1
|
Oxford JS, Catchpole A, Mann A, Bell A, Noulin N, Gill D, Oxford JR, Gilbert A, Balasingam S. A Brief History of Human Challenge Studies (1900-2021) Emphasising the Virology, Regulatory and Ethical Requirements, Raison D'etre, Ethnography, Selection of Volunteers and Unit Design. Curr Top Microbiol Immunol 2024; 445:1-32. [PMID: 35704095 DOI: 10.1007/82_2022_253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Venetian quarantine 400 years ago was an important public health measure. Since 1900 this has been refined to include "challenge" or deliberate infection with pathogens be they viruses, bacteria, or parasites. Our focus is virology and ranges from the early experiments in Cuba with Yellow Fever Virus to the most widespread pathogen of our current times, COVID-19. The latter has so far caused over four million deaths worldwide and 190 million cases of the disease. Quarantine and challenge were also used to investigate the Spanish Influenza of 1918 which caused over 100 million deaths. We consider here the merits of the approach, that is the speeding up of knowledge in a practical sense leading to the more rapid licensing of vaccines and antimicrobials. At the core of quarantine and challenge initiatives is the design of the unit to allow safe confinement of the pathogen and protection of the staff. Most important though is the safety of volunteers. We can see now, as in 1900, that members of our society are prepared and willing to engage in these experiments for the public good. Our ethnology study, where the investigator observed the experiment from within the quarantine, gave us the first indication of changing attitudes amongst volunteers whilst in quarantine. These quarantine experiments, referred to as challenge studies, human infection studies, or "controlled human infection models" involve thousands of clinical samples taken over two to three weeks and can provide a wealth of immunological and molecular data on the infection itself and could allow the discovery of new targets for vaccines and therapeutics. The Yellow Fever studies from 121 years ago gave the impetus for development of a successful vaccine still used today whilst also uncovering the nature of the Yellow Fever agent, namely that it was a virus. We outline how carefully these experiments are approached and the necessity to have high quality units with self-contained air-flow along with extensive personal protective equipment for nursing and medical staff. Most important is the employment of highly trained scientific, medical and nursing staff. We face a future of emerging pathogens driven by the increasing global population, deforestation, climate change, antibiotic resistance and increased global travel. These emerging pathogens may be pathogens we currently are not aware of or have not caused outbreaks historically but could also be mutated forms of known pathogens including viruses such as influenza (H7N9, H5N1 etc.) and coronaviruses. This calls for challenge studies to be part of future pandemic preparedness as an additional tool to assist with the rapid development of broad-spectrum antimicrobials, immunomodulators and new vaccines.
Collapse
Affiliation(s)
- J S Oxford
- Blizzard Institute of Cell and Molecular Science, Queen Mary University of London, London, E1 2AT, UK
| | | | | | | | | | - D Gill
- Blizzard Institute of Cell and Molecular Science, Queen Mary University of London, London, E1 2AT, UK
| | - J R Oxford
- Inveresk Medical Practice, Edinburgh, E21 7BP, UK
| | | | | |
Collapse
|
2
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
3
|
Wang W, Sinha A, Lutter R, Yang J, Ascoli C, Sterk PJ, Nemsick NK, Perkins DL, Finn PW. Analysis of Exosomal MicroRNA Dynamics in Response to Rhinovirus Challenge in a Longitudinal Case-Control Study of Asthma. Viruses 2022; 14:v14112444. [PMID: 36366542 PMCID: PMC9695046 DOI: 10.3390/v14112444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Asthma symptoms are often exacerbated by the common-cold-causing rhinovirus (RV). In this study, we characterized the temporal behavior of circulating exosomal microRNAs (ExoMiRNAs) in a longitudinal bi-phasic case-control study of mild asthmatics (n = 12) and matched non-atopic healthy controls (n = 12) inoculated with rhinovirus. We aimed to define clinical and immunologic characteristics associated with differentially expressed (DE) miRNAs. In total, 26 DE ExoMiRNAs, including hsa-let-7f-5p, hsa-let-7a-5p, hsa-miR-122-5p, hsa-miR-101-3p, and hsa-miR-126-3p, were identified between asthmatic and healthy subjects after inoculation with RV. Time series clustering identified a unique Cluster of Upregulated DE ExoMiRNAs with augmenting mean expression and a distinct Cluster of Downregulated DE ExoMiRNAs with mean expression decline in asthmatic subjects upon RV challenge. Notably, the Upregulated Cluster correlated with Th1 and interferon-induced cytokines/chemokines (IFN-γ and IFN-γ-inducible protein-10) and interleukin-10 (IL-10). Conversely, the Downregulated Cluster correlated with IL-13, a Th2 cytokine, pulmonary function measurements (FVC%, FEV1%, and PEF%), and inflammatory biomarkers (FeNO, eosinophil%, and neutrophil%). Key ExoMiRNA-target gene and anti-viral defense mechanisms of the Upregulated and Downregulated Clusters were identified by network and gene enrichment analyses. Our findings provide insight into the regulatory role of ExoMiRNAs in RV-induced asthma.
Collapse
Affiliation(s)
- Wangfei Wang
- Richard and Loan Hill Department of Biomedical Engineering, College of Engineering and Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anirban Sinha
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - René Lutter
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jie Yang
- Department of Mathematics, Statistics, and Computer Science, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Peter J. Sterk
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nicole K. Nemsick
- Department of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David L. Perkins
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Patricia W. Finn
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
4
|
Luo W, Hu J, Xu W, Dong J. Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma. Front Immunol 2022; 13:974066. [PMID: 36032162 PMCID: PMC9411752 DOI: 10.3389/fimmu.2022.974066] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Immune response in the asthmatic respiratory tract is mainly driven by CD4+ T helper (Th) cells, represented by Th1, Th2, and Th17 cells, especially Th2 cells. Asthma is a heterogeneous and progressive disease, reflected by distinct phenotypes orchestrated by τh2 or non-Th2 (Th1 and Th17) immune responses at different stages of the disease course. Heterogeneous cytokine expression within the same Th effector state in response to changing conditions in vivo and interlineage relationship among CD4+ T cells shape the complex immune networks of the inflammatory airway, making it difficult to find one panacea for all asthmatics. Here, we review the role of three T helper subsets in the pathogenesis of asthma from different stages, highlighting timing is everything in the immune system. We also discuss the dynamic topography of Th subsets and pathogenetic memory Th cells in asthma.
Collapse
Affiliation(s)
- Weihang Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jindong Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| |
Collapse
|
5
|
Liew KY, Koh SK, Hooi SL, Ng MKL, Chee HY, Harith HH, Israf DA, Tham CL. Rhinovirus-Induced Cytokine Alterations With Potential Implications in Asthma Exacerbations: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:782936. [PMID: 35242128 PMCID: PMC8886024 DOI: 10.3389/fimmu.2022.782936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/13/2022] [Indexed: 12/01/2022] Open
Abstract
Background Rhinovirus (RV) infections are a major cause of asthma exacerbations. Unlike other respiratory viruses, RV causes minimal cytotoxic effects on airway epithelial cells and cytokines play a critical role in its pathogenesis. However, previous findings on RV-induced cytokine responses were largely inconsistent. Thus, this study sought to identify the cytokine/chemokine profiles induced by RV infection and their correlations with airway inflammatory responses and/or respiratory symptoms using systematic review, and to determine whether a quantitative difference exists in cytokine levels between asthmatic and healthy individuals via meta-analysis. Methods Relevant articles were obtained from PubMed, Scopus, and ScienceDirect databases. Studies that compared RV-induced cytokine responses between asthmatic and healthy individuals were included in the systematic review, and their findings were categorized based on the study designs, which were ex vivo primary bronchial epithelial cells (PBECs), ex vivo peripheral blood mononuclear cells (PBMCs), and human experimental studies. Data on cytokine levels were also extracted and analyzed using Review Manager 5.4. Results Thirty-four articles were included in the systematic review, with 18 of these further subjected to meta-analysis. Several studies reported the correlations between the levels of cytokines, such as IL-8, IL-4, IL-5, and IL-13, and respiratory symptoms. Evidence suggests that IL-25 and IL-33 may be the cytokines that promote type 2 inflammation in asthmatics after RV infection. Besides that, a meta-analysis revealed that PBECs from children with atopic asthma produced significantly lower levels of IFN-β [Effect size (ES): -0.84, p = 0.030] and IFN-λ (ES: -1.00, p = 0.002), and PBECs from adult atopic asthmatics produced significantly lower levels of IFN-β (ES: -0.68, p = 0.009), compared to healthy subjects after RV infection. A trend towards a deficient production of IFN-γ (ES: -0.56, p = 0.060) in PBMCs from adult atopic asthmatics was observed. In lower airways, asthmatics also had significantly lower baseline IL-15 (ES: -0.69, p = 0.020) levels. Conclusion Overall, RV-induced asthma exacerbations are potentially caused by an imbalance between Th1 and Th2 cytokines, which may be contributed by defective innate immune responses at cellular levels. Exogenous IFNs delivery may be beneficial as a prophylactic approach for RV-induced asthma exacerbations. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=184119, identifier CRD42020184119.
Collapse
Affiliation(s)
- Kong Yen Liew
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sue Kie Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suet Li Hooi
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Hui-Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
6
|
Tabassum T, Rahman A, Araf Y, Ullah MA, Hosen MJ. Management of asthma patients during the COVID-19 pandemic: pathophysiological considerations to address the challenges. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:20. [PMID: 35155689 PMCID: PMC8817645 DOI: 10.1186/s43088-022-00204-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) has become a serious global health issue, especially for people with pre-existing health conditions. Patients dealing with asthma are presumed to be at higher risk as COVID-19 may cause severe respiratory distress. Main body From the initial stage of the pandemic, several clinical trials and studies have assessed the association between COVID-19 and asthma; however, no significant association was reported. This may be due to the fact that most of the asthma cases remained undiagnosed and overlapping respiratory features make it difficult to differentiate between these two diseases. The pathomechanism of the conditions and the immune response generated in response to the conditions suggest that the presence of any of the conditions is very likely to influence the presence or severity of the other condition. So far, no specific treatments are known for COVID-19; however, the use of plasma therapy and broad-spectrum antiviral drugs during the initial phase of the pandemic and widespread vaccination during the latter phase has given positive outcomes in reducing COVID-19 cases as well as disease severity. Short conclusion Taking asthma as an increased risk factor for COVID-19 morbidity, this article aims to provide comprehensive insights into the risk and proper management of asthma patients during this COVID-19 pandemic. The common medications of asthma patients suppress their respiratory immune response that might facilitate cytokine storm in COVID-19 patients. Similarly, there are risks of viral-induced asthma exacerbations. Besides, different social issues such as shortage of medicines, SDOH, and delayed clinical trials put asthma patients through inconvenience. The primary focus at this point should be to reduce probable asthma attacks and severity to prevent hospitalization of asthma patients. Moreover, for better management of asthma patients maintaining an asthma action plan and healthy lifestyle, ensuring a nutritious diet, and developing self-management interventions can play a crucial role.
Collapse
|
7
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
8
|
Nawroth JC, Lucchesi C, Cheng D, Shukla A, Ngyuen J, Shroff T, Varone A, Karalis K, Lee HH, Alves S, Hamilton GA, Salmon M, Villenave R. A Microengineered Airway Lung Chip Models Key Features of Viral-induced Exacerbation of Asthma. Am J Respir Cell Mol Biol 2020; 63:591-600. [PMID: 32706623 DOI: 10.1165/rcmb.2020-0010ma] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Viral-induced exacerbation of asthma remains a major cause of hospitalization and mortality. New human-relevant models of the airways are urgently needed to understand how respiratory infections may trigger asthma attacks and to advance treatment development. Here, we describe a new human-relevant model of rhinovirus-induced asthma exacerbation that recapitulates viral infection of asthmatic airway epithelium and neutrophil transepithelial migration, and enables evaluation of immunomodulatory therapy. Specifically, a microengineered model of fully differentiated human mucociliary airway epithelium was stimulated with IL-13 to induce a T-helper cell type 2 asthmatic phenotype and infected with live human rhinovirus 16 (HRV16) to reproduce key features of viral-induced asthma exacerbation. We observed that the infection with HRV16 replicated key hallmarks of the cytopathology and inflammatory responses observed in human airways. Generation of a T-helper cell type 2 microenvironment through exogenous IL-13 stimulation induced features of asthmatic airways, including goblet cell hyperplasia, reduction of cilia beating frequency, and endothelial activation, but did not alter rhinovirus infectivity or replication. High-resolution kinetic analysis of secreted inflammatory markers revealed that IL-13 treatment altered IL-6, IFN-λ1, and CXCL10 secretion in response to HRV16. Neutrophil transepithelial migration was greatest when viral infection was combined with IL-13 treatment, whereas treatment with MK-7123, a CXCR2 antagonist, reduced neutrophil diapedesis in all conditions. In conclusion, our microengineered Airway Lung-Chip provides a novel human-relevant platform for exploring the complex mechanisms underlying viral-induced asthma exacerbation. Our data suggest that IL-13 may impair the hosts' ability to mount an appropriate and coordinated immune response to rhinovirus infection. We also show that the Airway Lung-Chip can be used to assess the efficacy of modulators of the immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hyun-Hee Lee
- Merck Research Laboratories, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
9
|
Douros K, Everard ML. Time to Say Goodbye to Bronchiolitis, Viral Wheeze, Reactive Airways Disease, Wheeze Bronchitis and All That. Front Pediatr 2020; 8:218. [PMID: 32432064 PMCID: PMC7214804 DOI: 10.3389/fped.2020.00218] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The diagnosis and management of infants and children with a significant viral lower respiratory tract illness remains the subject of much debate and little progress. Over the decades various terms for such illnesses have been in and fallen out of fashion or have evolved to mean different things to different clinicians. Terms such as "bronchiolitis," "reactive airways disease," "viral wheeze," and many more are used to describe the same condition and the same term is frequently used to describe illnesses caused by completely different dominant pathologies. This lack of clarity is due, in large part, to a failure to understand the basic underlying inflammatory and associated processes and, in part, due to the lack of a simple test to identify a condition such as asthma. Moreover, there is a lack of insight into the fact that the same pathology can produce different clinical signs at different ages. The consequence is that terminology and fashions in treatment have tended to go around in circles. As was noted almost 60 years ago, amongst pre-school children with a viral LRTI and airways obstruction there are those with a "viral bronchitis" and those with asthma. In the former group, a neutrophil dominated inflammation response is responsible for the airways' obstruction whilst amongst asthmatics much of the obstruction is attributable to bronchoconstriction. The airways obstruction in the former group is predominantly caused by airways secretions and to some extent mucosal oedema (a "snotty lung"). These patients benefit from good supportive care including supplemental oxygen if required (though those with a pre-existing bacterial bronchitis will also benefit from antibiotics). For those with a viral exacerbation of asthma, characterized by bronchoconstriction combined with impaired b-agonist responsiveness, standard management of an exacerbation of asthma (including the use of steroids to re-establish bronchodilator responsiveness) represents optimal treatment. The difficulty is identifying which group a particular patient falls into. A proposed simplified approach to the nomenclature used to categorize virus associated LRTIs is presented based on an understanding of the underlying pathological processes and how these contribute to the physical signs.
Collapse
Affiliation(s)
- Konstantinos Douros
- Third Department of Paediatrics, Attikon Hospital, University of Athens School of Medicine, Athens, Greece
| | - Mark L. Everard
- Division of Paediatrics and Child Health, Perth Children's Hospital, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
10
|
Muehling LM, Heymann PW, Wright PW, Eccles JD, Agrawal R, Carper HT, Murphy DD, Workman LJ, Word CR, Ratcliffe SJ, Capaldo BJ, Platts-Mills TAE, Turner RB, Kwok WW, Woodfolk JA. Human T H1 and T H2 cells targeting rhinovirus and allergen coordinately promote allergic asthma. J Allergy Clin Immunol 2020; 146:555-570. [PMID: 32320734 DOI: 10.1016/j.jaci.2020.03.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Allergic asthmatic subjects are uniquely susceptible to acute wheezing episodes provoked by rhinovirus. However, the underlying immune mechanisms and interaction between rhinovirus and allergy remain enigmatic, and current paradigms are controversial. OBJECTIVE We sought to perform a comprehensive analysis of type 1 and type 2 innate and adaptive responses in allergic asthmatic subjects infected with rhinovirus. METHODS Circulating virus-specific TH1 cells and allergen-specific TH2 cells were precisely monitored before and after rhinovirus challenge in allergic asthmatic subjects (total IgE, 133-4692 IU/mL; n = 28) and healthy nonallergic controls (n = 12) using peptide/MHCII tetramers. T cells were sampled for up to 11 weeks to capture steady-state and postinfection phases. T-cell responses were analyzed in parallel with 18 cytokines in the nose, upper and lower airway symptoms, and lung function. The influence of in vivo IgE blockade was also examined. RESULTS In uninfected asthmatic subjects, higher numbers of circulating virus-specific PD-1+ TH1 cells, but not allergen-specific TH2 cells, were linked to worse lung function. Rhinovirus infection induced an amplified antiviral TH1 response in asthmatic subjects versus controls, with synchronized allergen-specific TH2 expansion, and production of type 1 and 2 cytokines in the nose. In contrast, TH2 responses were absent in infected asthmatic subjects who had normal lung function, and in those receiving anti-IgE. Across all subjects, early induction of a minimal set of nasal cytokines that discriminated high responders (G-CSF, IFN-γ, TNF-α) correlated with both egress of circulating virus-specific TH1 cells and worse symptoms. CONCLUSIONS Rhinovirus induces robust TH1 responses in allergic asthmatic subjects that may promote disease, even after the infection resolves.
Collapse
Affiliation(s)
- Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville; Department of Microbiology, University of Virginia School of Medicine, Charlottesville
| | - Peter W Heymann
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville
| | - Paul W Wright
- Department of Medicine, University of Virginia School of Medicine, Charlottesville
| | - Jacob D Eccles
- Department of Medicine, University of Virginia School of Medicine, Charlottesville; Department of Microbiology, University of Virginia School of Medicine, Charlottesville
| | - Rachana Agrawal
- Department of Medicine, University of Virginia School of Medicine, Charlottesville
| | - Holliday T Carper
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville
| | - Deborah D Murphy
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville
| | - Lisa J Workman
- Department of Medicine, University of Virginia School of Medicine, Charlottesville
| | - Carolyn R Word
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville
| | - Sarah J Ratcliffe
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville
| | - Brian J Capaldo
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville
| | | | - Ronald B Turner
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville
| | | | - Judith A Woodfolk
- Department of Medicine, University of Virginia School of Medicine, Charlottesville; Department of Microbiology, University of Virginia School of Medicine, Charlottesville.
| |
Collapse
|
11
|
Basharat U, Aiche MM, Kim MM, Sohal M, Chang EH. Are rhinoviruses implicated in the pathogenesis of sinusitis and chronic rhinosinusitis exacerbations? A comprehensive review. Int Forum Allergy Rhinol 2019; 9:1159-1188. [PMID: 31430424 DOI: 10.1002/alr.22403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/16/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Rhinovirus (RV) infections are the most common cause of viral upper respiratory infections (URIs), and in the majority of persons they are self-limiting. However, in others, viral URIs can progress to bacterial sinusitis and induce chronic rhinosinusitis (CRS) exacerbations. METHODS We conducted a comprehensive Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) review through April 2018 based on MEDLINE, EMBASE, Web of Science-Science Citation Index (SCI), and Conference Proceedings Citation Index- Science (CPCI-S) using keywords: RV, respiratory virus, sinusitis, and airway epithelial cells. The goal of this systematic review was to: (1) determine the prevalence between RV and CRS, (2) study the changes that occur after experimental RV inoculation, (3) investigate the pathophysiologic mechanisms by which RV induces sinonasal inflammation, and (4) explore the treatment options available for RV-associated sinusitis. Data regarding study design, research question, intervention, subjects, outcomes, and biases was extracted. RESULTS The initial search yielded 2395 unique abstracts, of which 614 were selected for full-text review; 147 were included in the final review. We determined that (1) the prevalence of RV infections is increased in those with CRS, (2) humans challenged in vivo with RV secrete local inflammatory mediators with radiographic mucosal thickening, (3) RV species RV-A and RV-C challenges in vitro to sinonasal epithelia produce robust cytokine responses and differential gene changes, and (4) no current therapies have produced consistent and significant resolution of disease. CONCLUSION RV infections are common in persons with CRS, and incite inflammatory reactions that may result in CRS exacerbations and progression of disease. Further studies assessing RV species, and the host-virome response are required to develop new strategies targeting RV-induced CRS.
Collapse
Affiliation(s)
- Usmaan Basharat
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, AZ
| | - Mazen M Aiche
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, AZ
| | - Marianne M Kim
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, AZ
| | - Maheep Sohal
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, AZ
| | - Eugene H Chang
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, AZ
| |
Collapse
|
12
|
Adeli M, El-Shareif T, Hendaus MA. Asthma exacerbation related to viral infections: An up to date summary. J Family Med Prim Care 2019; 8:2753-2759. [PMID: 31681638 PMCID: PMC6820381 DOI: 10.4103/jfmpc.jfmpc_86_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/01/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Asthma exacerbation can be a major life threatening event. Viruses have been pinned as the cause behind the vast majority of these exacerbations. The purpose of this short review is to explore the mechanisms behind these exacerbations, focusing mostly on viral infections as triggers. We will also be discussing the phenotypes prone to asthma exacerbation, the pathophysiology of viral induced asthma and ventilation patterns of asthmatic lungs. This manuscript will assist primary care physicians in delineating the proper pathophysiology of the disease as well as the management.
Collapse
Affiliation(s)
- Mehdi Adeli
- Department of Pediatrics, Section of Academic General Pediatrics, Sidra Medicine, Doha, Qatar.,Department of Pediatrics, Hamad General Corporation, Doha, Qatar.,Department of Clinical Pediatrics, Weill- Cornell Medicine, Doha, Qatar
| | | | - Mohamed A Hendaus
- Department of Pediatrics, Section of Academic General Pediatrics, Sidra Medicine, Doha, Qatar.,Department of Pediatrics, Hamad General Corporation, Doha, Qatar.,Department of Clinical Pediatrics, Weill- Cornell Medicine, Doha, Qatar
| |
Collapse
|
13
|
Abstract
Mechanisms to elicit antiviral immunity, a natural host response to viral pathogen challenge, are of eminent relevance to cancer immunotherapy. "Oncolytic" viruses, naturally existing or genetically engineered viral agents with cell type-specific propagation in malignant cells, were ostensibly conceived for their tumor cytotoxic properties. Yet, their true therapeutic value may rest in their ability to provoke antiviral signals that engage antitumor immune responses within the immunosuppressive tumor microenvironment. Coopting oncolytic viral agents to instigate antitumor immunity is not an easy feat. In the course of coevolution with their hosts, viruses have acquired sophisticated strategies to block inflammatory signals, intercept innate antiviral interferon responses, and prevent antiviral effector responses, e.g., by interfering with antigen presentation and T cell costimulation. The resulting struggle of host innate inflammatory and antiviral responses versus viral immune evasion and suppression determines the potential for antitumor immunity to occur. Moreover, paradigms of early host:virus interaction established in normal immunocompetent organisms may not hold in the profoundly immunosuppressive tumor microenvironment. In this review, we explain the mechanisms of recombinant nonpathogenic poliovirus, PVSRIPO, which is currently in phase I clinical trials against recurrent glioblastoma. We focus on an unusual host:virus relationship defined by the simple and cytotoxic replication strategy of poliovirus, which generates inflammatory perturbations conducive to tumor antigen-specific immune priming.
Collapse
Affiliation(s)
- Matthias Gromeier
- Department of Neurosurgery.,Department of Molecular Genetics and Microbiology
| | - Smita K Nair
- Department of Surgery.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
14
|
Study of Clinical Characteristics and Cytokine Profiles of Asthmatic Children with Rhinovirus Infection during Acute Asthma Exacerbation at National Hospital of Pediatrics. Can Respir J 2018; 2018:9375967. [PMID: 30210646 PMCID: PMC6126093 DOI: 10.1155/2018/9375967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/05/2018] [Accepted: 07/24/2018] [Indexed: 01/15/2023] Open
Abstract
Background In children with asthma, the viral infection of airways is usually a main cause of acute asthma exacerbation and hospitalization. However, few studies on clinical and biomolecular characteristics of asthmatic children in this field have been done, especially in emergent countries. Objective This study described the clinical and biological characteristics of asthmatic children who had acute asthma exacerbation and rhinovirus (RV) infection. Methods Children under 15 years of age hospitalized for acute asthma exacerbation were included. They underwent clinical examination and peripheral blood analyses for the cytokine profile. The severity of acute asthma exacerbation was evaluated by Pediatric Asthma Score (PAS). Healthy children under 15 years of age were also invited in this study. Results One hundred fifteen asthmatic children were included in this study. There were 18.2% of mild PAS, 37.4% of moderate PAS, and 44.4% of severe PSA. Among them, 63/115 (54.8%) asthmatic children had positive RV infection (RV+). The percentages of asthmatic children with RV+ had increased polymorphonuclear leucocytes were significantly higher than asthmatic children with RV−. There were no significant differences of the concentrations of non-Th2-related cytokines in asthmatic children with RV− and RV+. The concentration of Th2-related cytokines (IL-5 and IL-13) in asthmatic children with RV+ was significantly higher than those with RV−. However, there was no significant difference for the cytokine profile between mild, moderate, and severe asthma. Conclusion RV infection is a main cause of acute asthma exacerbation in children with asthma. The increase of Th2-related cytokines, especially IL-5 and IL-13, is a relevant biomarker for RV infection in asthmatic children with severe exacerbation.
Collapse
|
15
|
Koch RM, Kox M, van den Kieboom C, Ferwerda G, Gerretsen J, ten Bruggencate S, van der Hoeven JG, de Jonge MI, Pickkers P. Short-term repeated HRV-16 exposure results in an attenuated immune response in vivo in humans. PLoS One 2018; 13:e0191937. [PMID: 29447199 PMCID: PMC5813921 DOI: 10.1371/journal.pone.0191937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Naturally, development of adaptive immunity following HRV infection affects the immune response. However, it is currently unclear whether or not HRV re-exposure within a short time frame leads to an altered innate immune response. The "experimental cold model" is used to investigate the pathogenesis of HRV infection and allows us to investigate the effects of repeated exposure on both local and systemic innate immunity. METHODS 40 healthy male and female (1:1) subjects were nasally inoculated with HRV-16 or placebo. One week later, all subjects received HRV-16. Baseline seronegative subjects (n = 18) were included for further analysis. RESULTS Infection rate was 82%. Primary HRV infection induced a marked increase in viral load and IP-10 levels in nasal wash, while a similar trend was observed for IL-6 and IL-10. Apart from an increase in IP-10 plasma levels, HRV infection did not induce systemic immune effects nor lower respiratory tract inflammation. With similar viral load present during the second HRV challenge, IP-10 and IL-6 in nasal wash showed no increase, but gradually declined, with a similar trend for IL-10. CONCLUSION Upon a second HRV challenge one week after the first, a less pronounced response for several innate immune parameters is observed. This could be the result of immunological tolerance and possibly increases vulnerability towards secondary infections.
Collapse
Affiliation(s)
- Rebecca M. Koch
- Radboudumc, HB, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, HB, Nijmegen, The Netherlands
- Radboud center for Infectious Diseases (RCI), HB, Nijmegen, The Netherlands
| | - Matthijs Kox
- Radboudumc, HB, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, HB, Nijmegen, The Netherlands
- Radboud center for Infectious Diseases (RCI), HB, Nijmegen, The Netherlands
- * E-mail:
| | - Corné van den Kieboom
- Radboud center for Infectious Diseases (RCI), HB, Nijmegen, The Netherlands
- Radboudumc, HB, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, HB, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Radboud center for Infectious Diseases (RCI), HB, Nijmegen, The Netherlands
- Radboudumc, HB, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, HB, Nijmegen, The Netherlands
| | - Jelle Gerretsen
- Radboudumc, HB, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, HB, Nijmegen, The Netherlands
- Radboud center for Infectious Diseases (RCI), HB, Nijmegen, The Netherlands
| | | | - Johannes G. van der Hoeven
- Radboudumc, HB, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, HB, Nijmegen, The Netherlands
- Radboud center for Infectious Diseases (RCI), HB, Nijmegen, The Netherlands
| | - Marien I. de Jonge
- Radboud center for Infectious Diseases (RCI), HB, Nijmegen, The Netherlands
- Radboudumc, HB, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, HB, Nijmegen, The Netherlands
| | - Peter Pickkers
- Radboudumc, HB, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, HB, Nijmegen, The Netherlands
- Radboud center for Infectious Diseases (RCI), HB, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Zheng SY, Wang LL, Ren L, Luo J, Liao W, Liu EM. Epidemiological analysis and follow-up of human rhinovirus infection in children with asthma exacerbation. J Med Virol 2017; 90:219-228. [PMID: 28500687 PMCID: PMC7167043 DOI: 10.1002/jmv.24850] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 04/19/2017] [Indexed: 12/20/2022]
Abstract
To determine the prevalence of human rhinovirus (HRV) infection in children with acute asthma exacerbations, investigation of HRV viral load and severity of asthma exacerbations is also required. Nasopharyngeal aspirates and swabs were collected and assessed for respiratory viruses. HRV-positive samples were sequenced to identify types and determine viral load. Outpatients with asthma exacerbations underwent follow-up evaluations, their swabs were collected and clinical outcomes were recorded at their next clinic visit 4 weeks later. One hundred forty-three inpatients and 131 outpatients, including 88 patients with asthma exacerbations and 43 controls with stable asthma were recruited. HRV-A was mainly detected in September and February (45.5% and 33.3%, respectively), while HRV-C was mainly detected in November and April (70.0% and 55.6%, respectively). HRV-C was the primary type and was primarily found in inpatients with severe asthma exacerbations. HRV-A viral load in the group of inpatients with severe exacerbations was higher than in the mild and moderate groups (P < 0.001 and P = 0.022). The HRV-A viral load of both inpatients and outpatients was higher than that of HRV-C (P < 0.001 and P = 0.036). The main genotypes were HRV-C53 and HRV-A20 among inpatients, and this genotype caused more severe clinical manifestations. HRV persisted for no more than 4 weeks, and their symptoms or signs of disease were well-controlled well. HRV-C was most frequently detected in asthma exacerbations. HRV-A with high viral load led to severe asthma exacerbations.
Collapse
Affiliation(s)
- Shou-Yan Zheng
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li-Li Wang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Luo Ren
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jian Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Liao
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing, China
| | - En-Mei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Phan JA, Kicic A, Berry LJ, Sly PD, Larcombe AN. Early life rhinovirus infection exacerbates house-dust-mite induced lung disease more severely in female mice. Exp Lung Res 2016; 42:24-36. [DOI: 10.3109/01902148.2015.1131346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Del Vecchio AM, Branigan PJ, Barnathan ES, Flavin SK, Silkoff PE, Turner RB. Utility of animal and in vivo experimental infection of humans with rhinoviruses in the development of therapeutic agents for viral exacerbations of asthma and chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2015; 30:32-43. [PMID: 25445932 PMCID: PMC7110859 DOI: 10.1016/j.pupt.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022]
Abstract
There is an association with acute viral infection of the respiratory tract and exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Although these exacerbations are associated with several types of viruses, human rhinoviruses (HRVs) are associated with the vast majority of disease exacerbations. Due to the lack of an animal species that is naturally permissive for HRVs to use as a facile model system, and the limitations associated with animal models of asthma and COPD, studies of controlled experimental infection of humans with HRVs have been used and conducted safely for decades. This review discusses how these experimental infection studies with HRVs have provided a means of understanding the pathophysiology underlying virus-induced exacerbations of asthma and COPD with the goal of developing agents for their prevention and treatment.
Collapse
Affiliation(s)
- Alfred M Del Vecchio
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Patrick J Branigan
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Elliot S Barnathan
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Susan K Flavin
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Philip E Silkoff
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA.
| | - Ronald B Turner
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
19
|
Steinke JW, Liu L, Turner RB, Braciale TJ, Borish L. Immune surveillance by rhinovirus-specific circulating CD4+ and CD8+ T lymphocytes. PLoS One 2015; 10:e0115271. [PMID: 25584821 PMCID: PMC4293146 DOI: 10.1371/journal.pone.0115271] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/22/2014] [Indexed: 11/19/2022] Open
Abstract
Background It is difficult to experimentally infect volunteers with RV strains to which the subject demonstrates serological immunity. However, in RV challenges, viral clearance begins before de novo adaptive immune responses would develop. We speculated that adaptive immunity to RV reflects heterologous immunity by effector memory cells. Methods DCs were generated from monocytes using GM-CSF and IL-4 and RV39 loading accomplished with a dose of ∼350 TCID50/105 cells. RV-induced maturation was established as modulation of MHC class II, CD80, CD83, and CD86. Circulating RV targeting CD4 and CD8 T cells were investigated as induction of RV-specific proliferation (CFSE-dilution). Results Maturation of DC by RV was confirmed as upregulation of MHC Class II (83.3±5.0% to 87.8±4.1%), CD80 (39.4±7.2% to 47.6±7.7%) and CD86 (78.4±4.7% to 84.1±3.4%). Both CD4 and CD8 memory T cells were recognized in the circulation of healthy subjects. Conclusions RV drives DC maturation and results in their ability to present RV antigens to both T helper and cytotoxic lymphocytes. Both CD4 and CD8 cells capable of recognizing RV-associated antigens are present in the circulation of healthy subjects where they are presumably involved in immune surveillance and explain the rapid recruitment of an adaptive immune response during RV infection.
Collapse
Affiliation(s)
- John W. Steinke
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| | - Lixia Liu
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Ronald B. Turner
- Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Thomas J. Braciale
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Larry Borish
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
20
|
Schwantes EA, Manthei DM, Denlinger LC, Evans MD, Gern JE, Jarjour NN, Mathur SK. Interferon gene expression in sputum cells correlates with the Asthma Index Score during virus-induced exacerbations. Clin Exp Allergy 2015; 44:813-21. [PMID: 24450586 PMCID: PMC4037351 DOI: 10.1111/cea.12269] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/20/2013] [Accepted: 01/01/2014] [Indexed: 01/17/2023]
Abstract
Background The majority of asthma exacerbations are related to viral respiratory infections. Some, but not all, previous studies have reported that low interferon responses in patients with asthma increase the risk for virus‐induced exacerbations. Objective We sought to determine the relationship between lower airway inflammatory biomarkers, specifically interferon gene expression, and the severity or presence of an exacerbation in asthmatics experiencing a naturally occurring viral infection. Methods Sputum samples were analysed from subjects in an asthma exacerbation study who experienced a confirmed viral infection. Subjects were monitored for daily symptoms, medication use and peak expiratory flow rate until baseline. Sputum samples were assessed for cell counts and gene expression. Results Interferon gamma expression was significantly greater in patients with asthma exacerbations compared to non‐exacerbating patients (P = 0.002). IFN‐α1, IFN‐β1 and IFN‐γ mRNA levels correlated with the peak Asthma Index (r = 0.58, P < 0.001; r = 0.57, P = 0.001; and r = 0.51, P = 0.004, respectively). Additionally, IL‐13, IL‐10 and eosinophil major basic protein mRNA levels were greater in patients with asthma exacerbations compared to non‐exacerbating patients (P = 0.03, P = 0.06 and P = 0.02, respectively), and IL‐13 mRNA correlated with the peak Asthma Index (P = 0.006). Conclusions Our findings indicate that asthma exacerbations are associated with increased rather than decreased expression of interferons early in the course of infection. These findings raise the possibility that excessive virus‐induced interferon production during acute infections can contribute to airway inflammation and exacerbations of asthma.
Collapse
Affiliation(s)
- E A Schwantes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Patel DA, You Y, Huang G, Byers DE, Kim HJ, Agapov E, Moore ML, Peebles RS, Castro M, Sumino K, Shifren A, Brody SL, Holtzman MJ. Interferon response and respiratory virus control are preserved in bronchial epithelial cells in asthma. J Allergy Clin Immunol 2014; 134:1402-1412.e7. [PMID: 25216987 PMCID: PMC4261010 DOI: 10.1016/j.jaci.2014.07.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/06/2014] [Accepted: 07/02/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Some investigators find a deficiency in IFN production from airway epithelial cells infected with human rhinovirus in asthma, but whether this abnormality occurs with other respiratory viruses is uncertain. OBJECTIVE To assess the effect of influenza A virus (IAV) and respiratory syncytial virus (RSV) infection on IFN production and viral level in human bronchial epithelial cells (hBECs) from subjects with and without asthma. METHODS Primary-culture hBECs from subjects with mild to severe asthma (n = 11) and controls without asthma (hBECs; n = 7) were infected with live or ultraviolet-inactivated IAV (WS/33 strain), RSV (Long strain), or RSV (A/2001/2-20 strain) with multiplicity of infection 0.01 to 1. Levels of virus along with IFN-β and IFN-λ and IFN-stimulated gene expression (tracked by 2'-5'-oligoadenylate synthetase 1 and myxovirus (influenza virus) resistance 1 mRNA) were determined up to 72 hours postinoculation. RESULTS After IAV infection, viral levels were increased 2-fold in hBECs from asthmatic subjects compared with nonasthmatic control subjects (P < .05) and this increase occurred in concert with increased IFN-λ1 levels and no significant difference in IFNB1, 2'-5'-oligoadenylate synthetase 1, or myxovirus (influenza virus) resistance 1mRNA levels. After RSV infections, viral levels were not significantly increased in hBECs from asthmatic versus nonasthmatic subjects and the only significant difference between groups was a decrease in IFN-λ levels (P < .05) that correlated with a decrease in viral titer. All these differences were found only at isolated time points and were not sustained throughout the 72-hour infection period. CONCLUSIONS The results indicate that IAV and RSV control and IFN response to these viruses in airway epithelial cells is remarkably similar between subjects with and without asthma.
Collapse
Affiliation(s)
- Dhara A. Patel
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Yingjian You
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Guangming Huang
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Hyun Jik Kim
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Eugene Agapov
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Martin L. Moore
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt School of Medicine, Nashville, TN
| | - Mario Castro
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Kaharu Sumino
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Adrian Shifren
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| |
Collapse
|
22
|
Manthei DM, Schwantes EA, Mathur SK, Guadarrama AG, Kelly EA, Gern JE, Jarjour NN, Denlinger LC. Nasal lavage VEGF and TNF-α levels during a natural cold predict asthma exacerbations. Clin Exp Allergy 2014; 44:1484-93. [PMID: 25109477 PMCID: PMC4247169 DOI: 10.1111/cea.12387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/09/2014] [Accepted: 06/20/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Asthma exacerbations contribute to significant morbidity, mortality and healthcare utilization. Furthermore, viral infections are associated with asthma exacerbations by mechanisms that are not fully understood. OBJECTIVE The aim of this analysis was to determine whether cytokine patterns in patients with colds could identify risks for subsequent asthma exacerbations. METHODS We analysed cytokine levels in nasal lavage fluid (NLF) in 59 subjects (46 with asthma) with acute upper respiratory symptoms and after symptomatic resolution. Analyte choice was based on potential relevance to asthma exacerbations: antiviral (IFN-α, IFN-β, IFN-γ, IFN-λ1, IP-10, TRAIL), cell recruiting (G-CSF, IL-1β, IL-8, MCP-1, MCP-3, TNF-α), polarizing (CXCL13, IL-10, IL-13, IL-17, TSLP), and injury remodelling (fibronectin, IL-33, MMP-9, VEGF). RESULTS The overall cytokine response induced during viral infections was not different between asthmatic and non-asthmatic individuals for a wide array of cytokines. However, mean levels of VEGF, TNF-α and IL-1β were 1.7-, 5.1- and 4.7-fold higher in samples from asthma subjects who exacerbated in the first 3 weeks of the cold compared with those who did not exacerbate (P = 0.006, 0.01, 0.048, respectively). Using receiver operating characteristic curve-defined thresholds, high VEGF and TNF-α levels predicted a shorter time-to-exacerbation after NLF sampling (25% exacerbation rate: 3 vs. 45 days, and 3 vs. 26 days; P = 0.03, 0.04, respectively). CONCLUSION AND CLINICAL RELEVANCE Although they produce similar cytokine responses to viral infection as non-asthmatics, asthmatics with higher levels of VEGF and TNF-α in NLF obtained during acute cold phases predicted subsequent asthma exacerbations in this cohort of patients with mild-to-moderate disease. In the future, stratifying the risk of an asthma exacerbation by cytokine profile may aid the targeting of personalized treatment and intervention strategies.
Collapse
Affiliation(s)
- D M Manthei
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rossi GA, Colin AA. Infantile respiratory syncytial virus and human rhinovirus infections: respective role in inception and persistence of wheezing. Eur Respir J 2014; 45:774-89. [PMID: 25359340 DOI: 10.1183/09031936.00062714] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is evidence that respiratory viruses play a key role in the development and exacerbation of obstructive respiratory diseases in children. This review attempts to juxtapose the separate profiles and prototypes of pathogenetic mechanisms represented by the two most common amongst such viruses: respiratory syncytial virus (RSV) and human rhinovirus (HRV). RSV represents the most common agent of severe airway disease in infants and young children, and is predominant in winter months. Large epidemiological studies have revealed an unequivocal relationship between RSV infection and subsequent wheezing into childhood, thought to be related to long-term changes in neuroimmune control of the airways rather than allergic sensitisation. HRV is a highly diverse group of viruses that affect subjects of all ages, is ubiquitous and occurs year-round. In contrast to RSV, infections with HRV cause minimal cytotoxicity but induce a rapid production of cytokines and chemokines with amplification of the inflammatory response. The susceptibility to HRV-induced bronchiolitis and subsequent wheezing appears to be linked to individual predisposition since it is often associated with a family or personal history of asthma/atopy. Thus, RSV probably serves as an "inducer" rather than a "trigger". Conversely, HRVs seem to serve as a "trigger" rather than an "inducer" in predisposed individuals.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Pulmonary and Allergy Disease Paediatric Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
24
|
Oliver BGG, Robinson P, Peters M, Black J. Viral infections and asthma: an inflammatory interface? Eur Respir J 2014; 44:1666-81. [PMID: 25234802 DOI: 10.1183/09031936.00047714] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways in which the majority of patients respond to treatment with corticosteroids and β₂-adrenoceptor agonists. Acute exacerbations of asthma substantially contribute to disease morbidity, mortality and healthcare costs, and are not restricted to patients who are not compliant with their treatment regimens. Given that respiratory viral infections are the principal cause of asthma exacerbations, this review article will explore the relationship between viral infections and asthma, and will put forward hypotheses as to why virus-induced exacerbations occur. Potential mechanisms that may explain why current therapeutics do not fully inhibit virus-induced exacerbations, for example, β₂-adrenergic desensitisation and corticosteroid insensitivity, are explored, as well as which aspects of virus-induced inflammation are likely to be attenuated by current therapy.
Collapse
Affiliation(s)
- Brian G G Oliver
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, Australia Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Paul Robinson
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia The Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Mathew Peters
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia Dept of Thoracic Medicine, Concord General Hospital, Concord, Australia
| | - Judy Black
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
25
|
Tengroth L, Millrud CR, Kvarnhammar AM, Kumlien Georén S, Latif L, Cardell LO. Functional effects of Toll-like receptor (TLR)3, 7, 9, RIG-I and MDA-5 stimulation in nasal epithelial cells. PLoS One 2014; 9:e98239. [PMID: 24886842 PMCID: PMC4041746 DOI: 10.1371/journal.pone.0098239] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/30/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The human nasal epithelium is an important physical barrier, and a part of the innate immune defense that protect against pathogens. The epithelial cells recognize microbial components by pattern-recognition receptors (PRRs), and thereby trigger an immune response. Even though TLR3, TLR7, TLR9, RIG-I and MDA-5 are all known to respond to viral stimulation, their potential role in chronic airway inflammation triggered by local cytokine release remains to be established. METHODS mRNA and corresponding protein expression of TLR3, TLR7, TLR9, RIG-I and MDA-5 were analyzed in nasal biopsies and various upper airway epithelial cell lines using real-time reverse transcription PCR, immunohistochemistry and flow cytometry. Ligand induced, cytokine release, was evaluated with ELISA. RESULTS Nasal biopsies were found to express TLR3, TLR7, TLR9, RIG-I and MDA-5, with the most abundant expression in the surface epithelium. These receptors were verified in primary human nasal epithelial cell (HNEC) as well as in the airway epithelial cell lines Detroit-562 and FaDu. Poly(I:C) (TLR3) and R-837 (TLR7) stimulation increased secretion of IL-6 and GM-CSF from the nasal mucosa and the epithelial cell lines. CpG (TLR9) stimulation caused release of IL-8 in the nasal mucosa and in FaDu. Poly(I:C)/LyoVec (RIG-I/MDA-5) stimulation activated the secretion of IFN-β in the nasal mucosa. A corresponding release was also detected from HNEC and Detroit-562. CONCLUSION The nasal epithelium has the ability to recognize viral intrusion through TLR and RLR receptors, and the subsequent response might have a role in exacerbation of inflammatory diseases like allergic rhinitis and chronic rhinosinusitis.
Collapse
Affiliation(s)
- Lotta Tengroth
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Rydberg Millrud
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anne Månsson Kvarnhammar
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Leith Latif
- Department of Otorhinolaryngology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice. PLoS One 2014; 9:e92163. [PMID: 24632596 PMCID: PMC3954893 DOI: 10.1371/journal.pone.0092163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/19/2014] [Indexed: 01/01/2023] Open
Abstract
Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms.
Collapse
|
27
|
Triantafilou K, Kar S, van Kuppeveld FJM, Triantafilou M. Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells. Am J Respir Cell Mol Biol 2014; 49:923-34. [PMID: 23815151 DOI: 10.1165/rcmb.2013-0032oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human rhinoviruses have been linked with underlying lung disorders, such as asthma and chronic obstructive pulmonary disease, in children and adults. However, the mechanism of virus-induced airway inflammation is poorly understood. In this study, using virus deletion mutants and silencing for nucleotide-binding oligomerization domain-like receptors (NLRs), we show that the rhinovirus ion channel protein 2B triggers NLRP3 and NLRC5 inflammasome activation and IL-1β secretion in bronchial cells. 2B protein targets the endoplasmic reticulum and Golgi and induces Ca(2+) reduction in these organelles, thereby disturbing the intracellular calcium homeostasis. NLRP3 and NLRC5 act in a cooperative manner during the inflammasome assembly by sensing intracellular Ca(2+) fluxes and trigger IL-1β secretion. These results reveal for the first time that human rhinovirus infection in primary bronchial cells triggers inflammasome activation.
Collapse
Affiliation(s)
- Kathy Triantafilou
- 1 Cardiff University, Institute of Infection and Immunity, Department of Child Health, School of Medicine, University Hospital of Wales, Heath Park, Cardiff, Wales; and
| | | | | | | |
Collapse
|
28
|
McErlean P, Berdnikovs S, Favoreto S, Shen J, Biyasheva A, Barbeau R, Eisley C, Barczak A, Ward T, Schleimer RP, Erle DJ, Boushey HA, Avila PC. Asthmatics with exacerbation during acute respiratory illness exhibit unique transcriptional signatures within the nasal mucosa. Genome Med 2014; 6:1. [PMID: 24433494 PMCID: PMC3971347 DOI: 10.1186/gm520] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/08/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute respiratory illness is the leading cause of asthma exacerbations yet the mechanisms underlying this association remain unclear. To address the deficiencies in our understanding of the molecular events characterizing acute respiratory illness-induced asthma exacerbations, we undertook a transcriptional profiling study of the nasal mucosa over the course of acute respiratory illness amongst individuals with a history of asthma, allergic rhinitis and no underlying respiratory disease. METHODS Transcriptional profiling experiments were performed using the Agilent Whole Human Genome 4X44K array platform. Time point-based microarray and principal component analyses were conducted to identify and distinguish acute respiratory illness-associated transcriptional profiles over the course of our study. Gene enrichment analysis was conducted to identify biological processes over-represented within each acute respiratory illness-associated profile, and gene expression was subsequently confirmed by quantitative polymerase chain reaction. RESULTS We found that acute respiratory illness is characterized by dynamic, time-specific transcriptional profiles whose magnitudes of expression are influenced by underlying respiratory disease and the mucosal repair signature evoked during acute respiratory illness. Most strikingly, we report that people with asthma who experience acute respiratory illness-induced exacerbations are characterized by a reduced but prolonged inflammatory immune response, inadequate activation of mucosal repair, and the expression of a newly described exacerbation-specific transcriptional signature. CONCLUSION Findings from our study represent a significant contribution towards clarifying the complex molecular interactions that typify acute respiratory illness-induced asthma exacerbations.
Collapse
Affiliation(s)
- Peter McErlean
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sergejs Berdnikovs
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Silvio Favoreto
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Junqing Shen
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Assel Biyasheva
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebecca Barbeau
- Sandler Asthma Basic Research (SABRE) Center Functional Genomics Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Chris Eisley
- Sandler Asthma Basic Research (SABRE) Center Functional Genomics Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Barczak
- Sandler Asthma Basic Research (SABRE) Center Functional Genomics Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Theresa Ward
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - David J Erle
- Sandler Asthma Basic Research (SABRE) Center Functional Genomics Core Facility, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Homer A Boushey
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Pedro C Avila
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
29
|
Javadyan A, Papadopoulos NG, Kafetzis DA. Rhinovirus infections and adenoidal hypertrophy: do they interact with atopy in children? Expert Rev Anti Infect Ther 2014; 1:223-9. [PMID: 15482117 DOI: 10.1586/14787210.1.2.223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Modern diagnostic methods allow the evaluation of the connection between rhinoviruses and atopy. Recent studies suggest that rhinoviruses are present in the adenoids at higher titers than in other specific sites, after inoculation of nasal mucosa or conjunctiva in volunteers. Therefore, it is possible that they might be responsible for specific local changes, while such changes may be influenced by atopy. This review focuses on the interactions between rhinoviral infection, the host's immune status and adenoidal disease.
Collapse
Affiliation(s)
- Artem Javadyan
- University of Athens, 'P and A Kiriakou' Children's Hospital, 13 Livadias St., GR-11527 Athens, Greece
| | | | | |
Collapse
|
30
|
Little FF, Delgado DM, Wexler PJ, Oppenheim FG, Mitchell P, Feldman JA, Walt DR, Peng RD, Matsui EC. Salivary inflammatory mediator profiling and correlation to clinical disease markers in asthma. PLoS One 2014; 9:e84449. [PMID: 24409298 PMCID: PMC3883659 DOI: 10.1371/journal.pone.0084449] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022] Open
Abstract
Rationale There is a need for a readily available, non-invasive source of biomarkers that predict poor asthma control. Objectives We sought to determine if there is an association between the salivary inflammatory profile and disease control in children and adults with asthma. Methods In this cross-sectional study, we collected demographic and clinical information from two independent populations at different sites, resulting in convenience samples of 58 pediatric and 122 adult urban asthmatics. Control was assessed by symptom questionnaire (children) and by Asthma Control Questionnaire and current exacerbation (adults). Saliva was collected in all subjects. We applied principal component analysis to a 10-plex panel of relevant inflammatory markers to characterize marker profiles and determined if profiles were associated with asthma control. Results There were similar, strong correlations amongst biologically related markers in both populations: eosinophil-related: eotaxin-1/CCL11, RANTES/CCL5, and IL-5 (p<.001); myeloid/innate: IL-1β, IL-6, MCP-1/CCL2, and IL-8/CXCL8 (p<.001). The first three principal components captured ≥74% of variability across all ten analytes in both populations. In adults, the Principal Component 1 score, broadly reflective of all markers, but with greater weight given to myeloid/innate markers, was associated with Asthma Control Questionnaire score and exacerbation. The Principal Component 3 score, reflective of IP-10/CXCL10, was associated with current exacerbation. In children, the Principal Component 1, 2, and 3 scores were associated with recent asthma symptoms. The Principal Component 2 score, reflective of higher eosinophil markers, was inversely correlated with symptoms. The Principal Component 3 score was positively associated with all symptom outcomes. Conclusion The salivary inflammatory profile is associated with disease control in children and adults with asthma.
Collapse
Affiliation(s)
- Frédéric F. Little
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (FL)
| | - Diana M. Delgado
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Philip J. Wexler
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Frank G. Oppenheim
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Patricia Mitchell
- Department of Emergency Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James A. Feldman
- Department of Emergency Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - David R. Walt
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Roger D. Peng
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Elizabeth C. Matsui
- Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
High rates of detection of respiratory viruses in the nasal washes and mucosae of patients with chronic rhinosinusitis. J Clin Microbiol 2013; 51:979-84. [PMID: 23325817 DOI: 10.1128/jcm.02806-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Respiratory viral infections are often implicated as triggers of chronic rhinosinusitis (CRS) flare-ups. However, there is a paucity of respiratory viral surveillance studies in CRS patients, and such studies could elucidate the potential role of viruses in promoting symptoms and aggravating mucosal inflammation. Therefore, a prospective case-control study was conducted to determine the prevalence of respiratory viruses in CRS patients and non-CRS controls. Nasal lavage fluids and turbinate epithelial cells were collected prospectively from 111 CRS patients and 50 controls. Multiplex PCR was used to identify common respiratory viruses in both sample types and the infection rate was compared between groups. Respiratory viruses were detected in 50.5% of lavage samples and in 64.0% of scraping samples from CRS patients. The overall infection rate was significantly different in CRS patients and controls (odds ratio, 2.9 in lavage and 4.1 in scraping samples). Multiple viral infections were detected more frequently in lavage samples from CRS patients than those from controls (P < 0.01; odds ratio, 7.7). Rhinovirus was the most prevalent virus and the only virus with a significantly different infection rate in CRS patients and controls in both samples (odds ratio, 3.2 in lavage and 3.4 in scraping samples). This study detected a higher prevalence of respiratory viruses in CRS patients than controls, suggesting that there may be significant associations between inflammation of CRS and respiratory viruses, particularly rhinovirus. Further studies should investigate the exact role of highly prevalent respiratory viruses in CRS patients during symptomatic aggravation and ongoing mucosal inflammation.
Collapse
|
32
|
Singanayagam A, Joshi PV, Mallia P, Johnston SL. Viruses exacerbating chronic pulmonary disease: the role of immune modulation. BMC Med 2012; 10:27. [PMID: 22420941 PMCID: PMC3353868 DOI: 10.1186/1741-7015-10-27] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/15/2012] [Indexed: 12/30/2022] Open
Abstract
Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | | | | | |
Collapse
|
33
|
Murray NPS, McKenzie DK, Gandevia SC, Butler JE. Effect of airway inflammation on short-latency reflex inhibition to inspiratory loading in human scalene muscles. Respir Physiol Neurobiol 2012; 181:148-53. [PMID: 22415066 DOI: 10.1016/j.resp.2012.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/03/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Abstract
The short-latency reflex inhibition of human inspiratory muscles produced by loading is prolonged in asthma and obstructive sleep apnoea, both diseases involving airway and systemic inflammation. Both diseases also involve repetitive inspiratory loading. Although airway mucosal afferents are not critical components of the normal reflex arc, during airway inflammation, prolongation of the reflex may be caused by altered mucosal afferent sensitivity, or altered central processing of their inputs. We hypothesised that acute viral airway inflammation would replicate the reflex abnormality. The reflex was tested in 9 subjects with a "common cold" during both the acute infection and when well. Surface electrodes recorded electromyographic (EMG) activity bilaterally from scalene muscles. Latencies of the inhibitory response (IR) did not differ significantly (IR peak 67 vs 70 ms (p=0.12), and IR offset 87 vs 90 ms (p=0.23), between the inflamed and well conditions, respectively). There was no difference in any measure of the size of the reflex inhibition.
Collapse
Affiliation(s)
- Nicholas P S Murray
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
34
|
Rosenthal LA, Szakaly RJ, Amineva SP, Xing Y, Hill MR, Palmenberg AC, Gern JE, Sorkness RL. Lower respiratory tract infection induced by a genetically modified picornavirus in its natural murine host. PLoS One 2012; 7:e32061. [PMID: 22355409 PMCID: PMC3280220 DOI: 10.1371/journal.pone.0032061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/23/2012] [Indexed: 12/21/2022] Open
Abstract
Infections with the picornavirus, human rhinovirus (HRV), are a major cause of wheezing illnesses and asthma exacerbations. In developing a murine model of picornaviral airway infection, we noted the absence of murine rhinoviruses and that mice are not natural hosts for HRV. The picornavirus, mengovirus, induces lethal systemic infections in its natural murine hosts, but small genetic differences can profoundly affect picornaviral tropism and virulence. We demonstrate that inhalation of a genetically attenuated mengovirus, vMC0, induces lower respiratory tract infections in mice. After intranasal vMC0 inoculation, lung viral titers increased, peaking at 24 h postinoculation with viral shedding persisting for 5 days, whereas HRV-A01a lung viral titers decreased and were undetectable 24 h after intranasal inoculation. Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, induced an acute respiratory illness, with body weight loss and lower airway inflammation, characterized by increased numbers of airway neutrophils and lymphocytes and elevated pulmonary expression of neutrophil chemoattractant CXCR2 ligands (CXCL1, CXCL2, CXCL5) and interleukin-17A. Mice inoculated with vMC0, compared with those inoculated with vehicle or UV-inactivated vMC0, exhibited increased pulmonary expression of interferon (IFN-α, IFN-β, IFN-λ), viral RNA sensors [toll-like receptor (TLR)3, TLR7, nucleotide-binding oligomerization domain containing 2 (NOD2)], and chemokines associated with HRV infection in humans (CXCL10, CCL2). Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, was accompanied by increased airway fluid myeloperoxidase levels, an indicator of neutrophil activation, increased MUC5B gene expression, and lung edema, a sign of infection-related lung injury. Consistent with experimental HRV inoculations of nonallergic, nonasthmatic human subjects, there were no effects on airway hyperresponsiveness after inhalation of vMC0 by healthy mice. This novel murine model of picornaviral airway infection and inflammation should be useful for defining mechanisms of HRV pathogenesis in humans.
Collapse
Affiliation(s)
- Louis A Rosenthal
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Denlinger LC, Sorkness RL, Lee WM, Evans MD, Wolff MJ, Mathur SK, Crisafi GM, Gaworski KL, Pappas TE, Vrtis RF, Kelly EA, Gern JE, Jarjour NN. Lower airway rhinovirus burden and the seasonal risk of asthma exacerbation. Am J Respir Crit Care Med 2012; 184:1007-14. [PMID: 21816938 DOI: 10.1164/rccm.201103-0585oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Most asthma exacerbations are initiated by viral upper respiratory illnesses. It is unclear whether human rhinovirus (HRV)–induced exacerbations are associated with greater viral replication and neutrophilic inflammation compared with HRV colds. OBJECTIVES To evaluate viral strain and load in a prospective asthma cohort during a natural cold. METHODS Adults were enrolled at the first sign of a cold, with daily monitoring of symptoms, medication use, and peak expiratory flow rate until resolution. Serial nasal lavage and induced sputum samples were assessed for viral copy number and inflammatory cell counts. MEASUREMENTS AND MAIN RESULTS A total of 52 persons with asthma and 14 control subjects without atopy or asthma were studied for over 10 weeks per subject on average; 25 participants developed an asthma exacerbation. Detection of HRVs in the preceding 5 days was the most common attributable exposure related to exacerbation. Compared with other infections, those by a minor group A HRV were 4.4- fold more likely to cause exacerbation (P = 0.038). Overall, sputum neutrophils and the burden of rhinovirus in the lower airway were similar in control subjects without atopy and the asthma group. However, among HRV-infected participants with asthma, exacerbations were associated with greater sputum neutrophil counts (P = 0.005). CONCLUSIONS HRV infection is a frequent cause of exacerbations in adults with asthma and a cold, and there may be group-specific differences in severity of these events. The absence of large differences in viral burden among groups suggests differential lower airway sensitization to the effects of neutrophilic inflammation in the patients having exacerbations.
Collapse
Affiliation(s)
- Loren C Denlinger
- Department of Medicine-Allergy, Pulmonary & Critical Care, University of Wisconsin-Madison, 53792, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jornot L, Cordey S, Caruso A, Gerber C, Vukicevic M, Tapparel C, Kaiser L, Burger D, Roosnek E, Lacroix JS, Rochat T. T lymphocytes promote the antiviral and inflammatory responses of airway epithelial cells. PLoS One 2011; 6:e26293. [PMID: 22022590 PMCID: PMC3194808 DOI: 10.1371/journal.pone.0026293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/23/2011] [Indexed: 01/19/2023] Open
Abstract
HYPOTHESIS T cells modulate the antiviral and inflammatory responses of airway epithelial cells to human rhinoviruses (HRV). METHODS Differentiated primary human nasal epithelial cells (HNEC) grown on collagen-coated filters were exposed apically to HRV14 for 6 h, washed thoroughly and co-cultured with anti-CD3/CD28 activated T cells added in the basolateral compartment for 40 h. RESULTS HRV14 did not induce IFNγ, NOS2, CXCL8 and IL-6 in HNEC, but enhanced expression of the T cell attractant CXCL10. On the other hand, HNEC co-cultured with activated T cells produced CXCL10 at a level several orders of magnitude higher than that induced by HRV14. Albeit to a much lower degree, activated T cells also induced CXCL8, IL-6 and NOS2. Anti-IFNγ antibodies and TNF soluble receptor completely blocked CXCL10 upregulation. Furthermore, a significant correlation was observed between epithelial CXCL10 mRNA expression and the amounts of IFNγ and TNF secreted by T cells. Likewise, increasing numbers of T cells to a constant number of HNEC in co-cultures resulted in increasing epithelial CXCL10 production, attaining a plateau at high IFNγ and TNF levels. Hence, HNEC activation by T cells is induced mainly by IFNγ and/or TNF. Activated T cells also markedly inhibited viral replication in HNEC, partially through activation of the nitric oxide pathway. CONCLUSION Cross-talk between T cells and HNEC results in activation of the latter and increases their contribution to airway inflammation and virus clearance.
Collapse
Affiliation(s)
- Lan Jornot
- Division of Pulmonary Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stokes CA, Ismail S, Dick EP, Bennett JA, Johnston SL, Edwards MR, Sabroe I, Parker LC. Role of interleukin-1 and MyD88-dependent signaling in rhinovirus infection. J Virol 2011; 85:7912-21. [PMID: 21593174 PMCID: PMC3147909 DOI: 10.1128/jvi.02649-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/02/2011] [Indexed: 11/20/2022] Open
Abstract
Rhinoviral infection is an important trigger of acute inflammatory exacerbations in patients with underlying airway disease. We have previously established that interleukin-1β (IL-1β) is central in the communication between epithelial cells and monocytes during the initiation of inflammation. In this study we explored the roles of IL-1β and its signaling pathways in the responses of airway cells to rhinovirus-1B (RV-1B) and further determined how responses to RV-1B were modified in a model of bacterial coinfection. Our results revealed that IL-1β dramatically potentiated RV-1B-induced proinflammatory responses, and while monocytes did not directly amplify responses to RV-1B alone, they played an important role in the responses observed with our coinfection model. MyD88 is the essential signaling adapter for IL-1β and most Toll-like receptors. To examine the role of MyD88 in more detail, we created stable MyD88 knockdown epithelial cells using short hairpin RNA (shRNA) targeted to MyD88. We determined that IL-1β/MyD88 plays a role in regulating RV-1B replication and the inflammatory response to viral infection of airway cells. These results identify central roles for IL-1β and its signaling pathways in the production of CXCL8, a potent neutrophil chemoattractant, in viral infection. Thus, IL-1β is a viable target for controlling the neutrophilia that is often found in inflammatory airway disease and is exacerbated by viral infection of the airways.
Collapse
Affiliation(s)
- Clare A. Stokes
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Saila Ismail
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Emily P. Dick
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Julie A. Bennett
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Sebastian L. Johnston
- Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity and MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Michael R. Edwards
- Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity and MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Ian Sabroe
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Lisa C. Parker
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
38
|
Abstract
Viral infections affect wheezing and asthma in children and adults of all ages. In infancy, wheezing illnesses are usually viral in origin, and children with more severe wheezing episodes are more likely to develop recurrent episodes of asthma and to develop asthma later in childhood. Children who develop allergen-specific immunoglobulin E (allergic sensitization) and those who wheeze with human rhinoviruses (HRV) are at especially high risk for asthma. In older children and adults, HRV infections generally cause relatively mild respiratory illnesses and yet contribute to acute and potentially severe exacerbations in patients with asthma. These findings underline the importance of understanding the synergistic nature of allergic sensitization and infections with HRV in infants relative to the onset of asthma and in children and adults with respect to exacerbations of asthma. This review discusses clinical and experimental evidence of virus-allergen interactions and evaluates theories which relate immunologic responses to respiratory viruses and allergens to the pathogenesis and disease activity of asthma. Greater understanding of the relationship between viral respiratory infections, allergic inflammation, and asthma is likely to suggest new strategies for the prevention and treatment of asthma.
Collapse
Affiliation(s)
- Monica L. Gavala
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin‐Madison, Madison, WI, USA
| | - Paul J. Bertics
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin‐Madison, Madison, WI, USA
| | - James E. Gern
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin‐Madison, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin‐Madison, Madison, WI, USA
| |
Collapse
|
39
|
Abstract
Clinical research findings indicate that there are synergistic interactions between allergy and viral infection that cause increased severity of asthma exacerbations. This article summarizes the current literature linking these 2 risk factors for asthma exacerbation, and reviews experimental data suggesting potential mechanisms for interactions between viral infection and allergy that cause asthma exacerbations. In addition, the authors discuss clinical evidence that treatment of allergic inflammation could help to reduce the frequency and severity of virus-induced exacerbations of asthma.
Collapse
|
40
|
Abstract
Viral respiratory tract infections are common and usually selflimited illnesses. For patients at risk of asthma, or with existing asthma, viral respiratory tract infections can have a profound effect on the expression of disease or loss of control. New evidence has shown that wheezing episodes early in life due to human rhinoviruses are a major risk factor for the later diagnosis of asthma at age 6 years. For those with existing asthma, exacerbations are a major cause of morbidity, can need acute care, and can, albeit rarely, result in death. Viral respiratory tract infections, predominantly those caused by human rhinoviruses, are associated with asthma exacerbations. There is also evidence that deficiencies in antiviral activity and the integrity of the airway epithelial barrier could make individuals with asthma more likely to have severe viral respiratory infections of the lower airway, and thus increase the risk of exacerbation. In view of the effect of respiratory viruses on many aspects of asthma, efforts to understand the mechanisms and risk factors by which these airway infections cause changes in airway pathophysiology are a first step towards improved treatment.
Collapse
Affiliation(s)
- William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | | | | |
Collapse
|
41
|
Nagarkar DR, Bowman ER, Schneider D, Wang Q, Shim J, Zhao Y, Linn MJ, McHenry CL, Gosangi B, Bentley JK, Tsai WC, Sajjan US, Lukacs NW, Hershenson MB. Rhinovirus infection of allergen-sensitized and -challenged mice induces eotaxin release from functionally polarized macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2525-35. [PMID: 20644177 PMCID: PMC3208235 DOI: 10.4049/jimmunol.1000286] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human rhinovirus is responsible for the majority of virus-induced asthma exacerbations. To determine the immunologic mechanisms underlying rhinovirus (RV)-induced asthma exacerbations, we combined mouse models of allergic airways disease and human rhinovirus infection. We inoculated OVA-sensitized and challenged BALB/c mice with rhinovirus serotype 1B, a minor group strain capable of infecting mouse cells. Compared with sham-infected, OVA-treated mice, virus-infected mice showed increased lung infiltration with neutrophils, eosinophils and macrophages, airway cholinergic hyperresponsiveness, and increased lung expression of cytokines including eotaxin-1/CCL11, IL-4, IL-13, and IFN-gamma. Administration of anti-eotaxin-1 attenuated rhinovirus-induced airway eosinophilia and responsiveness. Immunohistochemical analysis showed eotaxin-1 in the lung macrophages of virus-infected, OVA-treated mice, and confocal fluorescence microscopy revealed colocalization of rhinovirus, eotaxin-1, and IL-4 in CD68-positive cells. RV inoculation of lung macrophages from OVA-treated, but not PBS-treated, mice induced expression of eotaxin-1, IL-4, and IL-13 ex vivo. Macrophages from OVA-treated mice showed increased expression of arginase-1, Ym-1, Mgl-2, and IL-10, indicating a shift in macrophage activation status. Depletion of macrophages from OVA-sensitized and -challenged mice reduced eosinophilic inflammation and airways responsiveness following RV infection. We conclude that augmented airway eosinophilic inflammation and hyperresponsiveness in RV-infected mice with allergic airways disease is directed in part by eotaxin-1. Airway macrophages from mice with allergic airways disease demonstrate a change in activation state characterized in part by altered eotaxin and IL-4 production in response to RV infection. These data provide a new paradigm to explain RV-induced asthma exacerbations.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Bronchial Hyperreactivity/immunology
- Bronchial Hyperreactivity/metabolism
- Chemokine CCL11/genetics
- Chemokine CCL11/immunology
- Chemokine CCL11/metabolism
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Eosinophils/immunology
- Eosinophils/metabolism
- Eosinophils/pathology
- HeLa Cells
- Humans
- Immunohistochemistry
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Mice
- Mice, Inbred BALB C
- Microscopy, Confocal
- Ovalbumin/immunology
- Picornaviridae Infections/immunology
- Picornaviridae Infections/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Rhinovirus/immunology
Collapse
Affiliation(s)
- Deepti R. Nagarkar
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
| | - Emily R. Bowman
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | - Dina Schneider
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | - Qiong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
| | - Jee Shim
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | - Ying Zhao
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | - Marisa J. Linn
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | - Christina L. McHenry
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | - Babina Gosangi
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | - J. Kelley Bentley
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | - Wan C. Tsai
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | - Umadevi S. Sajjan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | | | - Marc B. Hershenson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| |
Collapse
|
42
|
Abstract
Human rhinoviruses (HRVs) were discovered as common cold pathogens over 50 years ago. Recent advances in molecular viral diagnostics have led to an appreciation of their role in more-significant respiratory illnesses, including bronchiolitis in infancy, childhood pneumonia, and acute exacerbations of chronic respiratory diseases such as asthma, chronic obstructive lung disease, and cystic fibrosis. Until a few years ago, only two groups of HRVs (A and B) had been recognized. However, full and partial sequencing of HRVs led to the discovery of a third species of HRV (HRV-C) that has distinct structural and biologic features. Risk factors and pathogenic mechanisms for more-severe HRV infections are being defined, and yet fundamental questions persist about mechanisms relating this common pathogen to allergic diseases and asthma. The close relationship between HRV infections and asthma suggests that antiviral treatments could have a major impact on the morbidity associated with this chronic respiratory disease.
Collapse
Affiliation(s)
- James E Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
43
|
Aronica MA, Vogel N. Pathogens and immunologic memory in asthma: what have we learned? Expert Rev Clin Immunol 2010; 1:589-601. [PMID: 20477600 DOI: 10.1586/1744666x.1.4.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animal models and clinical studies of asthma have generated important insights into the first effector phase leading to the development of allergic airway disease and bronchial hyper-reactivity. In contrast, mechanisms related to asthma chronicity or persistence are less well understood. The CD4(+) T-helper 2 lymphocytes are known initiators of the inflammatory response associated with asthma. There is now increasing evidence that memory T-cells, sensitized against allergenic, occupational or viral antigens, are also involved in the persistence of asthma. Additionally, the role of pathogens in asthma has been linked to both the initial susceptibility to and flares of this disease. This review will discuss the potential links between infection and asthma, the role of the memory T-cells in asthma, and the potential mechanisms by which these factors interact to lead to the development and/or persistence of asthma.
Collapse
Affiliation(s)
- Mark A Aronica
- Cleveland Clinic Foundation, Department of Pulmonary, Allergy and Critical Care Medicine, Cleveland, OH 44195, USA.
| | | |
Collapse
|
44
|
Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol 2010; 125:1178-87; quiz 1188-9. [PMID: 20513517 PMCID: PMC7172767 DOI: 10.1016/j.jaci.2010.04.021] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 01/17/2023]
Abstract
Viral respiratory infections are the most common cause of an acute asthma exacerbation in both children and adults and represent a significant global health burden. An increasing body of evidence supports the hypothesis that these infections cause a greater degree of morbidity in asthmatic subjects than in the healthy population, emphasizing a discrepancy in the antiviral response of asthmatics. In this review we discuss why such a discrepancy might exist, examining the role of the bronchial epithelium as well as the main inflammatory cells, mediators, and molecular pathways that are involved in the immune response. In addition, the potential impact of virus-induced asthma exacerbations on airway remodelling is reviewed and we explore which therapeutic options might be of benefit in preventing the deterioration of asthma control seen following viral infection.
Collapse
Key Words
- asthma
- acute exacerbation
- virus
- bal, bronchoalveolar lavage
- bec, bronchial epithelial cell
- fgf, fibroblast growth factor
- hrv, human rhinovirus
- icam-1, intercellular adhesion molecule 1
- ip-10, interferon-inducible protein 10
- irf, interferon regulatory factor
- nf-κb, nuclear factor kappa b
- prr, pattern-recognition receptor
- socs1, suppressor of cytokine signaling 1
- tlr, toll-like receptor
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- David J Jackson
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
45
|
Nagarkar DR, Wang Q, Shim J, Zhao Y, Tsai WC, Lukacs NW, Sajjan U, Hershenson MB. CXCR2 is required for neutrophilic airway inflammation and hyperresponsiveness in a mouse model of human rhinovirus infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:6698-707. [PMID: 19864593 DOI: 10.4049/jimmunol.0900298] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human rhinovirus (RV) infection is responsible for the majority of virus-induced asthma exacerbations. Using a mouse model of human RV infection, we sought to determine the requirement of CXCR2, the receptor for ELR-positive CXC chemokines, for RV-induced airway neutrophilia and hyperresponsiveness. Wild-type and CXCR2(-/-) mice were inoculated intranasally with RV1B or sham HeLa cell supernatant. Following RV1B infection, CXCR2(-/-) mice showed reduced airway and lung neutrophils and cholinergic responsiveness compared with wild-type mice. Similar results were obtained in mice treated with neutralizing Ab to Ly6G, a neutrophil-depleting Ab. Lungs from RV-infected, CXCR2(-/-) mice showed significantly reduced production of TNF-alpha, MIP-2/CXCL2, and KC/CXCL1 and lower expression of MUC5B compared with RV-treated wild-type mice. The requirement of TNF-alpha for RV1B-induced airway responses was tested using TNFR1(-/-) mice. TNFR1(-/-) animals displayed reduced airway responsiveness to RV1B, even when exogenous MIP-2 was added to the airways. We conclude that CXCR2 is required for RV-induced neutrophilic airway inflammation and that neutrophil TNF-alpha release is required for airway hyperresponsiveness.
Collapse
Affiliation(s)
- Deepti R Nagarkar
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-5688, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rosenthal LA, Amineva SP, Szakaly RJ, Lemanske RF, Gern JE, Sorkness RL. A rat model of picornavirus-induced airway infection and inflammation. Virol J 2009; 6:122. [PMID: 19671179 PMCID: PMC2790594 DOI: 10.1186/1743-422x-6-122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 08/11/2009] [Indexed: 11/12/2022] Open
Abstract
Background Infection of the lower airways by rhinovirus, a member of the picornavirus family, is an important cause of wheezing illnesses in infants, and plays an important role in the pathogenesis of rhinovirus-induced asthma exacerbations. Given the absence of natural rhinovirus infections in rodents, we investigated whether an attenuated form of mengovirus, a picornavirus whose wild-type form causes systemic rather than respiratory infections in its natural rodent hosts, could induce airway infections in rats with inflammatory responses similar to those in human rhinovirus infections. Results After inoculation with 107 plaque-forming units of attenuated mengovirus through an inhalation route, infectious mengovirus was consistently recovered on days 1 and 3 postinoculation from left lung homogenates (median Log10 plaque-forming units = 6.0 and 4.8, respectively) and right lung bronchoalveolar lavage fluid (median Log10 plaque-forming units = 5.8 and 4.0, respectively). Insufflation of attenuated mengovirus, but not vehicle or UV-inactivated virus, into the lungs of BN rats caused significant increases (P < 0.05) in lower airway neutrophils and lymphocytes in the bronchoalveolar lavage fluid and patchy peribronchiolar, perivascular, and alveolar cellular infiltrates in lung tissue sections. In addition, infection with attenuated mengovirus significantly increased (P < 0.05) lower airway levels of neutrophil chemoattractant CXCR2 ligands [cytokine-induced neutrophil chemoattractant-1 (CINC-1; CXCL1) and macrophage inflammatory protein-2 (MIP-2; CXCL2)] and monocyte chemoattractant protein-1 (MCP-1; CCL2) in comparison to inoculation with vehicle or UV-inactivated virus. Conclusion Attenuated mengovirus caused a respiratory infection in rats with several days of viral shedding accompanied by a lower airway inflammatory response consisting of neutrophils and lymphocytes. These features suggest that mengovirus-induced airway infection in rodents could be a useful model to define mechanisms of rhinovirus-induced airway inflammation in humans.
Collapse
Affiliation(s)
- Louis A Rosenthal
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA.
| | | | | | | | | | | |
Collapse
|
47
|
DeMore JP, Weisshaar EH, Vrtis RF, Swenson CA, Evans MD, Morin A, Hazel E, Bork JA, Kakumanu S, Sorkness R, Busse WW, Gern JE. Similar colds in subjects with allergic asthma and nonatopic subjects after inoculation with rhinovirus-16. J Allergy Clin Immunol 2009; 124:245-52, 252.e1-3. [PMID: 19596142 PMCID: PMC2737589 DOI: 10.1016/j.jaci.2009.05.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rhinovirus infections are frequent causes of asthma exacerbations. OBJECTIVE This study was conducted to test whether subjects with and without allergic asthma have different responses to infection and to identify baseline patient risk factors that predict cold outcomes. METHODS Twenty subjects with mild persistent allergic asthma and 18 healthy subjects were experimentally inoculated with rhinovirus-16. Subjects were evaluated at baseline, during the acute infection, and during recovery for asthma and cold symptoms by using a validated questionnaire. Sputum and nasal lavage fluid were evaluated for viral shedding, cytokines, and cellular inflammation. RESULTS There were no group-specific significant differences in peak cold symptom scores (10.0 +/- 5.8 vs 11.1 +/- 6.2, asthmatic vs healthy subjects), peak nasal viral titers (log(10) 4.3 +/- 0.8 vs 3.7 +/- 1.4 50% tissue culture infective dose/mL, respectively), or changes in peak flow during the study (10% +/- 10% vs 8% +/- 6%, respectively). Rhinovirus-16 infection increased peak asthma index values in the asthmatic group (median, 6 --> 13; P = .003) but only marginally in the healthy group (median, 4 --> 7; P = .09). More asthmatic subjects had detectable eosinophils in nasal lavage and sputum samples at baseline and during infection, but otherwise, cellular and cytokine responses were similar. Baseline sputum eosinophilia and CXCL8 (IL-8) levels were positively associated with cold symptoms, whereas CCL2 (monocyte chemotactic protein 1) levels were inversely associated with nasal viral shedding. CONCLUSIONS These findings suggest that subjects with mild allergic asthma and healthy subjects have similar cold symptoms and inflammatory and antiviral responses. In addition, eosinophilia and other selective baseline measures of airway inflammation in subjects with or without asthma might predict respiratory outcomes with rhinovirus infection.
Collapse
Affiliation(s)
- Jennifer P DeMore
- Department of Medicine, University of Wisconsin-Madison, Madison, Wis, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lopez-Souza N, Favoreto S, Wong H, Ward T, Yagi S, Schnurr D, Finkbeiner WE, Dolganov GM, Widdicombe JH, Boushey HA, Avila PC. In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J Allergy Clin Immunol 2009; 123:1384-90.e2. [PMID: 19428098 PMCID: PMC2744461 DOI: 10.1016/j.jaci.2009.03.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human rhinoviruses (HRVs) characteristically cause upper respiratory tract infection, but they also infect the lower airways, causing acute bronchitis and exacerbating asthma. OBJECTIVE Our purpose was to study ex vivo the differences in the response to HRV infection of nasal and bronchial epithelial cultures from the same healthy and asthmatic individuals using conditions favoring development of fully differentiated, pseudostratified mucociliary epithelium. METHODS Cells from the inferior turbinates and bronchial tree of 5 healthy and 6 asthmatic individuals were cultured at an air-liquid interface. Cultures were infected with HRV-16, and after 48 hours, the degree of infection was measured. RESULTS Baseline median transepithelial resistance was lower in human bronchial epithelial (HBE) cell cultures than in human nasal epithelial (HNE) cell cultures (195 Omega.cm2 [95% CI, 164-252] vs 366 Omega.cm2 [95% CI, 234-408], respectively; P < .01). Virus replicated more easily in HBE cells than in HNE cells based on virus shedding in apical wash (log tissue culture infective dose of 50%/0.1 mL = 2.0 [95% CI, 1.0-2.5] vs 0.5 [95% CI, 0.5-1.5], P < .01) and on a 20- to 30-fold greater viral load and number of infected cells in HBE cell cultures than in HNE cell cultures. The increases in expression of RANTES and double-stranded RNA-dependent protein kinase were greater in HBE cell cultures than in HNE cell cultures, as were the concentrations of IL-8, IL-1alpha, RANTES, and IP-10 in basolateral medium. However, no significant differences between asthmatic and healthy subjects (including IFN-beta1 expression) were found. CONCLUSIONS Differentiated nasal epithelial cells might have mechanisms of increased resistance to rhinovirus infection compared with bronchial epithelial cells. We could not confirm previous reports of increased susceptibility to HRV infection in epithelial cells from asthmatic subjects.
Collapse
Affiliation(s)
| | - Silvio Favoreto
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Hofer Wong
- Department of Medicine, University of California, San Francisco
| | - Theresa Ward
- Department of Medicine, University of California, San Francisco
| | - Shigeo Yagi
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA
| | - David Schnurr
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA
| | | | - Gregory M. Dolganov
- Division of Infectious Diseases and Geographic Medicine, Stanford Medical School, Stanford, CA
| | | | | | - Pedro C. Avila
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
49
|
Blicharz TM, Siqueira WL, Helmerhorst EJ, Oppenheim FG, Wexler PJ, Little FF, Walt DR. Fiber-optic microsphere-based antibody array for the analysis of inflammatory cytokines in saliva. Anal Chem 2009; 81:2106-14. [PMID: 19192965 PMCID: PMC2765577 DOI: 10.1021/ac802181j] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antibody microarrays have emerged as useful tools for high-throughput protein analysis and candidate biomarker screening. We describe here the development of a multiplexed microsphere-based antibody array capable of simultaneously measuring 10 inflammatory protein mediators. Cytokine-capture microspheres were fabricated by covalently coupling monoclonal antibodies specific for cytokines of interest to fluorescently encoded 3.1 microm polymer microspheres. An optical fiber bundle containing approximately 50,000 individual 3.1 microm diameter fibers was chemically etched to create microwells in which cytokine-capture microspheres could be deposited. Microspheres were randomly distributed in the wells to produce an antibody array for performing a multiplexed sandwich immunoassay. The array responded specifically to recombinant cytokine solutions in a concentration-dependent fashion. The array was also used to examine endogenous mediator patterns in saliva supernatants from patients with pulmonary inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). This array technology may prove useful as a laboratory-based platform for inflammatory disease research and diagnostics, and its small footprint could also enable integration into a microfluidic cassette for use in point-of-care testing.
Collapse
Affiliation(s)
| | - Walter L. Siqueira
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, 700 Albany Street, Boston, MA 02118
| | - Eva J. Helmerhorst
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, 700 Albany Street, Boston, MA 02118
| | - Frank G. Oppenheim
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, 700 Albany Street, Boston, MA 02118
| | - Philip J. Wexler
- Pulmonary Center, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118
| | - Frédéric F. Little
- Pulmonary Center, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118
| | - David R. Walt
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155
| |
Collapse
|
50
|
Common Colds and Respiratory Viruses: Impact on Allergy and Asthma. ALLERGY FRONTIERS: CLINICAL MANIFESTATIONS 2009. [PMCID: PMC7121093 DOI: 10.1007/978-4-431-88317-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|