1
|
Toor SM, Aldous EK, Parray A, Akhtar N, Al-Sarraj Y, Arredouani A, Pir GJ, Pananchikkal SV, El-Agnaf O, Shuaib A, Alajez NM, Albagha OM. Circulating PIWI-interacting RNAs in Acute Ischemic Stroke patients. Noncoding RNA Res 2025; 11:294-302. [PMID: 39926617 PMCID: PMC11802372 DOI: 10.1016/j.ncrna.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Background Stroke refers to an abrupt neurological deficit, caused by an acute focal injury of the central nervous system via infarction or hemorrhage due to impaired vascularity, and remains among the leading causes of disability and death worldwide. Stroke is often preceded by an episode of neuronal deficit termed transient ischemic attack (TIA), which presents an effective opportunity for mitigating the risk of an eminent acute ischemic stroke (AIS). Circulating non-coding RNAs (ncRNAs) have emerged as important biomarkers for stroke, but PIWI-interacting RNAs (piRNAs), a class of small regulatory ncRNAs, have not been previously explored as diagnostic or prognostic biomarkers for stroke. Methods We conducted comprehensive circulating piRNA profiling of AIS and TIA patients using RNA-seq on serum samples collected within 24 h of clinical diagnosis. The study cohort was divided into discovery and cross-validation datasets to identify replicated piRNAs using stringent analysis cut-offs. The expression levels of the panel of differentially regulated piRNAs between AIS and TIA patients were also compared with healthy controls. Results We identified a panel of 10 differentially regulated piRNAs between AIS and TIA patients; hsa-piR-28272, -piR-32972, -piR-28247, -piR-24553, -piR-24552, -piR-28275, -piR-28707 and -piR-32882 were upregulated, while hsa-piR-23058 and -piR-23136 were downregulated in AIS patients. Moreover, these 10 piRNAs were also differentially expressed in AIS patients compared to healthy controls. In addition, we investigated the potential gene targets of the dysregulated piRNAs and their plausible involvement in pathophysiological processes affected in stroke. Conclusions The imbalances in the circulating piRnome of AIS and TIA patients presented herein provide important insights into the roles of piRNAs following ischemic brain injury and potentially provide opportunities to mitigate stroke-induced mortality and morbidity.
Collapse
Affiliation(s)
- Salman M. Toor
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Eman K. Aldous
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha, Qatar
| | - Naveed Akhtar
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha, Qatar
- Department of Internal Medicine, University of Manitoba, MB R3A 1R9, Winnipeg, Canada
| | - Yasser Al-Sarraj
- Qatar Genome Program (QGP), Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), P.O. Box 5825, Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Ghulam Jeelani Pir
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha, Qatar
| | - Sajitha V. Pananchikkal
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha, Qatar
| | - Omar El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Ashfaq Shuaib
- Division of Neurology, Department of Medicine, University of Alberta, AB T6G 2R3, Edmonton, Canada
- Department of Neurology, Hamad Medical Corporation (HMC), P.O. Box 5825, Doha, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
- Translational Oncology Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Omar M.E. Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, Edinburgh, UK
| |
Collapse
|
2
|
Chen M, Duan S, Chai G, Zhan L, Peng L, Sun W, Xu E. Hypoxic Postconditioning Offers Neuroprotection Against Transient Cerebral Ischemia via Down-Regulation of rno_piR_011022. CNS Neurosci Ther 2025; 31:e70295. [PMID: 39996480 PMCID: PMC11851155 DOI: 10.1111/cns.70295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/17/2024] [Accepted: 01/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Piwi-interacting RNAs (piRNAs) are differentially expressed after cerebral ischemia. However, little is known about their roles in transient global cerebral ischemia (tGCI). Herein, we aim to elucidate the roles and the underlying molecular mechanisms of piRNAs in tGCI and cerebral ischemic tolerance induced by hypoxic postconditioning (HPC). METHODS The male rat models of tGCI and HPC were established in vivo. Oxygen-glucose deprivation/reoxygenation (OGD/R) was developed from primary hippocampal neurons in vitro. RNA-sequencing, fluorescence in situ hybridization, and quantitative real-time PCR were used for detecting piRNA expression. Immunohistochemistry, TUNEL staining, CCK8 assay, etc., were used to evaluate neuronal damage. Western blot was used to measure protein levels of NR2B, PSD95, and cleaved-caspase 3. RESULTS The expression profiles of piRNAs in CA1 were significantly changed after tGCI. HPC downregulated the expression of the top 5 piRNAs associated with synaptic function. Notably, the knockdown of rno_piR_011022 not only alleviated neuronal apoptosis and enhanced synaptic plasticity after tGCI and OGD/R but also reduced methyl-D-aspartate (NMDA) receptor 2B (NR2B) expression and inhibited NR2B-postsynaptic density 95 (PSD95) interaction following tGCI. HPC enhanced these inhibitory effects. CONCLUSION This innovative study indicated that the down-regulation of rno_piR_011022 plays an important role in HPC-mediated neuroprotection against tGCI through inhibiting the NR2B-PSD95 interaction.
Collapse
Affiliation(s)
- Meiyan Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Shanshan Duan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Guorong Chai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Lixuan Zhan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Linhui Peng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Weiwen Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - En Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Karpagavalli M, Sindal MD, Arunachalam JP, Chidambaram S. miRNAs, piRNAs, and lncRNAs: A triad of non-coding RNAs regulating the neurovascular unit in diabetic retinopathy and their therapeutic potentials. Exp Eye Res 2025; 251:110236. [PMID: 39800284 DOI: 10.1016/j.exer.2025.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow. These interconnections between the neurovascular components get compromised due to hyperglycemia and are further associated with the progression of DR early on in the disease. As a result, therapeutic approaches are needed to avert the advancement of DR by acting at its initial stage to delay or prevent the pathogenesis. Non-coding RNAs (ncRNAs) such as microRNAs, piwi-interacting RNAs, and long non-coding RNAs regulate various cellular components in the neurovascular unit. These ncRNAs are key regulators of neurodegeneration, apoptosis, inflammation, and oxidative stress in DR. In this review, research related to alterations in the expression of ncRNAs and, correspondingly, their effect on the disintegration of the neurovascular coupling will be discussed briefly to understand the potential of ncRNAs as therapeutic targets for treating this debilitating disease.
Collapse
Affiliation(s)
| | | | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
4
|
Zhang H, Ma G, Lv H, Peng Y. Bibliometric Analysis of Non-coding RNAs and Ischemic Stroke: Trends, Frontiers, and Challenges. Mol Biotechnol 2025; 67:1-15. [PMID: 38064146 DOI: 10.1007/s12033-023-00981-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2025]
Abstract
More and more articles have shown that non-coding RNAs (ncRNAs) play a significant role in the pathogenesis and prognosis of ischemic stroke. However, the bibliometric analysis in ncRNAs and ischemic stroke is still lacking. This study retrieved the Web of Science Core Collection for relevant articles from January 1, 2010 to April 6, 2023. Bibliometrix R, VOSviewer, and CiteSpace were used to perform the bibliometric analysis. A total of 1058 articles were eligible for this review. The number of publications showed a fluctuating upward trend. The total citations were 28,698 times, and the average number of citations per article was 27.12 times. Our findings indicated ncRNAs has been increasingly investigated for its critical role in apoptosis, autophagy, angiogenesis, inflammation, oxidative stress, and blood-brain barrier after ischemic stroke by regulating target mRNAs, extracellular secretion, target proteins, and others. The microRNAs, circular RNAs, and long ncRNAs may be hotspots, and ferroptosis, METTL3, and exosome might be frontier in this field. Besides, ncRNAs have a promising future as diagnostic and prognostic biomarkers, molecular drug targets, and other targeted therapies for ischemic stroke. However, it still faces many challenges to be successfully applied in the clinical practice.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Guquan Ma
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hequn Lv
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yongjun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
5
|
Pan X, Dai W, Wang Z, Li S, Sun T, Miao N. PIWI-Interacting RNAs: A Pivotal Regulator in Neurological Development and Disease. Genes (Basel) 2024; 15:653. [PMID: 38927589 PMCID: PMC11202748 DOI: 10.3390/genes15060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs), a class of small non-coding RNAs (sncRNAs) with 24-32 nucleotides (nt), were initially identified in the reproductive system. Unlike microRNAs (miRNAs) or small interfering RNAs (siRNAs), piRNAs normally guide P-element-induced wimpy testis protein (PIWI) families to slice extensively complementary transposon transcripts without the seed pairing. Numerous studies have shown that piRNAs are abundantly expressed in the brain, and many of them are aberrantly regulated in central neural system (CNS) disorders. However, the role of piRNAs in the related developmental and pathological processes is unclear. The elucidation of piRNAs/PIWI would greatly improve the understanding of CNS development and ultimately lead to novel strategies to treat neural diseases. In this review, we summarized the relevant structure, properties, and databases of piRNAs and their functional roles in neural development and degenerative disorders. We hope that future studies of these piRNAs will facilitate the development of RNA-based therapeutics for CNS disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (X.P.); (W.D.); (Z.W.); (S.L.); (T.S.)
| |
Collapse
|
6
|
Karpagavalli M, Sivagurunathan S, Panda TS, Srikakulam N, Arora R, Dohadwala L, Tiwary BK, Sadras SR, Arunachalam JP, Pandi G, Chidambaram S. piRNAs in the human retina and retinal pigment epithelium reveal a potential role in intracellular trafficking and oxidative stress. Mol Omics 2024; 20:248-264. [PMID: 38314503 DOI: 10.1039/d3mo00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Long considered active only in the germline, the PIWI/piRNA pathway is now known to play a significant role in somatic cells, especially neurons. In this study, piRNAs were profiled in the human retina and retinal pigment epithelium (RPE). Furthermore, RNA immunoprecipitation with HIWI2 (PIWIL4) in ARPE19 cells yielded 261 piRNAs, and the expression of selective piRNAs in donor eyes was assessed by qRT-PCR. Intriguingly, computational analysis revealed complete and partial seed sequence similarity between piR-hsa-26131 and the sensory organ specific miR-183/96/182 cluster. Furthermore, the expression of retina-enriched piR-hsa-26131 was positively correlated with miR-182 in HIWI2-silenced Y79 cells. In addition, the lnc-ZNF169 sequence matched with two miRNAs of the let-7 family, and piRNAs, piR-hsa-11361 and piR-hsa-11360, which could modulate the regulatory network of retinal differentiation. Interestingly, we annotated four enriched motifs among the piRNAs and found that the piRNAs containing CACAATG and CTCATCAKYG motifs were snoRNA-derived piRNAs, which are significantly associated with developmental functions. However, piRNAs consisting of ACCACTANACCAC and AKCACGYTCSC motifs were mainly tRNA-derived fragments linked to stress response and sensory perception. Additionally, co-expression network analysis revealed cell cycle control, intracellular transport and stress response as the important biological functions regulated by piRNAs in the retina. Moreover, loss of piRNAs in HIWI2 knockdown ARPE19 confirmed altered expression of targets implicated in intracellular transport, circadian clock, and retinal degeneration. Moreover, piRNAs were dysregulated under oxidative stress conditions, indicating their potential role in retinal pathology. Therefore, we postulate that piRNAs, miRNAs, and lncRNAs might have a functional interplay during retinal development and functions to regulate retinal homeostasis.
Collapse
Affiliation(s)
| | - Suganya Sivagurunathan
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - T Sayamsmruti Panda
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Reety Arora
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | | | - Basant K Tiwary
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry-607402, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| |
Collapse
|
7
|
Patel A, Dharap A. An Emerging Role for Enhancer RNAs in Brain Disorders. Neuromolecular Med 2024; 26:7. [PMID: 38546891 PMCID: PMC11263973 DOI: 10.1007/s12017-024-08776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Noncoding DNA undergoes widespread context-dependent transcription to produce noncoding RNAs. In recent decades, tremendous advances in genomics and transcriptomics have revealed important regulatory roles for noncoding DNA elements and the RNAs that they produce. Enhancers are one such element that are well-established drivers of gene expression changes in response to a variety of factors such as external stimuli, cellular responses, developmental cues, and disease states. They are known to act at long distances, interact with multiple target gene loci simultaneously, synergize with other enhancers, and associate with dynamic chromatin architectures to form a complex regulatory network. Recent advances in enhancer biology have revealed that upon activation, enhancers transcribe long noncoding RNAs, known as enhancer RNAs (eRNAs), that have been shown to play important roles in enhancer-mediated gene regulation and chromatin-modifying activities. In the brain, enhancer dysregulation and eRNA transcription has been reported in numerous disorders from acute injuries to chronic neurodegeneration. Because this is an emerging area, a comprehensive understanding of eRNA function has not yet been achieved in brain disorders; however, the findings to date have illuminated a role for eRNAs in activity-driven gene expression and phenotypic outcomes. In this review, we highlight the breadth of the current literature on eRNA biology in brain health and disease and discuss the challenges as well as focus areas and strategies for future in-depth research on eRNAs in brain health and disease.
Collapse
Affiliation(s)
- Ankit Patel
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Byrd Alzheimer's Center & Research Institute, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Ashutosh Dharap
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.
- Byrd Alzheimer's Center & Research Institute, USF Health Neuroscience Institute, Tampa, FL, USA.
| |
Collapse
|
8
|
Mehta SL, Chelluboina B, Morris-Blanco KC, Bathula S, Jeong S, Arruri V, Davis CK, Vemuganti R. Post-stroke brain can be protected by modulating the lncRNA FosDT. J Cereb Blood Flow Metab 2024; 44:239-251. [PMID: 37933735 PMCID: PMC10993881 DOI: 10.1177/0271678x231212378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/09/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
We previously showed that knockdown or deletion of Fos downstream transcript (FosDT; a stroke-induced brain-specific long noncoding RNA) is neuroprotective. We presently tested the therapeutic potential of FosDT siRNA in rodents subjected to transient middle cerebral artery occlusion (MCAO) using the Stroke Treatment Academic Industry Roundtable criteria, including sex, age, species, and comorbidity. FosDT siRNA (IV) given at 30 min of reperfusion significantly improved motor function recovery (rotarod test, beam walk test, and adhesive removal test) and reduced infarct size in adult and aged spontaneously hypertensive rats of both sexes. FosDT siRNA administered in a delayed fashion (3.5 h of reperfusion following 1 h transient MCAO) also significantly improved motor function recovery and decreased infarct volume. Furthermore, FosDT siRNA enhanced post-stroke functional recovery in normal and diabetic mice. Mechanistically, FosDT triggered post-ischemic neuronal damage via the transcription factor REST as REST siRNA mitigated the enhanced functional outcome in FosDT-/- rats. Additionally, NF-κB regulated FosDT expression as NF-κB inhibitor BAY 11-7082 significantly decreased post-ischemic FosDT induction. Thus, FosDT is a promising target with a favorable therapeutic window to mitigate secondary brain damage and facilitate recovery after stroke regardless of sex, age, species, and comorbidity.
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Soomin Jeong
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
9
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
10
|
Mehta SL, Chokkalla AK, Bathula S, Arruri V, Chelluboina B, Vemuganti R. CDR1as regulates α-synuclein-mediated ischemic brain damage by controlling miR-7 availability. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:57-67. [PMID: 36618263 PMCID: PMC9800254 DOI: 10.1016/j.omtn.2022.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Transient focal ischemia decreased microRNA-7 (miR-7) levels, leading to derepression of its major target α-synuclein (α-Syn) that promotes secondary brain damage. Circular RNA CDR1as is known to regulate miR-7 abundance and function. Hence, we currently evaluated its functional significance after focal ischemia. Transient middle cerebral artery occlusion (MCAO) in adult mice significantly downregulated both CDR1as and miR-7 levels in the peri-infarct cortex between 3 and 72 h of reperfusion. Interestingly, neither pri-miR-7a nor 7b was altered in the ischemic brain. Intracerebral injection of an AAV9 vector containing a CDR1as gene significantly increased CDR1as levels by 21 days that persisted up to 4 months without inducing any observable toxicity in both sham and MCAO groups. Following transient MCAO, there was a significant increase in miR-7 levels and CDR1as binding to Ago2/miR-7 in the peri-infarct cortex of AAV9-CDR1as cohort compared with AAV9-Control cohort at 1 day of reperfusion. CDR1as overexpression significantly suppressed post-stroke α-Syn protein induction, promoted motor function recovery, decreased infarct size, and curtailed the markers of apoptosis, autophagy mitochondrial fragmentation, and inflammation in the post-stroke brain compared with AAV9-Control-treated cohort. Overall, our findings imply that CDR1as reconstitution is neuroprotective after stroke, probably by protecting miR-7 and preventing α-Syn-mediated neuronal death.
Collapse
Affiliation(s)
- Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Anil K. Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI 53792, USA
| |
Collapse
|
11
|
Wang X, Ramat A, Simonelig M, Liu MF. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 2023; 24:123-141. [PMID: 36104626 DOI: 10.1038/s41580-022-00528-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 02/02/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI-piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI-piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Anne Ramat
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
12
|
Potemkin N, Clarkson AN. Non-coding RNAs in stroke pathology, diagnostics, and therapeutics. Neurochem Int 2023; 162:105467. [PMID: 36572063 DOI: 10.1016/j.neuint.2022.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Methods to alleviate functional deficits after ischemic stroke focus on restoration of cerebral blood flow to the affected area. However, pharmacological or surgical methods such as thrombolysis and thrombectomy have a narrow effective window. Harnessing and manipulating neurochemical processes of recovery may provide an alternative to these methods. Recently, non-coding RNA (ncRNA) have been increasingly investigated for their contributions to the pathology of diseases and potential for diagnostic and therapeutic applications. Here we will review several ncRNA - H19, MALAT1, ANRIL, NEAT1, pseudogenes, small nucleolar RNA, piwi-interacting RNA and circular RNA - and their involvement in stroke pathology. We also examine these ncRNA as potential diagnostic biomarkers, particularly in circulating blood, and as targets for therapeutic interventions. An important aspect of this is a discussion of potential methods of treatment delivery to allow for targeting of interventions past the blood-brain barrier, including lipid nanoparticles, polymer nanoparticles, and viral and non-viral vectors. Overall, several long non-coding RNA (lncRNA) discussed here have strong implications for the development of pathology and functional recovery after ischemic stroke. LncRNAs H19 and ANRIL show potential as diagnostic biomarkers, while H19 and MALAT1 may prove to be effective therapeutics for both minimising damage as well as promoting recovery. Other ncRNA have also been implicated in ischemic stroke but are currently too poorly understood to make inferences for diagnosis or treatment. Whilst the field of ncRNAs is relatively new, significant work has already highlighted that ncRNAs represent a promising novel investigative tool for understanding stroke pathology, could be used as diagnostic biomarkers, and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Nikita Potemkin
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, 9054, New Zealand.
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
13
|
Sato K, Takayama KI, Inoue S. Role of piRNA biogenesis and its neuronal function in the development of neurodegenerative diseases. Front Aging Neurosci 2023; 15:1157818. [PMID: 37207075 PMCID: PMC10191213 DOI: 10.3389/fnagi.2023.1157818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by neuronal loss and dysfunction. Despite remarkable improvements in our understanding of these pathogeneses, serious worldwide problems with significant public health burdens are remained. Therefore, new efficient diagnostic and therapeutic strategies are urgently required. PIWI-interacting RNAs (piRNAs) are a major class of small non-coding RNAs that silence gene expression through transcriptional and post-transcriptional processes. Recent studies have demonstrated that piRNAs, originally found in the germ line, are also produced in non-gonadal somatic cells, including neurons, and further revealed the emerging roles of piRNAs, including their roles in neurodevelopment, aging, and neurodegenerative diseases. In this review, we aimed to summarize the current knowledge regarding the piRNA roles in the pathophysiology of neurodegenerative diseases. In this context, we first reviewed on recent updates on neuronal piRNA functions, including biogenesis, axon regeneration, behavior, and memory formation, in humans and mice. We also discuss the aberrant expression and dysregulation of neuronal piRNAs in neurodegenerative diseases, such as AD, PD, and ALS. Moreover, we review pioneering preclinical studies on piRNAs as biomarkers and therapeutic targets. Elucidation of the mechanisms underlying piRNA biogenesis and their functions in the brain would provide new perspectives for the clinical diagnosis and treatment of AD and various neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia (IRIDE), Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|
14
|
Zhan L, Chen M, Pang T, Li X, Long L, Liang D, Peng L, Sun W, Xu E. Attenuation of Piwil2 induced by hypoxic postconditioning prevents cerebral ischemic injury by inhibiting CREB2 promoter methylation. Brain Pathol 2022; 33:e13109. [PMID: 35794855 PMCID: PMC9836370 DOI: 10.1111/bpa.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/24/2022] [Indexed: 01/24/2023] Open
Abstract
Epigenetic modification contributes to the pathogenesis of cerebral ischemia. Piwil2 belongs to the PIWI proteins subfamily and has a key role in the regulation of gene transcription through epigenetics. However, the roles of Piwil2 in cerebral ischemia have not been investigated. In this study, we aim to elucidate the roles and the underlying molecular mechanisms of Piwil2 in ischemic tolerance induced by hypoxic postconditioning (HPC) against transient global cerebral ischemia (tGCI). We found that the expression of Piwil2 in CA1 was downregulated by HPC after tGCI. Silencing Piwil2 with antisense oligodeoxynucleotide (AS-ODN) in CA1 after tGCI decreased the expression of apoptosis-related proteins and exerted neuroprotective effects. Opposite results were observed after overexpression of Piwil2 induced by administration of Piwil2-carried lentivirus. Furthermore, we revealed differentially expressed Piwil2-interacting piRNAs in CA1 between HPC and tGCI groups by RNA binding protein immunoprecipitation (RIP) assay. Moreover, downregulating Piwil2 induced by HPC or AS-ODN after tGCI caused a marked reduction of DNA methyltransferase 3A (DNMT3A), which in turn abolished the tGCI-induced increase in the DNA methylation of cyclic AMP response element-binding 2 (CREB2), thus increasing mRNA and protein of CREB2. Finally, downregulating Piwil2 restored dendritic complexity and length, prevented the loss of dentritic spines, thereby improving cognitive function after tGCI. These data firstly reveal that Piwil2 plays an important part in HPC-mediated neuroprotection against cerebral ischemia through epigenetic regulation of CREB2.
Collapse
Affiliation(s)
- Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Meiyan Chen
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Taoyan Pang
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Xinyu Li
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Long Long
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Donghai Liang
- Department of Environmental Health Sciences, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Linhui Peng
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| |
Collapse
|
15
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
16
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
17
|
Degree of piRNA sharing and Piwi gene expression in the skeletal muscle of Piaractus mesopotamicus (pacu), Colossoma macropomum (tambaqui), and the hybrid tambacu. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111120. [PMID: 34822974 DOI: 10.1016/j.cbpa.2021.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
PiRNAs are a class of small noncoding RNAs that, in their mature form, bind to Piwi proteins to repress transposable element activity. Besides their role in gametogenesis and genome integrity, recent evidence indicates their action in non-germinative tissues. We performed a global analysis of piRNA and Piwi gene expression in the skeletal muscle of juveniles pacu (Piaractus mesopotamicus), tambaqui (Colossoma macropomum), and the hybrid tambacu to evaluate the degree of piRNA sharing among these three genotypes. Total RNA was sequenced and analyzed using specific parameters of piRNAs by bioinformatics tools. piRNA and Piwi gene expression was analyzed by RT-qPCR. We detected 24 piRNA clusters common to the three genotypes, with eight shared between pacu and tambacu, three between pacu and tambaqui, and five between tambaqui and tambacu; seven, five, and four clusters were unique to pacu, tambacu, and tambaqui, respectively. Genomic localization and fold change values showed two clusters and 100 piRNAs shared among the three genotypes. The gene expression of four piRNAs was evaluated to validate our bioinformatics results. piRNAs from cluster 17 were higher in tambacu than pacu and piRNAs from cluster 18 were more highly expressed in tambacu than tambaqui and pacu. In addition, the expression of Piwis 1 and 2 was higher in tambacu and tambaqui than pacu. Our results open an important window to investigate whether these small noncoding RNAs benefit the hybrid in terms of faster growth and offer a new perspective on the function of piRNAs and Piwis in fish skeletal muscle.
Collapse
|
18
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
19
|
Ow MC, Hall SE. piRNAs and endo-siRNAs: Small molecules with large roles in the nervous system. Neurochem Int 2021; 148:105086. [PMID: 34082061 PMCID: PMC8286337 DOI: 10.1016/j.neuint.2021.105086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Since their discovery, small non-coding RNAs have emerged as powerhouses in the regulation of numerous cellular processes. In addition to guarding the integrity of the reproductive system, small non-coding RNAs play critical roles in the maintenance of the soma. Accumulating evidence indicates that small non-coding RNAs perform vital functions in the animal nervous system such as restricting the activity of deleterious transposable elements, regulating nerve regeneration, and mediating learning and memory. In this review, we provide an overview of the current understanding of the contribution of two major classes of small non-coding RNAs, piRNAs and endo-siRNAs, to the nervous system development and function, and present highlights on how the dysregulation of small non-coding RNA pathways can assist in understanding the neuropathology of human neurological disorders.
Collapse
Affiliation(s)
- Maria C Ow
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| | - Sarah E Hall
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
20
|
Chavda V, Madhwani K, Chaurasia B. PiWi RNA in Neurodevelopment and Neurodegenerative disorders. Curr Mol Pharmacol 2021; 15:517-531. [PMID: 34212832 DOI: 10.2174/1874467214666210629164535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Shedding light on the mysterious dark matter of the genome gears up the knowledge of modern biology. Beyond the genome, epigenome layers an untraveled path of fundamental biological and functional roles of gene regulation. Extraordinary character- P element wimpy testis-induced (PiWi)-interacting RNA (piRNA) is a type of small non-coding RNA that serves as a defender that imposes genomic and cellular defense by silencing nucleic and structural invaders. PIWI proteins and piRNAs appear in both reproductive and somatic cells, though germ line richness is partially unraveled more as it was originally discovered. The foremost function is to suppress invasive DNA sequences, which move within genomic DNA referred to as transposon elements (TEs) and downstream target genes via Transcriptional gene silencing (TGS) and Post-translational gene silencing (PTGS). Germline piRNAs maintain genomic integrity, stability, sternness, and impact imprinting expression. Somatic tissue-specific piRNAs have been surprised by their novel roles. piRNA regulates neurodevelopmental processes in metazoans, including humans. Neural heterogeneity, neurogenesis, neural plasticity, and transgenerational inheritance of adaptive and long-term memory are governed by the PIWI pathway. Neuro-developmental, neurodegenerative or psychiatric illness are the outcome of dysregulated piRNA. Aberrant piRNA signature causes inappropriate switching on or off genes by activation of TEs, incorrect epigenetic tags on DNA, and or histones. Defective piRNA regulation leads to abnormal brain development and neurodegenerative etiology, promoting life-threatening disorders. Exemplification of exciting roles of piRNA is in infancy, so future investigation may expand on these observations using innovative techniques and launch them as impending biomarkers for diagnostics and therapeutics. In this current review, we have summarized the possible gene molecular role of piRNAs regulating neurobiology and contributing as uncharted biomarkers and therapeutic targets for life-threatening diseases.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| | | |
Collapse
|
21
|
Huang X, Wong G. An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegener 2021; 10:9. [PMID: 33685517 PMCID: PMC7938595 DOI: 10.1186/s40035-021-00233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding transcripts that are highly conserved across species and regulate gene expression through pre- and post-transcriptional processes. piRNAs were originally discovered in germline cells and protect against transposable element expression to promote and maintain genome stability. In the recent decade, emerging roles of piRNAs have been revealed, including the roles in sterility, tumorigenesis, metabolic homeostasis, neurodevelopment, and neurodegenerative diseases. In this review, we summarize piRNA biogenesis in C. elegans, Drosophila, and mice, and further elaborate upon how piRNAs mitigate the harmful effects of transposons. Lastly, the most recent findings on piRNA participation in neurological diseases are highlighted. We speculate on the mechanisms of piRNA action in the development and progression of neurodegenerative diseases. Understanding the roles of piRNAs in neurological diseases may facilitate their applications in diagnostic and therapeutic practice.
Collapse
Affiliation(s)
- Xiaobing Huang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China.
| |
Collapse
|
22
|
Chavda V, Madhwani K. Coding and non-coding nucleotides': The future of stroke gene therapeutics. Genomics 2021; 113:1291-1307. [PMID: 33677059 DOI: 10.1016/j.ygeno.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 01/05/2023]
Abstract
Stroke is the foremost cause of death ranked after heart disease and cancer. It is the fatal life-threatening event that requires immediate medical admissions to overcome following morbidity and mortality. The therapeutic advances in stroke therapy have been manipulated with diverse paths for last 5 years. Recent research and clinical trials have investigated a variety of anti-stroke agents including anti-coagulants, cerebro-protective agents, antiplatelet therapy, stem-cell therapy, and specified gene therapy. In recent advanced studies, genetic therapies including noncoding RNAs (ncRNAs), long non-coding RNAs (LncRNAs), small interfering RNAs (siRNAs), microRNAs (miRNAs), Piwi interacting RNAs (PiWi RNAs) have shown better potential as targeted future therapeutics with a better outcome than conventional stroke therapeutics. The potential of targeted gene therapy is much more advanced in not only the induction of neuroprotection but also safer non-toxic targeted therapeutics. In the current state of the art review, we have focused on the recent advancements made towards the stroke with RNA modifications and targeted gene therapeutics.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India.
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| |
Collapse
|
23
|
Panta A, Montgomery K, Nicolas M, Mani KK, Sampath D, Sohrabji F. Mir363-3p Treatment Attenuates Long-Term Cognitive Deficits Precipitated by an Ischemic Stroke in Middle-Aged Female Rats. Front Aging Neurosci 2020; 12:586362. [PMID: 33132904 PMCID: PMC7550720 DOI: 10.3389/fnagi.2020.586362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 01/29/2023] Open
Abstract
Cognitive impairment and memory loss are commonly seen after stroke and a third of patients will develop signs of dementia a year after stroke. Despite a large number of studies on the beneficial effects of neuroprotectants, few studies have examined the effects of these compounds/interventions on long-term cognitive impairment. Our previous work showed that the microRNA mir363-3p reduced infarct volume and sensory-motor impairment in the acute stage of stroke in middle-aged females but not males. Thus, the present study determined the impact of mir363-3p treatment on stroke-induced cognitive impairment in middle-aged females. Sprague–Dawley female rats (12 months of age) were subjected to middle cerebral artery occlusion (MCAo; or sham surgery) and injected (iv) with mir363-3p mimic (MCAo + mir363-3p) or scrambled oligos (MCAo + scrambled) 4 h later. Sensory-motor performance was assessed in the acute phase (2–5 days after stroke), while all other behaviors were tested 6 months after MCAo (18 months of age). Cognitive function was assessed by the novel object recognition test (declarative memory) and the Barnes maze (spatial memory). The MCAo + scrambled group showed reduced preference for a novel object after the stroke and poor learning in the spatial memory task. In contrast, mir363-3p treated animals were similar to either their baseline performance or to the sham group. Histological analysis showed significant deterioration of specific white matter tracts due to stroke, which was attenuated in mir363-3p treated animals. The present data builds on our previous finding to show that a neuroprotectant can abrogate the long-term effects of stroke.
Collapse
Affiliation(s)
- Aditya Panta
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Karienn Montgomery
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Marissa Nicolas
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Kathiresh K Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Dayalan Sampath
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
24
|
Wu X, Pan Y, Fang Y, Zhang J, Xie M, Yang F, Yu T, Ma P, Li W, Shu Y. The Biogenesis and Functions of piRNAs in Human Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:108-120. [PMID: 32516734 PMCID: PMC7283962 DOI: 10.1016/j.omtn.2020.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel type of small noncoding RNAs, which are 26-30 nt in length and bind to Piwi proteins. These short RNAs were originally discovered in germline cells and are considered as key regulators for germline maintenance. A growing body of evidence has now extended our views into piRNA biological significance showing that they can also regulate gene expression in somatic cells through transposon silencing, epigenetic programming, DNA rearrangements, mRNA turnover, and translational control. Mounting studies have revealed that the dysregulation of piRNAs may cause epigenetic changes and contribute to diverse diseases. This review illustrates piRNA biogenesis, mechanisms behind piRNA-mediated gene regulation, and changes of piRNAs in different diseases, especially in cancers.
Collapse
Affiliation(s)
- Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jingxin Zhang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Fengming Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China; Department of Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China; Department of Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China.
| |
Collapse
|
25
|
Opposite regulation of piRNAs, rRNAs and miRNAs in the blood after subarachnoid hemorrhage. J Mol Med (Berl) 2020; 98:887-896. [PMID: 32424559 PMCID: PMC7297814 DOI: 10.1007/s00109-020-01922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 10/28/2022]
Abstract
Multiple classes of small RNAs (sRNAs) are expressed in the blood and are involved in the regulation of pivotal cellular processes. We aimed to elucidate the expression patterns and functional roles of sRNAs in the systemic response to intracranial aneurysm (IA) rupture. We used next-generation sequencing to analyze the expression of sRNAs in patients in the acute phase of IA rupture (first 72 h), in the chronic phase (3-15 months), and controls. The patterns of alterations in sRNA expression were analyzed in the context of clinically relevant information regarding the biological consequences of IA rupture. We identified 542 differentially expressed sRNAs (108 piRNAs, 99 rRNAs, 90 miRNAs, 43 scRNAs, 36 tRNAs, and 32 snoRNAs) among the studied groups with notable differences in upregulated and downregulated sRNAs between the groups and sRNAs categories. piRNAs and rRNAs showed a substantial decrease in RNA abundance that was sustained after IA rupture, whereas miRNAs were largely upregulated. Downregulated sRNA genes included piR-31080, piR-57947, 5S rRNA, LSU-rRNA, and SSU-rRNA s. Remarkable enrichment in the representation of transcription factor binding sites was revealed in genomic locations of the regulated sRNA. We found strong overrepresentation of glucocorticoid receptor, retinoid x receptor alpha, and estrogen receptor alpha binding sites at the locations of downregulated piRNAs, tRNAs, and rRNAs. This report, although preliminary and largely proof-of-concept, is the first to describe alterations in sRNAs abundance levels in response to IA rupture in humans. The obtained results indicate novel mechanisms that may constitute another level of control of the inflammatory response. KEY MESSAGES: A total of 542 sRNAs were differentially expressed after aneurysmal SAH comparing with controls piRNAs and rRNAs were upregulated and miRNAs were downregulated after IA rupture The regulated sRNA showed an enrichment in the representation of some transcription factor binding sites piRNAs, tRNAs, and rRNAs showed an overrepresentation for GR, RXRA, and ERALPHA binding sites.
Collapse
|
26
|
PIWIL4 Maintains HIV-1 Latency by Enforcing Epigenetically Suppressive Modifications on the 5' Long Terminal Repeat. J Virol 2020; 94:JVI.01923-19. [PMID: 32161174 DOI: 10.1128/jvi.01923-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Although substantial progress has been made in depicting the molecular pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection, the comprehensive mechanism of HIV-1 latency and the most promising therapeutic strategies to effectively reactivate the HIV-1 latent reservoir to achieve a functional cure for AIDS remain to be systematically illuminated. Here, we demonstrated that piwi (P element-induced Wimpy)-like RNA-mediated gene silencing 4 (PIWIL4) played an important role in suppressing HIV-1 transcription and contributed to the latency state in HIV-1-infected cells through its recruitment of various suppressive factors, including heterochromatin protein 1α/β/γ, SETDB1, and HDAC4. The knockdown of PIWIL4 enhanced HIV-1 transcription and reversed HIV-1 latency in both HIV-1 latently infected Jurkat T cells and primary CD4+ T lymphocytes and resting CD4+ T lymphocytes from HIV-1-infected individuals on suppressive combined antiretroviral therapy (cART). Furthermore, in the absence of PIWIL4, HIV-1 latently infected Jurkat T cells were more sensitive to reactivation with vorinostat (suberoylanilide hydroxamic acid, or SAHA), JQ1, or prostratin. These findings indicated that PIWIL4 promotes HIV-1 latency by imposing repressive marks at the HIV-1 5' long terminal repeat. Thus, the manipulation of PIWIL4 could be a novel strategy for developing promising latency-reversing agents (LRAs).IMPORTANCE HIV-1 latency is systematically modulated by host factors and viral proteins. During this process, the suppression of HIV-1 transcription plays an essential role in promoting HIV-1 latency. In this study, we found that PIWIL4 repressed HIV-1 promoter activity and maintained HIV-1 latency. In particular, we report that PIWIL4 can regulate gene expression through its association with the suppressive activity of HDAC4. Therefore, we have identified a new function for PIWIL4: it is not only a suppressor of endogenous retrotransposons but also plays an important role in inhibiting transcription and leading to latent infection of HIV-1, a well-known exogenous retrovirus. Our results also indicate a novel therapeutic target to reactivate the HIV-1 latent reservoir.
Collapse
|
27
|
Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol 2020; 186:101746. [PMID: 31931031 PMCID: PMC7024016 DOI: 10.1016/j.pneurobio.2020.101746] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
In mammals, many classes of noncoding RNAs (ncRNAs) are expressed at a much higher level in the brain than in other organs. Recent studies have identified a new class of ncRNAs called circular RNAs (circRNAs), which are produced by back-splicing and fusion of either exons, introns, or both exon-intron into covalently closed loops. The circRNAs are also highly enriched in the brain and increase continuously from the embryonic to the adult stage. Although the functional significance and mechanism of action of circRNAs are still being actively explored, they are thought to regulate the transcription of their host genes and sequestration of miRNAs and RNA binding proteins. Some circRNAs are also shown to have translation potential to form peptides. The expression and abundance of circRNAs seem to be spatiotemporally maintained in a normal brain. Altered expression of circRNAs is also thought to mediate several disorders, including brain-tumor growth, and acute and chronic neurodegenerative disorders by affecting mechanisms such as angiogenesis, neuronal plasticity, autophagy, apoptosis, and inflammation. This review discusses the involvement of various circRNAs in brain development and CNS diseases. A better understanding of the circRNA function will help to develop novel therapeutic strategies to treat CNS complications.
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States; William S. Middleton Veterans Hospital, Madison, WI, United States.
| |
Collapse
|
28
|
Kim KW. PIWI Proteins and piRNAs in the Nervous System. Mol Cells 2019; 42:828-835. [PMID: 31838836 PMCID: PMC6939654 DOI: 10.14348/molcells.2019.0241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
PIWI Argonaute proteins and Piwi-interacting RNAs (piRNAs) are expressed in all animal species and play a critical role in cellular defense by inhibiting the activation of transposable elements in the germline. Recently, new evidence suggests that PIWI proteins and piRNAs also play important roles in various somatic tissues, including neurons. This review summarizes the neuronal functions of the PIWI-piRNA pathway in multiple animal species, including their involvement in axon regeneration, behavior, memory formation, and transgenerational epigenetic inheritance of adaptive memory. This review also discusses the consequences of dysregulation of neuronal PIWI-piRNA pathways in certain neurological disorders, including neurodevelopmental and neurodegenerative diseases. A full understanding of neuronal PIWI-piRNA pathways will ultimately provide novel insights into small RNA biology and could potentially provide precise targets for therapeutic applications.
Collapse
Affiliation(s)
- Kyung Won Kim
- Convergence Program of Material Science for Medicine and Pharmaceutics, Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252,
Korea
| |
Collapse
|
29
|
Sohn EJ, Jo YR, Park HT. Downregulation MIWI-piRNA regulates the migration of Schwann cells in peripheral nerve injury. Biochem Biophys Res Commun 2019; 519:605-612. [PMID: 31540693 DOI: 10.1016/j.bbrc.2019.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/26/2022]
Abstract
Although MIWI (PIWI in humans) regulates spermatogenesis and translation machinery, its role in peripheral nerve injury is poorly understood. In this study, we characterized the expression profiles of MIWI after sciatic nerve injury. The results revealed that MIWI was downregulated after sciatic nerve injury. MIWI was colocalized with S100 (a Schwan cell marker), and TOM20 (a mitochondrial marker) on uncut nerves, while some MIWI was also colocalized with myelin protein zero (a myelin marker) on injured nerves. Immunofluorescence revealed that some MIWI was colocalized with SOX10 in the nuclear compartment following nerve injury. MIWI depletion by MIWI siRNA resulted in the reduction of EGR2. To characterize the expression of PIWI interacting RNA (piRNA) during sciatic nerve injury, microarray-based piRNA was conducted. The results revealed that 3447 piRNAs were upregulated, while 4117 piRNAs were downregulated after nerve transection. Interestingly, piR 009614 downregulated the mRNA level of MBP and enhanced the migration of RT-4 Schwann cells. Together, our results suggest that the MIWI-piRNA complex may play a role in Schwann cell responses to nerve injury.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Peripheral Neuropathy Research Center, Department of Molecular Neuroscience, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714, South Korea.
| | - Young Rae Jo
- Peripheral Neuropathy Research Center, Department of Molecular Neuroscience, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714, South Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Molecular Neuroscience, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714, South Korea
| |
Collapse
|
30
|
Sun T, Han X. The disease-related biological functions of PIWI-interacting RNAs (piRNAs) and underlying molecular mechanisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0021-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
George AK, Master K, Majumder A, Homme RP, Laha A, Sandhu HS, Tyagi SC, Singh M. Circular RNAs constitute an inherent gene regulatory axis in the mammalian eye and brain. Can J Physiol Pharmacol 2019; 97:463-472. [DOI: 10.1139/cjpp-2018-0505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts that are produced via alternative, noncanonical pre-mRNA back-splicing events. These single-stranded RNA molecules have been identified in organisms ranging from the worm (Cortés-López et al. 2018. BMC Genomics, 19: 8; Ivanov et al. 2015. Cell Rep. 10: 170–177) to higher eukaryotes (Yang et al. 2017. Cell Res. 27: 626–641) to plants (Li et al. 2017. Biochem. Biophys. Res. Commun. 488: 382–386). At present, research on circRNAs is an active area because of their diverse roles in development, health, and diseases. Partly because their circularity makes them resistant to degradation, they hold great promise as unique biomarkers for ocular and central nervous system (CNS) disorders. We believe that further work on their applications could help in developing them as “first-in-class” diagnostics, therapeutics, and prognostic targets for numerous eye conditions. Interestingly, many circRNAs play key roles in transcriptional regulation by acting as miRNAs sponges, meaning that they serve as master regulators of RNA and protein expression. Since the retina is an extension of the brain and is part of the CNS, we highlight the current state of circRNA biogenesis, properties, and function and we review the crucial roles that they play in the eye and the brain. We also discuss their regulatory roles as miRNA sponges, regulation of their parental genes or linear mRNAs, translation into micropeptides or proteins, and responses to cellular stress. We posit that future advances will provide newer insights into the fields of RNA metabolism in general and diseases of the aging eye and brain in particular. Furthermore, in keeping pace with the rapidly evolving discipline of RNA“omics”-centered metabolism and to achieve uniformity among researchers, we recently introduced the term “cromics” (circular ribonucleic acids based omics) (Singh et al. 2018. Exp. Eye Res. 174: 80–92).
Collapse
Affiliation(s)
- Akash K. George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kruyanshi Master
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Avisek Majumder
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rubens Petit Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Anwesha Laha
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Harpal S. Sandhu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
32
|
Mir363-3p attenuates post-stroke depressive-like behaviors in middle-aged female rats. Brain Behav Immun 2019; 78:31-40. [PMID: 30639697 PMCID: PMC6488367 DOI: 10.1016/j.bbi.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 01/09/2023] Open
Abstract
Women are more likely to develop Post Stroke Depression (PSD) than men and generally do not respond well to anti-depressants with age. This study investigated the effect of microRNA mir363-3p treatment on PSD using a physiologically-relevant animal model. Our previous work showed that mir363-3p treatment, delivered post-stroke, effectively reduces infarct volume in the acute phase of stroke in middle-aged females but not males. Middle-aged female Sprague Dawley rats were tested for baseline sensory motor function and depressive-like behaviors, and then subjected to ischemic stroke via middle cerebral artery occlusion (MCAo) or sham surgery. Animals received either control oligos (MCAo+scrambled, Sham+scrambled) or mir363-3p (MCAo+mir363-3p, Sham+mir363-3p) treatment 4 h later. Sensory motor function and depressive-like behaviors were reassessed up to 100 d after stroke, and circulating levels of IL-6, TNF-alpha and Brain-Derived Neurotrophic Factor (BDNF) were quantified at regular intervals. Prior to termination, Fluorogold was injected into the striatum to assess meso-striatal projections. MCAo+scrambled animals had impaired sensorimotor performance in the acute phase (5 days) of stroke and developed anhedonia, decreased sociability and increased helplessness in the chronic phase. MCAo+mir363-3p animals showed significantly less sensory motor impairment and fewer depressive-like behaviors. IL-6 and TNF-alpha were elevated transiently at 4 weeks after MCAo in both groups. BDNF levels decreased progressively after stroke in the MCAo+scrambled group, and this was attenuated in the mir363-3p group. The number of retrogradely-labeled SNc and VTA cells was reduced in the ischemic hemisphere of the MCAo+scrambled group. In contrast, there was no interhemispheric difference in the number of retrogradely-labeled SNc and VTA cells of MCAo+mir363-3p treated animals. Our results support a therapeutic role for mir363-3p for long-term stroke disability.
Collapse
|
33
|
Jacobs DI, Qin Q, Fu A, Chen Z, Zhou J, Zhu Y. piRNA-8041 is downregulated in human glioblastoma and suppresses tumor growth in vitro and in vivo. Oncotarget 2018; 9:37616-37626. [PMID: 30701019 PMCID: PMC6340885 DOI: 10.18632/oncotarget.26331] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/13/2017] [Indexed: 01/19/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that partner with PIWI proteins to protect germline tissues from destabilizing transposon activity. While the aberrant expression of PIWI proteins has been linked with poor outcomes for many cancers, less is known about the expression or function of piRNAs in cancer. We performed array-based piRNA expression profiling in seven pairs of normal brain and glioblastoma multiforme (GBM) tissue specimens, and identified expression of ~350 piRNAs in both tissues and a subset with dysregulated expression in GBM. Over-expression of the most down-regulated piRNA in GBM tissue, piR-8041, was found to reduce glioma cell line proliferation, induce cell cycle arrest and apoptosis, and inhibit cell survival pathways. Furthermore, pre-treatment with piR-8041 significantly reduced the volume of intracranial mouse xenograft tumors. Taken together, our study reveals reduced expression in GBM of piR-8041 and other piRNAs with tumor suppressive properties, and suggests that restoration of such piRNAs may be a potential strategy for GBM therapy.
Collapse
Affiliation(s)
- Daniel I. Jacobs
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Qin Qin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
- Current address: Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Alan Fu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
- Current Address: Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
34
|
Sohrabji F, Selvamani A. Sex differences in miRNA as therapies for ischemic stroke. Neurochem Int 2018; 127:56-63. [PMID: 30391509 DOI: 10.1016/j.neuint.2018.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023]
Abstract
MicroRNAs, a subset of non-coding RNAs, are present in virtually all tissues including body fluids and are global regulators of the transcriptome. In view of the expanding number of microRNAs and the large number of gene targets that each microRNA can potentially regulate, they have been compared to hormones in the scope of their effects. MicroRNA have been implicated as biomarkers for several diseases including stroke, as well as chronic conditions that are associated with stroke. Recent research has focused on manipulating miRNA to improve stroke outcomes. Although several miRNAs have been shown to have neuroprotective properties, the overwhelming majority of these studies have employed only male animals. This review will focus on two miRNAs, Let7f and mir363-3p, whose effectiveness as a stroke neuroprotectant is sex-specific.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, 77807, USA.
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
35
|
Coenen-Stass AML, Sork H, Gatto S, Godfrey C, Bhomra A, Krjutškov K, Hart JR, Westholm JO, O'Donovan L, Roos A, Lochmüller H, Puri PL, El Andaloussi S, Wood MJA, Roberts TC. Comprehensive RNA-Sequencing Analysis in Serum and Muscle Reveals Novel Small RNA Signatures with Biomarker Potential for DMD. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:1-15. [PMID: 30219269 PMCID: PMC6140421 DOI: 10.1016/j.omtn.2018.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 01/03/2023]
Abstract
Extracellular small RNAs (sRNAs), including microRNAs (miRNAs), are promising biomarkers for diseases such as Duchenne muscular dystrophy (DMD), although their biological relevance is largely unknown. To investigate the relationship between intracellular and extracellular sRNA levels on a global scale, we performed sRNA sequencing in four muscle types and serum from wild-type, dystrophic mdx, and mdx mice in which dystrophin protein expression was restored by exon skipping. Differentially abundant sRNAs were identified in serum (mapping to miRNA, small nuclear RNA [snRNA], and PIWI-interacting RNA [piRNA] loci). One novel candidate biomarker, miR-483, was increased in both mdx serum and muscle, and also elevated in DMD patient sera. Dystrophin restoration induced global shifts in miRNA (including miR-483) and snRNA-fragment abundance toward wild-type levels. Specific serum piRNA-like sRNAs also responded to exon skipping therapy. Absolute miRNA expression in muscle was positively correlated with abundance in the circulation, although multiple highly expressed miRNAs in muscle were not elevated in mdx serum, suggesting that both passive and selective release mechanisms contribute to serum miRNA levels. In conclusion, this study has revealed new insights into the sRNA biology of dystrophin deficiency and identified novel DMD biomarkers.
Collapse
Affiliation(s)
- Anna M L Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Helena Sork
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge 141 86, Sweden
| | - Sole Gatto
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Amarjit Bhomra
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden; Competence Centre on Health Technologies, Tartu 50410, Estonia
| | - Jonathan R Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jakub O Westholm
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| | - Liz O'Donovan
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andreas Roos
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; Biomedical Research Department, Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Hanns Lochmüller
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK; Department of Laboratory Medicine, Karolinska Institutet, Huddinge 141 86, Sweden
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Schulze M, Sommer A, Plötz S, Farrell M, Winner B, Grosch J, Winkler J, Riemenschneider MJ. Sporadic Parkinson's disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs. Acta Neuropathol Commun 2018; 6:58. [PMID: 29986767 PMCID: PMC6038190 DOI: 10.1186/s40478-018-0561-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
Differentiated neurons established via iPSCs from patients that suffer from familial Parkinson's disease (PD) have allowed insights into the mechanisms of neurodegeneration. In the larger cohort of patients with sporadic PD, iPSC based information on disease specific cellular phenotypes is rare. We asked whether differences may be present on genomic and epigenomic levels and performed a comprehensive transcriptomic and epigenomic analysis of fibroblasts, iPSCs and differentiated neuronal cells of sporadic PD-patients and controls. We found that on mRNA level, although fibroblasts and iPSCs are largely indistinguishable, differentiated neuronal cells of sporadic PD patients show significant alterations enriched in pathways known to be involved in disease aetiology, like the CREB-pathway and the pathway regulating PGC1α. Moreover, miRNAs and piRNAs/piRNA-like molecules are largely differentially regulated in cells and post-mortem tissue samples between control- and PD-patients. The most striking differences can be found in piRNAs/piRNA-like molecules, with SINE- and LINE-derived piRNAs highly downregulated in a disease specific manner. We conclude that neuronal cells derived from sporadic PD-patients help to elucidate novel disease mechanisms and provide relevant insight into the epigenetic landscape of sporadic Parkinson's disease as particularly regulated by small RNAs.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Present address: Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Annika Sommer
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sonja Plötz
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Grosch
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
37
|
Leighton LJ, Bredy TW. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain. Noncoding RNA 2018; 4:E15. [PMID: 29880782 PMCID: PMC6027130 DOI: 10.3390/ncrna4020015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.
Collapse
Affiliation(s)
- Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
38
|
He W, Wei D, Cai D, Chen S, Li S, Chen W. Altered Long Non-Coding RNA Transcriptomic Profiles in Ischemic Stroke. Hum Gene Ther 2018; 29:719-732. [PMID: 29284304 DOI: 10.1089/hum.2017.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A previous study described the important regulatory roles of microRNAs (miRNAs) in ischemic stroke. However, the functional significance of long non-coding RNA (lncRNAs) in ischemic stroke was largely unknown. This study aimed to identify lncRNA profiling and elucidate the regulatory mechanisms in the pathophysiology of stroke. RNA sequencing was performed on the blood of three ischemic stroke patients and three normal controls. Differential expression analysis was used to identify differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs). After further correlation and co-expression analysis, the corresponding co-expression networks and miRN-lncRNA-mRNA interaction network were then constructed. The expression of DElncRNAs and DEmRNAs was verified in Gene Expression Omnibus. RNA sequencing and subsequent bioinformatics analysis produced a total of 61 DElncRNAs (14 upregulated and 47 downregulated) and 673 DEmRNAs (432 upregulated and 241 downregulated). LOC105372881 and LOC101929707 were the most highly increased and decreased lncRNAs in ischemic stroke. LncRNA-mRNA co-expression networks were constructed according to 3,008 positively co-expressed and 607 negatively co-expressed lncRNA-mRNA pairs. The DElncRNAs may play roles in the pathways of glycolysis/gluconeogenesis, arrhythmogenic right ventricular cardiomyopathy, adherens junction, lysosome, and hematopoietic cell lineage by regulating their co-expressed mRNAs. Combined with previous data, a miRNA-lncRNA-mRNA interaction network for ischemic stroke was constructed. Based on GSE22255, the expression of six DElncRNAs (CEBPA-AS1, LINC00884, HCG27, MATN1-AS1, HCG26, and LINC01184) and 11 DEmRNAs (TREML4, AHSP, PI3, TESC, ANXA3, OAS1, OAS2, IFI6, ISG15, IFI44L, and LY6E) was similar to the current sequencing data. This study is the first to identify blood lncRNAs in human ischemic stroke using RNA sequencing. The findings may be the foundation for understanding the potential role of lncRNAs in ischemic stroke.
Collapse
Affiliation(s)
- Wenzhen He
- 1 Department of Neurology, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Duncan Wei
- 2 Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - De Cai
- 2 Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Siqia Chen
- 1 Department of Neurology, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Shunxian Li
- 1 Department of Neurology, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Wenjie Chen
- 1 Department of Neurology, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| |
Collapse
|
39
|
Kaur H, Sarmah D, Saraf J, Vats K, Kalia K, Borah A, Yavagal DR, Dave KR, Ghosh Z, Bhattacharya P. Noncoding RNAs in ischemic stroke: time to translate. Ann N Y Acad Sci 2018; 1421:19-36. [DOI: 10.1111/nyas.13612] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Harpreet Kaur
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Kanchan Vats
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory; Department of Life Science and Bioinformatics; Assam University; Silchar Assam India
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery; University of Miami Miller School of Medicine; Miami Florida
| | - Kunjan R. Dave
- Department of Neurology and Neurosurgery; University of Miami Miller School of Medicine; Miami Florida
| | - Zhumur Ghosh
- Department of Bioinformatics; Bose Institute; Kolkata India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
- Department of Neurosurgery, Boston Children's Hospital; Harvard Medical School; Boston Massachusetts
| |
Collapse
|
40
|
Shang JL, Cheng Q, Duan SJ, Li L, Jia LY. Cognitive improvement following ischemia/reperfusion injury induced by voluntary running‑wheel exercise is associated with LncMALAT1‑mediated apoptosis inhibition. Int J Mol Med 2018; 41:2715-2723. [PMID: 29436629 PMCID: PMC5846661 DOI: 10.3892/ijmm.2018.3484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/19/2018] [Indexed: 01/16/2023] Open
Abstract
Previous human and animal studies demonstrated that voluntary exercise may improve cognitive function and facilitate neuronal plasticity in ischemia/reperfusion (I/R) models. However, the possible underlying mechanisms remain to be elucidated. Metastasis‑associated lung adenocarcinoma transcript 1 (MALAT1), a long noncoding RNA (lncRNA), may be associated with the functions and dysfunctions of endothelial cells. The present study investigated whether spontaneous running‑wheel (RW) exercise‑induced MALAT1 expression changes may be associated with the cognitive improvement of mice following I/R injury. The expression of MALAT1 was evaluated using reverse transcription‑quantitative polymerase chain reaction. Artificial MALAT1 and MALAT1 lentiviral mall interfering (siRNA) were used to alter MALAT1 expression levels in vivo. The Morris Water Maze test was performed to evaluate spatial learning and memory retention in the mice. Changes in the apoptotic rates of hippocampal neurons and levels of apoptosis‑associated proteins were also detected. The data revealed that MALAT1 increased in the hippocampus of mice in the RW‑treated I/R group and that this was associated with neurological, learning and memory improvement, reduced infarction volumes, decreased apoptosis and alterations to expression levels of apoptosis‑associated proteins. Following RW training in I/R‑injured mice, lentiviral MALAT1 siRNA conduction partially attenuated the protections induced by voluntary RW. However, exogenous MALAT1 treatment increased the protection. The current findings suggested that voluntary RW protected hippocampal neurons from I/R injury and promoted cognitive restoration, which was associated with lncRNA MALAT1‑mediated apoptosis inhibition.
Collapse
Affiliation(s)
- Jin-Lin Shang
- Neurology Department, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shaanxi 046011, P.R. China
| | - Qing Cheng
- Geriatrics Department, Changzhi People Hospital, Changzhi, Shaanxi 046011, P.R. China
| | - Sheng-Jie Duan
- Neurology Department, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shaanxi 046011, P.R. China
| | - Lu Li
- Neurology Department, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shaanxi 046011, P.R. China
| | - Li-Ya Jia
- Neurology Department, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shaanxi 046011, P.R. China
| |
Collapse
|
41
|
Ray R, Pandey P. piRNA analysis framework from small RNA-Seq data by a novel cluster prediction tool - PILFER. Genomics 2017; 110:355-365. [PMID: 29268962 DOI: 10.1016/j.ygeno.2017.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022]
Abstract
With the increasing number of studies focusing on PIWI-interacting RNA (piRNAs), it is now pertinent to develop efficient tools dedicated towards piRNA analysis. We have developed a novel cluster prediction tool called PILFER (PIrna cLuster FindER), which can accurately predict piRNA clusters from small RNA sequencing data. PILFER is an open source, easy to use tool, and can be executed even on a personal computer with minimum resources. It uses a sliding-window mechanism by integrating the expression of the reads along with the spatial information to predict the piRNA clusters. We have additionally defined a piRNA analysis pipeline incorporating PILFER to detect and annotate piRNAs and their clusters from raw small RNA sequencing data and implemented it on publicly available data from healthy germline and somatic tissues. We compared PILFER with other existing piRNA cluster prediction tools and found it to be statistically more accurate and superior in many aspects such as the robustness of PILFER clusters is higher and memory efficiency is more. Overall, PILFER provides a fast and accurate solution to piRNA cluster prediction.
Collapse
Affiliation(s)
- Rishav Ray
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Priyanka Pandey
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India.
| |
Collapse
|
42
|
Yan H, Rao J, Yuan J, Gao L, Huang W, Zhao L, Ren J. Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis 2017; 8:3211. [PMID: 29238035 PMCID: PMC5870589 DOI: 10.1038/s41419-017-0047-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been demonstrated as an important regulator in diverse human cancers. However, its function and regulatory mechanism in ischemic stroke remains largely unknown. Here, we report that MEG3 is physically associated with microRNA-21 (miR-21), while miR-21 is downregulated following ischemia in the ischemic core in vitro and in vivo, which is opposite to MEG3. Besides, overexpression of miR-21 protects oxygen–glucose deprivation and reoxygenation (OGD/R)-induced apoptotic cell death. Furthermore, MEG3 functions as a competing endogenous RNAs (ceRNAs) and competes with programmed cell death 4 (PDCD4) mRNA for directly binding to miR-21, which mediates ischemic neuronal death. Knockdown of MEG3 protects against ischemic damage and improves overall neurological functions in vivo. Thus, our data uncovers a novel mechanism of lncRNA MEG3 as a ceRNA by targeting miR-21/PDCD4 signaling pathway in regulating ischemic neuronal death, which may help develop new strategies for the therapeutic interventions in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Rao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Likun Gao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lina Zhao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiacai Ren
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
43
|
PIWI family emerging as a decisive factor of cell fate: An overview. Eur J Cell Biol 2017; 96:746-757. [DOI: 10.1016/j.ejcb.2017.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
|
44
|
Guo X, Qiu W, Garcia-Milian R, Lin X, Zhang Y, Cao Y, Tan Y, Wang Z, Shi J, Wang J, Liu D, Song L, Xu Y, Wang X, Liu N, Sun T, Zheng J, Luo J, Zhang H, Xu J, Kang L, Ma C, Wang K, Luo X. Genome-wide significant, replicated and functional risk variants for Alzheimer's disease. J Neural Transm (Vienna) 2017; 124:1455-1471. [PMID: 28770390 PMCID: PMC5654670 DOI: 10.1007/s00702-017-1773-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
Abstract
Genome-wide association studies (GWASs) have reported numerous associations between risk variants and Alzheimer's disease (AD). However, these associations do not necessarily indicate a causal relationship. If the risk variants can be demonstrated to be biologically functional, the possibility of a causal relationship would be increased. In this article, we reviewed all of the published GWASs to extract the genome-wide significant (p < 5×10-8) and replicated associations between risk variants and AD or AD-biomarkers. The regulatory effects of these risk variants on the expression of a novel class of non-coding RNAs (piRNAs) and protein-coding RNAs (mRNAs), the alteration of proteins caused by these variants, the associations between AD and these variants in our own sample, the expression of piRNAs, mRNAs and proteins in human brains targeted by these variants, the expression correlations between the risk genes and APOE, the pathways and networks that the risk genes belonged to, and the possible long non-coding RNAs (LncRNAs) that might regulate the risk genes were analyzed, to investigate the potential biological functions of the risk variants and explore the potential mechanisms underlying the SNP-AD associations. We found replicated and significant associations for AD or AD-biomarkers, surprisingly, only at 17 SNPs located in 11 genes/snRNAs/LncRNAs in eight genomic regions. Most of these 17 SNPs enriched some AD-related pathways or networks, and were potentially functional in regulating piRNAs and mRNAs; some SNPs were associated with AD in our sample, and some SNPs altered protein structures. Most of the protein-coding genes regulated by the risk SNPs were expressed in human brain and correlated with APOE expression. We conclude that these variants were most robust risk markers for AD, and their contributions to AD risk was likely to be causal. As expected, APOE and the lipoprotein metabolism pathway possess the highest weight among these contributions.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai 200030, China
- Department of Psychiatry, Yale University School of Medicine, New
Haven, CT 06510, USA
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of
Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences,
School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Rolando Garcia-Milian
- Curriculum & Research Support Department, Cushing/Whitney
Medical Library, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Cancer Hospital, the
Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin 300222, China
| | - Yuping Cao
- Department of Psychiatry, Second Xiangya Hospital, Central South
University, Changsha 410012, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital,
Beijing 100096, China
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital,
Beijing 100096, China
| | - Jing Shi
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital,
Beijing 100096, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Dengtang Liu
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Lisheng Song
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Yifeng Xu
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao
Tong University, Shanghai 200080, China
| | - Na Liu
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029,
China
| | - Tao Sun
- Huashan Hospital, Fudan University School of Medicine, Shanghai
200040, China
| | - Jianming Zheng
- Huashan Hospital, Fudan University School of Medicine, Shanghai
200040, China
| | - Justine Luo
- Department of Psychiatry, Yale University School of Medicine, New
Haven, CT 06510, USA
| | - Huihao Zhang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou
350001, China
| | - Jianying Xu
- Zhuhai Municipal Maternal and Children’s Health Hospital,
Zhuhai, Guangdong 519000, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention
Research on High Altitude Diseases of Tibet Autonomous Region, Xizang Minzu
University School of Medicine, Xiangyang, Shaanxi 712082, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of
Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences,
School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public
Health, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New
Haven, CT 06510, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital,
Beijing 100096, China
| |
Collapse
|
45
|
Bhattarai S, Pontarelli F, Prendergast E, Dharap A. Discovery of novel stroke-responsive lncRNAs in the mouse cortex using genome-wide RNA-seq. Neurobiol Dis 2017; 108:204-212. [PMID: 28855129 DOI: 10.1016/j.nbd.2017.08.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/01/2017] [Accepted: 08/26/2017] [Indexed: 01/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play major roles in regulating gene expression in mammals, but are poorly understood in ischemic stroke. Using a mouse model of transient focal ischemia, we applied RNA-seq to evaluate for the first time the unbiased, genome-wide expression of lncRNAs as a function of reperfusion time in the cerebral cortex. Focal ischemia was induced in adult male C57BL/6 mice followed by reperfusion for 6, 12 or 24h. Total RNA from ipsilateral cortices was used for Illumina sequencing and reads were mapped to the mouse reference genome (GRCm38). Annotated and novel transcript isoforms were identified and differential expression between the groups was estimated. We observed that the baseline expression of lncRNAs in the healthy cortex was low, but many were highly altered after stroke. Very few of these altered lncRNAs were previously annotated. A total of 259 lncRNA isoforms at 6h, 378 isoforms at 12h, and 217 isoforms at 24h of reperfusion were differentially expressed versus sham controls. Of these, 213, 322 and 171 isoforms at 6, 12 and 24h of reperfusion, respectively, were novel lncRNAs. Reperfusion time-point-specific analyses revealed that the lncRNAs reached peak expression levels at 6h of reperfusion. Positional analysis of ischemia-responsive lncRNAs with respect to ischemia-responsive protein-coding genes identified potential gene-regulatory relationships. Overall, this work shows that transient focal ischemia induces widespread changes in the expression of lncRNAs in the mouse cortex with distinct reperfusion time-point-dependent expression characteristics that may underlie progression of the ischemic pathophysiology. The detection of hundreds of novel ischemia-responsive lncRNAs marks the discovery of new disease-related genomic regions in the adult cortex and may help identify novel opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Sunil Bhattarai
- Laboratory for Stroke Research and Noncoding RNA Biology, Neuroscience Institute, JFK Medical Center, 65 James St, Edison, NJ 08820, United States
| | - Fabrizio Pontarelli
- Laboratory for Stroke Research and Noncoding RNA Biology, Neuroscience Institute, JFK Medical Center, 65 James St, Edison, NJ 08820, United States
| | - Emily Prendergast
- Department of Natural Sciences, Middlesex County College, Edison, NJ 08837, United States
| | - Ashutosh Dharap
- Laboratory for Stroke Research and Noncoding RNA Biology, Neuroscience Institute, JFK Medical Center, 65 James St, Edison, NJ 08820, United States.
| |
Collapse
|
46
|
Abstract
Piwi-interacting RNAs (piRNAs) are the non-coding RNAs with 24-32 nucleotides (nt). They exhibit stark differences in length, expression pattern, abundance, and genomic organization when compared to micro-RNAs (miRNAs). There are hundreds of thousands unique piRNA sequences in each species. Numerous piRNAs have been identified and deposited in public databases. Since the piRNAs were originally discovered and well-studied in the germline, a few other studies have reported the presence of piRNAs in somatic cells including neurons. This paper reviewed the common features, biogenesis, functions, and distributions of piRNAs and summarized their specific functions in the brain. This review may provide new insights and research direction for brain disorders.
Collapse
Affiliation(s)
- Lingjun Zuo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, Las Vegas, NV, USA
| | - Xingguang Luo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
47
|
Poststroke Induction of α-Synuclein Mediates Ischemic Brain Damage. J Neurosci 2017; 36:7055-65. [PMID: 27358461 DOI: 10.1523/jneurosci.1241-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED α-Synuclein (α-Syn), one of the most abundant proteins in the CNS, is known to be a major player in the neurodegeneration observed in Parkinson's disease. We currently report that transient focal ischemia upregulates α-Syn protein expression and nuclear translocation in neurons of the adult rodent brain. We further show that knockdown or knock-out of α-Syn significantly decreases the infarction and promotes better neurological recovery in rodents subjected to focal ischemia. Furthermore, α-Syn knockdown significantly reduced postischemic induction of phospho-Drp1, 3-nitrotyrosine, cleaved caspase-3, and LC-3 II/I, indicating its role in modulating mitochondrial fragmentation, oxidative stress, apoptosis, and autophagy, which are known to mediate poststroke neuronal death. Transient focal ischemia also significantly upregulated serine-129 (S129) phosphorylation (pα-Syn) of α-Syn and nuclear translocation of pα-Syn. Furthermore, knock-out mice that lack PLK2 (the predominant kinase that mediates S129 phosphorylation) showed better functional recovery and smaller infarcts when subjected to transient focal ischemia, indicating a detrimental role of S129 phosphorylation of α-Syn. In conclusion, our studies indicate that α-Syn is a potential therapeutic target to minimize poststroke brain damage. SIGNIFICANCE STATEMENT Abnormal aggregation of α-synuclein (α-Syn) has been known to cause Parkinson's disease and other chronic synucleinopathies. However, even though α-Syn is linked to pathophysiological mechanisms similar to those that produce acute neurodenegerative disorders, such as stroke, the role of α-Syn in such disorder is not clear. We presently studied whether α-Syn mediates poststroke brain damage and more importantly whether preventing α-Syn expression is neuroprotective and leads to better physiological and functional outcome after stroke. Our study indicates that α-Syn is a potential therapeutic target for stroke therapy.
Collapse
|
48
|
Qiu W, Guo X, Lin X, Yang Q, Zhang W, Zhang Y, Zuo L, Zhu Y, Li CSR, Ma C, Luo X. Transcriptome-wide piRNA profiling in human brains of Alzheimer's disease. Neurobiol Aging 2017; 57:170-177. [PMID: 28654860 DOI: 10.1016/j.neurobiolaging.2017.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 01/03/2023]
Abstract
Discovered in the brains of multiple animal species, piRNAs may contribute to the pathogenesis of neuropsychiatric illnesses. The present study aimed to identify brain piRNAs across transcriptome that are associated with Alzheimer's disease (AD). Prefrontal cortical tissues of 6 AD cases and 6 controls were examined for piRNA expression levels using an Arraystar HG19 piRNA array (containing 23,677 piRNAs) and genotyped for 17 genome-wide significant and replicated risk SNPs. We examined whether piRNAs are expressed differently between AD cases and controls and explored the potential regulatory effects of risk SNPs on piRNA expression levels. We identified a total of 9453 piRNAs in human brains, with 103 nominally (p < 0.05) differentially (>1.5 fold) expressed in AD cases versus controls and most of the 103 piRNAs nominally correlated with genome-wide significant risk SNPs. We conclude that piRNAs are abundant in human brains and may represent risk biomarkers of AD.
Collapse
Affiliation(s)
- Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoyun Guo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Shanghai Mental Health Center, Shanghai, China
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Cancer Hospital, the Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qian Yang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wanying Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin, China
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China.
| |
Collapse
|
49
|
Ragan C, Patel K, Edson J, Zhang ZH, Gratten J, Mowry B. Small non-coding RNA expression from anterior cingulate cortex in schizophrenia shows sex specific regulation. Schizophr Res 2017; 183:82-87. [PMID: 27916288 DOI: 10.1016/j.schres.2016.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs) are known to regulate the expression of genes that are important for brain development and function, but the roles of other classes of small non-coding RNAs (sncRNAs) are less well understood. Additionally, although miRNA expression studies have been conducted in post-mortem brain samples from schizophrenia (SCZ) patients, other classes of sncRNAs are yet to be investigated in SCZ. We profiled the expression of miRNAs, piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and small nuclear RNAs (snRNAs) in SCZ by applying small RNA sequencing (RNA-Seq) to sncRNA isolated from post-mortem anterior cingulate cortex (ACC) of SCZ-affected individuals (n=22) and matched controls (n=22). We identified about one-third of annotated miRNAs, one-quarter of snoRNAs and a small proportion of piRNAs and snRNAs. No sncRNAs were significantly differentially expressed between SCZ and controls, but there was evidence for an interaction between disease status and sex on the expression level of a number of miRNAs and snoRNAs. Many of these transcripts exhibited differential expression between male and female cases, and/or between female cases and controls, suggesting sex based dysregulation in ACC of SCZ. These findings require replication in an independent sample, but our study provides further insights into the potential involvement of sncRNAs in brain function and SCZ.
Collapse
Affiliation(s)
- Chikako Ragan
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Kalpana Patel
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Janette Edson
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; The Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Zong-Hong Zhang
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Jacob Gratten
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Bryan Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
50
|
Mick E, Shah R, Tanriverdi K, Murthy V, Gerstein M, Rozowsky J, Kitchen R, Larson MG, Levy D, Freedman JE. Stroke and Circulating Extracellular RNAs. Stroke 2017; 48:828-834. [PMID: 28289238 PMCID: PMC5373984 DOI: 10.1161/strokeaha.116.015140] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose— There is increasing interest in extracellular RNAs (ex-RNAs), with numerous reports of associations between selected microRNAs (miRNAs) and a variety of cardiovascular disease phenotypes. Previous studies of ex-RNAs in relation to risk for cardiovascular disease have investigated small numbers of patients and assayed only candidate miRNAs. No human studies have investigated links between novel ex-RNAs and stroke. Methods— We conducted unbiased next-generation sequencing using plasma from 40 participants of the FHS (Framingham Heart Study; Offspring Cohort Exam 8) followed by high-throughput polymerase chain reaction of 471 ex-RNAs. The reverse transcription quantitative polymerase chain reaction included 331 of the most abundant miRNAs, 43 small nucleolar RNAs, and 97 piwi-interacting RNAs in 2763 additional FHS participants and explored the relations of ex-RNAs and prevalent (n=63) and incident (n=51) stroke and coronary heart disease (prevalent=286, incident=69). Results— After adjustment for multiple cardiovascular disease risk factors, 7 ex-RNAs were associated with stroke prevalence or incidence; there were no ex-RNA associated with prevalent or incident coronary heart disease. Statistically significant ex-RNA associations with stroke were specific, with no overlap between prevalent and incident events. Conclusions— This is the largest study of ex-RNAs in relation to stroke using an unbiased approach in an observational cohort and the first large study to examine human small noncoding RNAs beyond miRNAs. These results demonstrate that when studied in a large observational cohort, extracellular miRNAs are associated with stroke risk.
Collapse
Affiliation(s)
- Eric Mick
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.)
| | - Ravi Shah
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.)
| | - Kahraman Tanriverdi
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.)
| | - Venkatesh Murthy
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.)
| | - Mark Gerstein
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.)
| | - Joel Rozowsky
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.)
| | - Robert Kitchen
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.)
| | - Martin G Larson
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.)
| | - Daniel Levy
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.)
| | - Jane E Freedman
- From the Department of Quantitative Health Sciences (E.M.) and Department of Medicine (K.T., J.E.F.), University of Massachusetts Medical School, Worcester; Department of Cardiology, Massachusetts General Hospital, Boston (R.S.); Department of Cardiology, University of Michigan, Ann Arbor (V.M.); Yale University Medical School, Computational Biology, New Haven, CT (M.G., J.R., R.K.); The NHLBI's and Boston University's Framingham Heart Study, MA (M.G.L.); Biostatistics Department, Boston University School of Public Health, MA (M.G.L.); and The Framingham Heart Study, Population Sciences Branch, NHLBI, Bethesda, MD (D.L.).
| |
Collapse
|