1
|
Inagaki S, Matsuura H, Sakurai K, Minati L, Yoshimura N. Decline in Sensory Integration in Old Age and Its Related Functional Brain Connectivity Correlates Observed during a Virtual Reality Task. Brain Sci 2024; 14:840. [PMID: 39199531 PMCID: PMC11352474 DOI: 10.3390/brainsci14080840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Sensory integration is an essential human function whose decline impacts quality of life, particularly in older adults. Herein, we propose an arm-reaching task based on a virtual reality head-mounted display system to assess sensory integration in daily life, and we examined whether reaching task performance was associated with resting-state functional connectivity (rsFC) between the brain regions involved in sensory integration. We hypothesized that declining sensory integration would affect performance during a reaching task with multiple cognitive loads. Using a task in which a young/middle-aged group showed only small individual differences, older adults showed large individual differences in the gap angle between the reaching hand and the target position, which was used to assess sensory integration function. Additionally, rsfMRI data were used to identify correlations between rsFC and performance in older adults, showing that performance was correlated with connectivity between the primary motor area and the left inferior temporal gyrus and temporo-occipital region. Connectivity between areas is related to visuomotor integration; thus, the results suggest the involvement of visuomotor integration in the decline of sensory integration function and the validity of the gap angle during this VR reaching task as an index of functional decline.
Collapse
Affiliation(s)
- Satoru Inagaki
- Human Centered Science and Biomedical Engineering, Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo 226-8501, Japan;
| | - Hirokazu Matsuura
- Information and Communications Engineering, Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo 226-8501, Japan; (H.M.); (K.S.)
| | - Kazuki Sakurai
- Information and Communications Engineering, Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo 226-8501, Japan; (H.M.); (K.S.)
| | - Ludovico Minati
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 226-8501, Japan;
- Center for Mind/Brain Science, University of Trento, 38122 Trento, Italy
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Natsue Yoshimura
- School of Computing, Tokyo Institute of Technology, Tokyo 226-8501, Japan
| |
Collapse
|
2
|
Lobato-Camacho FJ, Vargas JP, López JC. Effects of the Regular Use of Virtual Environments on Spatial Navigation and Memory. Games Health J 2024. [PMID: 39093833 DOI: 10.1089/g4h.2023.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Introduction: The cognitive effects of video games have garnered increasing attention due to their potential applications in cognitive rehabilitation and evaluation. However, the underlying mechanisms driving these cognitive modifications remain poorly understood. Objectives: This study investigates the fundamental mnemonic processes of spatial navigation, pattern separation, and recognition memory, closely associated with the hippocampus. Our objective is to elucidate the interaction of these cognitive processes and shed light on rehabilitation mechanisms that could inform the design of video games aimed at stimulating the hippocampus. Method: In this study, we assessed 48 young adults, including both video game players and non-players. We utilized virtual reality and cognitive tasks such as the Lobato Virtual Water Maze and the Mnemonic Similarity Task to evaluate their cognitive abilities. Results: Our key findings highlight that gamers exhibit heightened pattern separation abilities and demonstrate quicker and more accurate spatial learning, attributed to the cognitive stimulation induced by video games. Additionally, we uncovered a significant relationship between spatial memory, guided by environmental cues, and pattern separation, which serves as the foundation for more efficient spatial navigation. Conclusions: These results provide valuable insights into the cognitive impact of video games and offer potential for monitoring changes in rehabilitation processes and early signs of cognitive decline through virtual reality-based assessments. Ultimately, we propose that examining the relationships between cognitive processes represents an effective method for evaluating neurodegenerative conditions, offering new possibilities for early diagnosis and intervention.
Collapse
Affiliation(s)
| | - Juan Pedro Vargas
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, Spain
| | - Juan Carlos López
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Ren Y, Chen P, Li Y, Zhou Z, Dong Y, Li S, Qian R, Yang J, Wu J, Yang W. Perceptual training improves audiovisual integration by enhancing alpha-band oscillations and functional connectivity in older adults. Cereb Cortex 2024; 34:bhae216. [PMID: 39183363 DOI: 10.1093/cercor/bhae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 08/27/2024] Open
Abstract
Numerous studies on perceptual training exist, however, most have focused on the precision of temporal audiovisual perception, while fewer have concentrated on ability promotion for audiovisual integration (AVI). To investigate these issues, continuous 5-day audiovisual perceptual training was applied, during which electroencephalography was performed in response to auditory-only (A), visual-only (V) and audiovisual (AV) stimuli before and after training. The results showed that the perceptual sensitivity was greater for training group than for control group and was greater in the posttest than in the pretest. The response to the AV stimulus was significantly faster in the posttest than in the pretest for the older training group but was significantly greater for A and V stimuli for the younger training group. Electroencephalography analysis found higher P3 AVI amplitudes [AV-(A + V)] in the posttest than in the pretest for training group, which were subsequently reflected by an increased alpha (8-12 Hz) oscillatory response and strengthened global functional connectivity (weighted phase lag index). Furthermore, these facilitations were greater for older training groups than for younger training groups. These results confirm the age-related compensatory mechanism for AVI may be strengthened as audiovisual perceptual training progresses, providing an effective candidate for cognitive intervention in older adults.
Collapse
Affiliation(s)
- Yanna Ren
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, No. 4, Dongqing Road, Huaxi District, Guiyang, 550025, China
| | - Peng Chen
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, No. 4, Dongqing Road, Huaxi District, Guiyang, 550025, China
| | - Yan Li
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, No. 4, Dongqing Road, Huaxi District, Guiyang, 550025, China
| | - Zhenhua Zhou
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, No. 4, Dongqing Road, Huaxi District, Guiyang, 550025, China
| | - Yanping Dong
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, No. 4, Dongqing Road, Huaxi District, Guiyang, 550025, China
| | - Shujing Li
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, No. 4, Dongqing Road, Huaxi District, Guiyang, 550025, China
| | - Runqi Qian
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, No. 4, Dongqing Road, Huaxi District, Guiyang, 550025, China
| | - Jiajia Yang
- Applied Brain Science Lab Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1, Tsushimachu 1-chome, Kita-ku, Okayama, 7008530, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Avenue, Shenzhen University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Weiping Yang
- Department of Psychology, Faculty of Education, Hubei University, No. 368, Youyi Avenue, Wuchang District, Wuhan, 430062, China
| |
Collapse
|
4
|
Haitas N, Dubuc J, Massé-Leblanc C, Chamberland V, Amiri M, Glatard T, Wilson M, Joanette Y, Steffener J. Registered report: Age-preserved semantic memory and the CRUNCH effect manifested as differential semantic control networks: An fMRI study. PLoS One 2024; 19:e0289384. [PMID: 38917084 PMCID: PMC11198863 DOI: 10.1371/journal.pone.0289384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/25/2024] [Indexed: 06/27/2024] Open
Abstract
Semantic memory representations are generally well maintained in aging, whereas semantic control is thought to be more affected. To explain this phenomenon, this study tested the predictions of the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH), focusing on task demands in aging as a possible framework. The CRUNCH effect would manifest itself in semantic tasks through a compensatory increase in neural activation in semantic control network regions but only up to a certain threshold of task demands. This study compares 39 younger (20-35 years old) with 39 older participants (60-75 years old) in a triad-based semantic judgment task performed in an fMRI scanner while manipulating task demand levels (low versus high) through semantic distance. In line with the CRUNCH predictions, differences in neurofunctional activation and behavioral performance (accuracy and response times) were expected in younger versus older participants in the low- versus high-demand conditions, which should be manifested in semantic control Regions of Interest (ROIs). Our older participants had intact behavioral performance, as proposed in the literature for semantic memory tasks (maintained accuracy and slower response times (RTs)). Age-invariant behavioral performance in the older group compared to the younger one is necessary to test the CRUNCH predictions. The older adults were also characterized by high cognitive reserve, as our neuropsychological tests showed. Our behavioral results confirmed that our task successfully manipulated task demands: error rates, RTs and perceived difficulty increased with increasing task demands in both age groups. We did not find an interaction between age group and task demand, or a statistically significant difference in activation between the low- and high-demand conditions for either RTs or accuracy. As for brain activation, we did not find the expected age group by task demand interaction, or a significant main effect of task demand. Overall, our results are compatible with some neural activation in the semantic network and the semantic control network, largely in frontotemporoparietal regions. ROI analyses demonstrated significant effects (but no interactions) of task demand in the left and right inferior frontal gyrus, the left posterior middle temporal gyrus, the posterior inferior temporal gyrus and the prefrontal gyrus. Overall, our test did not confirm the CRUNCH predictions.
Collapse
Affiliation(s)
- Niobe Haitas
- Laboratory of Communication and Aging, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jade Dubuc
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Vincent Chamberland
- Faculty of Arts and Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Mahnoush Amiri
- Laboratory of Communication and Aging, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| | - Tristan Glatard
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada
| | - Maximiliano Wilson
- Centre de Recherche CERVO – CIUSSS de la Capitale-Nationale et Département de Réadaptation, Université Laval, Quebec City, Quebec, Canada
| | - Yves Joanette
- Laboratory of Communication and Aging, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jason Steffener
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Korte JA, Weakley A, Donjuan Fernandez K, Joiner WM, Fan AP. Neural Underpinnings of Learning in Dementia Populations: A Review of Motor Learning Studies Combined with Neuroimaging. J Cogn Neurosci 2024; 36:734-755. [PMID: 38285732 DOI: 10.1162/jocn_a_02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The intent of this review article is to serve as an overview of current research regarding the neural characteristics of motor learning in Alzheimer disease (AD) as well as prodromal phases of AD: at-risk populations, and mild cognitive impairment. This review seeks to provide a cognitive framework to compare various motor tasks. We will highlight the neural characteristics related to cognitive domains that, through imaging, display functional or structural changes because of AD progression. In turn, this motivates the use of motor learning paradigms as possible screening techniques for AD and will build upon our current understanding of learning abilities in AD populations.
Collapse
|
6
|
Zając-Lamparska L, Zabielska-Mendyk E, Zapała D, Augustynowicz P. Compensatory brain activity pattern is not present in older adults during the n-back task performance-Findings based on EEG frequency analysis. Front Psychol 2024; 15:1371035. [PMID: 38666231 PMCID: PMC11043891 DOI: 10.3389/fpsyg.2024.1371035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Cognitive ability is one of the most important enablers for successful aging. At the same time, cognitive decline is a well-documented phenomenon accompanying the aging process. Nevertheless, it is acknowledged that aging can also be related to positive processes that allow one to compensate for the decline. These processes include the compensatory brain activity of older adults primarily investigated using fMRI and PET. To strengthen the cognitive interpretation of compensatory brain activity in older adults, we searched for its indicators in brain activity measured by EEG. Methods The study sample comprised 110 volunteers, including 50 older adults (60-75 years old) and 60 young adults (20-35 years old) who performed 1-back, 2-back, and 3-back tasks while recording the EEG signal. The study analyzed (1) the level of cognitive performance, including sensitivity index, the percentage of correct answers to the target, and the percentage of false alarm errors; (2) theta and alpha power for electrodes located in the frontal-midline (Fz, AF3, AF4, F3, F4, FC1, and FC2) and the centro-parietal (CP1, CP2, P3, P4, and Pz) areas. Results Cognitive performance was worse in older adults than in young adults, which manifested in a significantly lower sensitivity index and a significantly higher false alarm error rate at all levels of the n-back task difficulty. Simultaneously, performance worsened with increasing task difficulty regardless of age. Significantly lower theta power in the older participants was observed at all difficulty levels, even at the lowest one, where compensatory activity was expected. At the same time, at this difficulty level, cognitive performance was worse in older adults than in young adults, which could reduce the chances of observing compensatory brain activity. The significant decrease in theta power observed in both age groups with rising task difficulty can reflect a declining capacity for efficient cognitive functioning under increasing demands rather than adapting to this increase. Moreover, in young adults, alpha power decreased to some extent with increasing cognitive demand, reflecting adaptation to them, while in older adults, no analogous pattern was observed. Discussion In conclusion, based on the results of the current study, the presence of compensatory activity in older adults cannot be inferred.
Collapse
Affiliation(s)
- Ludmiła Zając-Lamparska
- Department of General and Human Development Psychology, Faculty of Psychology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Emilia Zabielska-Mendyk
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Dariusz Zapała
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Paweł Augustynowicz
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Lu Q, Huang S, Zhang T, Song J, Dong M, Qian Y, Teng J, Wang T, He C, Shen Y. Age-related differences in long-term potentiation-like plasticity and short-latency afferent inhibition and their association with cognitive function. Gen Psychiatr 2024; 37:e101181. [PMID: 38390239 PMCID: PMC10882289 DOI: 10.1136/gpsych-2023-101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Background The neurophysiological differences in cortical plasticity and cholinergic system function due to ageing and their correlation with cognitive function remain poorly understood. Aims To reveal the differences in long-term potentiation (LTP)-like plasticity and short-latency afferent inhibition (SAI) between older and younger individuals, alongside their correlation with cognitive function using transcranial magnetic stimulation (TMS). Methods The cross-sectional study involved 31 younger adults aged 18-30 and 46 older adults aged 60-80. All participants underwent comprehensive cognitive assessments and a neurophysiological evaluation based on TMS. Cognitive function assessments included evaluations of global cognitive function, language, memory and executive function. The neurophysiological assessment included LTP-like plasticity and SAI. Results The findings of this study revealed a decline in LTP among the older adults compared with the younger adults (wald χ2=3.98, p=0.046). Subgroup analysis further demonstrated a significant reduction in SAI level among individuals aged 70-80 years in comparison to both the younger adults (SAI(N20): (t=-3.37, p=0.018); SAI(N20+4): (t=-3.13, p=0.038)) and those aged 60-70 (SAI(N20): (t=-3.26, p=0.025); SAI(N20+4): (t=-3.69, p=0.006)). Conversely, there was no notable difference in SAI level between those aged 60-70 years and the younger group. Furthermore, after employing the Bonferroni correction, the correlation analysis revealed that only the positive correlation between LTP-like plasticity and language function (r=0.61, p<0.001) in the younger group remained statistically significant. Conclusions During the normal ageing process, a decline in synaptic plasticity may precede cholinergic system dysfunction. In individuals over 60 years of age, there is a reduction in LTP-like plasticity, while a decline in cholinergic system function is observed in those over 70. Thus, the cholinergic system may play a vital role in preventing cognitive decline during normal ageing. In younger individuals, LTP-like plasticity might represent a potential neurophysiological marker for language function.
Collapse
Affiliation(s)
- Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sisi Huang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianjiao Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Song
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Manyu Dong
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yilun Qian
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Teng
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Jones SA, Noppeney U. Older adults preserve audiovisual integration through enhanced cortical activations, not by recruiting new regions. PLoS Biol 2024; 22:e3002494. [PMID: 38319934 PMCID: PMC10871488 DOI: 10.1371/journal.pbio.3002494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2024] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Effective interactions with the environment rely on the integration of multisensory signals: Our brains must efficiently combine signals that share a common source, and segregate those that do not. Healthy ageing can change or impair this process. This functional magnetic resonance imaging study assessed the neural mechanisms underlying age differences in the integration of auditory and visual spatial cues. Participants were presented with synchronous audiovisual signals at various degrees of spatial disparity and indicated their perceived sound location. Behaviourally, older adults were able to maintain localisation accuracy. At the neural level, they integrated auditory and visual cues into spatial representations along dorsal auditory and visual processing pathways similarly to their younger counterparts but showed greater activations in a widespread system of frontal, temporal, and parietal areas. According to multivariate Bayesian decoding, these areas encoded critical stimulus information beyond that which was encoded in the brain areas commonly activated by both groups. Surprisingly, however, the boost in information provided by these areas with age-related activation increases was comparable across the 2 age groups. This dissociation-between comparable information encoded in brain activation patterns across the 2 age groups, but age-related increases in regional blood-oxygen-level-dependent responses-contradicts the widespread notion that older adults recruit new regions as a compensatory mechanism to encode task-relevant information. Instead, our findings suggest that activation increases in older adults reflect nonspecific or modulatory mechanisms related to less efficient or slower processing, or greater demands on attentional resources.
Collapse
Affiliation(s)
- Samuel A. Jones
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom
- Department of Psychology, Nottingham Trent University, Nottingham, United Kingdom
| | - Uta Noppeney
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Ottaviani S, Tagliafico L, Muzyka M, Page E, Ottaviani E, Ponzano M, Signori A, Nencioni A, Monacelli F. Tipping the Balance Between Cognitive Reserve, Frailty, and Dementia in the Very Old? J Alzheimers Dis 2024; 101:1227-1235. [PMID: 39331100 DOI: 10.3233/jad-231121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Background As the population ages, the concept of frailty becomes increasingly relevant and may be considered a precursor between aging and the development of dementia in later life. Similarly, the construct of cognitive reserve (CR) is an accepted model of cognitive resilience that may account for individual differences in trajectories of brain aging, mitigating the clinical expression of dementia. Objective We aim to estimate the role of CR and frailty in moderating the prediction of dementia in the population aged over 80 who are attending an Italian outpatient memory clinic. Methods Comprehensive Geriatric Assessment, Clinical Frailty Scale (CFS) to screen for frailty, and Cognitive Reserve Index questionnaire (CRIq) to evaluate CR, were used to assess patients systematically. We performed multivariate logistic regression to assess associations with dementia. Model performance and interaction between frailty and cognitive reserve were then evaluated. Results 166 patients were consecutively enrolled (mean age was 85.7 years old, females composed 68%); 25% had a diagnosis of amnestic mild cognitive impairment, and 75% had a diagnosis of dementia. Multivariate regression analysis showed that CRIq and CFS were the main clinical assessment tools associated with the presence of dementia, even after collinearity adjustment. No significant interaction of CFS*CRIq was found. Conclusions To our knowledge, this is the first study to investigate the association between CR, frailty, dementia, and their related interacting terms in a real-world population of very old patients. Our findings may suggest that both CR and frailty shape an individual's resilience throughout their lifetime. This may potentially counteract the effects of brain neuropathology, in line with the hypothesis that meaningful associations exist between CR, frailty, and cognition in later life.
Collapse
Affiliation(s)
- Silvia Ottaviani
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Tagliafico
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariya Muzyka
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Page
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ennio Ottaviani
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
| | - Marta Ponzano
- Department of Health Sciences - Section of Biostatistics, University of Genoa, Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences - Section of Biostatistics, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiammetta Monacelli
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
10
|
Karl V, Rohe T. Structural brain changes in emotion recognition across the adult lifespan. Soc Cogn Affect Neurosci 2023; 18:nsad052. [PMID: 37769357 PMCID: PMC10627307 DOI: 10.1093/scan/nsad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Emotion recognition (ER) declines with increasing age, yet little is known whether this observation is based on structural brain changes conveyed by differential atrophy. To investigate whether age-related ER decline correlates with reduced grey matter (GM) volume in emotion-related brain regions, we conducted a voxel-based morphometry analysis using data of the Human Connectome Project-Aging (N = 238, aged 36-87) in which facial ER was tested. We expected to find brain regions that show an additive or super-additive age-related change in GM volume indicating atrophic processes that reduce ER in older adults. The data did not support our hypotheses after correction for multiple comparisons. Exploratory analyses with a threshold of P < 0.001 (uncorrected), however, suggested that relationships between GM volume and age-related general ER may be widely distributed across the cortex. Yet, small effect sizes imply that only a small fraction of the decline of ER in older adults can be attributed to local GM volume changes in single voxels or their multivariate patterns.
Collapse
Affiliation(s)
- Valerie Karl
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Tim Rohe
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
11
|
Cespón J, Chupina I, Carreiras M. Cognitive reserve counteracts typical neural activity changes related to ageing. Neuropsychologia 2023; 188:108625. [PMID: 37364777 DOI: 10.1016/j.neuropsychologia.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Studies have shown that older adults with high Cognitive Reserve (HCR) exhibit better executive functioning than their low CR (LCR) counterparts. However, the neural processes linked to those differences are unclear. This study investigates (1) the neural processes underlying executive functions in older adults with HCR compared to older adults with LCR and (2) how executive control differences between HCR and LCR groups are modulated by increased task difficulty. We recruited 74 participants (37 in each group) with diverse CR levels, as determined by a standardised CR questionnaire. Participants performed two executive control tasks with lower and higher difficulty levels (i.e., Simon and spatial Stroop tasks, respectively) while recording the electroencephalogram. The accuracy on both tasks requiring inhibition of irrelevant information was better in the HCR than the LCR group. Also, in the task with higher difficulty level (i.e., the spatial Stroop task), event-related potential (ERP) latencies associated with inhibition (i.e., frontal N200) and updating of working memory (i.e., P300) were earlier in HCR than LCR. Moreover, the HCR, but not the LCR group, showed larger P300 amplitude in parietal than frontal regions and in the left than right hemisphere, suggesting a posterior to anterior shift of activity and loss of inter-hemispheric asymmetries in LCR participants. These results suggest that high CR counteracts neural activity changes related to ageing. Thus, high levels of CR may be related to maintenance of neural activity patterns typically observed in young adults rather than to deployment of neural compensatory mechanisms.
Collapse
Affiliation(s)
- Jesús Cespón
- BCBL Basque Center on Cognition, Brain, and Language, Mikeletegi Pasealekua, 69, Donostia/San Sebastián, 20009, Spain.
| | - Irina Chupina
- Radboud University, Donders Centre for Cognition, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands
| | - Manuel Carreiras
- BCBL Basque Center on Cognition, Brain, and Language, Mikeletegi Pasealekua, 69, Donostia/San Sebastián, 20009, Spain; Ikerbasque. Basque Foundation for Science, Bilbao, Spain; University of the Basque Country (UPV/EHU). Bilbao, Spain
| |
Collapse
|
12
|
Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: role of aging processes and treatment implications. Transl Psychiatry 2023; 13:160. [PMID: 37160884 PMCID: PMC10169845 DOI: 10.1038/s41398-023-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Late-life depression occurring in older adults is common, recurrent, and malignant. It is characterized by affective symptoms, but also cognitive decline, medical comorbidity, and physical disability. This behavioral and cognitive presentation results from altered function of discrete functional brain networks and circuits. A wide range of factors across the lifespan contributes to fragility and vulnerability of those networks to dysfunction. In many cases, these factors occur earlier in life and contribute to adolescent or earlier adulthood depressive episodes, where the onset was related to adverse childhood events, maladaptive personality traits, reproductive events, or other factors. Other individuals exhibit a later-life onset characterized by medical comorbidity, pro-inflammatory processes, cerebrovascular disease, or developing neurodegenerative processes. These later-life processes may not only lead to vulnerability to the affective symptoms, but also contribute to the comorbid cognitive and physical symptoms. Importantly, repeated depressive episodes themselves may accelerate the aging process by shifting allostatic processes to dysfunctional states and increasing allostatic load through the hypothalamic-pituitary-adrenal axis and inflammatory processes. Over time, this may accelerate the path of biological aging, leading to greater brain atrophy, cognitive decline, and the development of physical decline and frailty. It is unclear whether successful treatment of depression and avoidance of recurrent episodes would shift biological aging processes back towards a more normative trajectory. However, current antidepressant treatments exhibit good efficacy for older adults, including pharmacotherapy, neuromodulation, and psychotherapy, with recent work in these areas providing new guidance on optimal treatment approaches. Moreover, there is a host of nonpharmacological treatment approaches being examined that take advantage of resiliency factors and decrease vulnerability to depression. Thus, while late-life depression is a recurrent yet highly heterogeneous disorder, better phenotypic characterization provides opportunities to better utilize a range of nonspecific and targeted interventions that can promote recovery, resilience, and maintenance of remission.
Collapse
Affiliation(s)
- Sarah M Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Damek Homiack
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
13
|
Rashidi-Ranjbar N, Rajji TK, Hawco C, Kumar S, Herrmann N, Mah L, Flint AJ, Fischer CE, Butters MA, Pollock BG, Dickie EW, Bowie CR, Soffer M, Mulsant BH, Voineskos AN. Association of functional connectivity of the executive control network or default mode network with cognitive impairment in older adults with remitted major depressive disorder or mild cognitive impairment. Neuropsychopharmacology 2023; 48:468-477. [PMID: 35410366 PMCID: PMC9852291 DOI: 10.1038/s41386-022-01308-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
Abstract
Major depressive disorder (MDD) is associated with an increased risk of developing dementia. The present study aimed to better understand this risk by comparing resting state functional connectivity (rsFC) in the executive control network (ECN) and the default mode network (DMN) in older adults with MDD or mild cognitive impairment (MCI). Additionally, we examined the association between rsFC in the ECN or DMN and cognitive impairment transdiagnostically. We assessed rsFC alterations in ECN and DMN in 383 participants from five groups at-risk for dementia-remitted MDD with normal cognition (MDD-NC), non-amnestic mild cognitive impairment (naMCI), remitted MDD + naMCI, amnestic MCI (aMCI), and remitted MDD + aMCI-and from healthy controls (HC) or individuals with Alzheimer's dementia (AD). Subject-specific whole-brain functional connectivity maps were generated for each network and group differences in rsFC were calculated. We hypothesized that alteration of rsFC in the ECN and DMN would be progressively larger among our seven groups, ranked from low to high according to their risk for dementia as HC, MDD-NC, naMCI, MDD + naMCI, aMCI, MDD + aMCI, and AD. We also regressed scores of six cognitive domains (executive functioning, processing speed, language, visuospatial memory, verbal memory, and working memory) on the ECN and DMN connectivity maps. We found a significant alteration in the rsFC of the ECN, with post hoc testing showing differences between the AD group and the HC, MDD-NC, or naMCI groups, but no significant alterations in rsFC of the DMN. Alterations in rsFC of the ECN and DMN were significantly associated with several cognitive domain scores transdiagnostically. Our findings suggest that a diagnosis of remitted MDD may not confer functional brain risk for dementia. However, given the association of rs-FC with cognitive performance (i.e., transdiagnostically), rs-FC may help in stratifying this risk among people with MDD and varying degrees of cognitive impairment.
Collapse
Affiliation(s)
- Neda Rashidi-Ranjbar
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Linda Mah
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Baycrest Health Sciences, Rotman Research Institute, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Alastair J Flint
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Christopher R Bowie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Departments of Psychology and Psychiatry (CRB), Queen's University, Kingston, ON, Canada
| | - Matan Soffer
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
DesRuisseaux LA, Suchy Y, Franchow EI. Intra-individual variability identifies individuals vulnerable to contextually induced executive lapses. Clin Neuropsychol 2023; 37:322-349. [PMID: 35392764 DOI: 10.1080/13854046.2022.2055651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Contextual stressors, such as engagement in burdensome emotion regulation known as expressive suppression (ES), can result in transient but clinically meaningful decrement in performance on measures of executive functioning (EF). The goal of the present investigation was to examine whether intra-individual variability (IIV-I), which has been identified as an indicator of cognitive weakness, could serve as a marker of vulnerability to EF decrements due to both naturally-occurring and experimentally-manipulated ES. In Study 1, 180 cognitively healthy older adults completed the Push-Turn-Taptap (PTT) task to assess IIV-I, four Delis-Kaplan Executive Function System (D-KEFS) subtests to assess EF, and the Burden of State Emotion Regulation Questionnaire (B-SERQ) to assess naturally-occurring ES. In Study 2, a subset (n = 81) of participants underwent experimental manipulation to induce ES, followed by second administration of the D-KEFS to examine ES-induced decrements in EF. In Study 1, hierarchical linear regression yielded a significant interaction between ES and IIV-I as predictors of EF performance, demonstrating that high ES was associated with low EF only among individuals with high IIV-I. In Study 2, repeated measures ANOVA demonstrated an interaction between time (pre- vs. post- manipulation), group (ES vs. control), and IIV-I (high vs. low), such that only individuals who exhibited high IIV-I were negatively impacted by the ES manipulation. IIV-I moderates the association between ES and EF, such that only individuals with high IIV-I exhibit vulnerability to the impact of ES. Thus, IIV-I may act as a marker of vulnerability to temporary EF depletion.
Collapse
Affiliation(s)
| | - Yana Suchy
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Emilie I Franchow
- Department of Psychology, University of Utah, Salt Lake City, UT, USA.,Advocate Aurora Healthcare, Milwaukee, WI, USA
| |
Collapse
|
15
|
Turnbull A, Seitz A, Tadin D, Lin FV. Unifying framework for cognitive training interventions in brain aging. Ageing Res Rev 2022; 81:101724. [PMID: 36031055 PMCID: PMC10681332 DOI: 10.1016/j.arr.2022.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
Cognitive training is a promising tool for slowing or preventing cognitive decline in older adults at-risk for dementia. Its success, however, has been limited by a lack of evidence showing that it reliably causes broad training effects: improvements in cognition across a range of domains that lead to real-world benefits. Here, we propose a framework for enhancing the effect of cognitive training interventions in brain aging. The focus is on (A) developing cognitive training task paradigms that are informed by population-level cognitive characteristics and pathophysiology, and (B) personalizing how these sets are presented to participants during training via feedback loops that aim to optimize "mismatch" between participant capacity and training demands using both adaptation and random variability. In this way, cognitive training can better alter whole-brain topology in a manner that supports broad training effects in the context of brain aging.
Collapse
Affiliation(s)
- Adam Turnbull
- University of Rochester, USA; Stanford University, USA
| | | | | | | |
Collapse
|
16
|
The impact of aging on human brain network target controllability. Brain Struct Funct 2022; 227:3001-3015. [DOI: 10.1007/s00429-022-02584-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
|
17
|
Jiang R, Scheinost D, Zuo N, Wu J, Qi S, Liang Q, Zhi D, Luo N, Chung Y, Liu S, Xu Y, Sui J, Calhoun V. A Neuroimaging Signature of Cognitive Aging from Whole-Brain Functional Connectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201621. [PMID: 35811304 PMCID: PMC9403648 DOI: 10.1002/advs.202201621] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/02/2022] [Indexed: 05/14/2023]
Abstract
Cognitive decline is amongst one of the most commonly reported complaints during normal aging. Despite evidence that age and cognition are linked with similar neural correlates, no previous studies have directly ascertained how these two constructs overlap in the brain in terms of neuroimaging-based prediction. Based on a long lifespan healthy cohort (CamCAN, aged 19-89 years, n = 567), it is shown that both cognitive function (domains spanning executive function, emotion processing, motor function, and memory) and human age can be reliably predicted from unique patterns of functional connectivity, with models generalizable in two external datasets (n = 533 and n = 453). Results show that cognitive decline and normal aging both manifest decrease within-network connections (especially default mode and ventral attention networks) and increase between-network connections (somatomotor network). Whereas dorsal attention network is an exception, which is highly predictive on cognitive ability but is weakly correlated with aging. Further, the positively weighted connections in predicting fluid intelligence significantly mediate its association with age. Together, these findings offer insights into why normal aging is often associated with cognitive decline in terms of brain network organization, indicating a process of neural dedifferentiation and compensational theory.
Collapse
Affiliation(s)
- Rongtao Jiang
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenCT06520USA
- Department of Statistics and Data ScienceYale UniversityNew HavenCT06520USA
- Child Study CenterYale School of MedicineNew HavenCT06510USA
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jing Wu
- Department of Medical OncologyBeijing You‐An HospitalCapital Medical UniversityBeijing100069P. R. China
| | - Shile Qi
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Qinghao Liang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
| | - Dongmei Zhi
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Young‐Chul Chung
- Department of PsychiatryJeonbuk National University Medical SchoolJeonju54907Republic of Korea
- Department of PsychiatryChonbuk National University HospitalJeonju54907Republic of Korea
| | - Sha Liu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Yong Xu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| |
Collapse
|
18
|
An S, Oh SJ, Jun SB, Sung JE. Aging-Related Dissociation of Spatial and Temporal N400 in Sentence-Level Semantic Processing: Evidence From Source Analyses. Front Aging Neurosci 2022; 14:877235. [PMID: 35754967 PMCID: PMC9226558 DOI: 10.3389/fnagi.2022.877235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related differences in sentence-level lexical-semantic processes have been extensively studied, based on the N400 component of event-related potential (ERP). However, there is still a lack of understanding in this regard at the brain-region level. This study explores aging effects on sentence-level semantic processing by comparing the characteristics of the N400 ERP component and brain engagement patterns within individual N400 time windows for two age groups (16 younger adults aged 24.38 ± 3.88 years and 15 older adults aged 67.00 ± 5.04 years) during sentence processing with different plausibility conditions. Our results demonstrated that the N400 effect according to the plausibility condition occurred in different temporal windows in the two age groups, with a delay in the older group. Moreover, it was identified that there was a distinct difference between the groups in terms of the source location of the condition-dependent N400 effect even though no significant difference was derived in its magnitude itself at the sensor-level. Interestingly, the source analysis results indicated that the two groups involved different functional networks to resolve the same semantic violations: the younger group activated the regions corresponding to the typical lexical-semantic network more, whereas the older group recruited the regions belonging to the multiple-demand network more. The findings of this study could be used as a basis for understanding the aging brain in a linguistic context.
Collapse
Affiliation(s)
- Sora An
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| | - Se Jin Oh
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, South Korea.,Graduate Program in Smart Factory, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Jee Eun Sung
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
19
|
Fenerci C, Gurguryan L, Spreng RN, Sheldon S. Comparing neural activity during autobiographical memory retrieval between younger and older adults: An ALE meta-analysis. Neurobiol Aging 2022; 119:8-21. [DOI: 10.1016/j.neurobiolaging.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
|
20
|
Morrone CD, Lai AY, Bishay J, Hill ME, McLaurin J. Parvalbumin neuroplasticity compensates for somatostatin impairment, maintaining cognitive function in Alzheimer's disease. Transl Neurodegener 2022; 11:26. [PMID: 35501886 PMCID: PMC9063209 DOI: 10.1186/s40035-022-00300-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patient-to-patient variability in the degree to which β-amyloid, tau and neurodegeneration impact cognitive decline in Alzheimer's disease (AD) complicates disease modeling and treatment. However, the underlying mechanisms leading to cognitive resilience are not resolved. We hypothesize that the variability in cognitive function and loss relates to neuronal resilience of the hippocampal GABAergic network. METHODS We compared TgF344-AD and non-transgenic littermate rats at 9, 12, and 15 months of age. Neurons, β-amyloid plaques and tau inclusions were quantified in hippocampus and entorhinal cortex. Somatostatin (SST) and parvalbumin (PVB) interneurons were traced to examine hippocampal neuroplasticity and cognition was tested in the Barnes maze. RESULTS The 9-month-old TgF344-AD rats exhibited loss of neurons in the entorhinal cortex and hippocampus. Hippocampal neuronal compensation was observed in 12-month TgF344-AD rats, with upregulation of GABAergic interneuronal marker. By 15 months, the TgF344-AD rats had robust loss of excitatory and inhibitory neurons. β-Amyloid and tau pathology accumulated continuously across age. SST interneurons exhibited tau inclusions and atrophy from 9 months, whereas PVB interneurons were resilient until 15 months. The hippocampal PVB circuit underwent neuroplastic reorganization with increased dendritic length and complexity in 9- and 12-month-old TgF344-AD rats, before atrophy at 15 months. Strikingly, 12-month-old TgF344-AD rats were resilient in executive function and cognitive flexibility. Cognitive resilience in TgF344-AD rats occurred as maintenance of function between 9 and 12 months of age despite progressive spatial memory deficits, and was sustained by PVB neuroplasticity. CONCLUSIONS Our results demonstrate the inherent neuronal processes leading to cognitive maintenance, and describe a novel finding of endogenous cognitive resilience in an AD model.
Collapse
Affiliation(s)
| | - Aaron Yenhsin Lai
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Jossana Bishay
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
21
|
Perinelli A, Assecondi S, Tagliabue CF, Mazza V. Power shift and connectivity changes in healthy aging during resting-state EEG. Neuroimage 2022; 256:119247. [PMID: 35477019 DOI: 10.1016/j.neuroimage.2022.119247] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/15/2022] Open
Abstract
The neural activity of human brain changes in healthy individuals during aging. The most frequent variation in patterns of neural activity are a shift from posterior to anterior areas and a reduced asymmetry between hemispheres. These patterns are typically observed during task execution and by using functional magnetic resonance imaging data. In the present study we investigated whether analogous effects can also be detected during rest and by means of source-space time series reconstructed from electroencephalographic recordings. By analyzing oscillatory power distribution across the brain we indeed found a shift from posterior to anterior areas in older adults. We additionally examined this shift by evaluating connectivity and its changes with age. The findings indicated that inter-area connections among frontal, parietal and temporal areas were strengthened in older individuals. A more complex pattern was shown in intra-area connections, where age-related activity was enhanced in parietal and temporal areas, and reduced in frontal areas. Finally, the resulting network exhibits a loss of modularity with age. Overall, the results extend to resting-state condition the evidence of an age-related shift of brain activity from posterior to anterior areas, thus suggesting that this shift is a general feature of the aging brain rather than being task-specific. In addition, the connectivity results provide new information on the reorganization of resting-state brain activity in aging.
Collapse
Affiliation(s)
- Alessio Perinelli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, TN, Italy.
| | - Sara Assecondi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, TN, Italy
| | - Chiara F Tagliabue
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, TN, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, TN, Italy
| |
Collapse
|
22
|
Haas SS, Doucet GE, Antoniades M, Modabbernia A, Corcoran CM, Kahn RS, Kambeitz J, Kambeitz-Ilankovic L, Borgwardt S, Brambilla P, Upthegrove R, Wood SJ, Salokangas RK, Hietala J, Meisenzahl E, Koutsouleris N, Frangou S. Evidence of discontinuity between psychosis-risk and non-clinical samples in the neuroanatomical correlates of social function. Schizophr Res Cogn 2022; 29:100252. [PMID: 35391789 PMCID: PMC8980307 DOI: 10.1016/j.scog.2022.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Abstract
Objective Social dysfunction is a major feature of clinical-high-risk states for psychosis (CHR-P). Prior research has identified a neuroanatomical pattern associated with impaired social function outcome in CHR-P. The aim of the current study was to test whether social dysfunction in CHR-P is neurobiologically distinct or in a continuum with the lower end of the normal distribution of individual differences in social functioning. Methods We used a machine learning classifier to test for the presence of a previously validated brain structural pattern associated with impaired social outcome in CHR-P (CHR-outcome-neurosignature) in the neuroimaging profiles of individuals from two non-clinical samples (total n = 1763) and examined its association with social function, psychopathology and cognition. Results Although the CHR-outcome-neurosignature could be detected in a subset of the non-clinical samples, it was not associated was adverse social outcomes or higher psychopathology levels. However, participants whose neuroanatomical profiles were highly aligned with the CHR-outcome-neurosignature manifested subtle disadvantage in fluid (PFDR = 0.004) and crystallized intelligence (PFDR = 0.01), cognitive flexibility (PFDR = 0.02), inhibitory control (PFDR = 0.01), working memory (PFDR = 0.0005), and processing speed (PFDR = 0.04). Conclusions We provide evidence of divergence in brain structural underpinnings of social dysfunction derived from a psychosis-risk enriched population when applied to non-clinical samples. This approach appears promising in identifying brain mechanisms bound to psychosis through comparisons of patient populations to non-clinical samples with the same neuroanatomical profiles.
Collapse
Affiliation(s)
- Shalaila S. Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Gaelle E. Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE 68010, USA
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Amirhossein Modabbernia
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Cheryl M. Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - René S. Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Joseph Kambeitz
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Lana Kambeitz-Ilankovic
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany,Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstraße 7, 80336 München, Germany
| | - Stefan Borgwardt
- Department of Psychiatry, University Psychiatric Clinics (UPK), University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland,Department of Psychiatry, Psychosomatics and Psychotherapy, Translational Psychiatry Unit, University of Lübeck, Lübeck 23538, Germany
| | - Paolo Brambilla
- Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122 Milano, Italy,Department of Pathophysiology and Mental Health, University of Milan, Via Francesco Sforza 35, 20122 Milano, Italy
| | - Rachel Upthegrove
- Early Intervention Service, Birmingham Womens and Childrens NHS Trust, Steelhouse Lane, Birmingham, B4 6NH, UK,Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stephen J. Wood
- Department of Pathophysiology and Mental Health, University of Milan, Via Francesco Sforza 35, 20122 Milano, Italy,Orygen, 35 Poplar Rd, Parkville, VIC 3052, Australia,Centre for Youth Mental Health, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| | - Raimo K.R. Salokangas
- Department of Psychiatry, University of Turku and Turku University Hospital, FI-20014 Turun yliopisto, Finland
| | - Jarmo Hietala
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Moorenstrße 5, 40225 Düsseldorf, Germany
| | - Eva Meisenzahl
- Max-Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804 München, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstraße 7, 80336 München, Germany,Max-Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804 München, Germany,Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, SE5 8AF London, UK
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada,Corresponding author at: Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY, 10029, NY, USA.
| |
Collapse
|
23
|
Lei H, Hu R, Luo G, Yang T, Shen H, Deng H, Chen C, Zhao H, Liu J. Altered Structural and Functional MRI Connectivity in Type 2 Diabetes Mellitus Related Cognitive Impairment: A Review. Front Hum Neurosci 2022; 15:755017. [PMID: 35069149 PMCID: PMC8770326 DOI: 10.3389/fnhum.2021.755017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with cognitive impairment in many domains. There are several pieces of evidence that changes in neuronal neuropathies and metabolism have been observed in T2DM. Structural and functional MRI shows that abnormal connections and synchronization occur in T2DM brain circuits and related networks. Neuroplasticity and energy metabolism appear to be principal effector systems, which may be related to amyloid beta (Aβ) deposition, although there is no unified explanation that includes the complex etiology of T2DM with cognitive impairment. Herein, we assume that cognitive impairment in diabetes may lead to abnormalities in neuroplasticity and energy metabolism in the brain, and those reflected to MRI structural connectivity and functional connectivity, respectively.
Collapse
|
24
|
Does Hemispheric Asymmetry Reduction in Older Adults in Motor Cortex Reflect Compensation? J Neurosci 2021; 41:9361-9373. [PMID: 34580164 PMCID: PMC8580140 DOI: 10.1523/jneurosci.1111-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
Older adults tend to display greater brain activation in the nondominant hemisphere during even basic sensorimotor responses. It is debated whether this hemispheric asymmetry reduction in older adults (HAROLD) reflects a compensatory mechanism. Across two independent fMRI experiments involving adult life span human samples (N = 586 and N = 81, approximately half female) who performed right-hand finger responses, we distinguished between these hypotheses using behavioral and multivariate Bayes (MVB) decoding approaches. Standard univariate analyses replicated a HAROLD pattern in motor cortex, but in and out of scanner behavioral results both demonstrated evidence against a compensatory relationship in that reaction time measures of task performance in older adults did not relate to ipsilateral motor activity. Likewise, MVB showed that this increased ipsilateral activity in older adults did not carry additional information, and if anything, combining ipsilateral with contralateral activity patterns reduced action decoding in older adults (at least in experiment 1). These results contradict the hypothesis that HAROLD is compensatory and instead suggest that the age-related ipsilateral hyperactivation is nonspecific, consistent with alternative hypotheses about age-related reductions in neural efficiency/differentiation or interhemispheric inhibition. SIGNIFICANCE STATEMENT A key goal in the cognitive neuroscience of aging is to provide a mechanistic explanation of how brain–behavior relationships change with age. One interpretation of the common finding that task-based hemispheric activity becomes more symmetrical in older adults is that this shift reflects a compensatory mechanism, with the nondominant hemisphere needing to help out with computations normally performed by the dominant hemisphere. Contrary to this view, our behavioral and brain data indicate that the additional activity in ipsilateral motor cortex in older adults is not reflective of better task performance nor better neural representations of finger actions.
Collapse
|
25
|
Karagiorgis AT, Chalas N, Karagianni M, Papadelis G, Vivas AB, Bamidis P, Paraskevopoulos E. Computerized Music-Reading Intervention Improves Resistance to Unisensory Distraction Within a Multisensory Task, in Young and Older Adults. Front Hum Neurosci 2021; 15:742607. [PMID: 34566611 PMCID: PMC8461100 DOI: 10.3389/fnhum.2021.742607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Incoming information from multiple sensory channels compete for attention. Processing the relevant ones and ignoring distractors, while at the same time monitoring the environment for potential threats, is crucial for survival, throughout the lifespan. However, sensory and cognitive mechanisms often decline in aging populations, making them more susceptible to distraction. Previous interventions in older adults have successfully improved resistance to distraction, but the inclusion of multisensory integration, with its unique properties in attentional capture, in the training protocol is underexplored. Here, we studied whether, and how, a 4-week intervention, which targets audiovisual integration, affects the ability to deal with task-irrelevant unisensory deviants within a multisensory task. Musically naïve participants engaged in a computerized music reading game and were asked to detect audiovisual incongruences between the pitch of a song's melody and the position of a disk on the screen, similar to a simplistic music staff. The effects of the intervention were evaluated via behavioral and EEG measurements in young and older adults. Behavioral findings include the absence of age-related differences in distraction and the indirect improvement of performance due to the intervention, seen as an amelioration of response bias. An asymmetry between the effects of auditory and visual deviants was identified and attributed to modality dominance. The electroencephalographic results showed that both groups shared an increase in activation strength after training, when processing auditory deviants, located in the left dorsolateral prefrontal cortex. A functional connectivity analysis revealed that only young adults improved flow of information, in a network comprised of a fronto-parietal subnetwork and a multisensory temporal area. Overall, both behavioral measures and neurophysiological findings suggest that the intervention was indirectly successful, driving a shift in response strategy in the cognitive domain and higher-level or multisensory brain areas, and leaving lower level unisensory processing unaffected.
Collapse
Affiliation(s)
- Alexandros T Karagiorgis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolas Chalas
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Maria Karagianni
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papadelis
- School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ana B Vivas
- Department of Psychology, CITY College, University of York Europe Campus, Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
26
|
Feng Y, Li Y, Tan X, Liang Y, Ma X, Chen Y, Lv W, Wu J, Kang S, Li M, Qiu S. Altered Gray Matter Volume, Functional Connectivity, and Degree Centrality in Early-Onset Type 2 Diabetes Mellitus. Front Neurol 2021; 12:697349. [PMID: 34566841 PMCID: PMC8459017 DOI: 10.3389/fneur.2021.697349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Structural and functional brain alterations that underlie cognitive decline have been observed in elderly adults with type 2 diabetes mellitus (T2DM); however, whether these alterations can be observed in patients with early-onset T2DM remains unclear. Therefore, we aimed to describe the abnormalities in brain volume and functional patterns in patients with early-onset T2DM in the present study. Methods: We enrolled 20 patients with early-onset T2DM and 20 healthy controls (HCs). Changes in brain volume were assessed using voxel-based morphology (VBM), while changes in brain function were assessed using degree centrality (DC) and functional connectivity (FC). Results: Compared to HCs, patients with early-onset T2DM exhibited gray matter reductions in the left orbital superior, middle, and inferior frontal gyri as well as the right superior frontal gyrus. The gray matter reductions in the right superior frontal gyrus were negatively associated with the urine albumin to creatinine ratio. Furthermore, increased DC values were observed in the left superior temporal gyrus, left Heschl gyrus, and left hippocampus in patients with early-onset T2DM. An FC analysis of these regions revealed elevated connectivity in the right precuneus, left inferior parietal gyrus, left Heschl gyrus, bilateral post-central gyrus, bilateral insula, bilateral superior temporal gyrus, and bilateral medial and paracingulate gyrus. Furthermore, the FC of the hubs to the superior temporal gyrus, insula, and Heschl gyrus was increased and positively correlated with trail making test-B. Conclusion: Decreased local gray matter volume and increased DC and FC may represent the neurobiological mechanism underlying cognitive dysfunction in patients with early-onset T2DM.
Collapse
Affiliation(s)
- Yue Feng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Liang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomeng Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiao Lv
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjian Wu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangyu Kang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingrui Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Martin S, Saur D, Hartwigsen G. Age-Dependent Contribution of Domain-General Networks to Semantic Cognition. Cereb Cortex 2021; 32:870-890. [PMID: 34464442 PMCID: PMC8841593 DOI: 10.1093/cercor/bhab252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is characterized by a decline of cognitive control. In semantic cognition, this leads to the paradox that older adults usually show poorer task performance than young adults despite their greater semantic knowledge. So far, the underlying neural changes of these behavioral differences are poorly understood. In the current neuroimaging study, we investigated the interaction of domain-specific and domain-general networks during verbal semantic fluency in young and older adults. Across age groups, task processing was characterized by a strong positive integration within the multiple-demand as well as between the multiple-demand and the default mode network during semantic fluency. However, the behavioral relevance of strengthened connectivity differed between groups: While within-network functional connectivity in both networks predicted greater efficiency in semantic fluency in young adults, it was associated with slower performance in older adults. Moreover, only young adults profited from connectivity between networks for their semantic memory performance. Our results suggest that the functional coupling of usually anticorrelated networks is critical for successful task processing, independent of age, when access to semantic memory is required. Furthermore, our findings lend novel support to the notion of reduced efficiency in the aging brain due to neural dedifferentiation in semantic cognition.
Collapse
Affiliation(s)
- Sandra Martin
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,Language & Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Huang Q, Ren S, Zhang T, Li J, Jiang D, Xiao J, Hua F, Xie F, Guan Y. Aging-Related Modular Architectural Reorganization of the Metabolic Brain Network. Brain Connect 2021; 12:432-442. [PMID: 34210172 DOI: 10.1089/brain.2021.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: Modules in brain network represent groups of brain regions that are collectively involved in one or more cognitive domains. Exploring aging-related reorganization of the brain modular architecture using metabolic brain network could further our understanding about aging-related neuromechanism and neurodegenerations. Materials and Methods: In this study, 432 subjects who performed 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) were enrolled and divided into young and old adult groups, as well as female and male groups. The modular architecture was detected, and the connector and hub nodes were identified to explore the topological role of the brain regions based on the metabolic brain network. Results: This study revealed that human metabolic brain network was modular and could be clustered into three modules. The modular architecture was reorganized from young to old ages with regions related to sensorimotor function clustered into the same module; and the number of connector nodes was reduced and most connector nodes were localized in temporo-occipital areas related to visual and auditory functions in old ages. The major gender difference is that the metabolic brain network was delineated into four modules in old female group with the nodes related to sensorimotor function split into two modules. Discussion: Those findings suggest aging is associated with reorganized brain modular architecture. Clinical Trial Registration number: ChiCTR2000036842.
Collapse
Affiliation(s)
- Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuhua Ren
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfei Xiao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Roe JM, Vidal-Piñeiro D, Sneve MH, Kompus K, Greve DN, Walhovd KB, Fjell AM, Westerhausen R. Age-Related Differences in Functional Asymmetry During Memory Retrieval Revisited: No Evidence for Contralateral Overactivation or Compensation. Cereb Cortex 2021; 30:1129-1147. [PMID: 31408102 DOI: 10.1093/cercor/bhz153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Brain asymmetry is inherent to cognitive processing and seems to reflect processing efficiency. Lower frontal asymmetry is often observed in older adults during memory retrieval, yet it is unclear whether lower asymmetry implies an age-related increase in contralateral recruitment, whether less asymmetry reflects compensation, is limited to frontal regions, or predicts neurocognitive stability or decline. We assessed age-related differences in asymmetry across the entire cerebral cortex, using functional magnetic resonance imaging data from 89 young and 76 older adults during successful retrieval, and surface-based methods allowing direct homotopic comparison of activity between cortical hemispheres . An extensive left-asymmetric network facilitated retrieval in both young and older adults, whereas diverse frontal and parietal regions exhibited lower asymmetry in older adults. However, lower asymmetry was not associated with age-related increases in contralateral recruitment but primarily reflected either less deactivation in contralateral regions reliably signaling retrieval failure in the young or lower recruitment of the dominant hemisphere-suggesting that functional deficits may drive lower asymmetry in older brains, not compensatory activity. Lower asymmetry predicted neither current memory performance nor the extent of memory change across the preceding ~ 8 years in older adults. Together, these findings are inconsistent with a compensation account for lower asymmetry during retrieval and aging.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, Charlestown, MA 02129, USA.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
30
|
Duda BM, Sweet LH. Functional brain changes associated with cognitive training in healthy older adults: A preliminary ALE meta-analysis. Brain Imaging Behav 2021; 14:1247-1262. [PMID: 30900077 DOI: 10.1007/s11682-019-00080-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accumulating evidence suggests that cognitive training (CT) programs may provide healthy older adults (OAs) with cognitive benefits that are accompanied by alterations in neural activity. The current review offers the first quantitative synthesis of the available literature on the neural effects of CT in healthy aging. It was hypothesized that OAs would evidence increased and decreased neural activations across various challenging CTs, and that these effects would be observed as significantly altered clusters within regions of the frontoparietal network (FPN). Online databases and reference lists were searched to identify peer-reviewed publications that reported assessment of neural changes associated with CT programs in healthy OAs. Among the 2097 candidate studies identified, 14 studies with a total of 238 participants met inclusionary criteria. GingerALE software was used to quantify neural effects in a whole-brain analysis. The activation likelihood estimation technique revealed significant increases in activation following CT in the left hemisphere middle frontal gyrus, precentral gyrus, and posterior parietal cortex, extending to the superior occipital gyrus. Two clusters of diminished neural activity following CT were identified within the right hemisphere middle frontal gyrus and supramarginal gyrus, extending to the superior temporal gyrus. These results provide preliminary evidence of common neural effects of different CT interventions within regions of the FPN. Findings may inform future investigations of neuroplasticity across the lifespan, including clinical applications of CT, such as assessing treatment outcomes.
Collapse
Affiliation(s)
- Bryant M Duda
- Department of Psychology, University of Georgia, Athens, GA, 30602-3001, USA.
| | - Lawrence H Sweet
- Department of Psychology, University of Georgia, Athens, GA, 30602-3001, USA.,Department of Psychiatry & Human Behavior, Brown University Medical School, Providence, RI, USA
| |
Collapse
|
31
|
Gonzalez-Burgos L, Pereira JB, Mohanty R, Barroso J, Westman E, Ferreira D. Cortical Networks Underpinning Compensation of Verbal Fluency in Normal Aging. Cereb Cortex 2021; 31:3832-3845. [PMID: 33866353 PMCID: PMC8258442 DOI: 10.1093/cercor/bhab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Elucidating compensatory mechanisms underpinning phonemic fluency (PF) may help to minimize its decline due to normal aging or neurodegenerative diseases. We investigated cortical brain networks potentially underpinning compensation of age-related differences in PF. Using graph theory, we constructed networks from measures of thickness for PF, semantic, and executive–visuospatial cortical networks. A total of 267 cognitively healthy individuals were divided into younger age (YA, 38–58 years) and older age (OA, 59–79 years) groups with low performance (LP) and high performance (HP) in PF: YA-LP, YA-HP, OA-LP, OA-HP. We found that the same pattern of reduced efficiency and increased transitivity was associated with both HP (compensation) and OA (aberrant network organization) in the PF and semantic cortical networks. When compared with the OA-LP group, the higher PF performance in the OA-HP group was associated with more segregated PF and semantic cortical networks, greater participation of frontal nodes, and stronger correlations within the PF cortical network. We conclude that more segregated cortical networks with strong involvement of frontal nodes seemed to allow older adults to maintain their high PF performance. Nodal analyses and measures of strength were helpful to disentangle compensation from the aberrant network organization associated with OA.
Collapse
Affiliation(s)
- Lissett Gonzalez-Burgos
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Health Science, Section of Psychology and Speech Therapy, University of La Laguna, La Laguna, Tenerife 38 200, Spain.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden
| | - Joana B Pereira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden
| | - José Barroso
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Health Science, Section of Psychology and Speech Therapy, University of La Laguna, La Laguna, Tenerife 38 200, Spain
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
| | - Daniel Ferreira
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Health Science, Section of Psychology and Speech Therapy, University of La Laguna, La Laguna, Tenerife 38 200, Spain.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm 141 83, Sweden
| |
Collapse
|
32
|
Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190631. [PMID: 33190597 PMCID: PMC7741031 DOI: 10.1098/rstb.2019.0631] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Richard N. A. Henson
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
33
|
Balietti M, Pugliese A, Conti F. In aged rats, differences in spatial learning and memory influence the response to late-life Environmental Enrichment. Exp Gerontol 2020; 146:111225. [PMID: 33388381 DOI: 10.1016/j.exger.2020.111225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 11/26/2022]
Abstract
It has clearly been demonstrated that cognitive stimulation, physical exercise, and social engagement help counteract age-related cognitive decline. However, several important issues remain to be addressed. Given the wide differences in cognitive impairment found among individuals of the same age, identifying the subjects who will benefit most from late-life interventions is one such issue. Environmental Enrichment (EE) is a particularly valuable approach to do this. In this study, aged (21-month-old) rats were assigned to a better (BL) or a worse (WL) learner group (training phase) and to a non-impaired (NI) or an impaired (I) group (probe phase) by their performance on the Morris Water Maze, using the test performances of adult (12-month-old) rats as the cut-offs. The aged rats were retested after a 12-week EE or standard housing (SH) protocol. After 12 weeks, the performances of SH rats had deteriorated, whereas all rats benefited from EE, albeit in different ways. In particular, the animals assigned to the BL and the NI groups prior to EE still performed as well as the adult rats (performance preservation) whereas, critically, the animals assigned to the WL and the I groups before EE showed such improved performances that they reached the level of the adult rats (performance improvement), despite having aged further. EE seems to induce the preservation in BLs and the improvement in WLs of spatial search strategies and the preservation in NIs and the increase in Is of a focused and protract research of the escape point. Our findings suggest that late-life EE prevents spatial learning and memory decline in still cognitively preserved animals and stimulates residual functional reserve in already cognitively compromised animals. Future research should focus on individually tailored stimulation protocols to improve their effect and afford a better understanding of the underlying processes.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Arianna Pugliese
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
34
|
Habich A, Fehér KD, Antonenko D, Boraxbekk CJ, Flöel A, Nissen C, Siebner HR, Thielscher A, Klöppel S. Stimulating aged brains with transcranial direct current stimulation: Opportunities and challenges. Psychiatry Res Neuroimaging 2020; 306:111179. [PMID: 32972813 DOI: 10.1016/j.pscychresns.2020.111179] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/30/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Ageing involves significant neurophysiological changes that are both systematic while at the same time exhibiting divergent trajectories across individuals. These changes underlie cognitive impairments in elderly while also affecting the response of aged brains to interventions like transcranial direct current stimulation (tDCS). While the cognitive benefits of tDCS are more variable in elderly, older adults also respond differently to stimulation protocols compared to young adults. The age-related neurophysiological changes influencing the responsiveness to tDCS remain to be addressed in-depth. We review and discuss the premise that, in comparison to the better calibrated brain networks present in young adults, aged systems perform further away from a homoeostatic set-point. We argue that this age-related neurophysiological deviation from the homoeostatic optimum extends the leeway for tDCS to modulate the aged brain. This promotes the potency of immediate tDCS effects to induce directional plastic changes towards the homoeostatic equilibrium despite the impaired plasticity induction in elderly. We also consider how age-related neurophysiological changes pose specific challenges for tDCS that necessitate proper adaptations of stimulation protocols. Appreciating the distinctive properties of aged brains and the accompanying adjustment of stimulation parameters can increase the potency and reliability of tDCS as a treatment avenue in older adults.
Collapse
Affiliation(s)
- Annegret Habich
- University Hospital of Old Age Psychiatry and Psychotherpa, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | - Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland
| | - Daria Antonenko
- Department of Neurology, University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Carl-Johan Boraxbekk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Østvej, 2650 Hvidovre, Denmark; Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Agnes Flöel
- Department of Neurology, University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; German Center for Neurodegenerative Diseases, Ellernholzstraße 1-2, 17489 Greifswald, Germany
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland; Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Østvej, 2650 Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Østvej, 2650 Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, Ørsteds Pl. 348, 2800 Kgs. Lyngby, Denmark
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherpa, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland
| |
Collapse
|
35
|
Hirst RJ, Whelan R, Boyle R, Setti A, Knight S, O'Connor J, Williamson W, McMorrow J, Fagan AJ, Meaney JF, Kenny RA, De Looze C, Newell FN. Gray matter volume in the right angular gyrus is associated with differential patterns of multisensory integration with aging. Neurobiol Aging 2020; 100:83-90. [PMID: 33508565 DOI: 10.1016/j.neurobiolaging.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/04/2020] [Accepted: 12/05/2020] [Indexed: 02/02/2023]
Abstract
Multisensory perception might provide an important marker of brain function in aging. However, the cortical structures supporting multisensory perception in aging are poorly understood. In this study, we compared regional gray matter volume in a group of middle-aged (n = 101; 49-64 years) and older (n = 116; 71-87 years) adults from The Irish Longitudinal Study on Aging using voxel-based morphometry. Participants completed a measure of multisensory integration, the sound-induced flash illusion, and were grouped as per their illusion susceptibility. A significant interaction was observed in the right angular gyrus; in the middle-aged group, larger gray matter volume corresponded to stronger illusion perception while in older adults larger gray matter corresponded to less illusion susceptibility. This interaction remained significant even when controlling for a range of demographic, sensory, cognitive, and health variables. These findings show that multisensory integration is associated with specific structural differences in the aging brain and highlight the angular gyrus as a possible "cross-modal hub" associated with age-related change in multisensory perception.
Collapse
Affiliation(s)
- Rebecca J Hirst
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland.
| | - Robert Whelan
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Rory Boyle
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Annalisa Setti
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland; School of Applied Psychology, University College Cork, Cork, Ireland
| | - Silvin Knight
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - John O'Connor
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Wilby Williamson
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland; Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | - Jason McMorrow
- The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - James F Meaney
- The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland; Mercer Institute for Successful Ageing, St. James Hospital, Dublin, Ireland
| | - Céline De Looze
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland.
| | - Fiona N Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Gao M, Wong CHY, Huang H, Shao R, Huang R, Chan CCH, Lee TMC. Connectome-based models can predict processing speed in older adults. Neuroimage 2020; 223:117290. [PMID: 32871259 DOI: 10.1016/j.neuroimage.2020.117290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Decrement in processing speed (PS) is a primary cognitive morbidity in clinical populations and could significantly influence other cognitive functions, such as attention and memory. Verifying the usefulness of connectome-based models for predicting neurocognitive abilities has significant translational implications on clinical and aging research. In this study, we verified that resting-state functional connectivity could be used to predict PS in 99 older adults by using connectome-based predictive modeling (CPM). We identified two distinct connectome patterns across the whole brain: the fast-PS and slow-PS networks. Relative to the slow-PS network, the fast-PS network showed more within-network connectivity in the motor and visual networks and less between-network connectivity in the motor-visual, motor-subcortical/cerebellum and motor-frontoparietal networks. We further verified that the connectivity patterns for prediction of PS were also useful for predicting attention and memory in the same sample. To test the generalizability and specificity of the connectome-based predictive models, we applied these two connectome models to an independent sample of three age groups (101 younger adults, 103 middle-aged adults and 91 older adults) and confirmed these models could specifically be generalized to predict PS of the older adults, but not the younger and middle-aged adults. Taking all the findings together, the identified connectome-based predictive models are strong for predicting PS in older adults. The application of CPM to predict neurocognitive abilities can complement conventional neurocognitive assessments, bring significant clinical benefits to patient management and aid the clinical diagnoses, prognoses and management of people undergoing the aging process.
Collapse
Affiliation(s)
- Mengxia Gao
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China
| | - Clive H Y Wong
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China
| | - Huiyuan Huang
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain Cognition and Education Sciences (South China Normal University) Ministry of Education
| | - Robin Shao
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China
| | - Ruiwang Huang
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain Cognition and Education Sciences (South China Normal University) Ministry of Education.
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hum Hom, Hong Kong.
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China; Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University, China.
| |
Collapse
|
37
|
Longitudinal change in executive function is associated with impaired top-down frontolimbic regulation during reappraisal in older adults. Neuroimage 2020; 225:117488. [PMID: 33164856 PMCID: PMC7779563 DOI: 10.1016/j.neuroimage.2020.117488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Networks in the prefrontal cortex (PFC) that are important for executive function are also engaged in adaptive responding to negative events. These networks are particularly vulnerable to age-related structural atrophy and an associated loss of executive function, yet existing evidence suggests preserved emotion processing ability in ageing. Using longitudinally acquired data from a battery of cognitive tasks, we defined a metric for the rate of decline of executive function. With this metric, we investigated relationships between changes in executive function and emotion reappraisal ability and brain structure, in 34 older adults, using functional and structural MRI. During task-based fMRI, participants were asked to cognitively reappraise negatively valenced images. We hypothesised one of two associations with decreasing executive function over time: 1) a decreased ability to reappraise reflected in decreased PFC and increased amygdala activation, or 2) a neural compensation mechanism characterised by increased PFC activation but no differential amygdala activation. Structurally, for a decreased reappraisal ability, we predicted a decrease in grey matter in PFC and/or a decrease of white matter integrity in amygdala-PFC pathways. Neither of the two hypotheses relating to brain function were completely supported, with the findings indicating a steeper decline in executive function associated with both increased PFC and increased left amygdala activity when reappraising negative stimuli. In addition, white matter integrity of the uncinate fasciculus, a primary white matter tract connecting the amygdala and ventromedial areas of PFC, was lower in those individuals who demonstrated a greater decrease in executive function. These findings highlight the association of diminishing cognitive ability with brain structure and function linked to emotion regulation.
Collapse
|
38
|
Marstaller L, Fynes-Clinton S, Burianová H, Reutens DC. Salience and default-mode network connectivity during threat and safety processing in older adults. Hum Brain Mapp 2020; 42:14-23. [PMID: 32936998 PMCID: PMC7721242 DOI: 10.1002/hbm.25199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
The appropriate assessment of threat and safety is important for decision‐making but might be altered in old age due to neurobiological changes. The literature on threat and safety processing in older adults is sparse and it is unclear how healthy ageing affects the brain's functional networks associated with affective processing. We measured skin conductance responses as an indicator of sympathetic arousal and used functional magnetic resonance imaging and independent component analysis to compare young and older adults' functional connectivity in the default mode (DMN) and salience networks (SN) during a threat conditioning and extinction task. While our results provided evidence for differential threat processing in both groups, they also showed that functional connectivity within the SN – but not the DMN – was weaker during threat processing in older compared to young adults. This reduction of within‐network connectivity was accompanied by an age‐related decrease in low frequency spectral power in the SN and a reduction in inter‐network connectivity between the SN and DMN during threat and safety processing. Similarly, we found that skin conductance responses were generally lower in older compared to young adults. Our results are the first to demonstrate age‐related changes in brain activation during aversive conditioning and suggest that the ability to adaptively filter affective information is reduced in older adults.
Collapse
Affiliation(s)
- Lars Marstaller
- Department of Psychology, Bournemouth University, Bournemouth, UK.,Department of Psychology, Swansea University, Swansea, UK.,Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | - Hana Burianová
- Department of Psychology, Bournemouth University, Bournemouth, UK.,Department of Psychology, Swansea University, Swansea, UK.,Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - David C Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| |
Collapse
|
39
|
Cotelli M, Manenti R, Gobbi E, Enrici I, Rusich D, Ferrari C, Adenzato M. Theory of Mind Performance Predicts tDCS-Mediated Effects on the Medial Prefrontal Cortex: A Pilot Study to Investigate the Role of Sex and Age. Brain Sci 2020; 10:brainsci10050257. [PMID: 32353992 PMCID: PMC7288024 DOI: 10.3390/brainsci10050257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has become an increasingly promising tool for understanding the relationship between brain and behavior. The purpose of this study was to investigate whether the magnitude of sex- and age-related tDCS effects previously found in the medial prefrontal cortex (mPFC) during a Theory of Mind (ToM) task correlates with social cognition performance; in particular, we explored whether different patterns of activity would be detected in high- and low-performing participants. For this, young and elderly, male and female participants were categorized as a low- or high-performer according to their score on the Reading the Mind in the Eyes task. Furthermore, we explored whether sex- and age-related effects associated with active tDCS on the mPFC were related to cognitive functioning. We observed the following results: (i) elderly participants experience a significant decline in ToM performance compared to young participants; (ii) low-performing elderly females report slowing of reaction time when anodal tDCS is applied over the mPFC during a ToM task; and (iii) low-performing elderly females are characterized by lower scores in executive control functions, verbal fluency and verbal short-term memory. The relationship between tDCS results and cognitive functioning is discussed in light of the neuroscientific literature on sex- and age-related differences.
Collapse
Affiliation(s)
- Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, BS, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, BS, Italy
- Correspondence: ; Tel.: +39-030-3501457; Fax: +39-030-3533513
| | - Elena Gobbi
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, BS, Italy
| | - Ivan Enrici
- Department of Philosophy and Educational Sciences, University of Turin, 10124 Turin, TO, Italy
| | - Danila Rusich
- Department of Human Science, LUMSA University (Libera Università Maria Santissima Assunta), 00193 Rome, RM, Italy
| | - Clarissa Ferrari
- Statistics Service, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, BS, Italy
| | - Mauro Adenzato
- Department of Psychology, University of Turin, 10124 Turin, TO, Italy
| |
Collapse
|
40
|
Gregory MA. Commentary: Increased Prefrontal Activity with Aging Reflects Nonspecific Neural Responses Rather than Compensation. Front Integr Neurosci 2020; 14:9. [PMID: 32153371 PMCID: PMC7047406 DOI: 10.3389/fnint.2020.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Madeline A. Gregory
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
41
|
Minami SB, Oishi N, Watabe T, Wasano K, Ogawa K. Age-related change of auditory functional connectivity in Human Connectome Project data and tinnitus patients. Laryngoscope Investig Otolaryngol 2020; 5:132-136. [PMID: 32128439 PMCID: PMC7042643 DOI: 10.1002/lio2.338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We reported that tinnitus patients showed reduced levels of auditory functional connectivity (FC) in comparison with normal hearing control subjects, and that we succeeded in objective diagnosis of tinnitus with 86% sensitivity and 74% specificity by focusing only on auditory-related FC. However, the age-related change of auditory FC is not clarified. In this study, we examine age-related change of the auditory FC using the database of Human Connectome Project (HCP) and compared with our database of tinnitus patients. METHOD From the HCP database HCP Lifespan Pilot project, we studied five age groups, 8 to 9 years old, 14 to 15, 25 to 35, 45 to 55, and 65 to 75. We also applied our tinnitus patients' resting-state functional magnetic resonance imaging (fMRI) database, which is divided into three generations; 20 to 40 years old, 40 to 60, and 60 to 80 to compare with the HCP database. The resting state fMRI analyses were performed using the CONN toolbox version 18. As auditory-related regions, Heschl's gyrus, planum temporale, planum polare, operculum, insular cortex, and superior temporal gyrus were set as the regions of interest from our previous reports. RESULT Auditory FC is strongest among adolescents and reduces with age. But the auditory FC of tinnitus patients were significantly less than those of HCP data in each generation. CONCLUSION Although auditory FC decreases with age, tinnitus patients have less auditory FC compared with age-matched controls. The age-matched cutoff values are necessary for an objective diagnosis of tinnitus with resting state fMRI.
Collapse
Affiliation(s)
- Shujiro B. Minami
- National Hospital Organization Tokyo Medical CenterNational Institute of Sensory OrgansMeguro CityTokyoJapan
- Department of OtolaryngologyNational Hospital Organization Tokyo Medical CenterMeguro CityTokyoJapan
| | - Naoki Oishi
- Department of Otolaryngology, Head and Neck SurgeryKeio University, School of MedicineShinjuku CityTokyoJapan
| | - Takahisa Watabe
- Department of Otolaryngology, Head and Neck SurgeryKeio University, School of MedicineShinjuku CityTokyoJapan
| | - Koichiro Wasano
- National Hospital Organization Tokyo Medical CenterNational Institute of Sensory OrgansMeguro CityTokyoJapan
- Department of OtolaryngologyNational Hospital Organization Tokyo Medical CenterMeguro CityTokyoJapan
| | - Kaoru Ogawa
- Department of Otolaryngology, Head and Neck SurgeryKeio University, School of MedicineShinjuku CityTokyoJapan
| |
Collapse
|
42
|
Zuo N, Salami A, Liu H, Yang Z, Jiang T. Functional maintenance in the multiple demand network characterizes superior fluid intelligence in aging. Neurobiol Aging 2020; 85:145-153. [DOI: 10.1016/j.neurobiolaging.2019.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/20/2019] [Accepted: 09/14/2019] [Indexed: 12/13/2022]
|
43
|
Oschwald J, Guye S, Liem F. Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change. Rev Neurosci 2019; 31:1-57. [PMID: 31194693 PMCID: PMC8572130 DOI: 10.1515/revneuro-2018-0096] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/02/2019] [Indexed: 12/20/2022]
Abstract
Little is still known about the neuroanatomical substrates related to changes in specific cognitive abilities in the course of healthy aging, and the existing evidence is predominantly based on cross-sectional studies. However, to understand the intricate dynamics between developmental changes in brain structure and changes in cognitive ability, longitudinal studies are needed. In the present article, we review the current longitudinal evidence on correlated changes between magnetic resonance imaging-derived measures of brain structure (e.g. gray matter/white matter volume, cortical thickness), and laboratory-based measures of fluid cognitive ability (e.g. intelligence, memory, processing speed) in healthy older adults. To theoretically embed the discussion, we refer to the revised Scaffolding Theory of Aging and Cognition. We found 31 eligible articles, with sample sizes ranging from n = 25 to n = 731 (median n = 104), and participant age ranging from 19 to 103. Several of these studies report positive correlated changes for specific regions and specific cognitive abilities (e.g. between structures of the medial temporal lobe and episodic memory). However, the number of studies presenting converging evidence is small, and the large methodological variability between studies precludes general conclusions. Methodological and theoretical limitations are discussed. Clearly, more empirical evidence is needed to advance the field. Therefore, we provide guidance for future researchers by presenting ideas to stimulate theory and methods for development.
Collapse
Affiliation(s)
- Jessica Oschwald
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Andreasstrasse 15, CH-8050 Zurich, Switzerland
| | - Sabrina Guye
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Andreasstrasse 15, CH-8050 Zurich, Switzerland
| | - Franziskus Liem
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Andreasstrasse 15, CH-8050 Zurich, Switzerland
| |
Collapse
|
44
|
Bartsch LM, Loaiza VM, Jäncke L, Oberauer K, Lewis-Peacock JA. Dissociating refreshing and elaboration and their impacts on memory. Neuroimage 2019; 199:585-597. [PMID: 31207338 PMCID: PMC11158115 DOI: 10.1016/j.neuroimage.2019.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/29/2022] Open
Abstract
Maintenance of information in working memory (WM) is assumed to rely on refreshing and elaboration, but clear mechanistic descriptions of these cognitive processes are lacking, and it is unclear whether they are simply two labels for the same process. This fMRI study investigated the extent to which refreshing, elaboration, and repeating of items in WM are distinct neural processes with dissociable behavioral outcomes in WM and long-term memory (LTM). Multivariate pattern analyses of fMRI data revealed differentiable neural signatures for these processes, which we also replicated in an independent sample of older adults. In some cases, the degree of neural separation within an individual predicted their memory performance. Elaboration improved LTM, but not WM, and this benefit increased as its neural signature became more distinct from repetition. Refreshing had no impact on LTM, but did improve WM, although the neural discrimination of this process was not predictive of the degree of improvement. These results demonstrate that refreshing and elaboration are separate processes that differently contribute to memory performance.
Collapse
Affiliation(s)
- Lea M Bartsch
- University of Zurich and University Priority Program Dynamics of Healthy Aging, Switzerland.
| | | | - Lutz Jäncke
- University of Zurich and University Priority Program Dynamics of Healthy Aging, Switzerland
| | - Klaus Oberauer
- University of Zurich and University Priority Program Dynamics of Healthy Aging, Switzerland
| | | |
Collapse
|
45
|
Koen JD, Rugg MD. Neural Dedifferentiation in the Aging Brain. Trends Cogn Sci 2019; 23:547-559. [PMID: 31174975 PMCID: PMC6635135 DOI: 10.1016/j.tics.2019.04.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022]
Abstract
Many cognitive abilities decline with age even in the absence of detectable pathology. Recent evidence indicates that age-related neural dedifferentiation, operationalized in terms of neural selectivity, may contribute to this decline. We review here work exploring the relationship between neural dedifferentiation, cognition, and age. Compelling evidence for age effects on neural selectivity comes from both non-human animal and human research. However, current data suggest that age does not moderate the observed relationships between neural dedifferentiation and cognitive performance. We propose that functionally significant variance in measures of neural dedifferentiation reflects both age-dependent and age-independent factors. We further propose that the effects of age on neural dedifferentiation do not exclusively reflect detrimental consequences of aging.
Collapse
Affiliation(s)
- Joshua D Koen
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Michael D Rugg
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75235, USA
| |
Collapse
|
46
|
Hoffman P. Reductions in prefrontal activation predict off-topic utterances during speech production. Nat Commun 2019; 10:515. [PMID: 30705284 PMCID: PMC6355898 DOI: 10.1038/s41467-019-08519-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Abstract
The ability to speak coherently is essential for effective communication but declines with age: older people more frequently produce tangential, off-topic speech. Little is known, however, about the neural systems that support coherence in speech production. Here, fMRI was used to investigate extended speech production in healthy older adults. Computational linguistic analyses were used to quantify the coherence of utterances produced in the scanner, allowing identification of the neural correlates of coherence for the first time. Highly coherent speech production was associated with increased activity in bilateral inferior prefrontal cortex (BA45), an area implicated in selection of task-relevant knowledge from semantic memory, and in bilateral rostrolateral prefrontal cortex (BA10), implicated more generally in planning of complex goal-directed behaviours. These findings demonstrate that neural activity during spontaneous speech production can be predicted from formal analysis of speech content, and that multiple prefrontal systems contribute to coherence in speech. The ability to speak coherently is essential for effective communication, but little is known about the neural systems that support coherence. Here, the authors show that activity in two prefrontal cortex regions, BA10 and BA45, predicts the level of coherence in the speech of healthy older adults.
Collapse
Affiliation(s)
- Paul Hoffman
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
47
|
Mulligan BP, Smart CM, Segalowitz SJ. Neuropsychological and resting-state electroencephalographic markers of older adult neurocognitive adaptability. Clin Neuropsychol 2019; 33:390-418. [PMID: 30648474 DOI: 10.1080/13854046.2018.1543453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study was undertaken to explore multimethod neurocognitive screening tools to aid in detection of older adults who may be at heightened risk of pathological cognitive decline (preclinical dementia). In so doing, this study advances the theoretical conceptualization of neurocognitive adaptability in the context of aging and dementia. METHOD This article reports original data from the baseline measurement occasion of a longitudinal study of healthy, community-dwelling older adults from the Victoria, British Columbia region. Participants were diagnosed as normal, subtle decline, or mild cognitive impairment according to actuarial neuropsychological criteria (adjusted for age only or adjusted for age and premorbid IQ). Diagnostic classification was employed to illustrate group differences in a novel metric of multi-timescale neural adaptability derived from 4-min of resting-state electroencephalographic data collected from each participant (immediately following their neuropsychological evaluation). RESULTS Prior findings were replicated; adjusting raw neuropsychological test scores for individual differences in estimated premorbid IQ appeared to increase the sensitivity of standardized clinical tasks to subtle cognitive impairment. Moreover, and consistent with prior neuroscientific research, timescale-specific (i.e. at ∼12-20 ms timescales) differences in resting-state neural adaptability appeared to characterize groups who differed in terms of neuropsycholgoical diagnostic classification. CONCLUSIONS Recently proposed actuarial neuropsychological criteria for subtle cognitive decline identify older adults who show timescale-specific changes in resting brain function that may signal the onset of preclinical dementia. The subtle decline stage may represent a critical inflection point-partial loss of neurocognitive adaptability-on a pathological aging trajectory. These findings illustrate areas of potential future development in neurocognitive health care.
Collapse
Affiliation(s)
- Bryce P Mulligan
- a Department of Psychology , The Ottawa Hospital , Ottawa , Canada.,b Department of Psychology , University of Victoria , Victoria , Canada.,c Institute on Aging & Lifelong Health , University of Victoria , Victoria , Canada
| | - Colette M Smart
- b Department of Psychology , University of Victoria , Victoria , Canada.,c Institute on Aging & Lifelong Health , University of Victoria , Victoria , Canada
| | - Sidney J Segalowitz
- d Psychology Department , Brock University , St. Catharines , Canada.,e The Jack and Nora Walker Centre for Lifespan Development Research , Brock University , St. Catharines , Canada
| |
Collapse
|
48
|
Abstract
Cognitive reserve is a latent construct theorized to account for the discrepancy between observed brain deterioration and ultimate clinical outcomes. This review outlines the theoretical development of the reserve concept and presents major trends within epidemiological and neuroimaging research literatures in support of such a construct. Particular focus is placed on the implications for cognitive aging and dementia.
Collapse
Affiliation(s)
- Yaakov Stern
- Departments of Neurology, Psychiatry and Taub Institute, Columbia University College of Physicians and Surgeons, New York, NY, United States.
| | - Daniel Barulli
- Department of Psychology, Columbia University, New York, NY, United States
| |
Collapse
|
49
|
Memel M, Ryan L. Visual integration of objects and scenes increases recollection-based responding despite differential MTL recruitment in young and older adults. Hippocampus 2018; 28:886-899. [PMID: 29999561 DOI: 10.1002/hipo.23011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 11/08/2022]
Abstract
Unitization, the process of encoding previously independent units as one coherent representation, improves associative memory in both young and older adults, or in some cases, differentially benefits older adults. Unitization of verbal associative pairs may reduce reliance on the hippocampus (HC) for successful encoding and recognition by shifting to familiarity-based processing mediated by perirhinal cortex (PRC). However, this shift was not observed in a recent study of visual associative memory, with equivalent activation in HC and PRC during encoding of visually integrated (unitized) and nonintegrated object and scene pairs. Furthermore, behavioral findings from this study suggested an increase in recollection rather than familiarity during recognition of visually integrated pairs. The present study extends our previous work by focusing on the influence of visual integration on fMRI activation during associative recognition, rather than encoding and these patterns between young and older adults. In contrast to our findings from encoding, visual integration reduced HC and PRC activation during retrieval of object and scene associative pairs across both age groups. However, visual integration increased the correlation between bilateral HC and left parahippocampal (PHC) activation and behavioral performance among older adults, consistent with an increased reliance on recollection. In contrast, visual integration reduced the correlation between HC activation and behavioral performance in young adults, more consistent with findings from the verbal unitization literature. Taken together, these results suggest that associative memory for visually integrated pairs may involve differential recruitment of medial temporal regions in young and older adults.
Collapse
Affiliation(s)
| | - Lee Ryan
- Department of Psychology, University of Arizona, Tucson, Arizona
| |
Collapse
|
50
|
Ramanoël S, Hoyau E, Kauffmann L, Renard F, Pichat C, Boudiaf N, Krainik A, Jaillard A, Baciu M. Gray Matter Volume and Cognitive Performance During Normal Aging. A Voxel-Based Morphometry Study. Front Aging Neurosci 2018; 10:235. [PMID: 30123123 PMCID: PMC6085481 DOI: 10.3389/fnagi.2018.00235] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
Normal aging is characterized by decline in cognitive functioning in conjunction with extensive gray matter (GM) atrophy. A first aim of this study was to determine GM volume differences related to aging by comparing two groups of participants, middle-aged group (MAG, mean age 41 years, N = 16) and older adults (OG, mean age 71 years, N = 14) who underwent an magnetic resonance images (MRI) voxel-based morphometry (VBM) evaluation. The VBM analyses included two optimized pipelines, for the cortex and for the cerebellum. Participants were also evaluated on a wide range of cognitive tests assessing both domain-general and language-specific processes, in order to examine how GM volume differences between OG and MAG relate to cognitive performance. Our results show smaller bilateral GM volume in the OG relative to the MAG, in several cerebral and right cerebellar regions involved in language and executive functions. Importantly, our results also revealed smaller GM volume in the right cerebellum in OG relative to MAG, supporting the idea of a complex cognitive role for this structure. This study provides a broad picture of cerebral, but also cerebellar and cognitive changes associated with normal aging.
Collapse
Affiliation(s)
- Stephen Ramanoël
- INSERM/CNRS, Institut Vision, Sorbonne University, Pierre and Marie Curie Universities (UPMC) Paris 06, Paris, France
| | - Elena Hoyau
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Louise Kauffmann
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
- CNRS, Grenoble INP, GIPSA-lab, University of Grenoble Alpes, Grenoble, France
| | - Félix Renard
- UMS IRMaGe Grenoble Hospital, University of Grenoble Alpes, Grenoble, France
| | - Cédric Pichat
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Naïla Boudiaf
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Alexandre Krainik
- UMS IRMaGe Grenoble Hospital, University of Grenoble Alpes, Grenoble, France
- Grenoble Institute of Neuroscience, University of Grenoble Alpes, Grenoble, France
| | - Assia Jaillard
- UMS IRMaGe Grenoble Hospital, University of Grenoble Alpes, Grenoble, France
| | - Monica Baciu
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|