1
|
Yang Y, Gu W, Jiang X, Lv X, Wei J, Zhang X, Zheng K, Lai H. MBG/BSA Bone Grafts Immunomodulate Bone Regeneration by Releasing Bioactive Ions in Inflammatory Bone Defects. Adv Healthc Mater 2024:e2402610. [PMID: 39491521 DOI: 10.1002/adhm.202402610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Since the diseases that cause bone defects are mostly inflammatory diseases, the current bone grafts are unable to effectively regulate osteoimmune activity, leading to the impaired osteogenesis and unfavorable bone regeneration. In this study, inspired by bone composition, biomimetic mesoporous bioactive glass nanoparticle (MBG)/bovine serum albumin (BSA) bone grafts are designed for inflammatory bone defects. Systematically, MBG/BSA bone grafts are evaluated for characterization, bioactivity, anti-inflammatory, antioxidant activity, and osteogenic activity. MBG/BSA bone grafts are proved to be biocompatible and can release bioactive ions including calcium and silicon in a sustained manner. Furthermore, MBG/BSA reprograms the macrophage phenotype toward anti-inflammation that is beneficial for bone regeneration. The antioxidative activity is also validated under inflammation and the mechanism may be via the interleukin-4 (IL-4)/Signal transducer and activator of transcription 6 (STAT6) pathway. The osteogenic differentiation and mineralization are also facilitated due to the improved immunoregulation of MBG/BSA. Overall, this work suggests that the MBG/BSA bone grafts with improved immunomodulatory properties are an ideal material for inflammatory bone regeneration application.
Collapse
Affiliation(s)
- Yijie Yang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Wen Gu
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xue Jiang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaolei Lv
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jianxu Wei
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaomeng Zhang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine & Jiangsu Key Laboratory of Oral Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hongchang Lai
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
2
|
Wang M, Xu C, Zheng Y, Pieterse H, Sun Z, Liu Y. In vivo validation of osteoinductivity and biocompatibility of BMP-2 enriched calcium phosphate cement alongside retrospective description of its clinical adverse events. Int J Implant Dent 2024; 10:47. [PMID: 39472366 PMCID: PMC11522231 DOI: 10.1186/s40729-024-00567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE Although bone morphogenetic protein-2 (BMP-2) possesses potent osteoinductivity, there have been some concerns on the safety of BMP-2 and BMP-2-incorporated bone substitutes used for bone formation. On the other hand, BMP-2-loaded calcium phosphate cement (BMP-2@CPC) has been developed and used for bone regeneration in oral implantology. Therefore, this study aims to investigate this product's biocompatibility and clinical safety after being used in maxillofacial surgery. MATERIALS AND METHODS A rat model was employed to assess the osteoinduction and biocompatibility of BMP-2@CPC. Further, a retrospective investigation was carried out: 110 patients who received BMP-2@CPC treatment after their maxillofacial surgery were recruited to describe relative adverse events. RESULTS In vivo, BMP-2@CPC showed a significantly higher mean bone volume density and osteoblasts volume density (15 ± 2% and 3 ± 1%)than those of the CPC group (p < 0.05) after being implanted in the dorsal area of rats. Regarding biocompatibility, the mean fibrous tissue volume density was significantly lower in the BMP-2@CPC group (20 ± 5% compared to 31 ± 6%, p = 0.026). The retrospective clinical study showed that only five mild/moderate adverse events were identified in four patients based on the medical records of 110 patients, including swelling, bony mass, and wound dehiscence. This adverse event occurrence was not affected by gender, age, the dose of filled materials, and operations in the study (p > 0.05). CONCLUSIONS BMP-2-loaded CPC has osteoinductivity and more promising biocompatibility than pure CPC. However, its degradation is slower than CPC. The safety of BMP-2-loaded CPC with 0.5 or 1 mg BMP-2 is promising in oral maxillofacial surgery. CLINICAL IMPLICATIONS This study confirmed the promising safety of this BMP-2 incorporated CPC used in dental clinical practice, which can promote its reassuring application for dental implant placement in bone insufficient areas.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Chunfeng Xu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
- Department of Second Dental Center, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Centre for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Yuanna Zheng
- Ningbo Dental Hospital, Ningbo Oral Health Research Institute, Ningbo, Zhejiang, China
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Herman Pieterse
- Heymans Institute of Pharmacology at Ghent University, Ghent, Belgium
- Profess Medical Consultancy B.V., Heerhugowaard, The Netherlands
| | - Zhe Sun
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Rao J, Gao H, Sun J, Yu R, Zhao D, Ding Y. A Critical Review of Biodegradable Zinc Alloys toward Clinical Applications. ACS Biomater Sci Eng 2024; 10:5454-5473. [PMID: 39082869 DOI: 10.1021/acsbiomaterials.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Biodegradable zinc (Zn) alloys stand out as promising contenders for biomedical applications due to their favorable mechanical properties and appropriate degradation rates, offering the potential to mitigate the risks and expenses associated with secondary surgeries. While current research predominantly centers on the in vitro examination of Zn alloys, notable disparities often emerge between in vivo and in vitro findings. Consequently, conducting in vivo investigations on Zn alloys holds paramount significance in advancing their clinical application. Different element compositions and processing methods decide the mechanical properties and biological performance of Zn alloys, thus affecting their suitability for specific medical applications. This paper presents a comprehensive overview of recent strides in the development of biodegradable Zn alloys, with a focus on key aspects such as mechanical properties, toxicity, animal experiments, biological properties, and molecular mechanisms. By summarizing these advancements, the paper aims to broaden the scope of research directions and enhance the understanding of the clinical applications of biodegradable Zn alloys.
Collapse
Affiliation(s)
- Jiahui Rao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hairui Gao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Danlei Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
4
|
Deng H, Guan Y, Dong Q, An R, Wang J. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. J Mater Chem B 2024; 12:7480-7496. [PMID: 39016095 DOI: 10.1039/d3tb02563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of various osteogenic biomaterials has not only promoted the development of bone tissue engineering but also provided more possibilities for bone defect repair. However, most previous studies have focused on the interaction of biomaterials on endogenous or exogenous stem cells involved in the bone regeneration process while neglecting the effect of changes in the immune microenvironment of bone defect sites on bone regeneration after biomaterial implantation into the host. With the development of bone immunology, the role of various immune cells, especially macrophages, in bone regeneration has gradually attracted the attention of researchers. An increasing number of studies have begun to target macrophages to better promote bone regeneration by modulating the fate of macrophages in a spatiotemporally ordered manner to mimic the changes in the immune microenvironment of bone defect sites during the natural repair process of bone tissue. Chitosan is one of the most abundant natural polysaccharides in the world. In recent years, various chitosan-based biomaterials have been widely used in macrophage fate modulation and bone regeneration. In this review, we review the interaction between macrophages and scaffold materials, general information about chitosan, the modulation of macrophage fate by chitosan-based biomaterials, and their application in bone regeneration.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Yuanyuan Guan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Quping Dong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| |
Collapse
|
5
|
Ben Amara H, Farjam P, Lutz TM, Omar O, Palmquist A, Lieleg O, Browne M, Taylor A, Verkerke GJ, Rouwkema J, Thomsen P. Toward a disruptive, minimally invasive small finger joint implant concept: Cellular and molecular interactions with materials in vivo. Acta Biomater 2024; 183:130-145. [PMID: 38815684 DOI: 10.1016/j.actbio.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Osteoarthritis (OA) poses significant therapeutic challenges, particularly OA that affects the hand. Currently available treatment strategies are often limited in terms of their efficacy in managing pain, regulating invasiveness, and restoring joint function. The APRICOTⓇ implant system developed by Aurora Medical Ltd (Chichester, UK) introduces a minimally invasive, bone-conserving approach for treating hand OA (https://apricot-project.eu/). By utilizing polycarbonate urethane (PCU), this implant incorporates a caterpillar track-inspired design to promote the restoration of natural movement to the joint. Surface modifications of PCU have been proposed for the biological fixation of the implant. This study investigated the biocompatibility of PCU alone or in combination with two surface modifications, namely dopamine-carboxymethylcellulose (dCMC) and calcium-phosphate (CaP) coatings. In a rat soft tissue model, native and CaP-coated PCU foils did not increase cellular migration or cytotoxicity at the implant-soft tissue interface after 3 d, showing gene expression of proinflammatory cytokines similar to that in non-implanted sham sites. However, dCMC induced an amplified initial inflammatory response that was characterized by increased chemotaxis and cytotoxicity, as well as pronounced gene activation of proinflammatory macrophages and neoangiogenesis. By 21 d, inflammation subsided in all the groups, allowing for implant encapsulation. In a rat bone model, 6 d and 28 d after release of the periosteum, all implant types were adapted to the bone surface with a surrounding fibrous capsule and no protracted inflammatory response was observed. These findings demonstrated the biocompatibility of native and CaP-coated PCU foils as components of APRICOTⓇ implants. STATEMENT OF SIGNIFICANCE: Hand osteoarthritis treatments require materials that minimize irritation of the delicate finger joints. Differing from existing treatments, the APRICOTⓇ implant leverages polycarbonate urethane (PCU) for minimally invasive joint replacement. This interdisciplinary, preclinical study investigated the biocompatibility of thin polycarbonate urethane (PCU) foils and their surface modifications with calcium-phosphate (CaP) or dopamine-carboxymethylcellulose (dCMC). Cellular and morphological analyses revealed that both native and Ca-P coated PCU elicit transient inflammation, similar to sham sites, and a thin fibrous encapsulation in soft tissues and on bone surfaces. However, dCMC surface modification amplified initial chemotaxis and cytotoxicity, with pronounced activation of proinflammatory and neoangiogenesis genes. Therefore, native and CaP-coated PCU possess sought-for biocompatible properties, crucial for patient safety and performance of APRICOTⓇ implant.
Collapse
Affiliation(s)
- Heithem Ben Amara
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Pardis Farjam
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | - Theresa M Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Munich, Germany
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Munich, Germany
| | - Martin Browne
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton, UK
| | | | - Gijsbertus J Verkerke
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
6
|
Haertel F, Lustermann P, Hamadanchi A, Gruen K, Bogoviku J, Aftanski P, Westphal J, Baez L, Franz M, Schulze PC, Moebius-Winkler S. Prognostic Value of Galectin-3 after Left Atrial Appendage Occlusion for Predicting Peri-Device Leakage. Int J Mol Sci 2023; 24:16802. [PMID: 38069127 PMCID: PMC10705923 DOI: 10.3390/ijms242316802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Echocardiographic detection of residual peri-device leakage (PDL) after percutaneous left atrial appendage occlusion (LAAO) is crucial for managing anticoagulation. Galectin-3, a protein involved in tissue-foreign body interactions, may hold significance in understanding PDL and cardiac tissue remodeling after LAAO. This study aimed to analyze galectin-3 serum levels in relation to PDL using a novel echo-morphological classification. LAAO eligible patients were included in the study. Galectin-3 serum levels were measured before LAAO, at 45 days (45D), and at 6 months (6M) after the procedure. Transesophageal echocardiography was used to assess LAAO success. A new echo-morphological classification categorized the degree of LAAO into three different types (A: homogenous echodensity, indicating completely thrombosed device; B: inhomogeneous echolucencies (<50% of device); and C: partially thrombosed device with echolucencies > 50%). Among 47 patients, complete LAAO was achieved in 60% after 45D and in 74% after 6M. We observed a significant increase and distribution of serum levels of galectin-3 [ng/mL] after 45D among the three types (baseline: 13.1 ± 5.8 ng/mL; 45D: 16.3 ± 7.2 ng/mL (Type A) vs. 19.2 ± 8.6 ng/mL (Type B) vs. 25.8 ± 9.4 ng/mL (Type C); p = 0.031), followed by a drop in galectin-3 for Types A and B after 6M toward and below the baseline levels (6M: 8.9 ± 3.1 ng/mL (Type A) vs. 12.4 ± 5.5 ng/mL (Type B)), whereas Type C persisted in showing elevated galectin-3 levels compared to all other types (6M: 17.5 ± 4.5 ng/mL (Type C); p < 0.01). Increased galectin-3 serum levels after LAAO likely reflect the transition from thrombus formation to fibrotic scar development in the LAA lumen. Successful occlusion is associated with a time-restricted decrease in galectin-3 levels after 6 months, while relevant PDL leads to persistently elevated levels, making galectin-3 a potential predictor of occlusion success.
Collapse
Affiliation(s)
- Franz Haertel
- Department of Internal Medicine I, Cardiology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Finze R, Laubach M, Russo Serafini M, Kneser U, Medeiros Savi F. Histological and Immunohistochemical Characterization of Osteoimmunological Processes in Scaffold-Guided Bone Regeneration in an Ovine Large Segmental Defect Model. Biomedicines 2023; 11:2781. [PMID: 37893154 PMCID: PMC10604530 DOI: 10.3390/biomedicines11102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Large-volume bone defect regeneration is complex and demands time to complete. Several regeneration phases with unique characteristics, including immune responses, follow, overlap, and interdepend on each other and, if successful, lead to the regeneration of the organ bone's form and function. However, during traumatic, infectious, or neoplastic clinical cases, the intrinsic bone regeneration capacity may exceed, and surgical intervention is indicated. Scaffold-guided bone regeneration (SGBR) has recently shown efficacy in preclinical and clinical studies. To investigate different SGBR strategies over periods of up to three years, we have established a well-characterized ovine large segmental tibial bone defect model, for which we have developed and optimized immunohistochemistry (IHC) protocols. We present an overview of the immunohistochemical characterization of different experimental groups, in which all ovine segmental defects were treated with a bone grafting technique combined with an additively manufactured medical-grade polycaprolactone/tricalcium phosphate (mPCL-TCP) scaffold. The qualitative dataset was based on osteoimmunological findings gained from IHC analyses of over 350 sheep surgeries over the past two decades. Our systematic and standardized IHC protocols enabled us to gain further insight into the complex and long-drawn-out bone regeneration processes, which ultimately proved to be a critical element for successful translational research.
Collapse
Affiliation(s)
- Ronja Finze
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (R.F.)
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany;
| | - Markus Laubach
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (R.F.)
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mairim Russo Serafini
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristovao 49100-000, Brazil;
| | - Ulrich Kneser
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany;
| | - Flavia Medeiros Savi
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (R.F.)
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
8
|
Gerner E, Giraldo-Osorno PM, Johansson Loo A, Firdaus R, Ben Amara H, Werthén M, Palmquist A, Thomsen P, Omar O, Almqvist S, Trobos M. Targeting Pseudomonas aeruginosa quorum sensing with sodium salicylate modulates immune responses in vitro and in vivo. Front Cell Infect Microbiol 2023; 13:1183959. [PMID: 37614559 PMCID: PMC10442818 DOI: 10.3389/fcimb.2023.1183959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Chronic infections are a major clinical challenge in hard-to-heal wounds and implanted devices. Pseudomonas aeruginosa is a common causative pathogen that produces numerous virulence factors. Due to the increasing problem of antibiotic resistance, new alternative treatment strategies are needed. Quorum sensing (QS) is a bacterial communication system that regulates virulence and dampens inflammation, promoting bacterial survival. QS inhibition is a potent strategy to reduce bacterial virulence and alleviate the negative impact on host immune response. Aim This study investigates how secreted factors from P. aeruginosa PAO1, cultured in the presence or absence of the QS inhibitor sodium salicylate (NaSa), influence host immune response. Material and methods In vitro, THP-1 macrophages and neutrophil-like HL-60 cells were used. In vivo, discs of titanium were implanted in a subcutaneous rat model with local administration of P. aeruginosa culture supernatants. The host immune response to virulence factors contained in culture supernatants (+/-NaSa) was characterized through cell viability, migration, phagocytosis, gene expression, cytokine secretion, and histology. Results In vitro, P. aeruginosa supernatants from NaSa-containing cultures significantly increased THP-1 phagocytosis and HL-60 cell migration compared with untreated supernatants (-NaSa). Stimulation with NaSa-treated supernatants in vivo resulted in: (i) significantly increased immune cell infiltration and cell attachment to titanium discs; (ii) increased gene expression of IL-8, IL-10, ARG1, and iNOS, and (iii) increased GRO-α protein secretion and decreased IL-1β, IL-6, and IL-1α secretion, as compared with untreated supernatants. Conclusion In conclusion, treating P. aeruginosa with NaSa reduces the production of virulence factors and modulates major immune events, such as promoting phagocytosis and cell migration, and decreasing the secretion of several pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Erik Gerner
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Mölnlycke Health Care AB, Gothenburg, Sweden
| | - Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Anna Johansson Loo
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rininta Firdaus
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Heithem Ben Amara
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Werthén
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
9
|
Avery D, Morandini L, Celt N, Bergey L, Simmons J, Martin RK, Donahue HJ, Olivares-Navarrete R. Immune cell response to orthopedic and craniofacial biomaterials depends on biomaterial composition. Acta Biomater 2023; 161:285-297. [PMID: 36905954 PMCID: PMC10269274 DOI: 10.1016/j.actbio.2023.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Materials for craniofacial and orthopedic implants are commonly selected based on mechanical properties and corrosion resistance. The biocompatibility of these materials is typically assessed in vitro using cell lines, but little is known about the response of immune cells to these materials. This study aimed to evaluate the inflammatory and immune cell response to four common orthopedic materials [pure titanium (Ti), titanium alloy (TiAlV), 316L stainless steel (SS), polyetheretherketone (PEEK)]. Following implantation into mice, we found high recruitment of neutrophils, pro-inflammatory macrophages, and CD4+ T cells in response to PEEK and SS implants. Neutrophils produced higher levels of neutrophil elastase, myeloperoxidase, and neutrophil extracellular traps in vitro in response to PEEK and SS than neutrophils on Ti or TiAlV. Macrophages co-cultured on PEEK, SS, or TiAlV increased polarization of T cells towards Th1/Th17 subsets and decreased Th2/Treg polarization compared to Ti substrates. Although SS and PEEK are considered biocompatible materials, both induce a more robust inflammatory response than Ti or Ti alloy characterized by high infiltration of neutrophils and T cells, which may cause fibrous encapsulation of these materials. STATEMENT OF SIGNIFICANCE: Materials for craniofacial and orthopedic implants are commonly selected based on their mechanical properties and corrosion resistance. This study aimed to evaluate the immune cell response to four common orthopedic and craniofacial biomaterials: pure titanium, titanium-aluminum-vanadium alloy, 316L stainless steel, and PEEK. Our results demonstrate that while the biomaterials tested have been shown to be biocompatible and clinically successful, the inflammatory response is largely driven by chemical composition of the biomaterials.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Natalie Celt
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Leah Bergey
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jamelle Simmons
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
10
|
Sueters J, Groenman FA, Bouman MB, Roovers JPW, de Vries R, Smit TH, Huirne JAF. Tissue Engineering Neovagina for Vaginoplasty in Mayer-Rokitansky-Küster-Hauser Syndrome and Gender Dysphoria Patients: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:28-46. [PMID: 35819292 DOI: 10.1089/ten.teb.2022.0067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Vaginoplasty is a surgical solution to multiple disorders, including Mayer-Rokitansky-Küster-Hauser syndrome and male-to-female gender dysphoria. Using nonvaginal tissues for these reconstructions is associated with many complications, and autologous vaginal tissue may not be sufficient. The potential of tissue engineering for vaginoplasty was studied through a systematic bibliography search. Cell types, biomaterials, and signaling factors were analyzed by investigating advantages, disadvantages, complications, and research quantity. Search Methods: A systematic search was performed in Medline, EMBASE, Web of Science, and Scopus until March 8, 2022. Term combinations for tissue engineering, guided tissue regeneration, regenerative medicine, and tissue scaffold were applied, together with vaginoplasty and neovagina. The snowball method was performed on references and a Google Scholar search on the first 200 hits. Original research articles on human and/or animal subjects that met the inclusion (reconstruction of vaginal tissue and tissue engineering method) and no exclusion criteria (not available as full text; written in foreign language; nonoriginal study article; genital surgery other than neovaginal reconstruction; and vaginal reconstruction with autologous or allogenic tissue without tissue engineering or scaffold) were assessed. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist, the Newcastle-Ottawa Scale, and the Gold Standard Publication Checklist were used to evaluate article quality and bias. Outcomes: A total of 31 out of 1569 articles were included. Data extraction was based on cell origin and type, biomaterial nature and composition, host species, number of hosts and controls, neovaginal size, replacement fraction, and signaling factors. An overview of used tissue engineering methods for neovaginal formation was created, showing high variance of cell types, biomaterials, and signaling factors and the same topics were rarely covered multiple times. Autologous vaginal cells and extracellular matrix-based biomaterials showed preferential properties, and stem cells carry potential. However, quality confirmation of orthotopic cell-seeded acellular vaginal matrix by clinical trials is needed as well as exploration of signaling factors for vaginoplasty. Impact statement General article quality was weak to sufficient due to unreported cofounders and incomplete animal study descriptions. Article quality and heterogenicity made identification of optimal cell types, biomaterials, or signaling factors unreliable. However, trends showed that autologous cells prevent complications and compatibility issues such as healthy cell destruction, whereas stem cells prevent cross talk (interference of signaling pathways by signals from other cell types) and rejection (but need confirmation testing beyond animal trials). Natural (orthotopic) extracellular matrix biomaterials have great preferential properties that encourage future research, and signaling factors for vascularization are important for tissue engineering of full-sized neovagina.
Collapse
Affiliation(s)
- Jayson Sueters
- Department of Gynaecology and Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Freek A Groenman
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Centre of Expertise on Gender Dysphoria, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Mark-Bram Bouman
- Centre of Expertise on Gender Dysphoria, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Jan Paul W Roovers
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Ralph de Vries
- Medical Library, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theo H Smit
- Department of Gynaecology and Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Judith A F Huirne
- Department of Gynaecology and Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Research Institute Reproduction and Development, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Johansson ML, Omar O, Trobos M, Jonhede S, Peters H, Hultcrantz M, Thomsen P. Non-invasive sampling procedure revealing the molecular events at different abutments of bone-anchored hearing systems–A prospective clinical pilot study. Front Neurosci 2022; 16:1058689. [DOI: 10.3389/fnins.2022.1058689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
PurposeTo investigate the molecular activities in different compartments around the bone-anchored hearing system (BAHS) with either electropolished or machined abutments and to correlate these activities with clinical and microbiological findings.Materials and methodsTwelve patients received machined or electropolished abutments after implant installation of BAHS. Peri-abutment fluid and tissue were collected from baseline to 12 months. Gene expression of cytokines and factors related to tissue healing and inflammation, regeneration and remodelling, as well as bacterial recognition were determined using quantitative-polymerase chain reaction (qPCR). The clinical status was evaluated using the Holgers scoring system, and bacterial colonisation was investigated by culturing.ResultsThe gene expression of inflammatory cytokines (IL-8, IL-1β, and IL-10) and bacteria-related Toll-like receptors (2 and 4) was higher in the peri-abutment fluid than at baseline and in the peri-abutment tissue at 3 and 12 months. Conversely, the expression of genes related to tissue regeneration (Coll1a1 and FOXO1) was higher in the tissue samples than in the peri-abutment fluid at 3 and 12 months. Electropolished abutments triggered higher expression of inflammatory cytokines (IL-8 and IL-1β) (in peri-abutment fluid) and regeneration factor FOXO1 (in peri-abutment tissue) than machined abutments. Several cytokine genes in the peri-abutment fluid correlated positively with the detection of aerobes, anaerobes and Staphylococcus species, as well as with high Holger scores.ConclusionThis study provides unprecedented molecular information on the biological processes of BAHS. Despite being apparently healed, the peri-abutment fluid harbours prolonged inflammatory activity in conjunction with the presence of different bacterial species. An electropolished abutment surface appears to be associated with stronger proinflammatory activity than that with a machined surface. The analysis of the peri-abutment fluid deserves further verification as a non-invasive sampling and diagnostic procedure of BAHS.
Collapse
|
12
|
Zhao Z, Zhang J, Yang Z, Zhao Q. Biodegradation of HA and β-TCP Ceramics Regulated by T-Cells. Pharmaceutics 2022; 14:pharmaceutics14091962. [PMID: 36145710 PMCID: PMC9502083 DOI: 10.3390/pharmaceutics14091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Biodegradability is one of the most important properties of implantable bone biomaterials, which is directly related to material bioactivity and the osteogenic effect. How foreign body giant cells (FBGC) involved in the biodegradation of bone biomaterials are regulated by the immune system is poorly understood. Hence, this study found that β-tricalcium phosphate (β-TCP) induced more FBGCs formation in the microenvironment (p = 0.0061) accompanied by more TNFα (p = 0.0014), IFNγ (p = 0.0024), and T-cells (p = 0.0029) than hydroxyapatite (HA), resulting in better biodegradability. The final use of T-cell depletion in mice confirmed that T-cell-mediated immune responses play a decisive role in the formation of FBGCs and promote bioceramic biodegradation. This study reveals the biological mechanism of in vivo biodegradation of implantable bone tissue engineering materials from the perspective of material-immune system interaction, which complements the mechanism of T-cells’ adaptive immunity in bone immune regulation and can be used as a theoretical basis for rational optimization of implantable material properties.
Collapse
Affiliation(s)
- Zifan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zaibo Yang
- Department of Stomatology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
- Correspondence: (Z.Y.); (Q.Z.)
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Correspondence: (Z.Y.); (Q.Z.)
| |
Collapse
|
13
|
Zhou Y, Pang H, Wang J, Wu H, Xu Z, Liu X, Xiao Z. Progranulin Promotes the Formation and Development of Capsules Caused by Silicone in Sprague-Dawley Rats. Clin Cosmet Investig Dermatol 2022; 15:1561-1573. [PMID: 35967917 PMCID: PMC9365064 DOI: 10.2147/ccid.s374128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022]
Abstract
Background Silicone implants are currently the most widely used artificial materials in plastic surgery. Capsule formation following implant application is unavoidable. When the capsule is excessively thick and strongly contracted, it can lead to obvious symptoms, clinically known as capsular contracture. Biological factors have always been the focus of research on the capsule formation. As a growth factor, progranulin (PGRN) plays an important regulatory role in wound healing, tissue fibrosis, tumor proliferation and invasion, and inflammation regulation. At present, the research on the capsule mainly involves the regulation of tissue healing and fibrosis under the influence of inflammation. Because PGRN has a regulatory role in these processes, we believe that the study of both can provide a new theoretical basis and intervention sites for monitoring and inhibiting the development of the capsule. Methods In this experiment, the effects of different surgical operations on the content of PGRN in the surgical site and plasma of rats were detected. Sprague-Dawley (SD) rat dermal fibroblasts were co-cultured by recombinant PGRN. The effects of r-PGRN on fibroblasts were detected by 5-ethynyl-2’-deoxyuridine (EdU) assay, wound healing assay and Western blot assay. Finally, the effect of PGRN on capsule formation and contracture was studied by changing the content of PGRN in the prosthesis in rats after operation. Results Surgical trauma and silicone implant increased plasma and local PGRN levels in SD rats. PGRN can activate the TGF-β/SMAD signaling pathway in a dose-dependent manner, thereby promoting fibroblast proliferation, differentiation and migration and inhibiting apoptosis and enhancing cell function, thereby promoting capsule formation and contracture. Conclusion PGRN promotes the formation and contracture of the silicone implant capsule in SD rats by activating the TGF-β/SMAD signaling pathway. This discovery may provide new therapeutic targets and detection indicators.
Collapse
Affiliation(s)
- Yongting Zhou
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Hao Pang
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jie Wang
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Hao Wu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zidi Xu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xueyi Liu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhibo Xiao
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Correspondence: Zhibo Xiao, Email
| |
Collapse
|
14
|
Suljevic O, Fischerauer SF, Weinberg AM, Sommer NG. Immunological reaction to magnesium-based implants for orthopedic applications. What do we know so far? A systematic review on in vivo studies. Mater Today Bio 2022; 15:100315. [PMID: 35757033 PMCID: PMC9214802 DOI: 10.1016/j.mtbio.2022.100315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 12/09/2022] Open
Abstract
Magnesium-based implants (Mg) became an attractive candidate in orthopedic surgery due to their valuable properties, such as osteoconductivity, biodegradability, elasticity and mechanical strength. However, previous studies on biodegradable and non-biodegradable metal implants showed that these materials are not inert when placed in vivo as they interact with host defensive mechanisms. The aim of this study was to systematically review available in vivo studies with Mg-based implants that investigated immunological reactions to these implants. The following questions were raised: Do different types of Mg-based implants in terms of shape, size and alloying system cause different extent of immune response? and; Are there missing links to properly understand immunological reactions upon implantation and degradation of Mg-based implants? The database used for the literature research was PubMed (U.S. National Library of Medicine) and it was undertaken in the end of 2021. The inclusion criteria comprised (i) in vivo studies with bony implantation of Mg-based implants and (ii) analysis of the presence of local immune cells or systemic inflammatory parameters. We further excluded any studies involving coated Mg-implants, in vitro studies, and studies in which the implants had no bone contact. The systematic search process was conducted according to PRISMA guidelines. Initially, the search yielded 225 original articles. After reading each article, and based on the inclusion and exclusion criteria, 16 articles were included in the systematic review. In the available studies, Mg-based implants were not found to cause any severe inflammatory reaction, and only a mild to moderate inflammatory potential was attributed to the material. The timeline of foreign body giant cell formation showed to be different between the reviewed studies. The variety of degradation kinetics of different tested implants and discrepancies in studies regarding the time points of immunological investigations impair the conclusion of immunological reactions. This may be induced by different physical properties of an implant such as size, shape and alloying system. Further research is essential to elucidate the underlying mechanisms by which implant degradation affects the immune system. Also, better understanding will facilitate the decision of patients whether to undergo surgery with new device implantation.
Collapse
Affiliation(s)
- Omer Suljevic
- Department of Orthopedics and Traumatology, Medical University of Graz, Graz, Austria
| | - Stefan F. Fischerauer
- Department of Orthopedics and Traumatology, Medical University of Graz, Graz, Austria
| | - Annelie M. Weinberg
- Department of Orthopedics and Traumatology, Medical University of Graz, Graz, Austria
| | - Nicole G. Sommer
- Department of Orthopedics and Traumatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Zhang H, Fu X, Zhang S, Li Q, Chen Y, Liu H, Zhou W, Wei S. Strategy of Stem Cell Transplantation for Bone Regeneration with Functionalized Biomaterials and Vascularized Tissues in Immunocompetent Mice. ACS Biomater Sci Eng 2022; 8:1656-1666. [PMID: 35341241 DOI: 10.1021/acsbiomaterials.1c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of human bone marrow mesenchymal stem cells (hBMSCs) to regenerate and repair bone tissue defects is a complex research field of bone tissue engineering; nevertheless, it is a hot topic. One of the biggest problems is the limited survival and osteogenic capacity of the transplanted cells within the host tissue. Even for hBMSCs with their low immunogenicity, the body will still cause a local immune-inflammatory response directed against the allogeneic cells and thereby reduce the activity of the transplanted cells. Even in the case of successful transplantation, the lack of vascularization at the transplantation site makes it difficult for the transplanted cells to exchange nutrients and metabolic wastes that ultimately affects bone regeneration. In this study, we covalently modified alginate with RGD and QK peptides that were injected subcutaneously into immunocompetent mice. Histological analysis, as well as ELISA techniques, proved that this method is able to provide bioactive stem cell transplant beds containing functionalized biomaterials and vascularized surrounding tissues. Inflammation-related factors, such as IL-2, IL-6, TNF-α, and IFN-γ, around the cell graft beds decreased with time and were lowest at the second week. Then, the hBMSCs were injected into the cell transplantation beds intended to form vascularized bonelike tissues that were evaluated by micro-computed tomography (Micro CT), histological, and immunohistochemical analyses. The results showed that the expression of osteogenesis-related proteins RUNX2, COL1A1, and OPN, as well as the expression of angiogenic factor vWF and cartilage-related protein COL2A1 were significantly upregulated in the hBMSC-derived osteogenic tissue. These results suggest that the stem cell transplantation strategy by constructing bioactive cell transplant beds is effective to enhance the bone regeneration capacity of hBMSCs and holds great potential in bone tissue engineering.
Collapse
Affiliation(s)
- He Zhang
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P. R. China
| | - Xiaoming Fu
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P. R. China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Qian Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Hao Liu
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P. R. China
| | - Wen Zhou
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P. R. China
| | - Shicheng Wei
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P. R. China.,Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
16
|
Wang Y, Feng Z, Liu X, Yang C, Gao R, Liu W, Ou-Yang W, Dong A, Zhang C, Huang P, Wang W. Titanium alloy composited with dual-cytokine releasing polysaccharide hydrogel to enhance osseointegration via osteogenic and macrophage polarization signaling pathways. Regen Biomater 2022; 9:rbac003. [PMID: 35668921 PMCID: PMC9160882 DOI: 10.1093/rb/rbac003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Titanium alloy has been widely used in orthopedic surgeries as bone defect filling. However, the regeneration of high-quality new bones is limited due to the pro-inflammatory microenvironment around implants, resulting in a high occurrence rate of implant loosening or failure in osteological therapy. In this study, extracellular matrix (ECM)-mimetic polysaccharide hydrogel co-delivering BMP-2 and IL-4 was composited with 3D printed titanium alloy to promote the osseointegration and regulate macrophage response to create a pro-healing microenvironment in bone defect. Notably, it is discovered from the bioinformatics data that IL-4 and BMP-2 could affect each other through multiple signal pathways to achieve a synergistic effect towards osteogenesis. The composite scaffold significantly promoted the osteoblast differentiation and proliferation of human bone marrow mesenchyme stem cells (hBMSCs). The repair of large-scale femur defect in rat indicated that the dual-cytokine-delivered composite scaffold could manipulate a lower inflammatory level in situ by polarizing macrophages to M2 phenotype, resulting in superior efficacy of mature new bone regeneration over the treatment of native titanium alloy or that with an individual cytokine. Collectively, this work highlights the importance of M2-type macrophages-enriched immune-environment in bone healing. The biomimetic hydrogel-metal implant composite is a versatile and advanced scaffold for accelerating in vivo bone regeneration, holding great promise in treating orthopedic diseases.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Zujian Feng
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiang Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Chunfang Yang
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Rui Gao
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenshuai Liu
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Wenbin Ou-Yang
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Correspondence address. Tel: 86-22-27403389; E-mail: (A.D.); Tel: 86-10-88322674; E-mail: (W.O.-Y.); Tel: 86-22-87459653; E-mail: . (W.W.)
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Correspondence address. Tel: 86-22-27403389; E-mail: (A.D.); Tel: 86-10-88322674; E-mail: (W.O.-Y.); Tel: 86-22-87459653; E-mail: . (W.W.)
| | - Chuangnian Zhang
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Pingsheng Huang
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Correspondence address. Tel: 86-22-27403389; E-mail: (A.D.); Tel: 86-10-88322674; E-mail: (W.O.-Y.); Tel: 86-22-87459653; E-mail: . (W.W.)
| |
Collapse
|
17
|
Edlinger C, Paar V, Kheder SH, Krizanic F, Lalou E, Boxhammer E, Butter C, Dworok V, Bannehr M, Hoppe UC, Kopp K, Lichtenauer M. Endothelialization and Inflammatory Reactions After Intracardiac Device Implantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:1-22. [DOI: 10.1007/5584_2022_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
T lymphocytes as critical mediators in tissue regeneration, fibrosis, and the foreign body response. Acta Biomater 2021; 133:17-33. [PMID: 33905946 DOI: 10.1016/j.actbio.2021.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Research on the foreign body response (FBR) to biomaterial implants has been focused on the roles that the innate immune system has on mediating tolerance or rejection of implants. However, the immune system also involves the adaptive immune response and it must be included in order to form a complete picture of the response to biomaterials and medical implants. In this review, we explore recent understanding about the roles of adaptive immune cells, specifically T cells, in modulating the immune response to biomaterial implants. The immune response to implants elicits a delicate balance between tissue repair and fibrosis that is mainly regulated by three types of T helper cell responses -T helper type 1, T helper type 2, and T helper type 17- and their crosstalk with innate immune cells. Interestingly, many T cell response mechanisms to implants overlap with the process of fibrosis or repair in different tissues. This review explores the fibrotic and regenerative T cell biology and draws parallels to T cell responses to biomaterials. Additionally, we also explore the biomedical engineering advancements in biomaterial applications in designing particle and scaffold systems to modulate T cell activity for therapeutics and devices. Not only do the deliberate engineering design of physical and chemical material properties and the direct genetic modulation of T cells not only offer insights to T cell biology, but they also present different platforms to develop immunomodulatory biomaterials. Thus, an in-depth understanding of T cells' roles can help to navigate the biomaterial-immune interactions and reconsider the long-lasting adaptive immune response to implants, which, in the end, contribute to the design of immunomodulatory medical implants that can advance the next generation of regenerative therapy. STATEMENT OF SIGNIFICANCE: This review article integrates knowledge of adaptive immune responses in tissue damage, wound healing, and medical device implantation. These three fields, often not discussed in conjunction, are important to consider when evaluating and designing biomaterials. Through incorporation of basic biological research alongside engineering research, we provide an important lens through which to evaluate adaptive immune contributions to regenerative medicine and medical device development.
Collapse
|
19
|
de Almeida SA, Orellano LAA, Pereira LX, Viana CTR, Andrade SP, Campos PP, Ferreira MAND. The intensity of the foreign body response to polyether-polyurethane implant in diabetic mice is strain-dependent. Int J Exp Pathol 2021; 102:182-191. [PMID: 34747080 PMCID: PMC8576635 DOI: 10.1111/iep.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/27/2022] Open
Abstract
A number of genetic factors have been linked to the development of diabetes, a condition that often requires implantable devices such as glucose sensors. In normoglycaemic individuals, this procedure induces a foreign body reaction (FBR) that is detrimental to bioimplant functionality. However, the influence of the genetic background on this reaction in diabetes has not been investigated. We examined the components of FBR (capsule thickness, collagen deposition, mast cell and foreign body giant cell number) in subcutaneous implants of polyether polyurethane (SIPP) in streptozotocin (STZ)-induced diabetes in Swiss, C57BL/6 and Balb/c mice. The fasting blood glucose levels before STZ injections were 133.5 ± 5.1 mg/dL, after the treatment increased 68.4% in Swiss mice, 62.4% in C57BL/6 and 30.9% in Balb/c mice. All FBR features were higher in implants of Swiss and C57BL/6 mice compared with those in implants of Balb/c. Likewise, the apoptotic index was higher in implants of diabetic Swiss and C57BL/6 mice whose glycaemic levels were the highest. Our findings show an association between the severity of hyperglycaemic levels and the intensity of the FBR to SIPP. These important strain-related differences in susceptibility to diabetes and the intensity of the FBR must be considered in management using implantable devices in diabetic individuals.
Collapse
Affiliation(s)
- Simone A. de Almeida
- Departamento de Patologia GeralInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Laura A. A. Orellano
- Departamento de Patologia GeralInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Present address:
Department of PathologyUniversity of Massachusetts Medical School368 Plantation StWorcesterMAUSA
| | - Luciana X. Pereira
- Departamento de EnfermagemUniversidade Federal de Alagoas Av. Manoel Severino Barbosa Bom Sucesso – Campus ArapiracaArapiracaBrazil
| | - Celso T. R. Viana
- Departamento de Patologia GeralInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Silvia P. Andrade
- Departamento de Fisiologia e BiofisicaUniversidade Federal de Minas GeraisInstituto de Ciências BiológicasBelo HorizonteBrazil
| | - Paula P. Campos
- Departamento de Patologia GeralInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Mônica A. N. D. Ferreira
- Departamento de Patologia GeralInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
20
|
Köhler R, Pohl C, Walschus U, Zippel R, Wilhelm L, Hoene A, Patrzyk M, Schlosser M. Association of systemic antibody response against polyethylene terephthalate with inflammatory serum cytokine profile following implantation of differently coated vascular prostheses in a rat animal model. J Biomed Mater Res A 2021; 110:52-63. [PMID: 34245083 DOI: 10.1002/jbm.a.37265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022]
Abstract
Experimental studies demonstrated antibodies against matrix and coating of polyester-based vascular prostheses. Thus, this study examined associations of these antibodies with serum cytokines (IL-2, IL-4, and IL-10) and local inflammatory reactions. Rats (n = 8/group) intramuscularly received prosthesis segments [PET-C, PET-G, and PET-A groups: polyethylene terephthalate (PET)-based prostheses coated with bovine collagen and gelatin or human serum albumin, respectively; uncoated polytetrafluoroethylene-based (PTFE) prosthesis], with sham-operated controls. Blood was drawn pre-operatively and weekly until day 22. Polymer-specific or coating-specific antibodies and cytokines were detected by enzyme immunoassays, inflammatory reactions were immunohistochemically evaluated on day 23. Polymer-specific antibodies were detected in all PET-groups using uncoated PET as antigenic target, but not for PTFE or controls, coating-specific antibodies only for PET-A. IL-10 was increased in all PET-groups and correlated with polymer-specific antibodies for PET-G and PET-A. IL-2 was increased for PET-A, but overall correlated with PET-specific antibodies. IL-4 remained unchanged in all groups. Intense local inflammatory reactions (ED1+ /ED2+ macrophages and T lymphocytes) were found within all PET-groups, but only minor for PTFE or controls. In conclusion, PET-specific antibodies were associated with increased IL-10 and along with concurrent coating-specific antibodies also with increased IL-2, indicating a specific T cell response. Thus, matrix and/or coating of polymeric vascular prostheses elicit distinct systemic immune reactions, probably influencing local inflammatory reactions.
Collapse
Affiliation(s)
- Ronny Köhler
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Christopher Pohl
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Uwe Walschus
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Roland Zippel
- Department of Surgery, Elbe-Elster Hospital, Herzberg, Germany
| | - Lutz Wilhelm
- Department of Surgery, Hospital Demmin, Demmin, Germany
| | - Andreas Hoene
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Maciej Patrzyk
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Michael Schlosser
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
22
|
Boyle T, Fernando SL, Steinfort B, Li J, Krause M, Harrington T, Assaad N, Faulder K. Medical treatment of polymeric cerebral granulomatous reactions following endovascular procedures. J Neurointerv Surg 2021; 13:1032-1036. [PMID: 33722971 DOI: 10.1136/neurintsurg-2020-016806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Endovascular procedures are standard of care for an increasing range of cerebrovascular diseases. Many endovascular devices contain plastic and are coated with a hydrophilic polymer which has been rarely described to embolize, resulting in distal granulomatous inflammatory lesions within the vascular territory. METHODS We reviewed three cases of cerebral granulomatous reactions that occurred after endovascular intervention for internal carotid aneurysms. The patient procedure details, presentation, relevant investigations, and treatment course are described. We also provide a literature review on endovascular granulomatous reactions. RESULTS These three cases represent the largest biopsy proven series of cerebral granulomatosis following endovascular intervention. We highlight the variable clinical presentation, with two of the three cases having an unusually delayed onset of up to 4 years following the intervention. We show the characteristic histological findings of granulomatous lesions with foreign body material consistent with a type IV reaction, radiological abnormalities of enhancing lesions within the vascular territory of the intervention, and the requirement of prolonged immunosuppression for maintenance of clinical remission, with two of the three patients requiring a corticosteroid sparing agent. In comparison with the available literature, in addition to hydrophilic gel polymer, we discuss that plastic from the lining of the envoy catheter may be a source of embolic material. We also discuss the recommendations of the Food and Drug Administration and the implementation of novel biomaterials for the prevention of these reactions in the future. CONCLUSIONS There is a need for increased awareness of this severe complication of cerebral endovascular procedures and further longitudinal studies of its prevalence, optimal management and preventative measures.
Collapse
Affiliation(s)
- Therese Boyle
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Suran L Fernando
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Immunorheumatology Laboratory, NSW Health Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Medicine (Immunology and Infectious Diseases), The University of Sydney, Sydney, New South Wales, Australia
| | - Brendan Steinfort
- Neurosurgery Department-Interventional Neuroradiology Unit, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Jamma Li
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Immunorheumatology Laboratory, NSW Health Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Medicine (Immunology and Infectious Diseases), The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Krause
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Tim Harrington
- Neurosurgery Department-Interventional Neuroradiology Unit, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Nazih Assaad
- Neurosurgical Department, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ken Faulder
- Neurosurgery Department-Interventional Neuroradiology Unit, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
23
|
Gupta AK, Venkataraman M, Quinlan EM. Artificial hair implantation for hair restoration. J DERMATOL TREAT 2021; 33:1312-1318. [PMID: 33565339 DOI: 10.1080/09546634.2021.1887442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Androgenetic alopecia (AGA) is the most common cause of hair loss in men and women. Artificial hair implantation is considered an alternative treatment when the donor area is depleted or unsuitable for hair transplantation. The use of artificial hair implants remains controversial, particularly because this practice has been banned by the US FDA. OBJECTIVE To summarize various aspects of artificial hair implantation. METHODS We discuss the history of artificial hair implantation, development of new biocompatible fibers (Biofibre®, Nido Z-type), patient eligibility for this treatment, implantation technique, follow-up, immune response to the implanted fibers, and post-implantation complications. We performed a methodological quality assessment of the clinical studies that investigated artificial hair implantation using the Canadian Institute of Health Economics (IHE) Quality Appraisal Tool for Case Series (Interventional). RESULTS Although the studies evaluating the use of artificial hair fibers appear promising, the methodological quality of most of them was between 'poor' and 'fair', due to lack of randomization, absence of control groups, improper study design, and inappropriate outcome measures. CONCLUSIONS Artificial hair implantation has been received with skepticism among physicians due to the complications reported. Further high-quality research needs to be performed to ascertain the safety and efficacy of artificial hair implantation.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc, London, Canada.,Department of Medicine, Division of Dermatology, University of Toronto School of Medicine, Toronto, Canada
| | | | | |
Collapse
|
24
|
Negrescu AM, Necula MG, Gebaur A, Golgovici F, Nica C, Curti F, Iovu H, Costache M, Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int J Mol Sci 2021; 22:ijms22020909. [PMID: 33477539 PMCID: PMC7831122 DOI: 10.3390/ijms22020909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Madalina-Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Adi Gebaur
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Florentina Golgovici
- Department of General Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Filis Curti
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Horia Iovu
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
25
|
Arya RK, Goswami R, Rahaman SO. Mechanotransduction via a TRPV4-Rac1 signaling axis plays a role in multinucleated giant cell formation. J Biol Chem 2021; 296:100129. [PMID: 33262217 PMCID: PMC7948992 DOI: 10.1074/jbc.ra120.014597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Multinucleated giant cells are formed by the fusion of macrophages and are a characteristic feature in numerous pathophysiological conditions including the foreign body response (FBR). Foreign body giant cells (FBGCs) are inflammatory and destructive multinucleated macrophages and may cause damage and/or rejection of implants. However, while these features of FBGCs are well established, the molecular mechanisms underlying their formation remain elusive. Improved understanding of the molecular mechanisms underlying the formation of FBGCs may permit the development of novel implants that eliminate or reduce the FBR. Our previous study showed that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel/receptor, is required for FBGC formation and FBR to biomaterials. Here, we have determined that (a) TRPV4 is directly involved in fusogenic cytokine (interleukin-4 plus granulocyte macrophage-colony stimulating factor)-induced activation of Rac1, in bone marrow-derived macrophages; (b) TRPV4 directly interacts with Rac1, and their interaction is further augmented in the presence of fusogenic cytokines; (c) TRPV4-dependent activation of Rac1 is essential for the augmentation of intracellular stiffness and regulation of cytoskeletal remodeling; and (d) TRPV4-Rac1 signaling axis is critical in fusogenic cytokine-induced FBGC formation. Together, these data suggest a novel mechanism whereby a functional interaction between TRPV4 and Rac1 leads to cytoskeletal remodeling and intracellular stiffness generation to modulate FBGC formation.
Collapse
Affiliation(s)
- Rakesh K Arya
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
26
|
Liu Y, Segura T. Biomaterials-Mediated Regulation of Macrophage Cell Fate. Front Bioeng Biotechnol 2020; 8:609297. [PMID: 33363135 PMCID: PMC7759630 DOI: 10.3389/fbioe.2020.609297] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 01/28/2023] Open
Abstract
Endogenous regeneration aims to rebuild and reinstate tissue function through enlisting natural self-repairing processes. Promoting endogenous regeneration by reducing tissue-damaging inflammatory responses while reinforcing self-resolving inflammatory processes is gaining popularity. In this approach, the immune system is recruited as the principal player to deposit a pro-reparative matrix and secrete pro-regenerative cytokines and growth factors. The natural wound healing cascade involves many immune system players (neutrophils, macrophages, T cells, B cells, etc.) that are likely to play important and indispensable roles in endogenous regeneration. These cells support both the innate and adaptive arms of the immune system and collectively orchestrate host responses to tissue damage. As the early responders during the innate immune response, macrophages have been studied for decades in the context of inflammatory and foreign body responses and were often considered a cell type to be avoided. The view on macrophages has evolved and it is now understood that macrophages should be directly engaged, and their phenotype modulated, to guide the timely transition of the immune response and reparative environment. One way to achieve this is to design immunomodulating biomaterials that can be placed where endogenous regeneration is desired and actively direct macrophage polarization. Upon encountering these biomaterials, macrophages are trained to perform more pro-regenerative roles and generate the appropriate environment for later stages of regeneration since they bridge the innate immune response and the adaptive immune response. This new design paradigm necessitates the understanding of how material design elicits differential macrophage phenotype activation. This review is focused on the macrophage-material interaction and how to engineer biomaterials to steer macrophage phenotypes for better tissue regeneration.
Collapse
Affiliation(s)
- Yining Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Department of Dermatology, Duke University, Durham, NC, United States
| |
Collapse
|
27
|
Yang L, Kong J, Qiu Z, Shang T, Chen S, Zhao R, Raucci MG, Yang X, Wu Z. Mineralized collagen-modified PMMA cement enhances bone integration and reduces fibrous encapsulation in the treatment of lumbar degenerative disc disease. Regen Biomater 2020; 7:181-193. [PMID: 32296537 PMCID: PMC7147368 DOI: 10.1093/rb/rbz044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
As a minimally invasive surgery, percutaneous cement discoplasty (PCD) is now contemplated to treat lumbar disc degeneration disease in elder population. Here, we investigated whether the osteogenic mineralized collagen (MC) modified polymethylmethacrylate (PMMA) cement could be a suitable material in PCD surgery. Injectability, hydrophilicity and mechanical properties of the MC-modified PMMA (PMMA-MC) was characterized. The introduction of MC did not change the application and setting time of PMMA and was easy to be handled in minimally invasive operation. Hydrophilicity of PMMA-MC was greatly improved and its elastic modulus was tailored to complement mechanical performance of bone under dynamic stress. Then, PCD surgery in a goat model with induced disc degeneration was performed with implantation of PMMA-MC or PMMA. Three months after implantation, micro-computed tomography analysis revealed a 36.4% higher circumferential contact index between PMMA-MC and bone, as compared to PMMA alone. Histological staining confirmed that the surface of PMMA-MC was in direct contact with new bone, while the PMMA was covered by fibrous tissue. The observed gathering of macrophages around the implant was suspected to be the cause of fibrous encapsulation. Therefore, the interactions of PMMA and PMMA-MC with macrophages were investigated in vitro. We discovered that the addition of MC could hinder the proliferation and fusion of the macrophages. Moreover, expressions of fibroblast-stimulating growth factors, insulin-like growth factor, basic fibroblast growth factor and tumor necrosis factor-β were significantly down-regulated in the macrophages cocultured with PMMA-MC. Together, the promoted osteointegration and reduced fibrous tissue formation observed with PMMA-MC material makes it a promising candidate for PCD surgery.
Collapse
Affiliation(s)
- Long Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jianjun Kong
- Department of Orthopaedics, Orthopaedic Hospital of Xingtai, Xingtai 054000, China
- Department of Orthopedic Laboratory, Xingtai Institute of Orthopaedics, Xingtai 054000, China
| | - Zhiye Qiu
- Beijing Allgens Medical Science and Technology Co., Ltd, Beijing 102609, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Tieliang Shang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Rui Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples 80125, Italy
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhanyong Wu
- Department of Orthopaedics, Orthopaedic Hospital of Xingtai, Xingtai 054000, China
- Department of Orthopedic Laboratory, Xingtai Institute of Orthopaedics, Xingtai 054000, China
| |
Collapse
|
28
|
Muñoz L, Cardona.-Ramirez S, Silva R. Comparison of subcutaneous inflammatory response to commercial and engineered zinc hydroxyapatite implants in rabbits. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-11407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Hydroxyapatite (HA) is widely used as a biomaterial for bone repair and metallic prostheses coating. The main limitations of the current commercial synthetic hydroxyapatite compounds include high cost and decreased availability, especially for veterinary medicine purposes. Additionally, it is thought that HA biocompatibility and bioactivity could be enhanced by the addition of metal compounds. The objective of this work was to compare the subcutaneous tissue response of commercial and engineered hydroxyapatite obtained from the bovine femur diaphysis mixed with different concentrations of hexa-hydrated Zinc Nitrate in rabbits. Twenty-Five New Zealand female rabbits were used. Five treatments were done according to HA composition (commercial HA, no Zn-HA, 0.1M Zn, 0.2M Zn, and 0.3M Zn). Each treatment was evaluated at five time-points (8, 15, 30, 60 and 90 days post-implantation). Histopathologic analysis was performed to assess inflammation by polymorphonuclear cells infiltration, neovascularization, and fibrosis. Results obtained in this work suggest that general inflammation decreased after 60 days of implantation regardless of Zn concentration. Fibrosis score was increased in the commercial HP compared to control and Zn-hydrated HA. This paper shows that bovine hydroxyapatite is a biocompatible material regardless of nitrate Zinc concentration and has the same properties of commercial hydroxyapatite.
Collapse
|
29
|
Chu C, Liu L, Rung S, Wang Y, Ma Y, Hu C, Zhao X, Man Y, Qu Y. Modulation of foreign body reaction and macrophage phenotypes concerning microenvironment. J Biomed Mater Res A 2019; 108:127-135. [PMID: 31515867 DOI: 10.1002/jbm.a.36798] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 02/05/2023]
Abstract
The foreign body reaction (FBR) is described as a local chronic inflammation after implantation of biomaterials in which macrophages involved intimately. At the stage of acute inflammation, mast cells release histamine, Interleukin-4 (IL-4) and Interleukin-13 (IL-13), enhancing recruitment, and fusion of macrophages in the following phase. As for chronic intensive inflammation, degradation of biomaterials would be promoted by macrophage-derived foreign body giant cells releasing degradative enzymes, acid and reactive oxygen intermediates. Nevertheless, it could be seen as a breakthrough point for regulating FBR, considering the dominant role of the macrophage in the immune response as exemplified by the decrease of IL-4 and IL-13, stabilizing an appropriate balance between two macrophage phenotypes, selectively suppressing some function of macrophages, and so on. Moreover, the relationship between macrophages polarization and the development of a fibrous capsule, which increase the possibility of implantation failure, will be illustrated later. This review aims at providing readers a comprehensive understanding of FBR and its correlative treatment strategy.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Shengan Rung
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanjing Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiwen Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yili Qu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Gray ME, Meehan J, Blair EO, Ward C, Langdon SP, Morrison LR, Marland JRK, Tsiamis A, Kunkler IH, Murray A, Argyle D. Biocompatibility of common implantable sensor materials in a tumor xenograft model. J Biomed Mater Res B Appl Biomater 2019; 107:1620-1633. [PMID: 30367816 PMCID: PMC6767110 DOI: 10.1002/jbm.b.34254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 12/22/2022]
Abstract
Real-time monitoring of tumor microenvironment parameters using an implanted biosensor could provide valuable information on the dynamic nature of a tumor's biology and its response to treatment. However, following implantation biosensors may lose functionality due to biofouling caused by the foreign body response (FBR). This study developed a novel tumor xenograft model to evaluate the potential of six biomaterials (silicon dioxide, silicon nitride, Parylene-C, Nafion, biocompatible EPOTEK epoxy resin, and platinum) to trigger a FBR when implanted into a solid tumor. Biomaterials were chosen based on their use in the construction of a novel biosensor, designed to measure spatial and temporal changes in intra-tumoral O2 , and pH. None of the biomaterials had any detrimental effect on tumor growth or body weight of the murine host. Immunohistochemistry showed no significant changes in tumor necrosis, hypoxic cell number, proliferation, apoptosis, immune cell infiltration, or collagen deposition. The absence of biofouling supports the use of these materials in biosensors; future investigations in preclinical cancer models are required, with a view to eventual applications in humans. To our knowledge this is the first documented investigation of the effects of modern biomaterials, used in the production of implantable sensors, on tumor tissue after implantation. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1620-1633, 2019.
Collapse
Affiliation(s)
- Mark E. Gray
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
- Institute of Sensors, Signals and Systems, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | - Ewen O. Blair
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Linda R. Morrison
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| | | | | | - Ian H. Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Alan Murray
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| |
Collapse
|
31
|
Fine N, Sheikh Z, Al‐Jaf F, Oveisi M, Borenstein A, Hu Y, Pilliar R, Grynpas M, Glogauer M. Differential response of human blood leukocytes to brushite, monetite, and calcium polyphosphate biomaterials. J Biomed Mater Res B Appl Biomater 2019; 108:253-262. [DOI: 10.1002/jbm.b.34385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Noah Fine
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Zeeshan Sheikh
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute (LTRI), Mount Sinai Hospital Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology (LMP)University of Toronto Toronto Ontario Canada
| | - Faik Al‐Jaf
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Morvarid Oveisi
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Alon Borenstein
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Youxin Hu
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto Toronto Ontario Canada
| | - Robert Pilliar
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto Toronto Ontario Canada
| | - Marc Grynpas
- Lunenfeld‐Tanenbaum Research Institute (LTRI), Mount Sinai Hospital Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology (LMP)University of Toronto Toronto Ontario Canada
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto Toronto Ontario Canada
| | - Michael Glogauer
- Faculty of DentistryUniversity of Toronto Toronto Ontario Canada
- Princess Margaret Cancer Centre, Department of Dental Oncology and Maxillofacial Prosthetics Toronto Ontario Canada
| |
Collapse
|
32
|
Diaz-Rodriguez P, Chen H, Erndt-Marino JD, Liu F, Totsingan F, Gross RA, Hahn MS. Impact of Select Sophorolipid Derivatives on Macrophage Polarization and Viability. ACS APPLIED BIO MATERIALS 2018; 2:601-612. [DOI: 10.1021/acsabm.8b00799] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations. Biomaterials 2018; 182:202-215. [PMID: 30138783 DOI: 10.1016/j.biomaterials.2018.08.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
Abstract
Successful biomaterial implantation can be achieved by controlling the activation of the immune system. The innate immune system is typically the focus on synthetic material compatibility, but this study shows an effect of surface properties in the innate as well as the adaptive systems. These studies look at how macrophages respond to the implanted materials by releasing factors to regulate the microenvironment and recruit additional cells. Our research demonstrates how macrophage response to material surface properties can create changes in the adaptive immune response by altering T-helper cell populations and stem cell recruitment. Titanium (Ti) implants of varying wettability (rough, and rough-hydrophilic) were placed in the femur of 10-week-old male C57Bl/6, or macrophage ablated clodronate liposome injected and transgenic MaFIA (C57BL/6-Tg(Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6)2Bck/J) mice. The microenvironment surrounding Ti implants was assessed using custom PCR arrays at 3 and 7 days following implantation. Changes in specific T-helper, macrophage and stem cell populations were evaluated locally at the implant surface and systemically in the contralateral leg bone marrow and spleen by flow cytometry at 1, 3 and 7 days. Macrophage importance in T-helper and stem cell population changes with metallic surfaces was examined in both in vitro and in vivo with macrophage ablation models. We demonstrate that surface modifications applied to titanium implants to increase surface roughness and wettability can polarize the adaptive immune response towards a Th2, pro-wound healing phenotype, leading to faster resolution of inflammation and increased stem cell recruitment around rough hydrophilic implants with macrophages present.
Collapse
|
34
|
Implantable biosensors and their contribution to the future of precision medicine. Vet J 2018; 239:21-29. [PMID: 30197105 DOI: 10.1016/j.tvjl.2018.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Accepted: 07/25/2018] [Indexed: 01/15/2023]
Abstract
Precision medicine can be defined as the prevention, investigation and treatment of diseases taking individual variability into account. There are multiple ways in which the field of precision medicine may be advanced; however, recent innovations in the fields of electronics and microfabrication techniques have led to an increased interest in the use of implantable biosensors in precision medicine. Implantable biosensors are an important class of biosensors because of their ability to provide continuous data on the levels of a target analyte; this enables trends and changes in analyte levels over time to be monitored without any need for intervention from either the patient or clinician. As such, implantable biosensors have great potential in the diagnosis, monitoring, management and treatment of a variety of disease conditions. In this review, we describe precision medicine and the role implantable biosensors may have in this field, along with challenges in their clinical implementation due to the host immune responses they elicit within the body.
Collapse
|
35
|
Abstract
Surgical repair of tendons of the foot and ankle is performed utilizing various methods, including autografts, allografts, and synthetic grafts. Artelon is a synthetic biomaterial that is fabricated from wet-spun fibers of PCL-based polyurethane urea, and has, optimal mechanical properties compared with other grafting options. Because of excellent results of Artelon in ACL reconstruction, its use was explored in 3 foot and ankle cases: repair of Achilles, posterior tibial, and peroneal tendons. Artelon has proven to be a successful alternative for tendon repairs, with all 3 cases returning to full function within 8 to 16 weeks and with no complications related to the graft.
Collapse
|
36
|
Nalluri SM, O'Connor JW, Virgi GA, Stewart SE, Ye D, Gomez EW. TGFβ1-induced expression of caldesmon mediates epithelial-mesenchymal transition. Cytoskeleton (Hoboken) 2018; 75:201-212. [PMID: 29466836 DOI: 10.1002/cm.21437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an important process that mediates organ development and wound healing, and in pathological contexts, it can contribute to the progression of fibrosis and cancer. During EMT, cells exhibit marked changes in cytoskeletal organization and increased expression of a variety of actin associated proteins. Here, we sought to determine the role of caldesmon in mediating EMT in response to transforming growth factor (TGF)-β1. We find that the expression level and phosphorylation state of caldesmon increase as a function of time following induction of EMT by TGFβ1 and these changes in caldesmon correlate with increased focal adhesion number and size and increased cell contractility. Knockdown and forced expression of caldesmon in epithelial cells reveals that caldesmon expression plays an important role in regulating the expression of the myofibroblast marker alpha smooth muscle actin. Results from these studies provide insight into the role of cytoskeletal associated proteins in the regulation of EMT and may suggest ways to target the cell cytoskeleton for regulating EMT processes.
Collapse
Affiliation(s)
- Sandeep M Nalluri
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Joseph W O'Connor
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gage A Virgi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Samantha E Stewart
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208
| | - Dan Ye
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802.,Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
37
|
|
38
|
de la Oliva N, Navarro X, Del Valle J. Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants. J Biomed Mater Res A 2017; 106:746-757. [PMID: 29052368 DOI: 10.1002/jbm.a.36274] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022]
Abstract
The foreign body reaction (FBR) against an implanted device is characterized by the formation of a fibrotic tissue around the implant. In the case of interfaces for peripheral nerves, used to stimulate specific group of axons and to record different nerve signals, the FBR induces a matrix deposition around the implant creating a physical separation between nerve fibers and the interface that may reduce its functionality over time. In order to understand how the FBR to intraneural interfaces evolves, polyimide non-functional devices were implanted in rat peripheral nerve. Functional tests (electrophysiological, pain and locomotion) and histological evaluation demonstrated that implanted devices did not cause any alteration in nerve function, in myelinated axons or in nerve architecture. The inflammatory response due to the surgical implantation decreased after 2 weeks. In contrast, inflammation was higher and more prolonged in the device implanted nerves with a peak after 2 weeks. With regard to tissue deposition, a tissue capsule appeared soon around the devices, acquiring maximal thickness at 2 weeks and being remodeled subsequently. Immunohistochemical analysis revealed two different cell types implicated in the FBR in the nerve: macrophages as the first cells in contact with the interface and fibroblasts that appear later at the edge of the capsule. Our results describe how the FBR against a polyimide implant in the peripheral nerve occurs and which are the main cellular players. Increasing knowledge of these responses will help to improve strategies to decrease the FBR against intraneural implants and to extend their usability. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 746-757, 2018.
Collapse
Affiliation(s)
- Natàlia de la Oliva
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Institute of Neurosciences, Bellaterra, 08193, Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Institute of Neurosciences, Bellaterra, 08193, Barcelona, Spain
| | - Jaume Del Valle
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Institute of Neurosciences, Bellaterra, 08193, Barcelona, Spain.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
39
|
Cha BH, Shin SR, Leijten J, Li YC, Singh S, Liu JC, Annabi N, Abdi R, Dokmeci MR, Vrana NE, Ghaemmaghami AM, Khademhosseini A. Integrin-Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. Adv Healthc Mater 2017; 6:10.1002/adhm.201700289. [PMID: 28782184 PMCID: PMC5677560 DOI: 10.1002/adhm.201700289] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/17/2017] [Indexed: 12/23/2022]
Abstract
Adverse immune reactions prevent clinical translation of numerous implantable devices and materials. Although inflammation is an essential part of tissue regeneration, chronic inflammation ultimately leads to implant failure. In particular, macrophage polarity steers the microenvironment toward inflammation or wound healing via the induction of M1 and M2 macrophages, respectively. Here, this paper demonstrates that macrophage polarity within biomaterials can be controlled through integrin-mediated interactions between human monocytic THP-1 cells and collagen-derived matrix. Surface marker, gene expression, biochemical, and cytokine profiling consistently indicate that THP-1 cells within a biomaterial lacking cell attachment motifs yield proinflammatory M1 macrophages, whereas biomaterials with attachment sites in the presence of interleukin-4 (IL-4) induce an anti-inflammatory M2-like phenotype and propagate the effect of IL-4 in induction of M2-like macrophages. Importantly, integrin α2β1 plays a pivotal role as its inhibition blocks the induction of M2 macrophages. The influence of the microenvironment of the biomaterial over macrophage polarity is further confirmed by its ability to modulate the effect of IL-4 and lipopolysaccharide, which are potent inducers of M2 or M1 phenotypes, respectively. Thus, this study represents a novel, versatile, and effective strategy to steer macrophage polarity through integrin-mediated 3D microenvironment for biomaterial-based programming.
Collapse
Affiliation(s)
- Byung-Hyun Cha
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500, AE, Enschede, The Netherlands
| | - Yi-Chen Li
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Sonali Singh
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Julie C Liu
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Davidson School of Chemical Engineering and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Reza Abdi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Transplant Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital, Boston, MA, 02115, USA
| | - Mehmet R Dokmeci
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Nihal Engin Vrana
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Fundamental Research Unit, Protip Medical, 8 Place de l'Hôpital, 67000, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1121, "Biomatériaux et Bioingénierie", 11 rue Humann, 67085, Strasbourg Cedex, France
| | - Amir M Ghaemmaghami
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
- Nanotechnology Center, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
40
|
Interfacing with the nervous system: a review of current bioelectric technologies. Neurosurg Rev 2017; 42:227-241. [PMID: 29063229 DOI: 10.1007/s10143-017-0920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.
Collapse
|
41
|
Hassanbhai AM, Lau CS, Wen F, Jayaraman P, Goh BT, Yu N, Teoh SH. In Vivo Immune Responses of Cross-Linked Electrospun Tilapia Collagen Membrane. Tissue Eng Part A 2017; 23:1110-1119. [DOI: 10.1089/ten.tea.2016.0504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ammar Mansoor Hassanbhai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chau Sang Lau
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Wen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Praveena Jayaraman
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bee Tin Goh
- National Dental Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Na Yu
- National Dental Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
42
|
Woldetsadik AD, Sharma SK, Khapli S, Jagannathan R, Magzoub M. Hierarchically Porous Calcium Carbonate Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2457-2469. [PMID: 33445303 DOI: 10.1021/acsbiomaterials.7b00301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hierarchically porous CaCO3 scaffolds comprised of micro- (diameter = 2.0 ± 0.3 μm) and nano-sized (diameter = 50.4 ± 14.4 nm) pores were fabricated on silicon substrates using a supercritical CO2-based process. Differentiated human THP-1 monocytes exposed to the CaCO3 scaffolds produced negligible levels of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α), confirming the lack of immunogenicity of the scaffolds. Extracellular matrix (ECM) proteins, vitronectin and fibronectin, displayed enhanced adsorption to the scaffolds compared to the silicon controls. ECM protein-coated CaCO3 scaffolds promoted adhesion, growth, and proliferation of osteoblast MC3T3 cells. MC3T3 cells grown on the CaCO3 scaffolds produced substantially higher levels of transforming growth factor-beta and vascular endothelial growth factor A, which regulate osteoblast differentiation, and exhibited markedly increased alkaline phosphatase activity, a marker of early osteoblast differentiation, compared to controls. Moreover, the CaCO3 scaffolds stimulated matrix mineralization (calcium deposition), an end point of advanced osteoblast differentiation and an important biomarker for bone tissue formation. Taken together, these results demonstrate the significant potential of the hierarchically porous CaCO3 scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Abiy D Woldetsadik
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sudhir K Sharma
- Nano and Bio Materials Laboratory, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sachin Khapli
- Nano and Bio Materials Laboratory, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- Nano and Bio Materials Laboratory, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
43
|
Demineralized Freeze-Dried Bovine Cortical Bone: Its Potential for Guided Bone Regeneration Membrane. Int J Dent 2017; 2017:5149675. [PMID: 28947902 PMCID: PMC5602673 DOI: 10.1155/2017/5149675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bovine pericardium collagen membrane (BPCM) had been widely used in guided bone regeneration (GBR) whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. OBJECTIVE This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. MATERIAL AND METHODS Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM) was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat's subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. RESULT DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. CONCLUSION Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.
Collapse
|
44
|
Goonoo N. Modulating Immunological Responses of Electrospun Fibers for Tissue Engineering. ACTA ACUST UNITED AC 2017; 1:e1700093. [PMID: 32646177 DOI: 10.1002/adbi.201700093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 12/28/2022]
Abstract
The promise of tissue engineering is to improve or restore functions of impaired tissues or organs. However, one of the biggest challenges to its translation to clinical applications is the lack of tissue integration and functionality. The plethora of cellular and molecular events occurring following scaffold implantation is a major bottleneck. Recent studies confirmed that inflammation is a crucial component influencing tissue regeneration. Immuno-modulation or immune-engineering has been proposed as a potential solution to overcome this key challenge in regenerative medicine. In this review, strategies to modify scaffold physicochemical properties through the use of the electrospinning technique to modulate host response and improve scaffold integration will be discussed. Electrospinning, being highly versatile allows the fabrication of ECM-mimicking scaffolds and also offers the possibility to control scaffold properties for instance, tailoring of fiber properties, chemical conjugation or physical adsorption of non-immunogenic materials on the scaffold surface, encapsulating cells or anti-inflammatory molecules within the scaffold. Such electrospun scaffold-based immune-engineering strategies can significantly improve the resulting outcomes of tissue engineering scaffolds.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cµ), University of Siegen, 57076, Siegen, Germany.,Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
45
|
Wang L, Xu K, Hou X, Han Y, Liu S, Wiraja C, Yang C, Yang J, Wang M, Dong X, Huang W, Xu C. Fluorescent Poly(glycerol-co-sebacate) Acrylate Nanoparticles for Stem Cell Labeling and Longitudinal Tracking. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9528-9538. [PMID: 28247768 DOI: 10.1021/acsami.7b01203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The stable presence of fluorophores within the biocompatible and biodegradable elastomer poly(glycerol-co-sebacate) acrylate (PGSA) is critical for monitoring the transplantation, performance, and degradation of the polymers in vivo. However, current methods such as physically entrapping the fluorophores in the polymer matrix or providing a fluorescent coating suffer from rapid leakage of fluorophores. Covalent conjugation of fluorophores with the polymers and the subsequent core-cross-linking are proposed here to address this challenge. Taking rhodamine as the model dye and PGSA nanoparticles (NPs) as the model platform, we successfully showed that the synthesized rhodamine-conjugated PGSA (PGSAR) NPs only released less than 30% rhodamine at day 28, whereas complete release of dye occurred for rhodamine-encapsulated PGSA (PGSA-p-R) NPs at day 7 and 57.49% rhodamine was released out for the un-cross-linked PGSAR NPs at day 28. More excitingly, PGSAR NPs showed a strong quantum yield enhancement (26.24-fold) of the fluorophores, which was due to the hydrophobic environment within PGSAR NPs and the restricted rotation of (6-diethylamino-3H-xanthen-3-ylidene) diethyl group in rhodamine after the conjugation and core-cross-linking. The stable presence of dye in the NPs and enhanced fluorescence allowed a longitudinal tracking of stem cells both in vitro and in vivo for at least 28 days.
Collapse
Affiliation(s)
- Lifeng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Keming Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Xiaochun Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
- Key Laboratory for Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications , Nanjing 210046, P. R. China
| | - Yiyuan Han
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Shiying Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Cangjie Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jun Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
46
|
Xuan F, Rong J, Liang M, Zhang X, Sun J, Zhao L, Li Y, Liu D, Li F, Wang X, Han Y. Biocompatibility and Effectiveness Evaluation of a New Hemostatic Embolization Agent: Thrombin Loaded Alginate Calcium Microsphere. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1875258. [PMID: 28303245 PMCID: PMC5337789 DOI: 10.1155/2017/1875258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
Abstract
Background. Until now, there has been no ideal embolization agent for hemorrhage in interventional treatment. In this study, the thrombin was encapsulated in alginate calcium microsphere using electrostatic droplet technique to produce new embolization agent: thrombin loaded alginate calcium microspheres (TACMs). Objectives. The present work was to evaluate the biocompatibility and hemostatic efficiency of TACMs. Methods. Cell cytotoxicity, hemolysis, and superselective embolization of dog liver arteries were performed to investigate the biocompatibility of TACMs. To clarify the embolic effect of TACMs mixed thrombus in vivo, hepatic artery injury animal model of 6 beagles was established and transcatheter artery embolization for bleeding was performed. Results. Coculture with VECs revealed the noncytotoxicity of TACMs, and the hemolysis experiment was negligible. Moreover, the histological study of TACMs in liver blood vessel showed signs of a slight inflammatory reaction. The results of transcatheter application of TACMs mixed thrombus for bleeding showed that the blood flow was shut down completely after the TACMs mixed thrombus was delivered and the postprocedural survival rate of animal models at 12 weeks was 100%. Conclusions. With their good biocompatibility and superior hemostatic efficiency, TACMs might be a promising new hemostatic agent with a wide range of potential applications.
Collapse
Affiliation(s)
- Fengqi Xuan
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
- Electrocardiogram Laboratory, Dezhou People's Hospital, Dezhou, Shandong 253000, China
| | - Jingjing Rong
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
| | - Ming Liang
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
| | - Xuwen Zhang
- Department of Ophthalmology, Dezhou People's Hospital, Dezhou, Shandong 253000, China
| | - Jingyang Sun
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
| | - Lijun Zhao
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
| | - Yang Li
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
| | - Dan Liu
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
| | - Fei Li
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
| | - Xiaozeng Wang
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
| | - Yaling Han
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China
| |
Collapse
|
47
|
Sahyouni R, Chang DT, Moshtaghi O, Mahmoodi A, Djalilian HR, Lin HW. Functional and Histological Effects of Chronic Neural Electrode Implantation. Laryngoscope Investig Otolaryngol 2017; 2:80-93. [PMID: 28894826 PMCID: PMC5527370 DOI: 10.1002/lio2.66] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 12/27/2022] Open
Abstract
Objectives Permanent injury to the cranial nerves can often result in a substantial reduction in quality of life. Novel and innovative interventions can help restore form and function in nerve paralysis, with bioelectric interfaces among the more promising of these approaches. The foreign body response is an important consideration for any bioelectric device as it influences the function and effectiveness of the implant. The purpose of this review is to describe tissue and functional effects of chronic neural implantation among the different categories of neural implants and highlight advances in peripheral and cranial nerve stimulation. Data Sources: PubMed, IEEE, and Web of Science literature search. Review Methods: A review of the current literature was conducted to examine functional and histologic effects of bioelectric interfaces for neural implants. Results Bioelectric devices can be characterized as intraneural, epineural, perineural, intranuclear, or cortical depending on their placement relative to nerves and neuronal cell bodies. Such devices include nerve‐specific stimulators, neuroprosthetics, brainstem implants, and deep brain stimulators. Regardless of electrode location and interface type, acute and chronic histological, macroscopic and functional changes can occur as a result of both passive and active tissue responses to the bioelectric implant. Conclusion A variety of chronically implantable electrodes have been developed to treat disorders of the peripheral and cranial nerves, to varying degrees of efficacy. Consideration and mitigation of detrimental effects at the neural interface with further optimization of functional nerve stimulation will facilitate the development of these technologies and translation to the clinic. Level of Evidence 3.
Collapse
Affiliation(s)
- Ronald Sahyouni
- Department of Biomedical Engineering, University of California Irvine U.S.A
| | - David T Chang
- Department of Otolaryngology-Head & Neck Surgery, University of California Irvine U.S.A.,Division of Otolaryngology-Head &Neck Surgery, Irvine, California, Children's Hospital of Orange County Orange California U.S.A
| | - Omid Moshtaghi
- School of Medicine, University of California Irvine U.S.A
| | - Amin Mahmoodi
- Department of Biomedical Engineering, University of California Irvine U.S.A
| | - Hamid R Djalilian
- Department of Otolaryngology-Head & Neck Surgery, University of California Irvine U.S.A
| | - Harrison W Lin
- Department of Otolaryngology-Head & Neck Surgery, University of California Irvine U.S.A
| |
Collapse
|
48
|
Khan UA, Hashimi SM, Bakr MM, Forwood MR, Morrison NA. CCL2 and CCR2 are Essential for the Formation of Osteoclasts and Foreign Body Giant Cells. J Cell Biochem 2016. [PMID: 26205994 DOI: 10.1002/jcb.25282] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. They are derived from the fusion of cells in the monocyte/macrophage lineage. Monocytes and macrophages can also fuse to form foreign body giant cells (FBGC). Foreign body giant cells are observed at the interface between a host and a foreign body such as implants during a foreign body reaction. Macrophages are attracted to the site of bone resorption and foreign body reactions by different cytokines. Chemokine (C-C) ligand-2 (CCL2) is an important chemotactic factor and binds to a receptor CCR2. In this study we investigated the importance of CCL2 and the receptor CCR2 in the formation of osteoclasts and FBGC. CCL2 mRNA was more highly expressed in giant cell culture than macrophages, being 9-fold and 16-fold more abundant in osteoclasts and FBGC respectively. Significantly fewer osteoclasts and FBGC were cultured from the bone marrow of CCL2 and CCR2 knockout mice, when compared to wild type. Not only were the number of giant cells reduced but there was a significant reduction in the number of nuclei and the size of these cells in the cultures of CCL2 and CCR2 knockout mice. Formation of osteoclasts and FBGC were recovered in cultures by addition of exogenous CCL2 to the media containing marrow cells from CCL2-/- mice. We conclude that CCL2 and its receptor CCR2 are important for the formation of osteoclasts and FBGC and absence of these genes causes inhibition of osteoclast and FBGC formation.
Collapse
Affiliation(s)
- Usman A Khan
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia.,Senior Dentist Dalby Dental Clinic, Western Down, Queensland, 4405, Australia
| | - Saeed M Hashimi
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia.,Regenerative Medicine Centre, Molecular Basis for Disease, School of Dentistry and Oral Health, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| | - Mahmoud M Bakr
- Regenerative Medicine Centre, Molecular Basis for Disease, School of Dentistry and Oral Health, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| | - Mark R Forwood
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| | - Nigel A Morrison
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| |
Collapse
|
49
|
Tondera C, Hauser S, Krüger-Genge A, Jung F, Neffe AT, Lendlein A, Klopfleisch R, Steinbach J, Neuber C, Pietzsch J. Gelatin-based Hydrogel Degradation and Tissue Interaction in vivo: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice. Theranostics 2016; 6:2114-2128. [PMID: 27698944 PMCID: PMC5039684 DOI: 10.7150/thno.16614] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022] Open
Abstract
Hydrogels based on gelatin have evolved as promising multifunctional biomaterials. Gelatin is crosslinked with lysine diisocyanate ethyl ester (LDI) and the molar ratio of gelatin and LDI in the starting material mixture determines elastic properties of the resulting hydrogel. In order to investigate the clinical potential of these biopolymers, hydrogels with different ratios of gelatin and diisocyanate (3-fold (G10_LNCO3) and 8-fold (G10_LNCO8) molar excess of isocyanate groups) were subcutaneously implanted in mice (uni- or bilateral implantation). Degradation and biomaterial-tissue-interaction were investigated in vivo (MRI, optical imaging, PET) and ex vivo (autoradiography, histology, serum analysis). Multimodal imaging revealed that the number of covalent net points correlates well with degradation time, which allows for targeted modification of hydrogels based on properties of the tissue to be replaced. Importantly, the degradation time was also dependent on the number of implants per animal. Despite local mechanisms of tissue remodeling no adverse tissue responses could be observed neither locally nor systemically. Finally, this preclinical investigation in immunocompetent mice clearly demonstrated a complete restoration of the original healthy tissue.
Collapse
Affiliation(s)
- Christoph Tondera
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”, Teltow and Berlin
| | - Axel T. Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”, Teltow and Berlin
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”, Teltow and Berlin
| | - Robert Klopfleisch
- Freie Universität Berlin, Institute of Veterinary Pathology, Berlin, Germany
| | - Jörg Steinbach
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
50
|
Fibronectin adsorption on surface-modified polyetherurethanes and their differentiated effect on specific blood elements related to inflammatory and clotting processes. Biointerphases 2016; 11:029809. [PMID: 27246517 DOI: 10.1116/1.4950887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
After the introduction of a medical device into the body, adhesive proteins such as fibronectin (Fn) will adsorb to the surface of the biomaterial. Monocytes (MCs) will interact with these adsorbed proteins, and adopt either a proinflammatory and/or prowound healing phenotype, thereby influencing many blood interaction events including thrombogenesis. In this work, Fn adsorption as well as subsequent MC response and thrombus formation were investigated on two surfaces-modified polyetherurethanes (PEUs) using different surface modifiers: an anionic/dihydroxyl oligomeric (ADO) additive, known to enable cell adhesion, and a fluorinated polypropylene oxide oligomer (PPO), known to reduce platelet adhesion. Results indicated that at 24 h of MC culture, PEU-ADO and PEU-PPO promoted an anti-inflammatory character relative to the base PEU. Longer clotting times, based on a free hemoglobin assay, were also found on the two surface-modified PEUs relative to the native one, suggesting their potential for the reduction of thrombus formation. In presence of a Fn monolayer, the surface-modified PEUs conserved a lower thrombogenic character than the base PEU, and was however significantly decreased when compared to prior protein adsorption. Furthermore, Fn coatings increased the MC production levels of tumor necrosis factor-α and interleukin-10 at 24 h, while not affecting the anti-inflammatory effect of the modifications relative to the base PEU. This finding was most prominent on PEU-PPO, suggesting that the interaction of the adsorbed Fn with blood cells was different for the two additives. Hence, the results highlighted differentiating effects of Fn adsorption on specific blood activating processes related to inflammatory and thrombotic responses.
Collapse
|