-Fahadan P, Farrokh S, Geocadin RG. Hypothermia and brain inflammation after cardiac arrest. Brain Circ 2018; 4:1-13. [PMID: 30276330 PMCID: PMC6057700 DOI: 10.4103/bc.bc_4_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 12/14/2022] Open
Abstract
The cessation (ischemia) and restoration (reperfusion) of cerebral blood flow after cardiac arrest (CA) induce inflammatory processes that can result in additional brain injury. Therapeutic hypothermia (TH) has been proven as a brain protective strategy after CA. In this article, the underlying pathophysiology of ischemia-reperfusion brain injury with emphasis on the role of inflammatory mechanisms is reviewed. Potential targets for immunomodulatory treatments and relevant effects of TH are also discussed. Further studies are needed to delineate the complex pathophysiology and interactions among different components of immune response after CA and identify appropriate targets for clinical investigations.
Collapse
Affiliation(s)
- Pouya Tahsili-Fahadan
- Department of Medicine, Virginia Commonwealth University, Falls Church, Virginia, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Salia Farrokh
- Department of Pharmacy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Romergryko G Geocadin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Li DJ, Tseng PT, Stubbs B, Chen TY, Lin PY, Chen SL, Thompson T, Adamis D, Chu CS. Low peripheral levels of insulin growth factor-1 are associated with high incidence of delirium among elderly patients: A systematic review and meta-analysis. Arch Gerontol Geriatr 2018; 77:13-18. [PMID: 29605680 DOI: 10.1016/j.archger.2018.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Delirium, a serious condition observed in critically ill patients, clinically presents with impaired cognition and consciousness. The relationship between delirium and peripheral levels of insulin growth factor-1 (IGF-1) is unclear. Thus we conducted a meta-analysis to address this issue. METHODS Seven major electronic databases were searched from inception until October 2, 2017 to obtain relevant clinical variables to compare the difference in IGF-1 levels between delirious and non-delirious elderly in-patients. A random effects meta-analysis was conducted. RESULTS We studies 10 articles involving 294 delirious patients (mean age 73.0 years) and 604 non-delirious patients (mean age 76.9 years). We found that peripheral levels of IGF-1 in patients with delirium were significantly lower than in those without delirium (Hedges' g = -0.209, 95% confidence interval [CI] = -0.393 to -0.026, p = 0.025). Meta-regression analyses found that no variables such as percentage of cognitive impairment, mean age, and female proportion contribute to heterogeneity in terms of the entire population. CONCLUSIONS Our data suggests that lower peripheral levels of IGF-1 could be associated with a higher incidence of delirium among elderly patients. Further prospective studies with larger sample sizes are needed to investigate the association between peripheral levels of IGF-1 and delirium.
Collapse
Affiliation(s)
- Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Ping-Tao Tseng
- WinShine Clinics in Specialty of Psychiatry, Kaohsiung City, Taiwan
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK; Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, UK; Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Shiou-Lan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Trevor Thompson
- Faculty of Education and Health, University of Greenwich, London, SE9 2UG, UK
| | - Dimitrios Adamis
- Sligo Mental Health Services Clarion Rd Sligo, Ireland; Research and Academic Institute of Athens, Greece
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Parker K, Berretta A, Saenger S, Sivaramakrishnan M, Shirley SA, Metzger F, Clarkson AN. PEGylated insulin-like growth factor-I affords protection and facilitates recovery of lost functions post-focal ischemia. Sci Rep 2017; 7:241. [PMID: 28325900 PMCID: PMC5428211 DOI: 10.1038/s41598-017-00336-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/21/2017] [Indexed: 12/04/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is involved in the maturation and maintenance of neurons, and impaired IGF-I signaling has been shown to play a role in various neurological diseases including stroke. The aim of the present study was to investigate the efficacy of an optimized IGF-I variant by adding a 40 kDa polyethylene glycol (PEG) chain to IGF-I to form PEG-IGF-I. We show that PEG-IGF-I has a slower clearance which allows for twice-weekly dosing to maintain steady-state serum levels in mice. Using a photothrombotic model of focal stroke, dosing from 3 hrs post-stroke dose-dependently (0.3–1 mg/kg) decreases the volume of infarction and improves motor behavioural function in both young 3-month and aged 22–24 month old mice. Further, PEG-IGF-I treatment increases GFAP expression when given early (3 hrs post-stroke), increases Synaptophysin expression and increases neurogenesis in young and aged. Finally, neurons (P5–6) cultured in vitro on reactive astrocytes in the presence of PEG-IGF-I showed an increase in neurite length, indicating that PEG-IGF-I can aid in sprouting of new connections. This data suggests a modulatory role of IGF-I in both protective and regenerative processes, and indicates that therapeutic approaches using PEG-IGF-I should be given early and where the endogenous regenerative potential is still high.
Collapse
Affiliation(s)
- Kim Parker
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Antonio Berretta
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Stefanie Saenger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manaswini Sivaramakrishnan
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Simon A Shirley
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Friedrich Metzger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Andrew N Clarkson
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand. .,Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand. .,Faculty of Pharmacy, The University of Sydney, Sydney, Australia.
| |
Collapse
|
21
|
Gandolfi M, Smania N, Vella A, Picelli A, Chirumbolo S. Assessed and Emerging Biomarkers in Stroke and Training-Mediated Stroke Recovery: State of the Art. Neural Plast 2017; 2017:1389475. [PMID: 28373915 PMCID: PMC5360976 DOI: 10.1155/2017/1389475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Since the increasing update of the biomolecular scientific literature, biomarkers in stroke have reached an outstanding and remarkable revision in the very recent years. Besides the diagnostic and prognostic role of some inflammatory markers, many further molecules and biological factors have been added to the list, including tissue derived cytokines, growth factor-like molecules, hormones, and microRNAs. The literatures on brain derived growth factor and other neuroimmune mediators, bone-skeletal muscle biomarkers, cellular and immunity biomarkers, and the role of microRNAs in stroke recovery were reviewed. To date, biomarkers represent a possible challenge in the diagnostic and prognostic evaluation of stroke onset, pathogenesis, and recovery. Many molecules are still under investigation and may become promising and encouraging biomarkers. Experimental and clinical research should increase this list and promote new discoveries in this field, to improve stroke diagnosis and treatment.
Collapse
Affiliation(s)
- Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Antonio Vella
- Immunology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
22
|
Song Y, Pimentel C, Walters K, Boller L, Ghiasvand S, Liu J, Staley KJ, Berdichevsky Y. Neuroprotective levels of IGF-1 exacerbate epileptogenesis after brain injury. Sci Rep 2016; 6:32095. [PMID: 27561791 PMCID: PMC4999804 DOI: 10.1038/srep32095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023] Open
Abstract
Exogenous Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective in animal models of brain injury, and has been considered as a potential therapeutic. Akt-mTOR and MAPK are downstream targets of IGF-1 signaling that are activated after brain injury. However, both brain injury and mTOR are linked to epilepsy, raising the possibility that IGF-1 may be epileptogenic. Here, we considered the role of IGF-1 in development of epilepsy after brain injury, using the organotypic hippocampal culture model of post-traumatic epileptogenesis. We found that IGF-1 was neuroprotective within a few days of injury but that long-term IGF-1 treatment was pro-epileptic. Pro-epileptic effects of IGF-1 were mediated by Akt-mTOR signaling. We also found that IGF-1 - mediated increase in epileptic activity led to neurotoxicity. The dualistic nature of effects of IGF-1 treatment demonstrates that anabolic enhancement through IGF-1 activation of mTOR cascade can be beneficial or harmful depending on the stage of the disease. Our findings suggest that epilepsy risk may need to be considered in the design of neuroprotective treatments for brain injury.
Collapse
Affiliation(s)
- Yu Song
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| | - Corrin Pimentel
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| | - Katherine Walters
- Integrated Degree in Engineering, Arts, and Sciences (IDEAS) Program, Lehigh University, PA 18015, USA
| | - Lauren Boller
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| | | | - Jing Liu
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02129, USA
| | - Yevgeny Berdichevsky
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA.,Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
23
|
De Geyter D, De Smedt A, Stoop W, De Keyser J, Kooijman R. Central IGF-I Receptors in the Brain are Instrumental to Neuroprotection by Systemically Injected IGF-I in a Rat Model for Ischemic Stroke. CNS Neurosci Ther 2016; 22:611-6. [PMID: 27080541 PMCID: PMC6492886 DOI: 10.1111/cns.12550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/20/2016] [Indexed: 01/07/2023] Open
Abstract
AIM Insulin-like growth factor I (IGF-I) is a neuroprotective agent in animal models of ischemic stroke. The purpose of this study was to determine whether systemically injected IGF-I exerts its neuroprotective action by binding to IGF-I receptors in the brain after crossing the blood-brain barrier, or via peripheral effects. METHODS To differentiate the central effects of IGF-I from systemic effects, ischemic stroke was induced in conscious male Wistar Kyoto rats by the injection of endothelin-1 adjacent to the middle cerebral artery in the right hemisphere, while either the IGF-I receptor antagonist JB-1 or vehicle was introduced into the right lateral ventricle. RESULTS Intravenous injection of recombinant human (rh)IGF-I resulted in 50% reduction in infarct size, which was counteracted by the central administration of JB-1. Furthermore, rhIGF-I was detected in both the ischemic and nonischemic hemisphere. CONCLUSIONS Systemically injected rhIGF-I passes the blood-brain barrier and protects neurons via IGF-I receptors in the brain in rats with an ischemic stroke.
Collapse
Affiliation(s)
- Deborah De Geyter
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Ann De Smedt
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
- Department of NeurologyUniversitair Ziekenhuis BrusselBrusselsBelgium
| | - Wendy Stoop
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Jacques De Keyser
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
- Department of NeurologyUniversitair Ziekenhuis BrusselBrusselsBelgium
- Department of NeurologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Ron Kooijman
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| |
Collapse
|
24
|
Subirós N, Pérez-Saad HM, Berlanga JA, Aldana L, García-Illera G, Gibson CL, García-del-Barco D. Assessment of dose–effect and therapeutic time window in preclinical studies of rhEGF and GHRP-6 coadministration for stroke therapy. Neurol Res 2016; 38:187-95. [DOI: 10.1179/1743132815y.0000000089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Association between Serum IGF-I levels and Postoperative Delirium in Elderly Subjects Undergoing Elective Knee Arthroplasty. Sci Rep 2016; 6:20736. [PMID: 26846868 PMCID: PMC4742946 DOI: 10.1038/srep20736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Evidence is mixed for an association between serum insulin-like growth factor-I (IGF-I) levels and postoperative delirium (POD). The current study assessed preoperative serum IGF-I levels as a predictor of incident delirium in non-demented elderly elective knee arthroplasty patients. Preoperative serum levels of total IGF-I were measured using a commercially available Human IGF-I ELISA kit. POD incidence and severity were determined using DSM-IV criteria and the Delirium Rating Scale-Revised-98 (DRS-R98), respectively. Median IGF-I levels in delirious (62.6 ng/ml) and non-delirious groups (65.9 ng/ml) were not significantly different (p = 0.141). The ratio (95% CI) of geometric means, D/ND, was 0.86 (0.70, 1.06). The Hodges-Lehmann median difference estimate was 7.23 ng/mL with 95% confidence interval (−2.32, 19.9). In multivariate logistic regression analysis IGF-I level was not a significant predictor of incident POD after correcting for medical comorbidities. IGF-I levels did not correlate with DRS-R98 scores for delirium severity. In conclusion, we report no evidence of association between serum IGF-I levels and incidence of POD, although the sample size was inadequate for a conclusive study. Further efforts to investigate IGF-I as a delirium risk factor in elderly should address comorbidities and confounders that influence IGF-I levels.
Collapse
|
26
|
Harmatina OY. [INSULIN-LIKE GROWTH FACTOR 1 UNDER CONDITIONS OF THE BRAIN VASCULAR DISEASES.]. ACTA ACUST UNITED AC 2016; 62:95-102. [PMID: 29975480 DOI: 10.15407/fz62.04.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The system insulin-like growth factors (IGF) occupies an important place in the development and growth of the central nervous system (CNS). Gene expression of insulin-like growth factor I (IGF-1) and IGF-1 receptor are represented in all parts of the brain and are heavily concentrated in the cerebral vessels. IGF-1 is involved in neuro-, angiogenesis, in the stimulation of cell proliferation, and repair responses to damage for both the central and peripheral nervous system. IGF- 1 exerts antioxidant, anti-inflammatory and protective effects on the CNS. The review discusses the importance and the role of IGF-I in vascular diseases of the brain, in particular, aneurysms, the ischemic stroke, the aneurysmal subarachnoid hemorrhage, as well as neuroprotection.
Collapse
|
27
|
Dávila D, Fernández S, Torres-Alemán I. Astrocyte Resilience to Oxidative Stress Induced by Insulin-like Growth Factor I (IGF-I) Involves Preserved AKT (Protein Kinase B) Activity. J Biol Chem 2015; 291:2510-23. [PMID: 26631726 DOI: 10.1074/jbc.m115.695478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 12/16/2022] Open
Abstract
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury.
Collapse
Affiliation(s)
- David Dávila
- From Department Systems Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid 28002, Spain
| | - Silvia Fernández
- From Department Systems Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid 28002, Spain
| | - Ignacio Torres-Alemán
- From Department Systems Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid 28002, Spain
| |
Collapse
|
28
|
Blanco-Alvarez VM, Soto-Rodriguez G, Gonzalez-Barrios JA, Martinez-Fong D, Brambila E, Torres-Soto M, Aguilar-Peralta AK, Gonzalez-Vazquez A, Tomás-Sanchez C, Limón ID, Eguibar JR, Ugarte A, Hernandez-Castillo J, Leon-Chavez BA. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia. Neural Plast 2015; 2015:375391. [PMID: 26355725 PMCID: PMC4556331 DOI: 10.1155/2015/375391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023] Open
Abstract
Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors.
Collapse
Affiliation(s)
| | | | - Juan Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Avenida Instituto Politécnico Nacional No. 1669, 07760 México, DF, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Maricela Torres-Soto
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | | | | | | | - I. Daniel Limón
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Jose R. Eguibar
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | - Araceli Ugarte
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | | | | |
Collapse
|
29
|
Jiang LH, Yuan XL, Yang NY, Ren L, Zhao FM, Luo BX, Bian YY, Xu JY, Lu DX, Zheng YY, Zhang CJ, Diao YM, Xia BM, Chen G. Daucosterol protects neurons against oxygen-glucose deprivation/reperfusion-mediated injury by activating IGF1 signaling pathway. J Steroid Biochem Mol Biol 2015; 152:45-52. [PMID: 25864625 DOI: 10.1016/j.jsbmb.2015.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
We previously reported that daucosterol (a sterolin) up-regulates the expression of insulin-like growth factor I (IGF1)(1) protein in neural stem cells. In this study, we investigated the effects of daucosterol on the survival of cultured cortical neurons after neurons were subjected to oxygen and glucose deprivation and simulated reperfusion (OGD/R)(2), and determined the corresponding molecular mechanism. The results showed that post-treatment of daucosterol significantly reduced neuronal loss, as well as apoptotic rate and caspase-3 activity, displaying the neuroprotective activity. We also found that daucosterol increased the expression level of IGF1 protein, diminished the down-regulation of p-AKT(3) and p-GSK-3β(4), thus activating the AKT(5) signal pathway. Additionally, it diminished the down-regulation of the anti-apoptotic proteins Mcl-1(6) and Bcl-2(7), and decreased the expression level of the pro-apoptotic protein Bax(8), thus raising the ratio of Bcl-2/Bax. The neuroprotective effect of daucosterol was inhibited in the presence of picropodophyllin (PPP)(9), the inhibitor of insulin-like growth factor I receptors (IGF1R)(10). Our study provided information about daucosterol as an efficient and inexpensive neuroprotectants, to which the IGF1-like activity of daucosterol contributes. Daucosterol could be potentially developed as a medicine for ischemic stroke treatment.
Collapse
Affiliation(s)
- Li-hua Jiang
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China; Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-lin Yuan
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Nian-yun Yang
- Department of Pharmacogonosy, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Li Ren
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Feng-ming Zhao
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Ban-xin Luo
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Yao-yao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Jian-ya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Da-xiang Lu
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yuan-yuan Zheng
- School of Medicine, Jinan University, Guangzhou 510632, China
| | | | - Yuan-ming Diao
- School of Basic Medical Science,Guangzhou University of Chinese Medicine, Guangzhou 510006,China
| | - Bao-mei Xia
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Gang Chen
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China; Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
30
|
Lioutas VA, Alfaro-Martinez F, Bedoya F, Chung CC, Pimentel DA, Novak V. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke. Transl Stroke Res 2015; 6:264-75. [PMID: 26040423 DOI: 10.1007/s12975-015-0409-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/16/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, tolerable, safe, and particularly effective administration route, bypassing the blood-brain barrier and maximizing distribution to the central nervous system (CNS), without the disadvantages of systemic side effects and first-pass metabolism. This review summarizes the neuroprotective potential of intranasally administered insulin and IGF-1 in stroke patients. We present the theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration to the CNS.
Collapse
Affiliation(s)
- Vasileios-Arsenios Lioutas
- Department of Neurology, Division of Cerebrovascular Diseases, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Palmer 127, Boston, MA, 02215, USA,
| | | | | | | | | | | |
Collapse
|
31
|
Corella D, Ordovás JM. Aging and cardiovascular diseases: the role of gene-diet interactions. Ageing Res Rev 2014; 18:53-73. [PMID: 25159268 DOI: 10.1016/j.arr.2014.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
In the study of longevity, increasing importance is being placed on the concept of healthy aging rather than considering the total number of years lived. Although the concept of healthy lifespan needs to be defined better, we know that cardiovascular diseases (CVDs) are the main age-related diseases. Thus, controlling risk factors will contribute to reducing their incidence, leading to healthy lifespan. CVDs are complex diseases influenced by numerous genetic and environmental factors. Numerous gene variants that are associated with a greater or lesser risk of the different types of CVD and of intermediate phenotypes (i.e., hypercholesterolemia, hypertension, diabetes) have been successfully identified. However, despite the close link between aging and CVD, studies analyzing the genes related to human longevity have not obtained consistent results and there has been little coincidence in the genes identified in both fields. The APOE gene stands out as an exception, given that it has been identified as being relevant in CVD and longevity. This review analyzes the genomic and epigenomic factors that may contribute to this, ranging from identifying longevity genes in model organisms to the importance of gene-diet interactions (outstanding among which is the case of the TCF7L2 gene).
Collapse
|
32
|
Shichita T, Ito M, Yoshimura A. Post-ischemic inflammation regulates neural damage and protection. Front Cell Neurosci 2014; 8:319. [PMID: 25352781 PMCID: PMC4196547 DOI: 10.3389/fncel.2014.00319] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022] Open
Abstract
Post-ischemic inflammation is important in ischemic stroke pathology. However, details of the inflammation process, its resolution after stroke and its effect on pathology and neural damage have not been clarified. Brain swelling, which is often fatal in ischemic stroke patients, occurs at an early stage of stroke due to endothelial cell injury and severe inflammation by infiltrated mononuclear cells including macrophages, neutrophils, and lymphocytes. At early stage of inflammation, macrophages are activated by molecules released from necrotic cells [danger-associated molecular patterns (DAMPs)], and inflammatory cytokines and mediators that increase ischemic brain damage by disruption of the blood–brain barrier are released. After post-ischemic inflammation, macrophages function as scavengers of necrotic cell and brain tissue debris. Such macrophages are also involved in tissue repair and neural cell regeneration by producing tropic factors. The mechanisms of inflammation resolution and conversion of inflammation to neuroprotection are largely unknown. In this review, we summarize information accumulated recently about DAMP-induced inflammation and the neuroprotective effects of inflammatory cells, and discuss next generation strategies to treat ischemic stroke.
Collapse
Affiliation(s)
- Takashi Shichita
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
| |
Collapse
|
33
|
Yan H, Mitschelen M, Toth P, Ashpole NM, Farley JA, Hodges EL, Warrington JP, Han S, Fung KM, Csiszar A, Ungvari Z, Sonntag WE. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat. J Gerontol A Biol Sci Med Sci 2014; 69:1353-62. [PMID: 25098324 DOI: 10.1093/gerona/glu118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia.
Collapse
Affiliation(s)
- Han Yan
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Julie A Farley
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Erik L Hodges
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Junie P Warrington
- Present address: Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Song Han
- Present address: Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
34
|
Walser M, Schiöler L, Oscarsson J, Aberg MAI, Svensson J, Aberg ND, Isgaard J. Different modes of GH administration influence gene expression in the male rat brain. J Endocrinol 2014; 222:181-90. [PMID: 24872576 DOI: 10.1530/joe-14-0223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endogenous secretion pattern in males of GH is episodic in rats and in humans, whereas GH administration is usually even. Different types of GH administration have different effects on body mass, longitudinal bone growth, and liver metabolism in rodents, whereas possible effects on brain plasticity have not been investigated. In this study, GH was administered as a continuous infusion or as two daily injections in hypophysectomized male rats. Thirteen transcripts previously known to respond to GH in the hippocampus and parietal cortex (cortex) were assessed by RT-PCR. To investigate the effects of type of GH administration on several transcripts with different variations, and categories of transcripts (neuron-, glia-, and GH-related), a mixed model analysis was applied. Accordingly, GH injections increased overall transcript abundance more than GH infusions (21% in the hippocampus, P<0.001 and 10% in the cortex, P=0.09). Specifically, GH infusions and injections robustly increased neuronal hemoglobin beta (Hbb) expression significantly (1.8- to 3.6-fold), and GH injections were more effective than GH infusions in increasing Hbb in the cortex (41%, P=0.02), whereas a 23% difference in the hippocampus was not significant. Also cortical connexin 43 was higher in the group with GH injections than in those with GH infusions (26%, P<0.007). Also, there were differences between GH injections and infusions in GH-related transcripts of the cortex (23%, P=0.04) and glia-related transcripts of the hippocampus (15%, P=0.02). Thus, with the exception of Hbb there is a moderate difference in responsiveness to different modes of GH administration.
Collapse
Affiliation(s)
- Marion Walser
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus Schiöler
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Oscarsson
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria A I Aberg
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenLaboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - N David Aberg
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenLaboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Muscle atrophy, voluntary activation disturbances, and low serum concentrations of IGF-1 and IGFBP-3 are associated with weakness in people with chronic stroke. Phys Ther 2014; 94:957-67. [PMID: 24578521 DOI: 10.2522/ptj.20130322] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND The muscle weakness that is exhibited poststroke is due to a multifactorial etiology involving the central nervous system and skeletal muscle changes. Insulinlike growth factor 1 (IGF-1) and IGF binding protein 3 (IGFBP-3) have been described as biomarkers of neuromuscular performance in many conditions. However, no information about these biomarkers is available for people with chronic hemiparesis. OBJECTIVE The purpose of this study was to investigate possible factors involved in muscle weakness, such as IGF-1 and IGFBP-3 serum concentrations, muscle volume, and neuromuscular performance of the knee flexors and extensors, in people with chronic hemiparesis poststroke. DESIGN This was a cross-sectional study. METHODS A cross-sectional study was performed on 14 individuals poststroke who were paired with healthy controls. Mobility, function, balance, and quality of life were recorded as outcome measures. Knee flexor and extensor muscle volumes and neuromuscular performance were measured using nuclear magnetic resonance imaging, dynamometry, and electromyography. The serum concentrations of IGF-1 and IGFBP-3 were quantified by enzyme-linked immunosorbent assay (ELISA). RESULTS The hemiparetic group had low serum concentrations of IGF-1 (25%) and IGFBP-3 (40%); reduced muscle volume in the vastus medialis (32%), vastus intermedius (29%), biceps femoris (16%), and semitendinosus and semimembranosus (12%) muscles; reduced peak torque, power, and work of the knee flexors and extensors; and altered agonist and antagonist muscle activation compared with controls. CONCLUSIONS Low serum concentrations of IGF-1 and IGFBP-3, deficits in neuromuscular performance, selective muscle atrophy, and decreased agonist muscle activation were found in the group with chronic hemiparesis poststroke. Both hemorrhagic and ischemic stroke were considered, and the data reflect a chronic poststroke population with good function.
Collapse
|
36
|
Tang JH, Ma LL, Yu TX, Zheng J, Zhang HJ, Liang H, Shao P. Insulin-like growth factor-1 as a prognostic marker in patients with acute ischemic stroke. PLoS One 2014; 9:e99186. [PMID: 24911265 PMCID: PMC4050057 DOI: 10.1371/journal.pone.0099186] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022] Open
Abstract
Objective Insulin-like growth factor-1 (IGF-1) has been associated with cardiovascular risk factors and atherosclerosis. The aim of the present study was to evaluate the prognostic value of IGF-1 levels in patients with acute ischemic stroke (AIS). Methods All patients with first-ever AIS from August 1, 2012 to August 31, 2013 were recruited to participate in the study. Clinical data were collected. The National Institutes of Health Stroke Scale (NIHSS) score was assessed on admission blinded to serum IGF-1 levels. For the assessment of functional outcome at 90 days Modified Rankin Scale (mRS) was used. On admission, serum IGF-1 levels were determined by chemiluminescence immunoassay. The influence of IGF-1 levels on functional outcome and death was assessed by multivariate logistic regression analysis. Results Patients with an unfavorable outcomes and non-survivors had significantly decreased serum IGF-1 levels on admission (P<0.0001 for both). IGF-1 was an independent prognostic marker of functional outcome and death [odds ratio 0.89 (0.84–0.93) and 0.90 (0.84–0.95), respectively, P<0.0001 for both, adjusted for age, NIHSS score and other predictors] in patients with ischemic stroke. Serum IGF-1 levels ≤130 ng/mL was as an value indicator for unfavorable functional outcome (OR 3.31, 95% CI:1.87–5.62; P<0.0001), after adjusting for other significant confounders. Conclusions We reported a significant association between low serum IGF-1 levels and unfavorable functional outcome and death.
Collapse
Affiliation(s)
- Jian-Hua Tang
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Li-Li Ma
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Tian-Xia Yu
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Juan Zheng
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Hui-Juan Zhang
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Hui Liang
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Peng Shao
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
- * E-mail:
| |
Collapse
|
37
|
Tanaka S, Miyagi T, Dohi E, Seki T, Hide I, Sotomaru Y, Saeki Y, Antonio Chiocca E, Matsumoto M, Sakai N. Developmental expression of GPR3 in rodent cerebellar granule neurons is associated with cell survival and protects neurons from various apoptotic stimuli. Neurobiol Dis 2014; 68:215-27. [PMID: 24769160 DOI: 10.1016/j.nbd.2014.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/08/2014] [Accepted: 04/15/2014] [Indexed: 11/15/2022] Open
Abstract
G-protein coupled receptor 3 (GPR3), GPR6, and GPR12 belong to a family of constitutively active Gs-coupled receptors that activate 3'-5'-cyclic adenosine monophosphate (cAMP) and are highly expressed in the brain. Among these receptors, the endogenous expression of GPR3 in cerebellar granule neurons (CGNs) is increased following development. GPR3 is important for neurite outgrowth and neural maturation; however, the physiological functions of GPR3 remain to be fully elucidated. Here, we investigated the survival and antiapoptotic functions of GPR3 under normal and apoptosis-inducing culture conditions. Under normal culture conditions, CGNs from GPR3-knockout mice demonstrated lower survival than did CGNs from wild-type or GPR3-heterozygous mice. Cerebellar sections from GPR3-/- mice at P7, P14, and P21 revealed more caspase-3-positive neurons in the internal granular layer than in cerebellar sections from wild-type mice. Conversely, in a potassium-deprivation model of apoptosis, increased expression of these three receptors promoted neuronal survival. The antiapoptotic effect of GPR3 was also observed under hypoxic (1% O2/5% CO2) and reactive oxygen species (ROS)-induced apoptotic conditions. We further investigated the signaling pathways involved in the GPR3-mediated antiapoptotic effect. The addition of the PKA inhibitor KT5720, the MAP kinase inhibitor U0126, and the PI3 kinase inhibitor LY294002 abrogated the GPR3-mediated antiapoptotic effect in a potassium-deprivation model of apoptosis, whereas the PKC inhibitor Gö6976 did not affect the antiapoptotic function of GPR3. Furthermore, downregulation of endogenous GPR3 expression in CGNs resulted in a marked reduction in the basal levels of ERK and Akt phosphorylation under normal culture conditions. Finally, we used a transient middle cerebral artery occlusion (tMCAO) model in wild-type and GPR3-knockout mice to determine whether GPR3 expression modulates neuronal survival after brain ischemia. After tMCAO, GPR3-knockout mice exhibited a significantly larger infarct area than did wild-type mice. Collectively, these in vitro and in vivo results suggest that the developmental expression of constitutively active Gs-coupled GPR3 activates the ERK and Akt signaling pathways at the basal level, thereby protecting neurons from apoptosis that is induced by various stimuli.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; Department of Clinical Neuroscience and Therapeutics, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Tatsuhiro Miyagi
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Eisuke Dohi
- Department of Clinical Neuroscience and Therapeutics, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takahiro Seki
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8551, Japan
| | | | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Institute for the Neurosciences at the Brigham, Brigham and Women's/Faulkner Hospital and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
38
|
Dong X, Chang G, Ji XF, Tao DB, Wang YX. The relationship between serum insulin-like growth factor I levels and ischemic stroke risk. PLoS One 2014; 9:e94845. [PMID: 24728374 PMCID: PMC3984250 DOI: 10.1371/journal.pone.0094845] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/20/2014] [Indexed: 12/17/2022] Open
Abstract
Objective The aim of the study was to assess the relationship between insulin-like growth factor I (IGF-I) serum levels and acute ischemic stroke (AIS) in a Chinese population. Methods All consecutive patients with first-ever AIS from August 1, 2011 to July 31, 2013 were recruited to participate in the study. The control group comprised 200 subjects matched for age, gender, and conventional vascular risk factors. IGF-I serum levels were determined by chemiluminescence immunoassay. The National Institutes of Health Stroke Scale (NIHSS) score was assessed on admission blinded to serum IGF-I levels. Results The median serum IGF-1 levels were significantly (P = 0.011) lower in AIS patients (129; IQR, 109–153 ng/mL) compared with control cases (140; IQR, 125–159 ng/mL). We found that an increased risk of AIS was associated with IGF-I levels ≤135 ng/mL (unadjusted OR: 4.17; 95% CI: 2.52–6.89; P = 0.000). This relationship was confirmed in the dose-response model. In multivariate analysis, there was still an increased risk of AIS associated with IGF-I levels ≤135 ng/mL (OR: 2.16; 95% CI:1.33–3.52; P = 0.002) after adjusting for possible confounders. Conclusion Lower IGF-I levels are significantly related to risk of stroke, independent from other traditional and emerging risk factors, suggesting that they may play a role in the pathogenesis of AIS. Thus, strokes were more likely to occur in patients with low serum IGF-I levels in the Chinese population; further, post-ischemic IGF-I therapy may be beneficial for stroke.
Collapse
Affiliation(s)
- Xiang Dong
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
- * E-mail:
| | - Geng Chang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
| | - Xiao-Fei Ji
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
| | - Ding-Bo Tao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
| | - Ying-Xin Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
| |
Collapse
|
39
|
The effect of IGF-1 on symptoms of sleep deprivation in a rat model of inflammatory heart disease and metabolic syndrome. Biochem Biophys Res Commun 2014; 446:843-9. [DOI: 10.1016/j.bbrc.2014.02.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/19/2022]
|
40
|
El Husseini N, Laskowitz DT. The role of neuroendocrine pathways in prognosis after stroke. Expert Rev Neurother 2014; 14:217-32. [PMID: 24428141 DOI: 10.1586/14737175.2014.877841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A number of neuroendocrine changes have been described after stroke, which may serve adaptive or deleterious functions. The neuroendocrine changes include activation of the hypothalamo-pituitary-adrenal axis, sympathetic nervous system and alterations of several hormonal levels. Alterations of the HPA axis, increased catecholamines, natriuretic peptides and, decreased melatonin and IGF-1 levels are associated with poor post-stroke outcome, although there is no definitive proof of causality. Therefore, it remains to be established whether alteration of neuroendocrine responses could be used as a potential therapeutic target to improve stroke outcome. This article gives an overview of the major neuroendocrine pathways altered by stroke and highlights their potential for clinical use and further neurotherapeutic development by summarizing the evidence for their association with stroke outcome including functional outcome, post-stroke infection, delirium, depression and stroke-related myocardial injury.
Collapse
Affiliation(s)
- Nada El Husseini
- Department of Neurology, Duke University Medical Center, Bryan Research Building, Office 201F, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
41
|
Prentice RL, Zhao S, Johnson M, Aragaki A, Hsia J, Jackson RD, Rossouw JE, Manson JE, Hanash SM. Proteomic risk markers for coronary heart disease and stroke: validation and mediation of randomized trial hormone therapy effects on these diseases. Genome Med 2013; 5:112. [PMID: 24373343 PMCID: PMC3971342 DOI: 10.1186/gm517] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We previously reported mass spectrometry-based proteomic discovery research to identify novel plasma proteins related to the risk of coronary heart disease (CHD) and stroke, and to identify proteins with concentrations affected by the use of postmenopausal hormone therapy. Here we report CHD and stroke risk validation studies for highly ranked proteins, and consider the extent to which protein concentration changes relate to disease risk or provide an explanation for hormone therapy effects on these outcomes. METHODS Five proteins potentially associated with CHD (beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), thrombospondin-1(THBS1), complement factor D pre-protein (CFD), and insulin-like growth factor binding protein 1 (IGFBP1)) and five potentially associated with stroke (B2M, IGFBP2, IGFBP4, IGFBP6, and hemopexin (HPX)) had high discovery phase significance level ranking and an available ELISA assay, and were included in case-control validation studies within the Women's Health Initiative (WHI) hormone therapy trials. Protein concentrations, at baseline and 1 year following randomization, were assessed for 358 CHD cases and 362 stroke cases, along with corresponding disease-free controls. Disease association, and mediation of estrogen-alone and estrogen plus progestin effects on CHD and stroke risk, were assessed using logistic regression. RESULTS B2M, THBS1, and CFD were confirmed (P <0.05) as novel CHD risk markers, and B2M, IGFBP2, and IGFBP4 were confirmed as novel stroke disease risk markers, while the assay for HPX proved to be unreliable. The change from baseline to 1 year in B2M was associated (P <0.05) with subsequent stroke risk, and trended similarly with subsequent CHD risk. Change from baseline to 1 year in IGFBP1 was also associated with CHD risk, and this change provided evidence of hormone therapy effect mediation. CONCLUSIONS Plasma B2M is confirmed to be an informative risk marker for both CHD and stroke. The B2M increase experienced by women during the first year of hormone therapy trial participation conveys cardiovascular disease risk. The increase in IGFBP1 similarly conveys CHD risk, and the magnitude of the IGFBP1 increase following hormone therapy may be a mediator of hormone therapy effects. Plasma THBS1 and CFD are confirmed as CHD risk markers, and plasma IGFBP4 and IGFBP2 are confirmed as stroke risk markers. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov identifier: NCT00000611.
Collapse
Affiliation(s)
- Ross L Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Shanshan Zhao
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Melissa Johnson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Aaron Aragaki
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Judith Hsia
- Research and Development, AstraZeneca LP, 1971 Rockland Road, Wilmington, DE 19803, USA
| | - Rebecca D Jackson
- Division of Endocrinology, The Ohio State University, 376 West Tenth Avenue, Suite 205, Columbus, OH 43210, USA
| | - Jacques E Rossouw
- WHI Project Office, National Heart, Lung, and Blood Institute, National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD 20892, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02215, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, 6767 Bertner Street, Houston, TX 77030, USA
| |
Collapse
|
42
|
Fletcher L, Isgor E, Sprague S, Williams LH, Alajajian BB, Jimenez DF, Digicaylioglu M. Spatial distribution of insulin-like growth factor binding protein-2 following hypoxic-ischemic injury. BMC Neurosci 2013; 14:158. [PMID: 24359611 PMCID: PMC3911968 DOI: 10.1186/1471-2202-14-158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 12/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein-2 (IGFBP-2) regulates the bioavailability, transportation, and localization of insulin-like growth factor-I (IGF-I), an effective neuroprotectant in animal stroke models especially when administered intranasally. Therefore, determining IGFBP-2's endogenous distribution in the normal and ischemic brain is essential in maximizing the neuroprotective potential of the intranasal IGF-I treatment approach. However, current data on IGFBP-2 is limited to mRNA and in situ hybridization studies. The purpose of this study was to determine if there are any changes in IGFBP-2 protein levels and distribution in ischemic brain and also to determine if IGFBPs play a role in the transportation of intranasally administered IGF-I into the brain. RESULTS Using an in vitro approach, we show that ischemia causes changes in the distribution of IGFBP-2 in primary cortical neurons and astrocytes. In addition, we show using the transient middle cerebral artery occlusion (MCAO) model in mice that there is a significant increase in IGFBP-2 levels in the stroke penumbra and core after 72 h. This correlated with an overall increase in IGF-I after stroke, with the highest levels of IGF-I in the stroke core after 72 h. Brain sections from stroke mice indicate that neurons and astrocytes located in the penumbra both have increased expression of IGFBP-2, however, IGFBP-2 was not detected in microglia. We used binding competition studies to show that intranasally administered exogenous IGF-I uptake into the brain is not receptor mediated and is likely facilitated by IGFBPs. CONCLUSIONS The change in protein levels indicates that IGFBP-2 plays an IGF-I-dependent and -independent role in the brain's acute (neuroprotection) and chronic (tissue remodeling) response to hypoxic-ischemic injury. Competition studies indicate that IGFBPs may have a role in rapid transportation of exogenous IGF-I from the nasal tissue to the site of injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Murat Digicaylioglu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
43
|
de la Monte SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv 2013; 10:1699-709. [PMID: 24215447 PMCID: PMC4551402 DOI: 10.1517/17425247.2013.856877] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Growing evidence supports the concept that insulin resistance plays an important role in the pathogenesis of cognitive impairment and neurodegeneration, including in Alzheimer's disease (AD). The metabolic hypothesis has led to the development and utilization of insulin- and insulin agonist-based treatments. Therapeutic challenges faced include the ability to provide effective treatments that do not require repeated injections and also the ability to minimize the potentially hazardous off-target effects. AREAS COVERED This review covers the role of intranasal insulin therapy for cognitive impairment and neurodegeneration, particularly AD. The literature reviewed focuses on data published within the past 5 years as this field is evolving rapidly. The review provides evidence that brain insulin resistance is an important and early abnormality in AD, and that increasing brain supply and utilization of insulin improves cognition and memory. Emphasis was placed on discussing outcomes of clinical trials and interpreting discordant results to clarify the benefits and limitations of intranasal insulin therapy. EXPERT OPINION Intranasal insulin therapy can efficiently and directly target the brain to support energy metabolism, myelin maintenance, cell survival and neuronal plasticity, which begin to fail in the early stages of neurodegeneration. Efforts must continue toward increasing the safety, efficacy and specificity of intranasal insulin therapy.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Departments of Pathology (Neuropathology), Neurology, and Neurosurgery , Pierre Galletti Research Building, Claverick Street, Room 419, Providence, RI 02903 , USA +1 401 444 7364 ; +1 401 444 2939 ;
| |
Collapse
|
44
|
Somatotropic and thyroid hormones in the acute phase of subarachnoid haemorrhage. Acta Neurochir (Wien) 2013; 155:2053-62. [PMID: 23494135 DOI: 10.1007/s00701-013-1670-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Somatotropic and thyroid hormones are probably important for the recovery after acute brain injury. Still, the dynamics of these hormones after spontaneous subarachnoid haemorrhage (SAH) is not well described. The purpose of this study was to investigate the relation between somatotropic and thyroid hormones and clinical factors after SAH. METHODS Twenty patients with spontaneous SAH were included prospectively. Serum concentrations of TSH, fT4, T3, IGF-1 and GH were measured once a day for 7 days after SAH. Hormone patterns and serum concentrations were compared to the severity of SAH, neurological condition at admission, clinical course and outcome of the patients. RESULTS During the first week after SAH, all patients showed increased GH and IGF-1 concentrations. In the whole group, concentrations of TSH increased, whereas T3 and fT4 decreased. There were no relations of serum concentrations of IGF-1 or GH to clinical condition at admission, clinical course or outcome of the patients. Half of the patients showed low T3 serum concentrations. A complicated course was associated with a deeper fall in TSH and T3 concentrations. There were negative correlations for mean concentrations of TSH and T3 versus WFNS grade and a positive correlation for T3 versus GOS after 6 months, indicating that low concentrations of TSH and T3 were connected to worse SAH grade and poor outcome. CONCLUSIONS All patients showed increased GH and IGF-1 concentrations irrespective of the grade of SAH or clinical course. Patients with a complicated clinical course showed a more pronounced fall in TSH and T3 concentrations and low serum T3 concentrations were related to a more serious SAH and poor patient outcome. These results need to be studied further and they may contribute to the accumulated knowledge needed to understand the complex mechanisms influencing the unpredictable clinical course after SAH.
Collapse
|
45
|
Jin R, Liu L, Zhang S, Nanda A, Li G. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 2013; 6:834-51. [PMID: 24006091 DOI: 10.1007/s12265-013-9508-6] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/23/2013] [Indexed: 01/04/2023]
Abstract
Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | | | | | | | | |
Collapse
|
46
|
De Geyter D, Stoop W, Sarre S, De Keyser J, Kooijman R. Neuroprotective efficacy of subcutaneous insulin-like growth factor-I administration in normotensive and hypertensive rats with an ischemic stroke. Neuroscience 2013; 250:253-62. [PMID: 23872393 DOI: 10.1016/j.neuroscience.2013.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to test the insulin-like growth factor-I (IGF-I) as a neuroprotective agent in a rat model for ischemic stroke and to compare its neuroprotective effects in conscious normotensive and spontaneously hypertensive rats. The effects of subcutaneous IGF-I injection were investigated in both rat strains using the endothelin-1 rat model for ischemic stroke. Motor-sensory functions were measured using the Neurological Deficit Score. Infarct size was assessed by Cresyl Violet staining. Subcutaneous administration of IGF-I resulted in significantly reduced infarct volumes and an increase in motor-sensory functions in normotensive rats. In these rats, IGF-I did not modulate blood flow in the striatum and had no effect on the activation of astrocytes as assessed by GFAP staining. In hypertensive rats, the protective effects of IGF-I were smaller and not always significant. Furthermore, IGF-I significantly reduced microglial activation in the cortex of hypertensive rats, but not in normotensive rats. More detailed studies are required to find out whether the reduction by IGF-I of microglial activation contributes to an impairment IGF-I treatment efficacy. Indeed, we have shown before that microglia in hypertensive rats have different properties compared to those in control rats, as they exhibit a reduced responsiveness to ischemic stroke and lipopolysaccharide.
Collapse
Affiliation(s)
- D De Geyter
- Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, Belgium; Department of Pharmacology, VUB Brussel, Belgium
| | | | | | | | | |
Collapse
|
47
|
Transcriptome Sequencing and de novo Analysis for Oviductus Ranae of Rana chensinensis Using Illumina RNA-Seq Technology. J Genet Genomics 2013; 40:137-40. [DOI: 10.1016/j.jgg.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 11/23/2022]
|
48
|
Sun C, Meng Q, Zhang L, Wang H, Quirion R, Zheng W. Glutamate attenuates IGF-1 receptor tyrosine phosphorylation in mouse brain: Possible significance in ischemic brain damage. Neurosci Res 2012; 74:290-7. [DOI: 10.1016/j.neures.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/03/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
|
49
|
Growth factors released from gelatin hydrogel microspheres increase new neurons in the adult mouse brain. Stem Cells Int 2012; 2012:915160. [PMID: 23093979 PMCID: PMC3474987 DOI: 10.1155/2012/915160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that new neurons are continuously generated by endogenous neural stem cells in the subventricular zone (SVZ) of the adult mammalian brain. Some of these new neurons migrate to injured brain tissues and differentiate into mature neurons, suggesting that such new neurons may be able to replace neurons lost to degenerative disease or injury and improve or repair neurological deficits. Here, we tested whether delivering growth factors via gelatin hydrogel microspheres would support neurogenesis in the SVZ. Insulin-like growth factor-1 (IGF-1)-containing microspheres increased the number of new neurons in the SVZ. Hepatocyte growth factor (HGF)-containing microspheres increased the number of new neurons migrating from the SVZ towards the injured striatum in a stroke model in mouse. These results suggest that the strategy of using gelatin hydrogel microspheres to achieve the sustained release of growth factors holds promise for the clinical regeneration of damaged brain tissues from endogenous neural stem cells in the adult SVZ.
Collapse
|
50
|
Paslakis G, Blum W, Deuschle M. Intranasal insulin-like growth factor I (IGF-I) as a plausible future treatment of depression. Med Hypotheses 2012; 79:222-5. [DOI: 10.1016/j.mehy.2012.04.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/27/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022]
|