1
|
Kurniawan M, Ramli Y, Putri ND, Harris S, Rasyid A, Mesiano T, Hidayat R. Mesenchymal stem cells therapy for chronic ischemic stroke-a systematic review. ASIAN BIOMED 2024; 18:194-203. [PMID: 39483715 PMCID: PMC11524678 DOI: 10.2478/abm-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Stroke represents a significant global health issue, primarily in the form of ischemic stroke. Despite the availability of therapeutic interventions, the recovery from chronic stroke, occurring 3 months post-initial stroke, poses substantial challenges. A promising avenue for post-acute stroke patients is mesenchymal stem cells (MSCs) therapy, which is derived from various sources and is globally recognized as the most utilized and extensively studied stem cell therapy. This systematic review, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, aims to synthesize evidence regarding the impact of MSCs therapy on patients with chronic ischemic stroke. Employing an advanced search strategy across databases such as PubMed, PubMed Central, Google Scholar, the Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrial.gov, a total of 70 studies were identified, with 4studies meeting the inclusion criteria. Although positive outcomes were observed in terms of efficacy and safety, certain limitations, such as small sample sizes, study heterogeneity, and the absence of placebo groups, undermine the overall strength of the evidence. It is crucial to address these limitations in future research, highlighting the importance of larger sample sizes, standardized methodologies, and comparative trials to improve the assessment of MSCs' efficacy and safety. Moving forward, key priorities include exploring underlying mechanisms, determining optimal administration modes and dosages, and conducting comparative trials. By addressing these aspects, we can propel MSCs therapies toward greater efficacy, safety, and applicability across diverse patient populations.
Collapse
Affiliation(s)
- Mohammad Kurniawan
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Yetty Ramli
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Nadira Deanda Putri
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Salim Harris
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Al Rasyid
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Taufik Mesiano
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Rakhmad Hidayat
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| |
Collapse
|
2
|
Luo J, Feng Y, Hong Z, Yin M, Zheng H, Zhang L, Hu X. High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke. Neural Regen Res 2024; 19:1772-1780. [PMID: 38103244 PMCID: PMC10960276 DOI: 10.4103/1673-5374.389303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00031/figure1/v/2023-12-16T180322Z/r/image-tiff Proliferation of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage. Transcranial magnetic stimulation (TMS) has recently emerged as a tool for inducing endogenous neural stem cell regeneration, but its underlying mechanisms remain unclear. In this study, we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells. Additionally, repetitive TMS reduced the volume of cerebral infarction in a rat model of ischemic stroke caused by middle cerebral artery occlusion, improved rat cognitive function, and promoted the proliferation of neural stem cells in the ischemic penumbra. RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia. Furthermore, PCR analysis revealed that repetitive TMS promoted AKT phosphorylation, leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4. This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway, which ultimately promotes the proliferation of neural stem cells. Subsequently, we validated the effect of repetitive TMS on AKT phosphorylation. We found that repetitive TMS promoted Ca2+ influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway, thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway. These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+ influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway. This study has produced pioneering results on the intrinsic mechanism of repetitive TMS to promote neural function recovery after ischemic stroke. These results provide a strong scientific foundation for the clinical application of repetitive TMS. Moreover, repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications, but also provide an effective platform for the expansion of neural stem cells.
Collapse
Affiliation(s)
- Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhongqiu Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Michór P, Renardson L, Li S, Boltze J. Neurorestorative Approaches for Ischemic StrokeChallenges, Opportunities, and Recent Advances. Neuroscience 2024; 550:69-78. [PMID: 38763225 DOI: 10.1016/j.neuroscience.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Despite recent advances in acute stroke management, most patients experiencing a stroke will suffer from residual brain damage and functional impairment. Addressing those residual deficits would require neurorestoration, i.e., rebuilding brain tissue to repair the structural brain damage caused by stroke. However, there are major pathobiological, anatomical and technological hurdles making neurorestorative approaches remarkably challenging, and true neurorestoration after larger ischemic lesions could not yet be achieved. On the other hand, there has been steady advancement in our understanding of the limits of tissue regeneration in the adult mammalian brain as well as of the fundamental organization of brain tissue growth during embryo- and ontogenesis. This has been paralleled by the development of novel animal models to study stroke, advancement of biomaterials that can be used to support neurorestoration, and in stem cell technologies. This review gives a detailed explanation of the major hurdles so far preventing the achievement of neurorestoration after stroke. It will also describe novel concepts and advancements in biomaterial science, brain organoid culturing, and animal modeling that may enable the investigation of post-stroke neurorestorative approaches in translationally relevant setups. Finally, there will be a review of recent achievements in experimental studies that have the potential to be the starting point of research and development activities that may eventually bring post-stroke neurorestoration within reach.
Collapse
Affiliation(s)
- Paulina Michór
- University of Warwick, School of Life Sciences, Coventry CV4 7AL, United Kingdom
| | - Lydia Renardson
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, United Kingdom
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Johannes Boltze
- University of Warwick, School of Life Sciences, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
4
|
Lan XY, Liang XS, Cao MX, Qin HM, Chu CY, Boltze J, Li S. NCAM mimetic peptide P2 synergizes with bone marrow mesenchymal stem cells in promoting functional recovery after stroke. J Cereb Blood Flow Metab 2024; 44:1128-1144. [PMID: 38230663 PMCID: PMC11179606 DOI: 10.1177/0271678x241226482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
The neural cell adhesion molecule (NCAM) promotes neural development and regeneration. Whether NCAM mimetic peptides could synergize with bone marrow mesenchymal stem cells (BMSCs) in stroke treatment deserves investigation. We found that the NCAM mimetic peptide P2 promoted BMSC proliferation, migration, and neurotrophic factor expression, protected neurons from oxygen-glucose deprivation through ERK and PI3K/AKT activation and anti-apoptotic mechanisms in vitro. Following middle cerebral artery occlusion (MCAO) in rats, P2 alone or in combination with BMSCs inhibited neuronal apoptosis and induced the phosphorylation of ERK and AKT. P2 combined with BMSCs enhanced neurotrophic factor expression and BMSC proliferation in the ischemic boundary zone. Moreover, combined P2 and BMSC therapy induced translocation of nuclear factor erythroid 2-related factor, upregulated heme oxygenase-1 expression, reduced infarct volume, and increased functional recovery as compared to monotreatments. Treatment with LY294002 (PI3K inhibitor) and PD98059 (ERK inhibitor) decreased the neuroprotective effects of combined P2 and BMSC therapy in MCAO rats. Collectively, P2 is neuroprotective while P2 and BMSCs work synergistically to improve functional outcomes after ischemic stroke, which may be attributed to mechanisms involving enhanced BMSC proliferation and neurotrophic factor release, anti-apoptosis, and PI3K/AKT and ERK pathways activation.
Collapse
Affiliation(s)
- Xiao-Yan Lan
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Xue-Song Liang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ming-Xuan Cao
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hua-Min Qin
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Cheng-Yan Chu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Wang Z, Huang C, Shi Z, Liu H, Han X, Chen Z, Li S, Wang Z, Huang J. A taurine-based hydrogel with the neuroprotective effect and the ability to promote neural stem cell proliferation. BIOMATERIALS ADVANCES 2024; 161:213895. [PMID: 38795474 DOI: 10.1016/j.bioadv.2024.213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Ischemic stroke, a cerebrovascular disease caused by arterial occlusion in the brain, can lead to brain impairment and even death. Stem cell therapies have shown positive advantages to treat ischemic stroke because of their extended time window, but the cell viability is poor when transplanted into the brain directly. Therefore, a new hydrogel GelMA-T was developed by introducing taurine on GelMA to transplant neural stem cells. The GelMA-T displayed the desired photocuring ability, micropore structure, and cytocompatibility. Its compressive modulus was more similar to neural tissue compared to that of GelMA. The GelMA-T could protect SH-SY5Y cells from injury induced by OGD/R. Furthermore, the NE-4C cells showed better proliferation performance in GelMA-T than that in GelMA during both 2D and 3D cultures. All results demonstrate that GelMA-T possesses a neuroprotective effect for ischemia/reperfusion injury against ischemic stroke and plays a positive role in promoting NSC proliferation. The novel hydrogel is anticipated to function as cell vehicles for the transplantation of neural stem cells into the stroke cavity, aiming to treat ischemic stroke.
Collapse
Affiliation(s)
- Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanzhen Huang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Zhenyu Shi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
6
|
Ji X, Walczak P, Boltze J. Mitigating the impact of mechanisms causing neuronal degeneration. NEUROPROTECTION 2024; 2:1-3. [PMID: 38645567 PMCID: PMC11027578 DOI: 10.1002/nep3.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Xuming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Piotr Walczak
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
7
|
Rao J, Li H, Zhang H, Xiang X, Ding X, Li L, Geng F, Qi H. Periplaneta Americana (L.) extract activates the ERK/CREB/BDNF pathway to promote post-stroke neuroregeneration and recovery of neurological functions in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117400. [PMID: 37952730 DOI: 10.1016/j.jep.2023.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Periplaneta americana (L.) (PA) has been used in traditional Chinese medicine for thousands of years for the effect of invigorating blood circulation and removing blood stasis. Modern pharmacological research shown that PA extract exhibits promising effects in promoting wound healing and regeneration, as well as in brain diseases such as Parkinson's disease (PD). However, whether it is effective for neuroregeneration and neurological function recovery after stroke still unknown. AIM OF THE STUDY This study aims to investigate the potential effect of PA extract to promote brain remodeling through the activation of endogenous neurogenesis and angiogenesis, in addition, preliminary exploration of its regulatory mechanism. METHODS Firstly, BrdU proliferation assay and immunofluorescence (IF) staining were used to evaluate the effect of PA extract on the neurogenesis and angiogenesis in vitro and in vivo. Subsequently, the effects of PA extract on brain injury in stroke rats were assessed by TTC and HE. While mNSS score, adhesive removal test, rota-rod test, and morris water maze test were used to assess the impact of PA extract on neurological function in post-stroke rats. Finally, the molecular mechanisms of PA extract regulation were explored by RNA-Seq and western blotting. RESULTS The number of BrdU+ cells in C17.2 cells, NSCs and BMECs dramatically increased, as well as the expression of astrocyte marker protein GFAP and neuronal marker protein Tuj-1 in C17.2 and NSCs. Moreover, PA extract also increased the number of BrdU+DCX+, BrdU+GFAP+, BrdU+CD31+ cells in the SGZ area of transient middle cerebral artery occlusion model (tMCAO) rats. TTC and HE staining revealed that PA extract significantly reduced the infarction volume and ameliorated the pathological damage. Behavioral tests demonstrated that treatment with PA extract reduced the mNSS score and the time required to remove adhesive tape, while increasing the time spent on the rotarod. Additionally, in the morris water maze test, the frequency of crossing platform and the time spent in the platform quadrant increased. Finally, RNA-Seq and Western blot revealed that PA extract increased the expression of p-ERK, p-CREB and BDNF. Importantly, PA extract mediated proliferation and differentiation of C17.2 and NSCs reversed by the ERK inhibitor SCH772984 and the BDNF inhibitor ANA-12, respectively. CONCLUSION Our study demonstrated that PA extract promoted neurogenesis and angiogenesis by activating the CREB/ERK signaling pathway and upregulating BDNF expression, thereby recovering neurological dysfunction in post-stroke.
Collapse
Affiliation(s)
- Jiangyan Rao
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Hongpu Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Haonan Zhang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xiaoxia Xiang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xinyu Ding
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Li Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, Sichuan, 610000, China.
| | - Hongyi Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Wang X, Yang J, You C, Bao X, Ma L. Efficacy and Safety of Bone Marrow Derived Stem Cell Therapy for Ischemic Stroke: Evidence from Network Meta-analysis. Curr Stem Cell Res Ther 2024; 19:1102-1110. [PMID: 37612871 DOI: 10.2174/1574888x18666230823094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Several types of stem cells are available for the treatment of stroke patients. However, the optimal type of stem cell remains unclear. OBJECTIVE To analyze the effects of bone marrow-derived stem cell therapy in patients with ischemic stroke by integrating all available direct and indirect evidence in network meta-analyses. METHODS We searched several databases to identify randomized clinical trials comparing clinical outcomes of bone marrow-derived stem cell therapy vs. conventional treatment in stroke patients. Pooled relative risks (RRs) and mean differences (MDs) were reported. The surface under the cumulative ranking (SUCRA) was used to rank the probabilities of each agent regarding different outcomes. RESULTS Overall, 11 trials with 576 patients were eligible for analysis. Three different therapies, including mesenchymal stem cells (MSCs), mononuclear stem cells (MNCs), and multipotent adult progenitor cells (MAPCs), were assessed. The direct analysis demonstrated that stem cell therapy was associated with significantly reduced all-cause mortality rates (RR 0.55, 95% CI 0.33 to 0.93; I2=0%). Network analysis demonstrated MSCs ranked first in reducing mortality (RR 0.42, 95% CrI 0.15 to 0.86) and improving modified Rankin Scale score (MD -0.59 95% CI -1.09 to -0.09), with SUCRA values 80%, and 98%, respectively. Subgroup analysis showed intravenous transplantation was superior to conventional therapy in reducing all-cause mortality (RR 0.53, 95% CrI 0.29 to 0.88). CONCLUSION Using stem cell transplantation was associated with reduced risk of death and improved functional outcomes in patients with ischemic stroke. Additional large trials are warranted to provide more conclusive evidence.
Collapse
Affiliation(s)
- Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jingguo Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- West China Brain Research Centre, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
9
|
Liu J, van Beusekom H, Bu X, Chen G, Henrique Rosado de Castro P, Chen X, Chen X, Clarkson AN, Farr TD, Fu Y, Jia J, Jolkkonen J, Kim WS, Korhonen P, Li S, Liang Y, Liu G, Liu G, Liu Y, Malm T, Mao X, Oliveira JM, Modo MM, Ramos‐Cabrer P, Ruscher K, Song W, Wang J, Wang X, Wang Y, Wu H, Xiong L, Yang Y, Ye K, Yu J, Zhou X, Zille M, Masters CL, Walczak P, Boltze J, Ji X, Wang Y. Preserving cognitive function in patients with Alzheimer's disease: The Alzheimer's disease neuroprotection research initiative (ADNRI). NEUROPROTECTION 2023; 1:84-98. [PMID: 38223913 PMCID: PMC10783281 DOI: 10.1002/nep3.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 01/16/2024]
Abstract
The global trend toward aging populations has resulted in an increase in the occurrence of Alzheimer's disease (AD) and associated socioeconomic burdens. Abnormal metabolism of amyloid-β (Aβ) has been proposed as a significant pathomechanism in AD, supported by results of recent clinical trials using anti-Aβ antibodies. Nonetheless, the cognitive benefits of the current treatments are limited. The etiology of AD is multifactorial, encompassing Aβ and tau accumulation, neuroinflammation, demyelination, vascular dysfunction, and comorbidities, which collectively lead to widespread neurodegeneration in the brain and cognitive impairment. Hence, solely removing Aβ from the brain may be insufficient to combat neurodegeneration and preserve cognition. To attain effective treatment for AD, it is necessary to (1) conduct extensive research on various mechanisms that cause neurodegeneration, including advances in neuroimaging techniques for earlier detection and a more precise characterization of molecular events at scales ranging from cellular to the full system level; (2) identify neuroprotective intervention targets against different neurodegeneration mechanisms; and (3) discover novel and optimal combinations of neuroprotective intervention strategies to maintain cognitive function in AD patients. The Alzheimer's Disease Neuroprotection Research Initiative's objective is to facilitate coordinated, multidisciplinary efforts to develop systemic neuroprotective strategies to combat AD. The aim is to achieve mitigation of the full spectrum of pathological processes underlying AD, with the goal of halting or even reversing cognitive decline.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Heleen van Beusekom
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Xian‐Le Bu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Gong Chen
- Guangdong‐HongKong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouGuangdongChina
| | | | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology, Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Institute of NeuroscienceFujian Medical UniversityFuzhouFujianChina
| | - Xiaowei Chen
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New ZealandUniversity of OtagoDunedinNew Zealand
| | - Tracy D. Farr
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Yuhong Fu
- Brain and Mind Centre & School of Medical SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Woojin Scott Kim
- Brain and Mind Centre & School of Medical SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Guang‐Hui Liu
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yu‐Hui Liu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
- ICVS/3B's—PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Mike M. Modo
- Department of Bioengineering, McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Radiology, McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Pedro Ramos‐Cabrer
- Magnetic Resonance Imaging LaboratoryCIC BiomaGUNE Research Center, Basque Research and Technology Alliance (BRTA)Donostia‐San SebastianSpain
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical SciencesLund UniversityLundSweden
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Medical UniversityZhejiangChina
| | - Jun Wang
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Xuanyue Wang
- School of Optometry and Vision ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic, Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National, Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Haitao Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yi Yang
- Department of NeurologyThe First Hospital of Jilin University, Chang ChunJilinChina
| | - Keqiang Ye
- Faculty of Life and Health SciencesBrain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced TechnologyShenzhenChina
| | - Jin‐Tai Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xin‐Fu Zhou
- Division of Health Sciences, School of Pharmacy and Medical Sciences and Sansom InstituteUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Suzhou Auzone BiotechSuzhouJiangsuChina
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and ToxicologyUniversity of ViennaViennaAustria
| | - Colin L. Masters
- The Florey InstituteThe University of Melbourne, ParkvilleVictoriaAustralia
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | | | - Xunming Ji
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yan‐Jiang Wang
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
10
|
Scrutton AM, Ollis F, Boltze J. Mononuclear cell therapy of neonatal hypoxic-ischemic encephalopathy in preclinical versus clinical studies: a systematic analysis of therapeutic efficacy and study design. NEUROPROTECTION 2023; 1:143-159. [PMID: 38213793 PMCID: PMC7615506 DOI: 10.1002/nep3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024]
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) is a devastating condition affecting around 8.5 in 1000 newborns globally. Therapeutic hypothermia (TH) can reduce mortality and, to a limited extent, disability after HIE. Nevertheless, there is a need for new and effective treatment strategies. Cell based treatments using mononuclear cells (MNC), which can be sourced from umbilical cord blood, are currently being investigated. Despite promising preclinical results, there is currently no strong indicator for clinical efficacy of the approach. This analysis aimed to provide potential explanations for this discrepancy. Methods A systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. Preclinical and clinical studies were retrieved from PubMed, Web of Science, Scopus, and clinicaltrials.gov using a predefined search strategy. A total of 17 preclinical and 7 clinical studies were included. We analyzed overall MNC efficacy in preclinical trials, the methodological quality of preclinical trials and relevant design features in preclinical versus clinical trials. Results There was evidence for MNC therapeutic efficacy in preclinical models of HIE. The methodological quality of preclinical studies was not optimal, and statistical design quality was particularly poor. However, methodological quality was above the standard in other fields. There were significant differences in preclinical versus clinical study design including the use of TH as a baseline treatment (only in clinical studies) and much higher MNC doses being applied in preclinical studies. Conclusions Based on the analyzed data, it is unlikely that therapeutic effect size is massively overestimated in preclinical studies. It is more plausible that the many design differences between preclinical and clinical trials are responsible for the so far lacking proof of efficacy of MNC treatments in HIE. Additional preclinical and clinical research is required to optimize the application of MNC for experimental HIE treatment.
Collapse
Affiliation(s)
- Alexander M. Scrutton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Neurobiology Division, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Ollis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
11
|
Cherkashova E, Namestnikova D, Leonov G, Gubskiy I, Sukhinich K, Melnikov P, Chekhonin V, Yarygin K, Goldshtein D, Salikhova D. Comparative study of the efficacy of intra-arterial and intravenous transplantation of human induced pluripotent stem cells-derived neural progenitor cells in experimental stroke. PeerJ 2023; 11:e16358. [PMID: 38025691 PMCID: PMC10640846 DOI: 10.7717/peerj.16358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cell therapy using neural progenitor cells (NPCs) is a promising approach for ischemic stroke treatment according to the results of multiple preclinical studies in animal stroke models. In the vast majority of conducted animal studies, the therapeutic efficacy of NPCs was estimated after intracerebral transplantation, while the information of the effectiveness of systemic administration is limited. Nowadays, several clinical trials aimed to estimate the safety and efficacy of NPCs transplantation in stroke patients were also conducted. In these studies, NPCs were transplanted intracerebrally in the subacute/chronic phase of stroke. The results of clinical trials confirmed the safety of the approach, however, the degree of functional improvement (the primary efficacy endpoint) was not sufficient in the majority of the studies. Therefore, more studies are needed in order to investigate the optimal transplantation parameters, especially the timing of cell transplantation after the stroke onset. This study aimed to evaluate the therapeutic effects of intra-arterial (IA) and intravenous (IV) administration of NPCs derived from induced pluripotent stem cells (iNPCs) in the acute phase of experimental stroke in rats. Induced pluripotent stem cells were chosen as the source of NPCs as this technology is perspective, has no ethical concerns and provides the access to personalized medicine. Methods Human iNPCs were transplanted IA or IV into male Wistar rats 24 h after the middle cerebral artery occlusion stroke modeling. Therapeutic efficacy was monitored for 14 days and evaluated in comparison with the cell transplantation-free control group. Additionally, cell distribution in the brain was assessed. Results The obtained results show that both routes of systemic transplantation (IV and IA) significantly reduced the mortality and improved the neurological deficit of experimental animals compared to the control group. At the same time, according to the MRI data, only IA administration led to faster and prominent reduction of the stroke volume. After IA administration, iNPCs transiently trapped in the brain and were not detected on day 7 after the transplantation. In case of IV injection, transplanted cells were not visualized in the brain. The obtained data demonstrated that the systemic transplantation of human iNPCs in the acute phase of ischemic stroke can be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Elvira Cherkashova
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Daria Namestnikova
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Georgiy Leonov
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya Gubskiy
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Kirill Sukhinich
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Melnikov
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Konstantin Yarygin
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | | | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russian Federation
| |
Collapse
|
12
|
Paccosi E, Proietti-De-Santis L. Parkinson's Disease: From Genetics and Epigenetics to Treatment, a miRNA-Based Strategy. Int J Mol Sci 2023; 24:ijms24119547. [PMID: 37298496 DOI: 10.3390/ijms24119547] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, characterized by an initial and progressive loss of dopaminergic neurons of the substantia nigra pars compacta via a potentially substantial contribution from protein aggregates, the Lewy bodies, mainly composed of α-Synuclein among other factors. Distinguishing symptoms of PD are bradykinesia, muscular rigidity, unstable posture and gait, hypokinetic movement disorder and resting tremor. Currently, there is no cure for PD, and palliative treatments, such as Levodopa administration, are directed to relieve the motor symptoms but induce severe side effects over time. Therefore, there is an urgency for discovering new drugs in order to design more effective therapeutic approaches. The evidence of epigenetic alterations, such as the dysregulation of different miRNAs that may stimulate many aspects of PD pathogenesis, opened a new scenario in the research for a successful treatment. Along this line, a promising strategy for PD treatment comes from the potential exploitation of modified exosomes, which can be loaded with bioactive molecules, such as therapeutic compounds and RNAs, and can allow their delivery to the appropriate location in the brain, overcoming the blood-brain barrier. In this regard, the transfer of miRNAs within Mesenchymal stem cell (MSC)-derived exosomes has yet to demonstrate successful results both in vitro and in vivo. This review, besides providing a systematic overview of both the genetic and epigenetic basis of the disease, aims to explore the exosomes/miRNAs network and its clinical potential for PD treatment.
Collapse
Affiliation(s)
- Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology (DEB), University of Tuscia, 01100 Viterbo, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology (DEB), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
13
|
Fauzi AA, Thamrin AMH, Permana AT, Ranuh IGMAR, Hidayati HB, Hamdan M, Wahyuhadi J, Suroto NS, Lestari P, Chandra PS. Comparison of the Administration Route of Stem Cell Therapy for Ischemic Stroke: A Systematic Review and Meta-Analysis of the Clinical Outcomes and Safety. J Clin Med 2023; 12:jcm12072735. [PMID: 37048818 PMCID: PMC10094955 DOI: 10.3390/jcm12072735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Stem cell treatment is emerging as an appealing alternative for stroke patients, but there still needs to be an agreement on the protocols in place, including the route of administration. This systematic review aimed to assess the efficacy and safety of the administration routes of stem cell treatment for ischemic stroke. A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A comprehensive literature search was undertaken using the PubMed, Scopus, and Cochrane databases. A total of 21 publications on stem cell therapy for ischemic stroke were included. Efficacy outcomes were measured using the National Institutes of Health Stroke Scale (NIHSS), the modified Rankin Scale (mRS), and the Barthel index (BI). Intracerebral administration showed a better outcome than other routes, but a greater number of adverse events followed due to its invasiveness. Adverse events were shown to be related to the natural history of stroke not to the treatment. However, further investigation is required, since studies have yet to compare the different administration methods directly.
Collapse
Affiliation(s)
- Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Ahmad Muslim Hidayat Thamrin
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Andhika Tomy Permana
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - I. G. M. Aswin R. Ranuh
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Hanik Badriyah Hidayati
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Muhammad Hamdan
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Joni Wahyuhadi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Nur Setiawan Suroto
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Pudji Lestari
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Poodipedi Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 110608, India
| |
Collapse
|
14
|
Mortimer KRH, Vernon-Browne H, Zille M, Didwischus N, Boltze J. Potential effects of commonly applied drugs on neural stem cell proliferation and viability: A hypothesis-generating systematic review and meta-analysis. Front Mol Neurosci 2022; 15:975697. [PMID: 36277493 PMCID: PMC9581168 DOI: 10.3389/fnmol.2022.975697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neural stem cell (NSC) transplantation is an emerging and promising approach to combat neurodegenerative diseases. While NSCs can differentiate into neural cell types, many therapeutic effects are mediated by paracrine, "drug-like" mechanisms. Neurodegenerative diseases are predominantly a burden of the elderly who commonly suffer from comorbidities and thus are subject to pharmacotherapies. There is substantial knowledge about drug-drug interactions but almost nothing is known about a potential impact of pharmacotherapy on NSCs. Such knowledge is decisive for designing tailored treatment programs for individual patients. Previous studies revealed preliminary evidence that the anti-depressants fluoxetine and imipramine may affect NSC viability and proliferation. Here, we derive a hypothesis on how commonly applied drugs, statins and antihypertensives, may affect NSC viability, proliferation, and differentiation. We conducted a systematic review and meta-analysis looking at potential effects of commonly prescribed antihypertensive and antihyperlipidemic medication on NSC function. PubMed and Web of Science databases were searched on according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Publications were assessed against a priori established selection criteria for relevancy. A meta-analysis was then performed on data extracted from publications eligible for full text review to estimate drug effects on NSC functions. Our systematic review identified 1,017 potential studies, 55 of which were eligible for full text review. Out of those, 21 were included in the qualitative synthesis. The meta-analysis was performed on 13 publications; the remainder were excluded as they met exclusion criteria or lacked sufficient data to perform a meta-analysis. The meta-analysis revealed that alpha-2 adrenoceptor agonists, an anti-hypertensive drug class [p < 0.05, 95% confidence intervals (CI) = -1.54; -0.35], and various statins [p < 0.05, 95% CI = -3.17; -0.0694] had an inhibiting effect on NSC proliferation. Moreover, we present preliminary evidence that L-type calcium channel blockers and statins, particularly lovastatin, may reduce NSC viability. Although the data available in the literature is limited, there are clear indications for an impact of commonly applied drugs, in particular statins, on NSC function. Considering the modes of action of the respective drugs, we reveal plausible mechanisms by which this impact may be mediated, creating a testable hypothesis, and providing insights into how future confirmative research on this topic may be conducted.
Collapse
Affiliation(s)
- Katherine R. H. Mortimer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Marietta Zille
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition and Center for Neuroscience, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
15
|
Zhang S, Kong DW, Ma GD, Liu CD, Yang YJ, Liu S, Jiang N, Pan ZR, Zhang W, Kong LL, Du GH. Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway. Acta Pharmacol Sin 2022; 43:2212-2225. [PMID: 35217812 PMCID: PMC9433393 DOI: 10.1038/s41401-021-00844-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Stroke is the major cause of death and disability worldwide. Most stroke patients who survive in the acute phase of ischemia display various extents of neurological deficits. In order to improve the prognosis of ischemic stroke, promoting endogenous neurogenesis has attracted great attention. Salvianolic acid A (SAA) has shown neuroprotective effects against ischemic diseases. In the present study, we investigated the neurogenesis effects of SAA in ischemic stroke rats, and explored the underlying mechanisms. An autologous thrombus stroke model was established by electrocoagulation. The rats were administered SAA (10 mg/kg, ig) or a positive drug edaravone (5 mg/kg, iv) once a day for 14 days. We showed that SAA administration significantly decreased infarction volume and vascular embolism, and ameliorated pathological injury in the hippocampus and striatum as well as the neurological deficits as compared with the model rats. Furthermore, we found that SAA administration significantly promoted neural stem/progenitor cells (NSPCs) proliferation, migration and differentiation into neurons, enhanced axonal regeneration and diminished neuronal apoptosis around the ipsilateral subventricular zone (SVZ), resulting in restored neural density and reconstructed neural circuits in the ischemic striatum. Moreover, we revealed that SAA-induced neurogenesis was associated to activating Wnt3a/GSK3β/β-catenin signaling pathway and downstream target genes in the hippocampus and striatum. Edaravone exerted equivalent inhibition on neuronal apoptosis in the SVZ, as SAA, but edaravone-induced neurogenesis was weaker than that of SAA. Taken together, our results demonstrate that long-term administration of SAA improves neurological function through enhancing endogenous neurogenesis and inhibiting neuronal apoptosis in ischemic stroke rats via activating Wnt3a/GSK3β/β-catenin signaling pathway. SAA may be a potential therapeutic drug to promote neurogenesis after stroke.
Collapse
Affiliation(s)
- Sen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - De-Wen Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guo-Dong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Cheng-di Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yu-Jiao Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shan Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Nan Jiang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- School of Pharmacy, Henan University, Zhengzhou, 475004, China
| | - Zi-Rong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Lei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
16
|
Jin X, Li P, Michalski D, Li S, Zhang Y, Jolkkonen J, Cui L, Didwischus N, Xuan W, Boltze J. Perioperative stroke: A perspective on challenges and opportunities for experimental treatment and diagnostic strategies. CNS Neurosci Ther 2022; 28:497-509. [PMID: 35224865 PMCID: PMC8928912 DOI: 10.1111/cns.13816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Perioperative stroke is an ischemic or hemorrhagic cerebral event during or up to 30 days after surgery. It is a feared condition due to a relatively high incidence, difficulties in timely detection, and unfavorable outcome compared to spontaneously occurring stroke. Recent preclinical data suggest that specific pathophysiological mechanisms such as aggravated neuroinflammation contribute to the detrimental impact of perioperative stroke. Conventional treatment options are limited in the perioperative setting due to difficult diagnosis and medications affecting coagulation in may cases. On the contrary, the chance to anticipate cerebrovascular events at the time of surgery may pave the way for prevention strategies. This review provides an overview on perioperative stroke incidence, related problems, and underlying pathophysiological mechanisms. Based on this analysis, we assess experimental stroke treatments including neuroprotective approaches, cell therapies, and conditioning medicine strategies regarding their potential use in perioperative stroke. Interestingly, the specific aspects of perioperative stroke might enable a more effective application of experimental treatment strategies such as classical neuroprotection whereas others including cell therapies may be of limited use. We also discuss experimental diagnostic options for perioperative stroke augmenting classical clinical and imaging stroke diagnosis. While some experimental stroke treatments may have specific advantages in perioperative stroke, the paucity of established guidelines or multicenter clinical research initiatives currently limits their thorough investigation.
Collapse
Affiliation(s)
- Xia Jin
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | | | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yueman Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Jukka Jolkkonen
- Department of Neurology and A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Coventry, UK.,Department of Radiology, University of Pittsburgh, Pittsburgh, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
17
|
Wang L, Chen Y, Wei L, He J. BMP-6 Attenuates Oxygen and Glucose Deprivation-Induced Apoptosis in Human Neural Stem Cells through Inhibiting p38 MAPK Signaling Pathway. Int J Stem Cells 2021; 15:144-154. [PMID: 34711703 PMCID: PMC9148838 DOI: 10.15283/ijsc21093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Objectives Neural stem cells (NSCs) remain in the mammalian brain throughout life and provide a novel therapeutic strategy for central nervous system (CNS) injury. Bone morphogenetic protein-6 (BMP-6) had shown a protective effect in different types of cells. However, the role of BMP-6 in NSCs is largely unclear. The present study was aimed to investigate whether BMP-6 could protect human NSCs (hNSCs) against the oxygen and glucose deprivation (OGD)-induced cell death. Methods and Results Upon challenge with OGD treatment, cell viability was significantly decreased in a time-dependent manner, as indicated by the CCK-8 assay. BMP-6 could attenuate the OGD-induced cell injury in a dose-dependent manner and decrease the number of TUNEL-positive cells. Moreover, BMP-6 markedly weakened the OGD-induced alterations in the expression of procaspase-8/9/3 and reversed the expression of cleaved-caspase-3. Interestingly, noggin protein (the BMP-6 inhibitor) attenuated the neuroprotective effect of BMP-6 in cultured hNSCs. Furthermore, the p38 MAPK signaling pathway was activated by OGD treatment and BMP-6 markedly inhibited the phosphorylation of p38 in a concentration-dependent manner. Pretreatment with noggin abolished the effect of BMP-6 on p38 activation. SB239063, a selective p38 inhibitor, exerted similar effects with BMP-6 in protecting hNSCs against the OGD-induced apoptosis. These results indicated that blocking the phosphorylation of p38 might contribute to the neuroprotective effect of BMP-6 against the OGD-induced injury in hNSCs. Conclusions These findings suggested that BMP-6 might be a therapeutic target in the OGD-induced cell death, which provides a novel therapeutic strategy for enhancing host and graft NSCs survival in hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Lin Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jing He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
18
|
Lan XY, Sun ZW, Xu GL, Chu CY, Qin HM, Li S, Geng X, Gao P, Boltze J, Li S. Bone Marrow Mesenchymal Stem Cells Exert Protective Effects After Ischemic Stroke Through Upregulation of Glutathione. Stem Cell Rev Rep 2021; 18:585-594. [PMID: 34449012 DOI: 10.1007/s12015-021-10178-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been shown to promote stroke recovery, however, the underlying mechanisms are not well understood. In this study naïve rats were intravenously injected with syngeneic BMSCs to screen for potential differences in brain metabolite spectrum versus vehicle-treated controls by capillary electrophoresis-mass spectrometry. A total of 65 metabolites were significantly changed after BMSC treatment. Among them, 5-oxoproline, an intermediate in the biosynthesis of the endogenous glutathione (GSH), was increased. To confirm the obtained results and investigate the metabolic pathways, BMSCs were injected into rats 24 h after middle cerebral artery occlusion (MCAO). Rats receiving vehicle solution and sham-operated animals served as controls. High performance liquid chromatography, reverse transcription-quantitative polymerase chain reaction, and Western blotting revealed that intravenous BMSC application increased the levels of 5-oxoproline and GSH in MCAO rats, as well as the expression of key enzymes involved in GSH synthesis including, gamma-glutamylcyclotransferase and gamma-glutamylcysteine ligase. Subsequent clinical investigation confirmed that acute ischemic stroke patients had higher plasma 5-oxoproline and GSH levels than age- and sex-matched non-stroke controls. The optimal cutoff value for 5-oxoproline diagnosing acute ischemic stroke (≤ 7d) was 3.127 µg/mL (sensitivity, 63.4 %; specificity, 81.2 %) determined by receiver characteristic operator curve. The area under the curve was 0.782 (95 % confidence interval: 0.718-0.845). Our findings indicate that BMSCs play a protective role in ischemic stroke through upregulation of GSH and 5-oxoproline is a potential biomarker for acute ischemic stroke. Ischemic stroke causes oxidative stress and induction of endogenous, glutathione-dependent anti-oxidative mechanisms. 5-oxoproline, an important metabolite in glutathione biosynthesis, could serve as a biomarker of acute ischemic stroke. Moreover, intravenous bone marrow mesenchymal stem cell (BMSC) treatment after experimental stroke upregulates the expression of key enzymes involved in glutathione synthesis, which results in better antioxidative defense and improved stroke outcome.
Collapse
Affiliation(s)
- Xiao-Yan Lan
- Department of Neurology, Dalian Municipal Central Hospital Affiliated with Dalian Medical University, Dalian, China
| | - Zheng-Wu Sun
- Department of Pharmacy, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Gui-Lian Xu
- Biochemistry Laboratory, Dalian Institute for Drug Control, Dalian, China
| | - Cheng-Yan Chu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated with Dalian Medical University, Dalian, China
| | - Hua-Min Qin
- Department of Pathology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Shen Li
- Department of Endocrinology, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Xin Geng
- Biochemistry Laboratory, Dalian Institute for Drug Control, Dalian, China
| | - Peng Gao
- Clinical Laboratory, the Sixth People's Hospital of Dalian, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated with Dalian Medical University, Dalian, China.
| |
Collapse
|
19
|
Lyu Z, Park J, Kim KM, Jin HJ, Wu H, Rajadas J, Kim DH, Steinberg GK, Lee W. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat Biomed Eng 2021; 5:847-863. [PMID: 34385693 PMCID: PMC8524779 DOI: 10.1038/s41551-021-00744-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
The therapeutic efficacy of stem cells transplanted into an ischaemic brain depends primarily on the responses of the neurovascular unit. Here, we report the development and applicability of a functional neurovascular unit on a microfluidic chip as a microphysiological model of ischaemic stroke that recapitulates the function of the blood-brain barrier as well as interactions between therapeutic stem cells and host cells (human brain microvascular endothelial cells, pericytes, astrocytes, microglia and neurons). We used the model to track the infiltration of a number of candidate stem cells and to characterize the expression levels of genes associated with post-stroke pathologies. We observed that each type of stem cell showed unique neurorestorative effects, primarily by supporting endogenous recovery rather than through direct cell replacement, and that the recovery of synaptic activities is correlated with the recovery of the structural and functional integrity of the neurovascular unit rather than with the regeneration of neurons.
Collapse
Affiliation(s)
- Zhonglin Lyu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jon Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kwang-Min Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hye-Jin Jin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haodi Wu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jayakumar Rajadas
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deok-Ho Kim
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A.,Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Gary K. Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wonjae Lee
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA.,Correspondence and requests for materials should be addressed to: Corresponding author, Wonjae Lee, or
| |
Collapse
|
20
|
Kikuchi-Taura A, Okinaka Y, Saino O, Takeuchi Y, Ogawa Y, Kimura T, Gul S, Claussen C, Boltze J, Taguchi A. Gap junction-mediated cell-cell interaction between transplanted mesenchymal stem cells and vascular endothelium in stroke. Stem Cells 2021; 39:904-912. [PMID: 33704866 PMCID: PMC8807299 DOI: 10.1002/stem.3360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
We have shown previously that transplanted bone marrow mononuclear cells (BM-MNC), which are a cell fraction rich in hematopoietic stem cells, can activate cerebral endothelial cells via gap junction-mediated cell-cell interaction. In the present study, we investigated such cell-cell interaction between mesenchymal stem cells (MSC) and cerebral endothelial cells. In contrast to BM-MNC, for MSC we observed suppression of vascular endothelial growth factor uptake into endothelial cells and transfer of glucose from endothelial cells to MSC in vitro. The transfer of such a small molecule from MSC to vascular endothelium was subsequently confirmed in vivo and was followed by suppressed activation of macrophage/microglia in stroke mice. The suppressive effect was absent by blockade of gap junction at MSC. Furthermore, gap junction-mediated cell-cell interaction was observed between circulating white blood cells and MSC. Our findings indicate that gap junction-mediated cell-cell interaction is one of the major pathways for MSC-mediated suppression of inflammation in the brain following stroke and provides a novel strategy to maintain the blood-brain barrier in injured brain. Furthermore, our current results have the potential to provide a novel insight for other ongoing clinical trials that make use of MSC transplantation aiming to suppress excess inflammation, as well as other diseases such as COVID-19 (coronavirus disease 2019).
Collapse
Affiliation(s)
- Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuka Okinaka
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yukiko Takeuchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Johannes Boltze
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|
21
|
Sommer CJ, Schäbitz WR. Principles and requirements for stroke recovery science. J Cereb Blood Flow Metab 2021; 41:471-485. [PMID: 33175596 PMCID: PMC7907998 DOI: 10.1177/0271678x20970048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
The disappointing results in bench-to-bedside translation of neuroprotective strategies caused a certain shift in stroke research towards enhancing the endogenous recovery potential of the brain. One reason for this focus on recovery is the much wider time window for therapeutic interventions which is open for at least several months. Since recently two large clinical studies using d-amphetamine or fluoxetine, respectively, to enhance post-stroke neurological outcome failed again it is a good time for a critical reflection on principles and requirements for stroke recovery science. In principal, stroke recovery science deals with all events from the molecular up to the functional and behavioral level occurring after brain ischemia eventually ending up with any measurable improvement of various clinical parameters. A detailed knowledge of the spontaneously occurring post-ischemic regeneration processes is the indispensable prerequisite for any therapeutic approaches aiming to modify these responses to enhance post-stroke recovery. This review will briefly illuminate the molecular mechanisms of post-ischemic regeneration and the principle possibilities to foster post-stroke recovery. In this context, recent translational approaches are analyzed. Finally, the principal and specific requirements and pitfalls in stroke recovery research as well as potential explanations for translational failures will be discussed.
Collapse
Affiliation(s)
- Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the
Johannes Gutenberg-University Mainz, Mainz, Germany
| | | |
Collapse
|
22
|
Li WY, Zhu QB, Jin LY, Yang Y, Xu XY, Hu XY. Exosomes derived from human induced pluripotent stem cell-derived neural progenitor cells protect neuronal function under ischemic conditions. Neural Regen Res 2021; 16:2064-2070. [PMID: 33642395 PMCID: PMC8343330 DOI: 10.4103/1673-5374.308665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Compared with other stem cells, human induced pluripotent stem cells-derived neural progenitor cells (iPSC-NPCs) are more similar to cortical neurons in morphology and immunohistochemistry. Thus, they have greater potential for promoting the survival and growth of neurons and alleviating the proliferation of astrocytes. Transplantation of stem cell exosomes and stem cells themselves have both been shown to effectively repair nerve injury. However, there is no study on the protective effects of exosomes derived from iPSC-NPCs on oxygen and glucose deprived neurons. In this study, we established an oxygen-glucose deprivation model in embryonic cortical neurons of the rat by culturing the neurons in an atmosphere of 95% N2 and 5% CO2 for 1 hour and then treated them with iPSC-NPC-derived exosomes for 30 minutes. Our results showed that iPSC-NPC-derived exosomes increased the survival of oxygen- and glucose-deprived neurons and the level of brain-derived neurotrophic factor in the culture medium. Additionally, it attenuated oxygen and glucose deprivation-induced changes in the expression of the PTEN/AKT signaling pathway as well as synaptic plasticity-related proteins in the neurons. Further, it increased the length of the longest neurite in the oxygen- and glucose-deprived neurons. These findings validate the hypothesis that exosomes from iPSC-NPCs exhibit a neuroprotective effect on oxygen- and glucose-deprived neurons by regulating the PTEN/AKT signaling pathway and neurite outgrowth. This study was approved by the Animal Ethics Committee of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China (approval No. SRRSH20191010) on October 10, 2019.
Collapse
Affiliation(s)
- Wen-Yu Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qiong-Bin Zhu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lu-Ya Jin
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiao-Yan Xu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xing-Yue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine; Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Gao Y, Chu C, Jablonska A, Bulte JWM, Walczak P, Janowski M. Imaging as a tool to accelerate the translation of extracellular vesicle-based therapies for central nervous system diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1688. [PMID: 33336512 DOI: 10.1002/wnan.1688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are natural and diverse lipid bilayer-enclosed particles originating from various cellular components and containing an abundance of cargoes. Due to their unique properties, EVs have gained considerable interest as therapeutic agents for a variety of diseases, including central nervous system (CNS) disorders. Their therapeutic value depends on cell origin but can be further enhanced by enrichment of cargo when used as drug carriers. Therefore, there has been significant effort directed toward introducing them to clinical practice. However, it is essential to avoid the failures we have seen with whole-cell therapy, in particular for the treatment of the CNS. Successful launching of clinical studies is contingent upon the understanding of the biodistribution of EVs, including their uptake and clearance from organs and specific homing into the region of interest. A multitude of noninvasive imaging methods has been explored in vitro to investigate the spatio-temporal dynamics of EVs administered in vivo. However, only a few studies have been performed to track the delivery of EVs, especially delivery to the brain, which is the most therapeutically challenging organ. We focus here on the use of advanced imaging techniques as an essential tool to facilitate the acceleration of clinical translation of EV-based therapeutics, especially in the CNS arena. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yue Gao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Ma Y, Jiang L, Wang L, Li Y, Liu Y, Lu W, Shi R, Zhang L, Fu Z, Qu M, Liu Y, Wang Y, Zhang Z, Yang GY. Endothelial progenitor cell transplantation alleviated ischemic brain injury via inhibiting C3/C3aR pathway in mice. J Cereb Blood Flow Metab 2020; 40:2374-2386. [PMID: 31865842 PMCID: PMC7820683 DOI: 10.1177/0271678x19892777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial progenitor cell transplantation is a potential therapeutic approach in brain ischemia. However, whether the therapeutic effect of endothelial progenitor cells is via affecting complement activation is unknown. We established a mouse focal ischemia model (n = 111) and transplanted endothelial progenitor cells into the peri-infarct region immediately after brain ischemia. Neurological outcomes and brain infarct/atrophy volume were examined after ischemia. Expression of C3, C3aR and pro-inflammatory factors were further examined to explore the role of endothelial progenitor cells in ischemic brain. We found that endothelial progenitor cells improved neurological outcomes and reduced brain infarct/atrophy volume after 1 to 14 days of ischemia compared to the control (p < 0.05). C3 and C3aR expression in the brain was up-regulated at 1 day up to 14 days (p < 0.05). Endothelial progenitor cells reduced astrocyte-derived C3 (p < 0.05) and C3aR expression (p < 0.05) after ischemia. Endothelial progenitor cells also reduced inflammatory response after ischemia (p < 0.05). Endothelial progenitor cell transplantation reduced astrocyte-derived C3 expression in the brain after ischemic stroke, together with decreased C3aR and inflammatory response contributing to neurological function recovery. Our results indicate that modulating complement C3/C3aR pathway is a novel therapeutic target for the ischemic stroke.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Jiang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenjing Lu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Linyuan Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zongjie Fu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Meijie Qu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingling Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongting Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Abstract
There is a growing interest in the potential of adult stem cells for implementing regenerative medicine in the brain. We assessed the effect of intracerebroventricular (icv) administration of human umbilical cord perivascular cells (HUCPVCs) on spatial memory of senile (27 mo) female rats, using intact senile counterparts as controls. Approximately one third of the animals were injected in the lateral ventricles with a suspension containing 4.8 X 105 HUCPVC in 8 μl per side. The other third received 4.8 X 105 transgenic HUCPVC overexpressing Insulin-like growth factor-1 (IGF-1) and the last third of the rats received no treatment. Spatial memory performance was evaluated using a modified version of the Barnes maze test. In order to evaluate learning ability as well as spatial memory retention, we assessed the time spent (permanence) by animals in goal sector 1 (GS1) and 3 (GS3) when the escape box was removed. Fluorescence microscopy revealed the prescence of Dil-labeled HUCPVC in coronal sections of treated brains. The HUCPVC were located in close contact with the ependymal cells with only a few labeled cells migrating into the brain parenchyma. After treatment with naïve or IGF-1 transgenic HUCPVC, permanence in GS1 and GS3 increased significantly whereas there were no changes in the intact animals. We conclude that HUCPVC injected icv are effective to improve some components of spatial memory in senile rats. The ready accessibility of HUCPVC constitutes a significant incentive to continue the exploration of their therapeutic potential on neurodegenerative diseases.
Collapse
|
26
|
Li Z, Dong X, Tian M, Liu C, Wang K, Li L, Liu Z, Liu J. Stem cell-based therapies for ischemic stroke: a systematic review and meta-analysis of clinical trials. Stem Cell Res Ther 2020; 11:252. [PMID: 32586371 PMCID: PMC7318436 DOI: 10.1186/s13287-020-01762-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Recently, extensive researches about stem cell-based therapies for ischemic stroke have been published; our review evaluated the efficacy and safety of stem cell-based therapies for ischemic stroke. Our review was registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number CRD42019135805. Two independent observers searched PubMed, EMBASE, Cochrane Library (Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials), and Web of Science (Science Citation Index Expanded) for relevant studies up to 31 May 2019. We included clinical trials which compared efficacy outcomes (measured by National Institutes of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), or Barthel index (BI)) and safety outcomes (such as death and adverse effects) between the stem cell-based therapies and control in ischemic stroke. We performed random effect meta-analysis using Review Manager 5.3. Our review included nine randomized controlled trials (RCTs) and seven non-randomized studies (NRSs), involving 740 participants. Stem cell-based therapies were associated with better outcomes measured by NIHSS (mean difference (MD) − 1.63, 95% confidence intervals (CI) − 2.73 to − 0.53, I2 =60%) and BI (MD 14.68, 95% CI 1.12 to 28.24, I2 = 68%) in RCTs, and by BI (MD 6.40, 95% CI 3.14 to 9.65, I2 = 0%) in NRSs. However, the risk of bias was high and the efficacy outcomes of RCTs were high heterogeneity. There was no significant difference in mortality between the stem cell group and the control group. Fever, headache, and recurrent stroke were the most frequently reported adverse effects. Our review shows that stem cell-based therapies can improve the neurological deficits and activities of daily living in patients with ischemic stroke.
Collapse
Affiliation(s)
- Zhonghao Li
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Xiaoke Dong
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Min Tian
- Department of Neurology, China-Japan Friendship Hospital, Ying Hua Dong Jie, Beijing, 100029, China
| | - Chongchong Liu
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Kaiyue Wang
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Lili Li
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Zunjing Liu
- Department of Neurology, China-Japan Friendship Hospital, Ying Hua Dong Jie, Beijing, 100029, China.
| | - Jinmin Liu
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
27
|
Boltze J, Abe K, Clarkson AN, Detante O, Pimentel-Coelho PM, Rosado-de-Castro PH, Janowski M. Editorial: Cell-based Therapies for Stroke: Promising Solution or Dead End? Front Neurol 2020; 11:171. [PMID: 32308639 PMCID: PMC7145965 DOI: 10.3389/fneur.2020.00171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Oliver Detante
- Stroke Unit, Neurology Department, Grenoble Hospital, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, Université Grenoble Alpes, Grenoble, France
| | - Pedro M Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Paulo H Rosado-de-Castro
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
28
|
Intraventricular Medium B Treatment Benefits an Ischemic Stroke Rodent Model via Enhancement of Neurogenesis and Anti-apoptosis. Sci Rep 2020; 10:6596. [PMID: 32313130 PMCID: PMC7171187 DOI: 10.1038/s41598-020-63598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
Enhancement of endogenous neurogenesis after ischemic stroke may improve functional recovery. We previously demonstrated that medium B, which is a combination with epidermal growth factor (EGF) and fibronectin, can promote neural stem/progenitor cell (NSPC) proliferation and migration. Here, we showed that medium B promoted proliferation and migration of cultured NSPCs onto various 3-dimentional structures. When rat cortical neurons with oxygen glucose deprivation (OGD) were co-cultured with NSPCs, medium B treatment increased neuronal viability and reduced cell apoptosis. In a rat model with transient middle cerebral artery occlusion (MCAO), post-insult intraventricular medium B treatment enhanced proliferation, migration, and neuronal differentiation of NSPCs and diminished cell apoptosis in the infarct brain. In cultured post-OGD neuronal cells and the infarct brain from MCAO rats, medium B treatment increased protein levels of Bcl-xL, Bcl-2, phospho-Akt, phospho-GSK-3β, and β-catenin and decreased the cleaved caspase-3 level, which may be associated with the effects of anti-apoptosis. Notably, intraventricular medium B treatment increased neuronal density, improved motor function and reduced infarct size in MCAO rats. In summary, medium B treatment results in less neuronal death and better functional outcome in both cellular and rodent models of ischemic stroke, probably via promotion of neurogenesis and reduction of apoptosis.
Collapse
|
29
|
Mello TG, Rosado-de-Castro PH, Campos RMP, Vasques JF, Rangel-Junior WS, Mattos RSDARD, Puig-Pijuan T, Foerster BU, Gutfilen B, Souza SAL, Boltze J, Paiva FF, Mendez-Otero R, Pimentel-Coelho PM. Intravenous Human Umbilical Cord-Derived Mesenchymal Stromal Cell Administration in Models of Moderate and Severe Intracerebral Hemorrhage. Stem Cells Dev 2020; 29:586-598. [PMID: 32160799 DOI: 10.1089/scd.2019.0176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is as a life-threatening condition that can occur in young adults, often causing long-term disability. Recent preclinical data suggest mesenchymal stromal cell (MSC)-based therapies as promising options to minimize brain damage after ICH. However, therapeutic evidence and mechanistic insights are still limited, particularly when compared with other disorders such as ischemic stroke. Herein, we employed a model of collagenase-induced ICH in young adult rats to investigate the potential therapeutic effects of an intravenous injection of human umbilical cord Wharton's jelly-derived MSCs (hUC-MSCs). Two doses of collagenase were used to cause moderate or severe hemorrhages. Magnetic resonance imaging showed that animals treated with hUC-MSCs after moderate ICH had smaller residual hematoma volumes than vehicle-treated rats, whereas the cell therapy failed to decrease the hematoma volume in animals with a severe ICH. Functional assessments (rotarod and elevated body swing tests) were performed for up to 21 days after ICH. Enduring neurological impairments were seen only in animals subjected to severe ICH, but the cell therapy did not induce statistically significant improvements in the functional recovery. The biodistribution of Technetium-99m-labeled hUC-MSCs was also evaluated, showing that most cells were found in organs such as the spleen and lungs 24 h after transplantation. Nevertheless, it was possible to detect a weak signal in the brain, which was higher in the ipsilateral hemisphere of rats subjected to a severe ICH. These data indicate that hUC-MSCs have moderately beneficial effects in cases of less severe brain hemorrhages in rats by decreasing the residual hematoma volume, and that optimization of the therapy is still necessary.
Collapse
Affiliation(s)
- Tanira Giara Mello
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Engenharia Nuclear, Comissão Nacional de Energia Nuclear, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Paulo Henrique Rosado-de-Castro
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil.,Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | | | | | - Teresa Puig-Pijuan
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Bernd Uwe Foerster
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Bianca Gutfilen
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Augusto Lopes Souza
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Xie F, Liu H, Liu Y. Adult Neurogenesis Following Ischemic Stroke and Implications for Cell-Based Therapeutic Approaches. World Neurosurg 2020; 138:474-480. [PMID: 32147554 DOI: 10.1016/j.wneu.2020.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is one of the most intractable diseases of the central nervous system and is also a major cause of mortality and disability in adult humans. Unfortunately, current therapies target vessel recanalization, which has a narrow treatment window, and the potential adverse effects lead to a low rate of clinical employment; in addition, neuroprotective strategies are not effective for stroke treatment. It is necessary to discover new approaches to develop neuroprotective, neuroregenerative treatment strategies for stroke. At present, accumulating evidence suggests that adult neurogenesis is a novel topic with extensive research on its potential to be harnessed for therapy in various neurologic disorders, and the neurogenesis capacity in the subventricular zone was shown to be increased in response to brain ischemic stroke. In this review, we describe the cellular and molecular mechanisms underlying potential adult neurogenesis and review current preclinical and clinical cell-based therapies for enhancing neural regeneration after adult ischemic stroke. Although stroke-induced neurogenesis in humans does not seem to translate to neurofunctional recovery, we also summarize factors of potential treatment strategies with transplanted cells, including transplantation time, cell dosage, and administration route, to achieve optimum and effective cell-based therapy, thereby harnessing this neuroregenerative response to improve neurofunctional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Fei Xie
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; Department of Neurosurgery, Ziyang First People's Hospital, Ziyang, China
| | - Hongbin Liu
- Department of Neurosurgery, Ziyang First People's Hospital, Ziyang, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Meyer P, Grandgirard D, Lehner M, Haenggi M, Leib SL. Grafted Neural Progenitor Cells Persist in the Injured Site and Differentiate Neuronally in a Rodent Model of Cardiac Arrest-Induced Global Brain Ischemia. Stem Cells Dev 2020; 29:574-585. [PMID: 31964231 DOI: 10.1089/scd.2019.0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypoxic-ischemic brain injury is the leading cause of disability and death after successful resuscitation from cardiac arrest, and, to date, no specific treatment option is available to prevent subsequent neurofunctional impairments. The hippocampal cornu ammonis segment 1 (CA1) is one of the brain areas most affected by hypoxia, and its degeneration is correlated with memory deficits in patients and corresponding animal models. The aim of this work was to evaluate the feasibility of neural progenitor cell (NPC) transplantation into the hippocampus in a refined rodent cardiac arrest model. Adult rats were subjected to 12 min of potassium-induced cardiac arrest and followed up to 6 weeks. Histological analysis showed extensive neuronal cell death specifically in the hippocampal CA1 segment, without any spontaneous regeneration. Neurofunctional assessment revealed transient memory deficits in ischemic animals compared to controls, detectable after 4 weeks, but not after 6 weeks. Using stereotactic surgery, embryonic NPCs were transplanted in a subset of animals 1 week after cardiac arrest and their survival, migration, and differentiation were assessed histologically. Transplanted cells showed a higher persistence in the CA1 segment of animals after ischemia. Glia in the damaged CA1 segment expressed the chemotactic factor stromal cell-derived factor 1 (SDF-1), while transplanted NPCs expressed its receptor CXC chemokine receptor 4 (CXCR4), suggesting that the SDF-1/CXCR4 pathway, known to be involved in the migration of neural stem cells toward injured brain regions, directs the observed retention of cells in the damaged area. Using immunostaining, we could demonstrate that transplanted cells differentiated into mature neurons. In conclusion, our data document the survival, persistence in the injured area, and neuronal differentiation of transplanted NPCs, and thus their potential to support brain regeneration after hypoxic-ischemic injury. This may represent an option worth further investigation to improve the outcome of patients after cardiac arrest.
Collapse
Affiliation(s)
- Patricia Meyer
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Marika Lehner
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Vonderwalde I, Azimi A, Rolvink G, Ahlfors JE, Shoichet MS, Morshead CM. Transplantation of Directly Reprogrammed Human Neural Precursor Cells Following Stroke Promotes Synaptogenesis and Functional Recovery. Transl Stroke Res 2020; 11:93-107. [PMID: 30747366 PMCID: PMC6957566 DOI: 10.1007/s12975-019-0691-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stroke is one of the leading causes of long-term disability. Cell transplantation is a promising strategy to treat stroke. We explored the efficacy of directly reprogrammed human neural precursor cell (drNPC) transplants to promote functional recovery in a model of focal ischemic stroke in the mouse sensorimotor cortex. We show that drNPCs express neural precursor cell markers and are neurally committed at the time of transplantation. Mice that received drNPC transplants recovered motor function, irrespective of transplant vehicle or recipient sex, and with no correlation to lesion volume or glial scarring. The majority of drNPCs found in vivo, at the time of functional recovery, remained undifferentiated. Notably, no correlation between functional recovery and long-term xenograft survival was observed, indicating that drNPCs provide therapeutic benefits beyond their survival. Furthermore, increased synaptophysin expression in transplanted brains suggests that drNPCs promote neuroplasticity through enhanced synaptogenesis. Our findings provide insight into the mechanistic underpinnings of drNPC-mediated recovery for stroke and support the notion that drNPCs may have clinical applications for stroke therapy.
Collapse
Affiliation(s)
- Ilan Vonderwalde
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Ashkan Azimi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Gabrielle Rolvink
- Department of Surgery, Division of Anatomy, Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | | | - Molly S Shoichet
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Cindi M Morshead
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.
- Department of Surgery, Division of Anatomy, Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.
| |
Collapse
|
33
|
Ryu B, Sekine H, Homma J, Kobayashi T, Kobayashi E, Kawamata T, Shimizu T. Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model. J Neurosurg 2020; 132:442-455. [PMID: 30797215 DOI: 10.3171/2018.11.jns182331] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Stem cell therapy is a promising strategy for the treatment of severe cerebral ischemia. However, targeting sufficient grafted cells to the affected area remains challenging. Choosing an adequate transplantation method for the CNS appears crucial for this therapy to become a clinical reality. The authors used a scaffold-free cell sheet as a translational intervention. This method involves the use of cell sheet layers and allows the transplantation of a large number of cells, locally and noninvasively. The authors evaluated the effectiveness of allogeneic adipose tissue-derived mesenchymal stem cell sheets in a rat model of stroke. METHODS The animals, subjected to middle cerebral artery occlusion, were randomly divided in two groups: one in which a cell sheet was transplanted and the other in which a vehicle was used (n = 10/group). Over a period of 14 days after transplantation, the animals' behavior was evaluated, after which brain tissue samples were removed and fixed, and the extent of angiogenesis and infarct areas was evaluated histologically. RESULTS Compared to the vehicle group, in the cell sheet group functional angiogenesis and neurogenesis were significantly increased, which resulted in behavioral improvement. Transplanted cells were identified within newly formed perivascular walls as pericytes, a proportion of which were functional. Newly formed blood vessels were found within the cell sheet that had anastomosed to the cerebral blood vessels in the host. CONCLUSIONS The transplantation approach described here is expected to provide not only a paracrine effect but also a direct cell effect resulting in cell replacement that protects the damaged neurovascular unit. The behavioral improvement seen with this transplantation approach provides the basis for further research on cell sheet-based regenerative treatment as a translational treatment for patients with stroke.
Collapse
Affiliation(s)
- Bikei Ryu
- 1Institute of Advanced Biomedical Engineering and Science and
- 2Department of Neurosurgery, Tokyo Women's Medical University; and
| | - Hidekazu Sekine
- 1Institute of Advanced Biomedical Engineering and Science and
| | - Jun Homma
- 1Institute of Advanced Biomedical Engineering and Science and
| | | | - Eiji Kobayashi
- 3Department of Organ Fabrication, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | - Tatsuya Shimizu
- 1Institute of Advanced Biomedical Engineering and Science and
| |
Collapse
|
34
|
Boltze J, Jolkkonen J. Safety evaluation of intra-arterial cell delivery in stroke patients-a framework for future trials. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S271. [PMID: 32015990 DOI: 10.21037/atm.2019.12.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
35
|
Essential Role of Chinese Medicines in Mesenchymal Stem Cells Transplantation for Treatment of Ischemic Stroke. Chin J Integr Med 2019; 25:723-727. [PMID: 31782008 DOI: 10.1007/s11655-019-2708-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 10/25/2022]
Abstract
Ischemic stroke accounts for the majority of all strokes and has been primary causes of long-term disability and mortality in worldwide. Mesenchymal stem cell (MSC) therapy suggests significantly improved effects on neurological functional outcome, neurogenesis, angiogenesis, blood-brain barrier permeability, inflammatory injury, neuroprotection and so on, following stroke. However, the occurrence of adverse effects results in restriction of the therapy. Chinese medicine accumulates abundant clinical experiences on stroke for over two thousand years, and some formulae and active ingredients of Chinese medicines have presented obvious efficacies in clinical treatment. Therefore, based on Chinese medicine theory, we provide some ideas of screening agents for combination treatment of Chinese medicines and MSC for ischemic stroke, and summarize the potentials of Chinese medicines in MSC treatment and analyze the feasibilities of Chinese medicines against side effects of MSC therapy. Consequently, we propose Chinese medicines combing with MSC should be a promising approach to clinical stroke treatment in future.
Collapse
|
36
|
Stroh A, Kressel J, Coras R, Dreyer AY, Fröhlich W, Förschler A, Lobsien D, Blümcke I, Zoubaa S, Schlegel J, Zimmer C, Boltze J. A Safe and Effective Magnetic Labeling Protocol for MRI-Based Tracking of Human Adult Neural Stem Cells. Front Neurosci 2019; 13:1092. [PMID: 31680827 PMCID: PMC6797601 DOI: 10.3389/fnins.2019.01092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides a unique tool for in vivo visualization and tracking of stem cells in the brain. This is of particular importance when assessing safety of experimental cell treatments in the preclinical or clinical setup. Yet, specific imaging requires an efficient and non-perturbing cellular magnetic labeling which precludes adverse effects of the tag, e.g., the impact of iron-oxide-nanoparticles on the critical differentiation and integration processes of the respective stem cell population investigated. In this study we investigated the effects of very small superparamagnetic iron oxide particle (VSOP) labeling on viability, stemness, and neuronal differentiation potential of primary human adult neural stem cells (haNSCs). Cytoplasmic VSOP incorporation massively reduced the transverse relaxation time T2, an important parameter determining MR contrast. Cells retained cytoplasmic label for at least a month, indicating stable incorporation, a necessity for long-term imaging. Using a clinical 3T MRI, 1 × 103 haNSCs were visualized upon injection in a gel phantom, but detection limit was much lower (5 × 104 cells) in layer phantoms and using an imaging protocol feasible in a clinical scenario. Transcriptional analysis and fluorescence immunocytochemistry did not reveal a detrimental impact of VSOP labeling on important parameters of cellular physiology with cellular viability, stemness and neuronal differentiation potential remaining unaffected. This represents a pivotal prerequisite with respect to clinical application of this method.
Collapse
Affiliation(s)
- Albrecht Stroh
- Institute for Pathophysiology, Mainz University, Mainz, Germany.,German Resilience Center, Mainz, Germany
| | - Jenny Kressel
- Department of Neuroradiology, Technical University Munich, Munich, Germany.,Helmholtz Center Munich, Institute for Biological and Medical Imaging, Munich, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Antje Y Dreyer
- Translational Center for Regenerative Medicine, Fraunhofer Institute for Cell Therapy and Immunology, University of Leipzig, Leipzig, Germany
| | - Wenke Fröhlich
- Translational Center for Regenerative Medicine, Fraunhofer Institute for Cell Therapy and Immunology, University of Leipzig, Leipzig, Germany
| | - Annette Förschler
- Department of Neuroradiology, Technical University Munich, Munich, Germany
| | - Donald Lobsien
- Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Saida Zoubaa
- Division of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Jürgen Schlegel
- Division of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Technical University Munich, Munich, Germany
| | - Johannes Boltze
- Translational Center for Regenerative Medicine, Fraunhofer Institute for Cell Therapy and Immunology, University of Leipzig, Leipzig, Germany.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
37
|
Lan X, Sun Z, Chu C, Boltze J, Li S. Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke. Front Neurol 2019; 10:824. [PMID: 31428038 PMCID: PMC6689980 DOI: 10.3389/fneur.2019.00824] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a major cause of disability and mortality worldwide, but effective restorative treatments are very limited at present. Regenerative medicine research revealed that stem cells are promising therapeutic options. Dental pulp stem cells (DPSCs) are autologously applicable cells that origin from the neural crest and exhibit neuro-ectodermal features next to multilineage differentiation potentials. DPSCs are of increasing interest since they are relatively easy to obtain, exhibit a strong proliferation ability, and can be cryopreserved for a long time without losing their multi-directional differentiation capacity. Besides, use of DPSCs can avoid fundamental problems such as immune rejection, ethical controversy, and teratogenicity. Therefore, DPSCs provide a tempting prospect for stroke treatment.
Collapse
Affiliation(s)
- Xiaoyan Lan
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Zhengwu Sun
- Department of Pharmacy, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
39
|
Boncoraglio GB, Ranieri M, Bersano A, Parati EA, Del Giovane C. Stem cell transplantation for ischemic stroke. Cochrane Database Syst Rev 2019; 5:CD007231. [PMID: 31055832 PMCID: PMC6500737 DOI: 10.1002/14651858.cd007231.pub3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Stroke is a leading cause of morbidity and mortality worldwide, with very large healthcare and social costs, and a strong demand for alternative therapeutic approaches. Preclinical studies have shown that stem cells transplanted into the brain can lead to functional improvement. However, to date, evidence for the benefits of stem cell transplantation in people with ischemic stroke is lacking. This is the first update of the Cochrane review published in 2010. OBJECTIVES To assess the efficacy and safety of stem cell transplantation compared with control in people with ischemic stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (last searched August 2018), CENTRAL (last searched August 2018), MEDLINE (1966 to August 2018), Embase (1980 to August 2018), and BIOSIS (1926 to August 2018). We handsearched potentially relevant conference proceedings, screened reference lists, and searched ongoing trials and research registers (last searched August 2018). We also contacted individuals active in the field and stem cell manufacturers (last contacted August 2018). SELECTION CRITERIA We included randomized controlled trials (RCTs) that recruited people with ischemic stroke, in any phase of the disease (acute, subacute or chronic), and an ischemic lesion confirmed by computerized tomography or magnetic resonance imaging scan. We included all types of stem cell transplantation, regardless of cell source (autograft, allograft, or xenograft; embryonic, fetal, or adult; from brain or other tissues), route of cell administration (systemic or local), and dosage. The primary outcome was efficacy (assessed as neurologic impairment or functional outcome) at longer term follow-up (minimum six months). Secondary outcomes included post-procedure safety outcomes (death, worsening of neurological deficit, infections, and neoplastic transformation). DATA COLLECTION AND ANALYSIS Two review authors independently applied the inclusion criteria, assessed trial quality and risk of bias, and extracted data. If needed, we contacted study authors for additional information. We performed random effects meta-analyses when two or more RCTs were available for any outcome. We assessed the certainty of the evidence by using the GRADE approach. MAIN RESULTS In this updated review, we included seven completed RCTs with 401 participants. All tested adult human non-neural stem cells; cells were transplanted during the acute, subacute, or chronic phase of ischemic stroke; administered intravenously, intra-arterially, intracerebrally, or into the lumbar subarachnoid space. Follow-up ranged from six months to seven years. Efficacy outcomes were measured with the National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), or Barthel Index (BI). Safety outcomes included case fatality, and were measured at the end of the trial.Overall, stem cell transplantation was associated with a better clinical outcome when measured with the NIHSS (mean difference [MD] -1.49, 95% confidence interval [CI] -2.65 to -0.33; five studies, 319 participants; low-certainty evidence), but not with the mRS (MD -0.42, 95% CI -0.86 to 0.02; six studies, 371 participants; very low-certainty evidence), or the BI (MD 14.09, 95% CI -1.94 to 30.13; three studies, 170 participants; very low-certainty evidence). The studies in favor of stem cell transplantation had, on average, a higher risk of bias, and a sample size of 32 or fewer participants.No significant safety concerns associated with stem cell transplantation were raised with respect to death (risk ratio [RR] 0.66, 95% CI 0.39 to 1.14; six studies, participants; low-certainty evidence).We were not able to perform the sensitivity analysis according to the quality of studies, because all of them were at high risk of bias. AUTHORS' CONCLUSIONS Overall, in participants with ischemic stroke, stem cell transplantation was associated with a reduced neurological impairment, but not with a better functional outcome. No obvious safety concerns were raised. However, these conclusions came mostly from small RCTs with high risk of bias, and the certainty of the evidence ranged from low to very low. More well-designed trials are needed.
Collapse
Affiliation(s)
- Giorgio Battista Boncoraglio
- Fondazione IRCCS Istituto Neurologico "Carlo Besta"Department of NeurologyVia Celoria 11MilanoItaly20133
- Università di Milano – BicoccaPhD Program in NeuroscienceMonzaItaly
| | - Michela Ranieri
- Fondazione IRCCS Istituto Neurologico "Carlo Besta"Department of NeurologyVia Celoria 11MilanoItaly20133
| | - Anna Bersano
- Fondazione IRCCS Istituto Neurologico "Carlo Besta"Department of NeurologyVia Celoria 11MilanoItaly20133
| | - Eugenio A Parati
- Fondazione IRCCS Istituto Neurologico "Carlo Besta"Department of NeurologyVia Celoria 11MilanoItaly20133
| | - Cinzia Del Giovane
- University of BernInstitute of Primary Health Care (BIHAM)Gesellschaftsstrasse 49BernSwitzerland3012
| | | |
Collapse
|
40
|
Zappa Villar MF, Lehmann M, García MG, Mazzolini G, Morel GR, Cónsole GM, Podhajcer O, Reggiani PC, Goya RG. Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behav Brain Res 2019; 374:111887. [PMID: 30951751 DOI: 10.1016/j.bbr.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the lateral ventricles (LV) with a suspension containing 5 × 105hBM-MSCs in 8 μl per side. The other half received no treatment (senile controls). Spatial memory performance was assessed with a modified version of the Barnes maze test. We employed one probe trial, one day after training in order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated group showed a significant improvement in spatial memory accuracy and extended permanence in a one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy improves some functional and morphologic brain features typically altered in aging rats.
Collapse
Affiliation(s)
- Maria F Zappa Villar
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Marianne Lehmann
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Mariana G García
- Gene Therapy Laboratory, IIMT, School of Medical Science, Austral University, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, IIMT, School of Medical Science, Austral University, Buenos Aires, Argentina
| | - Gustavo R Morel
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Gloria M Cónsole
- Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Osvaldo Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, Buenos Aires, Argentina
| | - Paula C Reggiani
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Rodolfo G Goya
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina.
| |
Collapse
|
41
|
Dabrowski A, Robinson TJ, Felling RJ. Promoting Brain Repair and Regeneration After Stroke: a Plea for Cell-Based Therapies. Curr Neurol Neurosci Rep 2019; 19:5. [PMID: 30712068 DOI: 10.1007/s11910-019-0920-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW After decades of hype, cell-based therapies are emerging into the clinical arena for the purposes of promoting recovery after stroke. In this review, we discuss the most recent science behind the role of cell-based therapies in ischemic stroke and the efforts to translate these therapies into human clinical trials. RECENT FINDINGS Preclinical data support numerous beneficial effects of cell-based therapies in both small and large animal models of ischemic stroke. These benefits are driven by multifaceted mechanisms promoting brain repair through immunomodulation, trophic support, circuit reorganization, and cell replacement. Cell-based therapies offer tremendous potential for improving outcomes after stroke through multimodal support of brain repair. Based on recent clinical trials, cell-based therapies appear both feasible and safe in all phases of stroke. Ongoing translational research and clinical trials will further refine these therapies and have the potential to transform the approach to stroke recovery and rehabilitation.
Collapse
Affiliation(s)
- Ania Dabrowski
- Department of Neurology, Johns Hopkins School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA
| | - Thomas J Robinson
- Department of Neurology, Johns Hopkins School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA
| | - Ryan J Felling
- Department of Neurology, Johns Hopkins School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA.
| |
Collapse
|
42
|
Wang Z, He D, Zeng YY, Zhu L, Yang C, Lu YJ, Huang JQ, Cheng XY, Huang XH, Tan XJ. The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation 2019; 16:20. [PMID: 30700305 PMCID: PMC6352449 DOI: 10.1186/s12974-019-1400-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Stroke is the most common cerebrovascular disease, the second leading cause of death behind heart disease and is a major cause of long-term disability worldwide. Currently, systemic immunomodulatory therapy based on intravenous cells is attracting attention. The immune response to acute stroke is a major factor in cerebral ischaemia (CI) pathobiology and outcomes. Over the past decade, the significant contribution of the spleen to ischaemic stroke has gained considerable attention in stroke research. The changes in the spleen after stroke are mainly reflected in morphology, immune cells and cytokines, and these changes are closely related to the stroke outcomes. Autonomic nervous system (ANS) activation, release of central nervous system (CNS) antigens and chemokine/chemokine receptor interactions have been documented to be essential for efficient brain-spleen cross-talk after stroke. In various experimental models, human umbilical cord blood cells (hUCBs), haematopoietic stem cells (HSCs), bone marrow stem cells (BMSCs), human amnion epithelial cells (hAECs), neural stem cells (NSCs) and multipotent adult progenitor cells (MAPCs) have been shown to reduce the neurological damage caused by stroke. The different effects of these cell types on the interleukin (IL)-10, interferon (IFN), and cholinergic anti-inflammatory pathways in the spleen after stroke may promote the development of new cell therapy targets and strategies. The spleen will become a potential target of various stem cell therapies for stroke represented by MAPC treatment.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.,Institute of Reproductive and Stem Cell Research, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Da He
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Ya-Yue Zeng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Li Zhu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Chao Yang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Yong-Juan Lu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Jie-Qiong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Yan Cheng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiang-Hong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Jun Tan
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.
| |
Collapse
|
43
|
Cui L, Moisan A, Jolkkonen J. Intravascular cell therapy in stroke: predicting the future trends. Regen Med 2018; 14:63-68. [PMID: 30561248 DOI: 10.2217/rme-2018-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This short review examines the trends that have taken place during the last two decades in selecting delivery route and cell product in confirmatory preclinical stroke research. If there had been a major change, this might indicate a strategy with a high potential to enter early-phase clinical studies. The retrospective data show that intravenous cell delivery of mesenchymal stem cells remains the most popular approach in experimental research, clearly dominating early phase clinical studies. The advantages and risks of current practices are discussed in the hope that these will improve translational success and accelerate clinical development of safe and efficient cell products.
Collapse
Affiliation(s)
- Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anaïck Moisan
- Inserm U1216, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Cell Therapy and Engineering Unit, French Blood Company, Etablissement Français du Sang, Saint-Ismier, France
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
44
|
Gaidhani N, Uteshev VV. Treatment duration affects cytoprotective efficacy of positive allosteric modulation of α7 nAChRs after focal ischemia in rats. Pharmacol Res 2018; 136:121-132. [PMID: 30205140 PMCID: PMC6218269 DOI: 10.1016/j.phrs.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 12/30/2022]
Abstract
To minimize irreversible brain injury after acute ischemic stroke (AIS), the time to treatment (i.e., treatment delay) should be minimized. However, thus far, all cytoprotective clinical trials have failed. Analysis of literature identified short treatment durations (≤72 h) as a common motif among completed cytoprotective clinical trials. Here, we argue that short cytoprotective regimens even if given early after AIS may only slow down the evolution of ischemic brain injury and fail to deliver sustained long-term solutions leading to relapses that may be misinterpreted for conceptual failure of cytoprotection. In this randomized blinded study, we used young adult male rats subjected to transient 90 min suture middle cerebral artery occlusion (MCAO) and treated with acute vs. sub-chronic regimens of PNU120596, a prototypical positive allosteric modulator of α7 nicotinic acetylcholine receptors with anti-inflammatory cytoprotective properties to test the hypothesis that insufficient treatment durations may reduce therapeutic benefits of otherwise efficacious cytoprotectants after AIS. A single acute treatment 90 min after MCAO significantly reduced brain injury and neurological deficits 24 h later, but these effects vanished 72 h after MCAO. These relapses were avoided by utilizing sub-chronic treatments. Thus, extending treatment duration augments therapeutic efficacy of PNU120596 after MCAO. Furthermore, sub-chronic treatments could offset the negative effects of prolonged treatment delays in cases where the acute treatment window after MCAO was left unexploited. We conclude that a combination of short treatment delays and prolonged treatment durations may be required to maximize therapeutic effects of PNU120596, reduce relapses and ensure sustained therapeutic efficacy after AIS. Similar concepts may hold for other cytoprotectants including those that failed in clinical trials.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
45
|
Balkaya MG, Trueman RC, Boltze J, Corbett D, Jolkkonen J. Behavioral outcome measures to improve experimental stroke research. Behav Brain Res 2018; 352:161-171. [DOI: 10.1016/j.bbr.2017.07.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 01/22/2023]
|
46
|
Faezi M, Nasseri Maleki S, Aboutaleb N, Nikougoftar M. The membrane mesenchymal stem cell derived conditioned medium exerts neuroprotection against focal cerebral ischemia by targeting apoptosis. J Chem Neuroanat 2018; 94:21-31. [PMID: 30121327 DOI: 10.1016/j.jchemneu.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The mesenchymal stem cells derived from human amniotic membrane have the ability to secrete and release some factors that can promote the repair of damaged tissues. This secretome contains proteins and factors that reduce apoptosis and increase angiogenesis in the ischemia/reperfusion models. The present study was conducted to determine whether this secretome provides protection against transient focal cerebral ischemia. MATERIALS AND METHODS A rat model of focal cerebral ischemia was established through middle cerebral artery occlusion (MCAO) for 60 min and 24 h reperfusion. The amniotic mesenchymal stem cells-conditioned medium (AMSC-CM) at the dose of 0.5 μl was injected intracerebroventriculary (ICV) 30 min after reperfusion. Infarct volume, brain edema, neurobehavioral functions, and blood brain barrier (BBB) integrity were assessed 24 h after reperfusion. Neuronal loss and expression of caspase-3, Bax and Bcl-2 in motor cortex were evaluated by nissl staining and immunohistochemistry assay respectively. RESULTS ICV administration of AMSC-CM markedly reduced infarct volume, brain edema and the evans blue penetration rate compared with MCAO group (P < 0.05). Additionally, post-treatment with AMSC-CM significantly reduced neuronal loss, neurological motor disorders and expression of caspase-3, Bax and Bcl-2 in motor cortex compared with MCAO group (P < 0.05). CONCLUSION The results of this study indicate that treatment with AMSC-CM improves the pathological effects in the acute phase of cerebral ischemia. These findings establish a substantial foundation for stroke therapy and future research.
Collapse
Affiliation(s)
- Masoumeh Faezi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Nasseri Maleki
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
47
|
Boshuizen MCS, Steinberg GK. Stem Cell-Based Immunomodulation After Stroke: Effects on Brain Repair Processes. Stroke 2018; 49:1563-1570. [PMID: 29724892 DOI: 10.1161/strokeaha.117.020465] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Marieke C S Boshuizen
- From the Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, CA
| | - Gary K Steinberg
- From the Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, CA.
| |
Collapse
|
48
|
Wechsler LR, Bates D, Stroemer P, Andrews-Zwilling YS, Aizman I. Cell Therapy for Chronic Stroke. Stroke 2018; 49:1066-1074. [DOI: 10.1161/strokeaha.117.018290] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Lawrence R. Wechsler
- From the Department of Neurology, University of Pittsburgh School of Medicine and UPMC, PA (L.R.W.)
| | - Damien Bates
- SanBio, Inc, Mountain View, CA (D.B., Y.S.A.-Z., I.A.)
| | - Paul Stroemer
- Advanced Therapies Consultancy, Cardiff, Wales, UK (P.S.)
| | | | - Irina Aizman
- SanBio, Inc, Mountain View, CA (D.B., Y.S.A.-Z., I.A.)
| |
Collapse
|
49
|
Modo MM, Jolkkonen J, Zille M, Boltze J. Future of Animal Modeling for Poststroke Tissue Repair. Stroke 2018; 49:1099-1106. [PMID: 29669872 PMCID: PMC6013070 DOI: 10.1161/strokeaha.117.018293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Michel M Modo
- From the Departments of Radiology and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA (M.M.M.)
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio (J.J.)
- Neurocenter, Kuopio University Hospital, Finland (J.J.)
| | - Marietta Zille
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Mönkhofer Weg, Germany (M.Z., J.B.)
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Germany (M.Z.)
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Mönkhofer Weg, Germany (M.Z., J.B.)
| |
Collapse
|
50
|
Lu L, Wang Y, Zhang F, Chen M, Lin B, Duan X, Cao M, Zheng C, Mao J, Shuai X, Shen J. MRI-Visible siRNA Nanomedicine Directing Neuronal Differentiation of Neural Stem Cells in Stroke. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1706769. [DOI: 10.1002/adfm.201706769] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Liejing Lu
- Department of Radiology; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
| | - Yong Wang
- PCFM Lab of Ministry of Education; School of Materials Science and Engineering; Sun Yat-Sen University; Guangzhou 510275 China
| | - Fang Zhang
- Department of Radiology; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
| | - Meiwei Chen
- Department of Radiology; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
| | - Bingling Lin
- Department of Radiology; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
| | - Xiaohui Duan
- Department of Radiology; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
| | - Minghui Cao
- Department of Radiology; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
| | - Chushan Zheng
- Department of Radiology; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
| | - Jiaji Mao
- Department of Radiology; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
| | - Xintao Shuai
- BME Center; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou 510080 China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
| | - Jun Shen
- Department of Radiology; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou 510120 Guangdong China
- Guangdong Province Key Laboratory of Brain Function and Disease; Zhongshan School of Medicine; Sun Yat-Sen University; 74 Zhongshan 2nd Road, Guangzhou 510080 Guangdong China
| |
Collapse
|