1
|
Ponsin A, Barbe C, Bouazzi L, Loiseau C, Cart P, Rosman J. Short- and long-term outcomes of pulmonary emphysema patients on mechanical ventilation admitted to the intensive care unit for acute respiratory failure: A retrospective observational study. Aust Crit Care 2025; 38:101151. [PMID: 39817936 DOI: 10.1016/j.aucc.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
INTRODUCTION Acute respiratory failure is a leading cause of admission to the intensive care unit (ICU), with mortality rates remaining stagnant despite advances in resuscitation techniques. Comorbidities, notably chronic obstructive pulmonary disease, significantly impact ICU patient outcomes. Pulmonary emphysema, commonly associated with chronic obstructive pulmonary disease, poses a significant risk, yet its influence on ICU mortality remains understudied. OBJECTIVES The aim of this study was to assess the short- and long-term outcomes of ICU patients with pulmonary emphysema requiring mechanical ventilation for acute respiratory failure, evaluating the impact of emphysema severity. METHODS A single-centre retrospective cohort study was conducted from 2015 to 2021. Patients with pulmonary emphysema requiring invasive ventilation were included. Emphysema severity was assessed using chest computed tomography scans. Data on mortality, length of stay, and ventilator-free days were collected. Statistical analyses were performed to identify factors associated with outcomes. RESULTS Of the 89 included patients, 31.5% died during their ICU stay, with a 39.3% mortality within 12 months postdischarge. Emphysema severity did not significantly correlate with mortality or ventilator-free days. Chronic heart failure emerged as a significant predictor of ICU and in-hospital mortality. CONCLUSIONS Emphysema severity does not appear to independently affect mortality in intubated ICU patients with acute respiratory failure. However, mortality rates remain high, warranting further investigation into contributing factors. Our findings underline the complexity of managing critically ill patients with pulmonary emphysema and emphasise the need for comprehensive patient assessment and personalised treatment approaches.
Collapse
Affiliation(s)
- Alexandre Ponsin
- University of Reims Champagne Ardenne, Reims University Hospital, Rue du Général Koenig, 51100 Reims, France; Centre Hospitalier Intercommunal nord-Ardennes, 45 Avenue de Manchester, 08000 Charleville-Mézières, France; University of Reims Champagne Ardenne, 51 Rue Cognacq Jay, 51100 Reims, France.
| | - Coralie Barbe
- University of Reims Champagne Ardenne, 51 Rue Cognacq Jay, 51100 Reims, France.
| | - Leïla Bouazzi
- University of Reims Champagne Ardenne, 51 Rue Cognacq Jay, 51100 Reims, France.
| | - Clémence Loiseau
- Centre Hospitalier Intercommunal nord-Ardennes, 45 Avenue de Manchester, 08000 Charleville-Mézières, France.
| | - Philippe Cart
- Centre Hospitalier Intercommunal nord-Ardennes, 45 Avenue de Manchester, 08000 Charleville-Mézières, France.
| | - Jérémy Rosman
- Centre Hospitalier Intercommunal nord-Ardennes, 45 Avenue de Manchester, 08000 Charleville-Mézières, France.
| |
Collapse
|
2
|
Dournes G, Zysman M, Benlala I, Berger P. [CT imaging of chronic obstructive pulmonary disease: What aspects and what role?]. Rev Mal Respir 2024; 41:738-750. [PMID: 39488460 DOI: 10.1016/j.rmr.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), commonly defined as irreversible airflow limitation, is associated with specific morphological changes involving all three parts of the lung, namely the bronchi, parenchyma and pulmonary vessels. In vivo imaging, with its ability to describe the different types of lung alterations and their regional distribution, helps to elucidate the relationship between lung structure and respiratory function. High-resolution computed tomography (CT) of the lung is the imaging modality best suited to assessing the pathological changes associated with airflow obstruction occurring in COPD. Over the last few decades, numerous studies have demonstrated the role of CT as a morphological and functional method conducive to the phenotyping of COPD patients. This review proposes to examine the data on CT imaging of COPD with a critical approach to recent data, and to determine the extent to which CT could be integrated into care or clinical research on patients with this/these disease(s).
Collapse
Affiliation(s)
- G Dournes
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France.
| | - M Zysman
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France
| | - I Benlala
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France
| | - P Berger
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France
| |
Collapse
|
3
|
Takano T, Tsubouchi K, Hamada N, Ichiki K, Torii R, Takata S, Kawakami S, Nakagaki N, Yoshida M, Kitasato Y, Tobino K, Harada E, Ishii H, Wataya H, Maeyama T, Fujita M, Yatera K, Okamoto M, Yabuuchi H, Kiyomi F, Tokunaga S, Nakanishi Y, Okamoto I. Update of prognosis and characteristics of chronic obstructive pulmonary disease in a real-world setting: a 5-year follow-up analysis of a multi-institutional registry. BMC Pulm Med 2024; 24:556. [PMID: 39506773 PMCID: PMC11539611 DOI: 10.1186/s12890-024-03347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND We conducted a prospective observational study to elucidate the long-term prognosis and management of chronic obstructive pulmonary disease (COPD) in clinical practice in Japan in the mid-2010s. METHODS This prospective cohort study included 29 facilities. Data from 427 patients clinically diagnosed with COPD, enrolled between September 2013 and April 2016, were analyzed. Interstitial pneumonia was excluded through a central multidisciplinary discussion. Follow-up data were collected for up to 5 years after patient registration. RESULTS At the time of registration, 53 patients clinically diagnosed with COPD did not have airflow limitation (AFL). In the cohort with AFL (n = 374), 232 patients completed a 5-year follow-up, while 49 patients died during the 1576.6 person-years of observation. The mean age was 71.7 years with an overall 5-year survival rate of 85.4%. Stratified by % forced expiratory volume in one second (FEV1), survival rates were 93.6% in the mild and moderate AFL group, 82.5% in the severe AFL group, and 66.1% in the very severe AFL group. The prognosis of the subpopulation without AFL was poor with a 5-year survival of 81.6%. This subpopulation exhibited respiratory symptoms, low vital capacity and total lung capacity, and emphysematous changes. CONCLUSIONS Our study presents the 5-year survival and real-world clinical practice scenario of a prospective cohort of patients clinically diagnosed with COPD in Japan in the mid-2010s. The survival rates of our cohort were numerically better than the Japanese cohort in the 1990s, regardless of the high median age of this cohort. Overall, 12.4% of the patients in this cohort with no AFL at registration exhibited respiratory symptoms and distinct spirometric patterns, and had a poor prognosis.
Collapse
Affiliation(s)
- Tomotsugu Takano
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Hamada
- Department of Respiratory Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Ryo Torii
- Department of Respiratory Medicine, Wakamatsu Hospital of the University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Shohei Takata
- Department of Respiratory Diseases, NHO Fukuokahigashi Medical Center JP, Fukuoka, Japan
| | - Satoru Kawakami
- Division of Respiratory Medicine, Kyushu Rosai Hospital, Kitakyushu, Japan
| | - Noriaki Nakagaki
- Department of Respiratory Medicine, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Makoto Yoshida
- Department of Respiratory Diseases, NHO Fukuoka National Hospital JP, Fukuoka, Japan
| | - Yasuhiko Kitasato
- Department of Respiratory Medicine, Japan Community Health Care Organization Kurume General Hospital, Kurume, Japan
| | - Kazunori Tobino
- Division of Respiratory Medicine, Aso Iizuka Hospital, Iizuka, Japan
| | - Eiji Harada
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Hiroshi Ishii
- Department of Respiratory Medicine, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Hiroshi Wataya
- Department of Respiratory Medicine, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Takashige Maeyama
- Department of Respiratory Medicine, Hamanomachi Hospital, Fukuoka, Japan
| | - Masaki Fujita
- Department of Respiratory Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
- Department of Respirology, NHO Kyushu Medical Center, Fukuoka, Japan
| | - Hidetake Yabuuchi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shoji Tokunaga
- Medical Information Center, Kyushu University Hospital, Fukuoka, Japan
| | | | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Qin L, Yao Y, Wang W, Qin Q, Liu J, Liu H, Yuan L, Yuan Y, Du X, Zhao B, Wu X, Qing B, Huang L, Wang G, Xiang Y, Qu X, Zhang X, Yang M, Xia Z, Liu C. Airway epithelial overexpressed cathepsin K induces airway remodelling through epithelial-mesenchymal trophic unit activation in asthma. Br J Pharmacol 2024; 181:3700-3716. [PMID: 38853468 DOI: 10.1111/bph.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Airway epithelial cells (AECs) regulate the activation of epithelial-mesenchymal trophic units (EMTUs) during airway remodelling through secretion of signalling mediators. However, the major trigger and the intrinsic pathogenesis of airway remodelling is still obscure. EXPERIMENTAL APPROACH The differing expressed genes in airway epithelia related to airway remodelling were screened and verified by RNA-sequencing and signalling pathway analysis. Then, the effects of increased cathepsin K (CTSK) in airway epithelia on airway remodelling and EMTU activation were identified both in vitro and in vivo, and the molecular mechanism was elucidated in the EMTU model. The potential of CTSK as an an effective biomarker of airway remodelling was analysed in an asthma cohort of differing severity. Finally, an inhibitor of CTSK was administered for potential therapeutic intervention for airway remodelling in asthma. KEY RESULTS The expression of CTSK in airway epithelia increased significantly along with the development of airway remodelling in a house dust mite (HDM)-stressed asthma model. Increased secretion of CTSK from airway epithelia induced the activation of EMTUs by activation of the PAR2-mediated pathway. Blockade of CTSK inhibited EMTU activation and alleviated airway remodelling as an effective intervention target of airway remodelling. CONCLUSION AND IMPLICATIONS Increased expression of CTSK in airway epithelia is involved in the development of airway remodelling in asthma through EMTU activation, mediated partly through the PAR2-mediated signalling pathway. CTSK is a potential biomarker for airway remodelling, and may also be a useful intervention target for airway remodelling in asthma patients.
Collapse
Affiliation(s)
- Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ye Yao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leng Huang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Wang
- Department of Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xuewei Zhang
- Department of Health Management, Xiangya Hospital, Cental South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Zhenkun Xia
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Cho HH, Choe J, Kim J, Oh YJ, Park H, Lee K, Lee HY. 3D airway geometry analysis of factors in airway navigation failure for lung nodules. Cancer Imaging 2024; 24:84. [PMID: 38965621 PMCID: PMC11223435 DOI: 10.1186/s40644-024-00730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND This study aimed to quantitatively reveal contributing factors to airway navigation failure during radial probe endobronchial ultrasound (R-EBUS) by using geometric analysis in a three-dimensional (3D) space and to investigate the clinical feasibility of prediction models for airway navigation failure. METHODS We retrospectively reviewed patients who underwent R-EBUS between January 2017 and December 2018. Geometric quantification was analyzed using in-house software built with open-source python libraries including the Vascular Modeling Toolkit ( http://www.vmtk.org ), simple insight toolkit ( https://sitk.org ), and sci-kit image ( https://scikit-image.org ). We used a machine learning-based approach to explore the utility of these significant factors. RESULTS Of the 491 patients who were eligible for analysis (mean age, 65 years +/- 11 [standard deviation]; 274 men), the target lesion was reached in 434 and was not reached in 57. Twenty-seven patients in the failure group were matched with 27 patients in the success group based on propensity scores. Bifurcation angle at the target branch, the least diameter of the last section, and the curvature of the last section are the most significant and stable factors for airway navigation failure. The support vector machine can predict airway navigation failure with an average area under the curve of 0.803. CONCLUSIONS Geometric analysis in 3D space revealed that a large bifurcation angle and a narrow and tortuous structure of the closest bronchus from the lesion are associated with airway navigation failure during R-EBUS. The models developed using quantitative computer tomography scan imaging show the potential to predict airway navigation failure.
Collapse
Affiliation(s)
- Hwan-Ho Cho
- Department of Electronics Engineering, Incheon National University, Incheon, Republic of Korea
| | - Junsu Choe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jonghoon Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Yoo Jin Oh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Hyunjin Park
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Kyungjong Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Ho Yun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea.
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
6
|
Escalon JG, Girvin F. Smoking-Related Interstitial Lung Disease and Emphysema. Clin Chest Med 2024; 45:461-473. [PMID: 38816100 DOI: 10.1016/j.ccm.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Diagnosis and treatment of patients with smoking-related lung diseases often requires multidisciplinary contributions to optimize care. Imaging plays a key role in characterizing the underlying disease, quantifying its severity, identifying potential complications, and directing management. The primary goal of this article is to provide an overview of the imaging findings and distinguishing features of smoking-related lung diseases, specifically, emphysema/chronic obstructive pulmonary disease, respiratory bronchiolitis-interstitial lung disease, smoking-related interstitial fibrosis, desquamative interstitial pneumonitis, combined pulmonary fibrosis and emphysema, pulmonary Langerhans cell histiocytosis, and E-cigarette or vaping related lung injury.
Collapse
Affiliation(s)
- Joanna G Escalon
- Department of Radiology, New York-Presbyterian Hospital-Weill Cornell Medical College, 525 E 68th Street, New York, NY 10065, USA.
| | - Francis Girvin
- Department of Radiology, New York-Presbyterian Hospital-Weill Cornell Medical College, 525 E 68th Street, New York, NY 10065, USA
| |
Collapse
|
7
|
Murgia N, Akgun M, Blanc PD, Costa JT, Moitra S, Muñoz X, Toren K, Ferreira AJ. Issue 3-The occupational burden of respiratory diseases, an update. Pulmonology 2024:S2531-0437(24)00045-X. [PMID: 38704309 DOI: 10.1016/j.pulmoe.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION AND AIMS Workplace exposures are widely known to cause specific occupational diseases such as silicosis and asbestosis, but they also can contribute substantially to causation of common respiratory diseases. In 2019, the American Thoracic Society (ATS) and the European Respiratory Society (ERS) published a joint statement on the occupational burden of respiratory diseases. Our aim on this narrative review is to summarise the most recent evidence published after the ATS/ERS statement as well as to provide information on traditional occupational lung diseases that can be useful for clinicians and researchers. RESULTS Newer publications confirm the findings of the ATS/ERS statement on the role of workplace exposure in contributing to the aetiology of the respiratory diseases considered in this review (asthma, COPD, chronic bronchitis, idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, infectious pneumonia). Except for COPD, chronic bronchitis and infectious pneumonia, the number of publications in the last 5 years for the other diseases is limited. For traditional occupational lung diseases such as silicosis and asbestosis, there are old as well as novel sources of exposure and their burden continues to be relevant, especially in developing countries. CONCLUSIONS Occupational exposure remains an important risk factor for airways and interstitial lung diseases, causing occupational lung diseases and contributing substantially in the aetiology of common respiratory diseases. This information is critical for public health professionals formulating effective preventive strategies but also for clinicians in patient care. Effective action requires shared knowledge among clinicians, researchers, public health professionals, and policy makers.
Collapse
Affiliation(s)
- N Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| | - M Akgun
- Department of Chest Diseases, School of Medicine, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - P D Blanc
- Division of Occupational, Environmental, and Climate Medicine, Department of Medicine, University of California San Francisco, California, USA
| | - J T Costa
- Faculdade de Medicina da Universidade do Porto, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - S Moitra
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - X Muñoz
- Servicio de Neumología, Hospital Vall d'Hebron, Barcelona, Spain
| | - K Toren
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A J Ferreira
- Faculty of Medicine, University of Coimbra. Coimbra, Portugal
| |
Collapse
|
8
|
Elbehairy AF, Marshall H, Naish JH, Wild JM, Parraga G, Horsley A, Vestbo J. Advances in COPD imaging using CT and MRI: linkage with lung physiology and clinical outcomes. Eur Respir J 2024; 63:2301010. [PMID: 38548292 DOI: 10.1183/13993003.01010-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Recent years have witnessed major advances in lung imaging in patients with COPD. These include significant refinements in images obtained by computed tomography (CT) scans together with the introduction of new techniques and software that aim for obtaining the best image whilst using the lowest possible radiation dose. Magnetic resonance imaging (MRI) has also emerged as a useful radiation-free tool in assessing structural and more importantly functional derangements in patients with well-established COPD and smokers without COPD, even before the existence of overt changes in resting physiological lung function tests. Together, CT and MRI now allow objective quantification and assessment of structural changes within the airways, lung parenchyma and pulmonary vessels. Furthermore, CT and MRI can now provide objective assessments of regional lung ventilation and perfusion, and multinuclear MRI provides further insight into gas exchange; this can help in structured decisions regarding treatment plans. These advances in chest imaging techniques have brought new insights into our understanding of disease pathophysiology and characterising different disease phenotypes. The present review discusses, in detail, the advances in lung imaging in patients with COPD and how structural and functional imaging are linked with common resting physiological tests and important clinical outcomes.
Collapse
Affiliation(s)
- Amany F Elbehairy
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Marshall
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- MCMR, Manchester University NHS Foundation Trust, Manchester, UK
- Bioxydyn Limited, Manchester, UK
| | - Jim M Wild
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| | - Grace Parraga
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Division of Respirology, Western University, London, ON, Canada
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
9
|
Yehia D, Leung C, Sin DD. Clinical utilization of airway inflammatory biomarkers in the prediction and monitoring of clinical outcomes in patients with chronic obstructive pulmonary disease. Expert Rev Mol Diagn 2024; 24:409-421. [PMID: 38635513 DOI: 10.1080/14737159.2024.2344777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) accounts for 545 million people living with chronic respiratory disorders and is the third leading cause of morbidity and mortality around the world. COPD is a progressive disease, characterized by episodes of acute worsening of symptoms such as cough, dyspnea, and sputum production. AREAS COVERED Airway inflammation is a prominent feature of COPD. Chronic airway inflammation results in airway structural remodeling and emphysema. Persistent airway inflammation is a treatable trait of COPD and plays a significant role in disease development and progression. In this review, the authors summarize the current and emerging biomarkers that reveal the heterogeneity of airway inflammation subtypes, clinical outcomes, and therapeutic response in COPD. EXPERT OPINION Airway inflammation can be broadly categorized as eosinophilic (type 2 inflammation) and non-eosinophilic (non-type 2 inflammation) in COPD. Currently, blood eosinophil counts are incorporated in clinical practice guidelines to identify COPD patients who are at a higher risk of exacerbations and lung function decline, and who are likely to respond to inhaled corticosteroids. As new therapeutics are being developed for the chronic management of COPD, it is essential to identify biomarkers that will predict treatment response.
Collapse
Affiliation(s)
- Dina Yehia
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Lee HW, Lee JK, Kim Y, Jang AS, Hwang YI, Lee JH, Jung KS, Yoo KH, Yoon HK, Kim DK. Differential decline of lung function in COPD patients according to structural abnormality in chest CT. Heliyon 2024; 10:e27683. [PMID: 38560191 PMCID: PMC10980934 DOI: 10.1016/j.heliyon.2024.e27683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Background Different progressions or prognoses of chronic obstructive pulmonary disease (COPD) have been reported according to structural abnormalities based on chest computed tomography (CT). This study aimed to investigate whether different structural abnormalities independently affect annual lung function changes and clinical prognosis in patients with COPD. Methods This longitudinal multicenter observational study was conducted using the KOCOSS cohort (NCT02800499) database in Korea from January 2012 to December 2019. For COPD patients with chest CT findings at baseline enrolment and longitudinal spirometric data, annual forced expiratory volume in 1 s (FEV1) decline rate (mL/year) and clinical outcomes were compared according to structural abnormalities, including emphysema, bronchiectasis (BE), and tuberculosis-destroyed lung (TDL). We estimated the adjusted annual FEV1 changes using a mixed-effect linear regression model. Results Among the enrolled 237 patients, 152 showed structural abnormalities. Emphysema, BE, and TDL were observed in 119 (78.3%), 28 (18.4%), and 27 (17.8%) patients, respectively. The annual decline in FEV1 was faster in COPD patients with structural abnormalities than those without (β = -70.6 mL/year, P-value = 0.039). BE/TDL-dominant or emphysema-dominant structural abnormality contributed to an accelerated annual FEV1 decline compared to no structural abnormality (BE/TDL-dominant, β = -103.7 mL/year, P-value = 0.043; emphysema-dominant, β = -84.1 mL/year, P-value = 0.018). Structural abnormalities made no significant differences in acute exacerbation rate and mortality. Conclusion The lung function decline rate in COPD differed according to structural abnormalities on CT. These findings may suggest that more focus should be placed on earlier intervention or regular follow-up with spirometry in COPD patients with BE or TDL on chest CT.
Collapse
Affiliation(s)
- Hyun Woo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Youlim Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University Hospital, School of Medicine, Konkuk University, Seoul, South Korea
| | - An-Soo Jang
- Department of Pulmonology and Allergy, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Yong il Hwang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Jae Ha Lee
- Division of Pulmonology, Department of Internal Medicine, Inje University Haeundae Paik Hospital, University of Inje College of Medicine, Busan, South Korea
| | - Ki-Suck Jung
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Kwang Ha Yoo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University Hospital, School of Medicine, Konkuk University, Seoul, South Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Steinhardt M, Marka AW, Ziegelmayer S, Makowski M, Braren R, Graf M, Gawlitza J. Comparison of Virtual Non-Contrast and True Non-Contrast CT Images Obtained by Dual-Layer Spectral CT in COPD Patients. Bioengineering (Basel) 2024; 11:301. [PMID: 38671723 PMCID: PMC11047621 DOI: 10.3390/bioengineering11040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death. Recent studies have underlined the importance of non-contrast-enhanced chest CT scans not only for emphysema progression quantification, but for correlation with clinical outcomes as well. As about 40 percent of the 300 million CT scans per year are contrast-enhanced, no proper emphysema quantification is available in a one-stop-shop approach for patients with known or newly diagnosed COPD. Since the introduction of spectral imaging (e.g., dual-energy CT scanners), it has been possible to create virtual non-contrast-enhanced images (VNC) from contrast-enhanced images, making it theoretically possible to offer proper COPD imaging despite contrast enhancing. This study is aimed towards investigating whether these VNC images are comparable to true non-contrast-enhanced images (TNC), thereby reducing the radiation exposure of patients and usage of resources in hospitals. In total, 100 COPD patients with two scans, one with (VNC) and one without contrast media (TNC), within 8 weeks or less obtained by a spectral CT using dual-layer technology, were included in this retrospective study. TNC and VNC were compared according to their voxel-density histograms. While the comparison showed significant differences in the low attenuated volumes (LAVs) of TNC and VNC regarding the emphysema threshold of -950 Houndsfield Units (HU), the 15th and 10th percentiles of the LAVs used as a proxy for pre-emphysema were comparable. Upon further investigation, the threshold-based LAVs (-950 HU) of TNC and VNC were comparable in patients with a water equivalent diameter (DW) below 270 mm. The study concludes that VNC imaging may be a viable option for assessing emphysema progression in COPD patients, particularly those with a normal body mass index (BMI). Further, pre-emphysema was generally comparable between TNC and VNC. This approach could potentially reduce radiation exposure and hospital resources by making additional TNC scans obsolete.
Collapse
Affiliation(s)
- Manuel Steinhardt
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (A.W.M.); (S.Z.); (M.M.); (R.B.); (M.G.)
| | | | | | | | | | | | - Joshua Gawlitza
- Correspondence: (M.S.); (J.G.); Tel.: +49-176-24498226 (M.S.); +49-89-4140-8834 (J.G.)
| |
Collapse
|
12
|
Liu Y, Lu C, Chen W, Liu Z, Wu S, Ye H, Lv Y, Peng Z, Wang P, Li G, Tan B, Wu G. Clinical evaluation of pulmonary quantitative computed tomography parameters for diagnosing eosinophilic chronic obstructive pulmonary disease: Characteristics and diagnostic performance. Health Sci Rep 2024; 7:e1734. [PMID: 38500635 PMCID: PMC10944982 DOI: 10.1002/hsr2.1734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 03/20/2024] Open
Abstract
Aims To investigate the characteristics and diagnostic performance of quantitative computed tomography (QCT) parameters in eosinophilic chronic obstructive pulmonary disease (COPD) patients. Methods High-resolution CT scans of COPD patients were retrospectively analyzed, and various emphysematous parenchyma measurements, including lung volume (LC), lung mean density (LMD), lung standard deviation (LSD), full-width half maximum (FWHM), and lung relative voxel number (LRVN) were performed. The QCT parameters were compared between eosinophilic and noneosinophilic COPD patients, using a definition of eosinophilic COPD as blood eosinophil values ≥ 300 cells·µL-1 on at least three times. Receiver operating characteristic curves and area under the curve (ROC-AUC) and python were used to evaluate discriminative efficacy of QCT. Results Noneosinophilic COPD patients had a significantly lower TLMD (-846.3 ± 47.9 Hounsfield Unit [HU]) and TFWHM(162.5 ± 30.6 HU) compared to eosinophilic COPD patients (-817.8 ± 54.4, 177.3 ± 33.1 HU, respectively) (p = 0.018, 0.03, respectively). Moreover, the total LC (TLC) and TLSD were significantly lower in eosinophilic COPD group (3234.4 ± 1145.8, 183.8 ± 33.9 HU, respectively) than the noneosinophilic COPD group (5600.2 ± 1248.4, 203.5 ± 20.4 HU, respectively) (p = 0.009, 0.002, respectively). The ROC-AUC values for TLC, TLMD, TLSD, and TFWHM were 0.91 (95% confidence interval [CI], 0.828-0.936), 0.66 (95% CI, 0.546-0.761), 0.64 (95% CI, 0.524-0.742), and 0.63 (95% CI, 0.511-0.731), respectively. When the TLC value was 4110 mL, the sensitivity was 90.7% (95% CI, 79.7-96.9), specificity was 77.8% (95% CI, 57.7-91.4) and accuracy was 86.4%. Notably, TLC demonstrated the highest discriminative efficiency with an F1 Score of 0.79, diagnostic Odds Ratio of 34.3 and Matthews Correlation Coefficient of 0.69, surpassing TLMD (0.55, 3.66, 0.25), TLSD (0.56, 3.95, 0.26), and TFWHM (0.56, 4.16, 0.33). Conclusion Eosinophilic COPD patients exhibit lower levels of emphysema and a more uniform density distribution throughout the lungs compared to noneosinophilic COPD patients. Furthermore, TLC demonstrated the highest diagnostic efficiency and may serve as a valuable diagnostic marker for distinguishing between the two groups.
Collapse
Affiliation(s)
- Yumeng Liu
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Chao Lu
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Wenfang Chen
- Department of Respiratory MedicineShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Zhenyu Liu
- Department of GastroenterologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Songxiong Wu
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Hai Ye
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Yungang Lv
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Zhengkun Peng
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Panying Wang
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Guangyao Li
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Biwen Tan
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| | - Guangyao Wu
- Department of RadiologyShenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhenChina
| |
Collapse
|
13
|
Park H, Hwang EJ, Goo JM. Deep Learning-Based Kernel Adaptation Enhances Quantification of Emphysema on Low-Dose Chest CT for Predicting Long-Term Mortality. Invest Radiol 2024; 59:278-286. [PMID: 37428617 DOI: 10.1097/rli.0000000000001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
OBJECTIVES The aim of this study was to ascertain the predictive value of quantifying emphysema using low-dose computed tomography (LDCT) post deep learning-based kernel adaptation on long-term mortality. MATERIALS AND METHODS This retrospective study investigated LDCTs obtained from asymptomatic individuals aged 60 years or older during health checkups between February 2009 and December 2016. These LDCTs were reconstructed using a 1- or 1.25-mm slice thickness alongside high-frequency kernels. A deep learning algorithm, capable of generating CT images that resemble standard-dose and low-frequency kernel images, was applied to these LDCTs. To quantify emphysema, the lung volume percentage with an attenuation value less than or equal to -950 Hounsfield units (LAA-950) was gauged before and after kernel adaptation. Low-dose chest CTs with LAA-950 exceeding 6% were deemed emphysema-positive according to the Fleischner Society statement. Survival data were sourced from the National Registry Database at the close of 2021. The risk of nonaccidental death, excluding causes such as injury or poisoning, was explored according to the emphysema quantification results using multivariate Cox proportional hazards models. RESULTS The study comprised 5178 participants (mean age ± SD, 66 ± 3 years; 3110 males). The median LAA-950 (18.2% vs 2.6%) and the proportion of LDCTs with LAA-950 exceeding 6% (96.3% vs 39.3%) saw a significant decline after kernel adaptation. There was no association between emphysema quantification before kernel adaptation and the risk of nonaccidental death. Nevertheless, after kernel adaptation, higher LAA-950 (hazards ratio for 1% increase, 1.01; P = 0.045) and LAA-950 exceeding 6% (hazards ratio, 1.36; P = 0.008) emerged as independent predictors of nonaccidental death, upon adjusting for age, sex, and smoking status. CONCLUSIONS The application of deep learning for kernel adaptation proves instrumental in quantifying pulmonary emphysema on LDCTs, establishing itself as a potential predictive tool for long-term nonaccidental mortality in asymptomatic individuals.
Collapse
Affiliation(s)
- Hyungin Park
- From the Department of Radiology, Seoul National University Hospital, Seoul, South Korea (H.P., E.J.H., J.M.G.); and Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.M.G.)
| | | | | |
Collapse
|
14
|
Choe J, Choi HY, Lee SM, Oh SY, Hwang HJ, Kim N, Yun J, Lee JS, Oh YM, Yu D, Kim B, Seo JB. Evaluation of retrieval accuracy and visual similarity in content-based image retrieval of chest CT for obstructive lung disease. Sci Rep 2024; 14:4587. [PMID: 38403628 PMCID: PMC10894863 DOI: 10.1038/s41598-024-54954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024] Open
Abstract
The aim of our study was to assess the performance of content-based image retrieval (CBIR) for similar chest computed tomography (CT) in obstructive lung disease. This retrospective study included patients with obstructive lung disease who underwent volumetric chest CT scans. The CBIR database included 600 chest CT scans from 541 patients. To assess the system performance, follow-up chest CT scans of 50 patients were evaluated as query cases, which showed the stability of the CT findings between baseline and follow-up chest CT, as confirmed by thoracic radiologists. The CBIR system retrieved the top five similar CT scans for each query case from the database by quantifying and comparing emphysema extent and size, airway wall thickness, and peripheral pulmonary vasculatures in descending order from the database. The rates of retrieval of the same pairs of query CT scans in the top 1-5 retrievals were assessed. Two expert chest radiologists evaluated the visual similarities between the query and retrieved CT scans using a five-point scale grading system. The rates of retrieving the same pairs of query CTs were 60.0% (30/50) and 68.0% (34/50) for top-three and top-five retrievals. Radiologists rated 64.8% (95% confidence interval 58.8-70.4) of the retrieved CT scans with a visual similarity score of four or five and at least one case scored five points in 74% (74/100) of all query cases. The proposed CBIR system for obstructive lung disease integrating quantitative CT measures demonstrated potential for retrieving chest CT scans with similar imaging phenotypes. Further refinement and validation in this field would be valuable.
Collapse
Affiliation(s)
- Jooae Choe
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
| | - Hye Young Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine Kyung, Hee University, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea.
| | - Sang Young Oh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
| | - Hye Jeon Hwang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
- Department of Convergence Medicine, Biomedical Engineering Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jihye Yun
- Department of Convergence Medicine, Biomedical Engineering Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
| |
Collapse
|
15
|
Ji Y, Chen L, Yang J, Yang X, Yang F. Quantitative assessment of airway wall thickness in COPD patients with interstitial lung abnormalities. Front Med (Lausanne) 2023; 10:1280651. [PMID: 38146423 PMCID: PMC10749311 DOI: 10.3389/fmed.2023.1280651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
Background Whether the airway is involved in the pathogenesis of interstitial lung abnormalities (ILA) is not well understood. Also the impact of ILA on lung function in COPD patients remains controversial. We aimed to assess the quantitative CT measurements of airway wall thickness (AWT) and lung function according to ILA status in COPD patients. Methods 157 COPD patients discharged from our hospital from August 1, 2019 through August 31, 2022 who underwent chest CT imagings and pulmonary function tests were retrospectively enrolled. Linear regression analysis and multiple models were used to analyze associations between quantitative assessment of airway wall changes and the presence of ILA. Results In 157 COPD patients, 23 patients (14.6%) had equivocal ILA, 42 patients (26.8%) had definite ILA. The definite ILA group had the highest measurements of Pi10 (square root of theoretical airway wall area with a lumen perimeter of 10 mm), segmental AWT and segmental WA% (percentage of wall area), whereas the no ILA group had the lowest measurements of Pi10, segmental AWT and segmental WA%. In the adjusted analyses (adjusted by age, sex, body mass index, smoking intensity, COPD GOLD stage, lung function, slice thickness and scanner type), compared to COPD patients without ILA, the measurements of Pi10, segmental AWT and segmental WA% were higher in definite ILA group with differences of 0.225 mm (p = 0.012), 0.152 mm (p < 0.001), 4.8% (p < 0.001) respectively. COPD patients with definite ILA tended to have higher FEV1% predicted, FVC% predicted and lower MMEF75/25% predicted, but there were no statistically differences among the three groups. Conclusion Our study demonstrates the higher AWT measures in COPD patients with ILA compared to the patients without ILA. These findings suggest that the airway may be involved in the pathogenesis of ILA.
Collapse
Affiliation(s)
- Yingying Ji
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Leqing Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jinrong Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangying Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
16
|
Kirby M, Smith BM. Quantitative CT Scan Imaging of the Airways for Diagnosis and Management of Lung Disease. Chest 2023; 164:1150-1158. [PMID: 36871841 PMCID: PMC10792293 DOI: 10.1016/j.chest.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
CT scan imaging provides high-resolution images of the lungs in patients with chronic respiratory diseases. Extensive research over the last several decades has focused on developing novel quantitative CT scan airway measurements that reflect abnormal airway structure. Despite many observational studies demonstrating that associations between CT scan airway measurements and clinically important outcomes such as morbidity, mortality, and lung function decline, few quantitative CT scan measurements are applied in clinical practice. This article provides an overview of the relevant methodologic considerations for implementing quantitative CT scan airway analyses and provides a review of the scientific literature involving quantitative CT scan airway measurements used in clinical or randomized trials and observational studies of humans. We also discuss emerging evidence for the clinical usefulness of quantitative CT scan imaging of the airways and discuss what is required to bridge the gap between research and clinical application. CT scan airway measurements continue to improve our understanding of disease pathophysiologic features, diagnosis, and outcomes. However, a literature review revealed a need for studies evaluating clinical benefit when quantitative CT scan imaging is applied in the clinical setting. Technical standards for quantitative CT scan imaging of the airways and high-quality evidence of clinical benefit from management guided by quantitative CT scan imaging of the airways are required.
Collapse
Affiliation(s)
- Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada; iBEST, St. Michael's Hospital, Toronto, ON, Canada.
| | - Benjamin M Smith
- Department of Medicine, McGill University, Montreal, QC, Canada; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
17
|
Balbi M, Sabia F, Ledda RE, Milanese G, Ruggirello M, Silva M, Marchianò AV, Sverzellati N, Pastorino U. Automated Coronary Artery Calcium and Quantitative Emphysema in Lung Cancer Screening: Association With Mortality, Lung Cancer Incidence, and Airflow Obstruction. J Thorac Imaging 2023; 38:W52-W63. [PMID: 36656144 PMCID: PMC10287055 DOI: 10.1097/rti.0000000000000698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE To assess automated coronary artery calcium (CAC) and quantitative emphysema (percentage of low attenuation areas [%LAA]) for predicting mortality and lung cancer (LC) incidence in LC screening. To explore correlations between %LAA, CAC, and forced expiratory value in 1 second (FEV 1 ) and the discriminative ability of %LAA for airflow obstruction. MATERIALS AND METHODS Baseline low-dose computed tomography scans of the BioMILD trial were analyzed using an artificial intelligence software. Univariate and multivariate analyses were performed to estimate the predictive value of %LAA and CAC. Harrell C -statistic and time-dependent area under the curve (AUC) were reported for 3 nested models (Model survey : age, sex, pack-years; Model survey-LDCT : Model survey plus %LAA plus CAC; Model final : Model survey-LDCT plus selected confounders). The correlations between %LAA, CAC, and FEV 1 and the discriminative ability of %LAA for airflow obstruction were tested using the Pearson correlation coefficient and AUC-receiver operating characteristic curve, respectively. RESULTS A total of 4098 volunteers were enrolled. %LAA and CAC independently predicted 6-year all-cause (Model final hazard ratio [HR], 1.14 per %LAA interquartile range [IQR] increase [95% CI, 1.05-1.23], 2.13 for CAC ≥400 [95% CI, 1.36-3.28]), noncancer (Model final HR, 1.25 per %LAA IQR increase [95% CI, 1.11-1.37], 3.22 for CAC ≥400 [95%CI, 1.62-6.39]), and cardiovascular (Model final HR, 1.25 per %LAA IQR increase [95% CI, 1.00-1.46], 4.66 for CAC ≥400, [95% CI, 1.80-12.58]) mortality, with an increase in concordance probability in Model survey-LDCT compared with Model survey ( P <0.05). No significant association with LC incidence was found after adjustments. Both biomarkers negatively correlated with FEV 1 ( P <0.01). %LAA identified airflow obstruction with a moderate discriminative ability (AUC, 0.738). CONCLUSIONS Automated CAC and %LAA added prognostic information to age, sex, and pack-years for predicting mortality but not LC incidence in an LC screening setting. Both biomarkers negatively correlated with FEV 1 , with %LAA enabling the identification of airflow obstruction with moderate discriminative ability.
Collapse
Affiliation(s)
- Maurizio Balbi
- Departments of Thoracic Surgery
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Parma, Italy
| | | | - Roberta E. Ledda
- Departments of Thoracic Surgery
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Parma, Italy
| | - Gianluca Milanese
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Parma, Italy
| | | | - Mario Silva
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Parma, Italy
| | | | - Nicola Sverzellati
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Parma, Italy
| | | |
Collapse
|
18
|
Colombi D, Adebanjo GAR, Delfanti R, Chiesa S, Morelli N, Capelli P, Franco C, Michieletti E. Association between Mortality and Lung Low Attenuation Areas in NSCLC Treated by Surgery. Life (Basel) 2023; 13:1377. [PMID: 37374159 DOI: 10.3390/life13061377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND to test the association with overall survival (OS) of low attenuation areas (LAAs) quantified by staging computed tomography (CT) of patients who underwent radical surgery for nonsmall-cell lung cancer (NSCLC). METHODS patients who underwent radical surgery for NSCLC at our institution between 1 January 2017 and 30 November 2021 were retrospectively evaluated. Patients who performed staging or follow-up CTs in other institutions, who received lung radiotherapy or chemotherapy, and who underwent previous lung surgery were excluded. At staging and 12-months follow-up CT, LAAs defined as voxels <-950 Hounsfield units, were extracted by software. The percent of LAAs relative to whole-lung volume (%LAAs) and the ratio between LAAs in the lobe to resect and whole-lung LAAs (%LAAs lobe ratio) were calculated. Cox proportional hazards regression analysis was used to test the association between OS and LAAs. RESULTS the final sample included 75 patients (median age 70 years, IQR 63-75 years; females 29/75, 39%). It identified a significant association with OS for pathological stage III (HR, 6.50; 95%CI, 1.11-37.92; p = 0.038), staging CT %LAAs ≥ 5% (HR, 7.27; 95%CI, 1.60-32.96; p = 0.010), and staging CT %LAA lobe ratio > 10% (HR, 0.24; 95%CI 0.05-0.94; p = 0.046). CONCLUSIONS in patients with NSCLC who underwent radical surgery, a %LAAs ≥ 5% and a %LAA lobe ratio > 10% at staging CT are predictors, respectively, of shorter and longer OS. The LAA ratio to the whole lung at staging CT could be a critical factor to predict the overall survival of the NSCLC patients treated by surgery.
Collapse
Affiliation(s)
- Davide Colombi
- Department of Radiological Functions, Radiology Unit, AUSL Piacenza, Via Taverna 49, 29121 Piacenza, Italy
| | | | - Rocco Delfanti
- Department of Surgery, General Surgery Unit, AUSL Piacenza, Via Taverna 49, 29121 Piacenza, Italy
| | - Sara Chiesa
- Emergency Department, Pulmonology Unit, AUSL Piacenza, Via Taverna 49, 29121 Piacenza, Italy
| | - Nicola Morelli
- Department of Radiological Functions, Radiology Unit, AUSL Piacenza, Via Taverna 49, 29121 Piacenza, Italy
| | - Patrizio Capelli
- Department of Surgery, General Surgery Unit, AUSL Piacenza, Via Taverna 49, 29121 Piacenza, Italy
| | - Cosimo Franco
- Emergency Department, Pulmonology Unit, AUSL Piacenza, Via Taverna 49, 29121 Piacenza, Italy
| | - Emanuele Michieletti
- Department of Radiological Functions, Radiology Unit, AUSL Piacenza, Via Taverna 49, 29121 Piacenza, Italy
| |
Collapse
|
19
|
Abozid H, Kirby M, Nasir N, Hartl S, Breyer-Kohansal R, Breyer MK, Burghuber OC, Bourbeau J, Wouters EFM, Tan W. CT airway remodelling and chronic cough. BMJ Open Respir Res 2023; 10:10/1/e001462. [PMID: 37173074 DOI: 10.1136/bmjresp-2022-001462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
RATIONALE Structural airway changes related to chronic cough (CC) are described in the literature, but so far reported data are rare and non-conclusive. Furthermore, they derive mainly from cohorts with small sample sizes. Advanced CT imaging not only allows airway abnormalities to be quantified, but also to count the number of visible airways. The current study evaluates these airway abnormalities in CC and assesses the contribution of CC in addition to CT findings on the progression of airflow limitation, defined as a decline in forced expiratory volume in 1 s (FEV1) over time. METHODS A total of 1183 males and females aged ≥40 years with thoracic CT scans and valid spirometry from Canadian Obstructive Lung Disease, a Canadian multicentre, population-based study has been included in this analysis. Participants were stratified into 286 never-smokers, 297 ever-smokers with normal lung function and 600 with chronic obstructive pulmonary disease (COPD) of different severity grades. Imaging parameters analyses included total airway count (TAC), airway wall thickness, emphysema as well as parameters for functional small airway disease quantification. RESULTS Irrespective of COPD presence, CC was not related to specific airway and lung structure features. Independent of TAC and emphysema score, CC was highly associated with FEV1 decline over time in the entire study population, particularly in ever-smokers (p<0.0001). CONCLUSION The absence of specific structural CT features independently from COPD presence indicate that other underlying mechanisms are contributing to the symptomatology of CC. On top of derived CT parameters, CC seems to be independently associated with FEV1 decline. TRIAL REGISTRATION NUMBER NCT00920348.
Collapse
Affiliation(s)
- Hazim Abozid
- Department of Respiratory and Pulmonary Diseases, Clinic Penzing, Vienna, Austria
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Unity Health Toronto, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Neha Nasir
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Pulmonary Diseases, Clinic Penzing, Vienna Healthcare Group, Vienna, Austria
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Pulmonary Diseases, Clinic Penzing, Vienna Healthcare Group, Vienna, Austria
| | - Marie-Kathrin Breyer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Pulmonary Diseases, Clinic Penzing, Vienna Healthcare Group, Vienna, Austria
| | - Otto C Burghuber
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Faculty for Medicine, Sigmund Freud University, Vienna, Austria
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Research Institute, McGill University, Montreal, Québec, Canada
| | - Emiel F M Wouters
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wan Tan
- Centre for Heart Lung Innovation, University of British Columbia, St Pauls's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Impulse Oscillometry as a Diagnostic Test for Pulmonary Emphysema in a Clinical Setting. J Clin Med 2023; 12:jcm12041547. [PMID: 36836082 PMCID: PMC9967696 DOI: 10.3390/jcm12041547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Body plethysmography (BP) is the standard pulmonary function test (PFT) in pulmonary emphysema diagnosis, but not all patients can cooperate to this procedure. An alternative PFT, impulse oscillometry (IOS), has not been investigated in emphysema diagnosis. We investigated the diagnostic accuracy of IOS in the diagnosis of emphysema. Eighty-eight patients from the pulmonary outpatient clinic at Lillebaelt Hospital, Vejle, Denmark, were included in this cross-sectional study. A BP and an IOS were performed in all patients. Computed tomography scan verified presence of emphysema in 20 patients. The diagnostic accuracy of BP and IOS for emphysema was evaluated with two multivariable logistic regression models: Model 1 (BP variables) and Model 2 (IOS variables). Model 1 had a cross-validated area under the ROC curve (CV-AUC) = 0.892 (95% CI: 0.654-0.943), a positive predictive value (PPV) = 59.3%, and a negative predictive value (NPV) = 95.0%. Model 2 had a CV-AUC = 0.839 (95% CI: 0.688-0.931), a PPV = 55.2%, and an NPV = 93.7%. We found no statistically significant difference between the AUC of the two models. IOS is quick and easy to perform, and it can be used as a reliable rule-out method for emphysema.
Collapse
|
21
|
Kahnert K, Jörres RA, Kauczor HU, Alter P, Trudzinski FC, Herth F, Jobst B, Weinheimer O, Nauck S, Mertsch P, Kauffmann-Guerrero D, Behr J, Bals R, Watz H, Rabe KF, Welte T, Vogelmeier CF, Biederer J. Standardized airway wall thickness Pi10 from routine CT scans of COPD patients as imaging biomarker for disease severity, lung function decline, and mortality. Ther Adv Respir Dis 2023; 17:17534666221148663. [PMID: 36718763 PMCID: PMC9896094 DOI: 10.1177/17534666221148663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Chest computed tomography (CT) is increasingly used for phenotyping and monitoring of patients with COPD. The aim of this work was to evaluate the association of Pi10 as a measure of standardized airway wall thickness on CT with exacerbations, mortality, and response to triple therapy. METHODS Patients of GOLD grades 1-4 of the COSYCONET cohort with prospective CT scans were included. Pi10 was automatically computed and analyzed for its relationship to COPD severity, comorbidities, lung function, respiratory therapy, and mortality over a 6-year period, using univariate and multivariate comparisons. RESULTS We included n = 433 patients (61%male). Pi10 was dependent on both GOLD grades 1-4 (p = 0.009) and GOLD groups A-D (p = 0.008); it was particularly elevated in group D, and ROC analysis yielded a cut-off of 0.26 cm. Higher Pi10 was associated to lower FEV1 % predicted and higher RV/TLC, moreover the annual changes of lung function parameters (p < 0.05), as well as to an airway-dominated phenotype and a history of myocardial infarction (p = 0.001). These associations were confirmed in multivariate analyses. Pi10 was lower in patients receiving triple therapy, in particular in patients of GOLD groups C and D. Pi10 was also a significant predictor for mortality (p = 0.006), even after including multiple other predictors. CONCLUSION In summary, Pi10 was found to be predictive for the course of the disease in COPD, in particular mortality. The fact that Pi10 was lower in patients with severe COPD receiving triple therapy might hint toward additional effects of this functional therapy on airway remodeling. REGISTRATION ClinicalTrials.gov, Identifier: NCT01245933.
Collapse
Affiliation(s)
- Kathrin Kahnert
- Department of Medicine V, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), University Hospital, LMU Munich, Ziemssenstr. 5, Munich 80336, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Franziska C Trudzinski
- Thoraxklinik-Heidelberg gGmbH, Translational Lung Research Centre.,Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Felix Herth
- Thoraxklinik-Heidelberg gGmbH, Translational Lung Research Centre.,Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Bertram Jobst
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Sebastian Nauck
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Pontus Mertsch
- Department of Medicine V, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Klaus F Rabe
- Lung Clinic Grosshansdorf, Airway Research Center (ARCN), Grosshansdorf, German.,Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Tobias Welte
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany.,Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,University of Latvia, Faculty of Medicine, Raina bulvaris 19, Riga, LV-1586 Latvia
| |
Collapse
|
22
|
Weikert T, Friebe L, Wilder-Smith A, Yang S, Sperl JI, Neumann D, Balachandran A, Bremerich J, Sauter AW. Automated quantification of airway wall thickness on chest CT using retina U-Nets - Performance evaluation and application to a large cohort of chest CTs of COPD patients. Eur J Radiol 2022; 155:110460. [PMID: 35963191 DOI: 10.1016/j.ejrad.2022.110460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/17/2022] [Accepted: 07/31/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Airway wall thickening is a consequence of chronic inflammatory processes and usually only qualitatively described in CT radiology reports. The purpose of this study is to automatically quantify airway wall thickness in multiple airway generations and assess the diagnostic potential of this parameter in a large cohort of patients with Chronic Obstructive Pulmonary Disease (COPD). MATERIALS AND METHODS This retrospective, single-center study included a series of unenhanced chest CTs. Inclusion criteria were the mentioning of an explicit COPD GOLD stage in the written radiology report and time period (01/2019-12/2021). A control group included chest CTs with completely unremarkable lungs according to the report. The DICOM images of all cases (axial orientation; slice-thickness: 1 mm; soft-tissue kernel) were processed by an AI algorithm pipeline consisting of (A) a 3D-U-Net for det detection and tracing of the bronchial tree centerlines (B) extraction of image patches perpendicular to the centerlines of the bronchi, and (C) a 2D U-Net for segmentation of airway walls on those patches. The performance of centerline detection and wall segmentation was assessed. The imaging parameter average wall thickness was calculated for bronchus generations 3-8 (AWT3-8) across the lungs. Mean AWT3-8 was compared between five groups (control, COPD Gold I-IV) using non-parametric statistics. Furthermore, the established emphysema score %LAV-950 was calculated and used to classify scans (normal vs. COPD) alone and in combination with AWT3-8. RESULTS: A total of 575 chest CTs were processed. Algorithm performance was very good (airway centerline detection sensitivity: 86.9%; airway wall segmentation Dice score: 0.86). AWT3-8 was statistically significantly greater in COPD patients compared to controls (2.03 vs. 1.87 mm, p < 0.001) and increased with COPD stage. The classifier that combined %LAV-950 and AWT3-8 was superior to the classifier using only %LAV-950 (AUC = 0.92 vs. 0.79). CONCLUSION Airway wall thickness increases in patients suffering from COPD and is automatically quantifiable. AWT3-8 could become a CT imaging parameter in COPD complementing the established emphysema biomarker %LAV-950. CLINICAL RELEVANCE STATEMENT Quantitative measurements considering the complete visible bronchial tree instead of qualitative description could enhance radiology reports, allow for precise monitoring of disease progression and diagnosis of early stages of disease.
Collapse
Affiliation(s)
- Thomas Weikert
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Liene Friebe
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Adrian Wilder-Smith
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Shan Yang
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | | | - Dominik Neumann
- Siemens Healthineers, Henkestrasse 127, 91052 Erlangen, Germany
| | | | - Jens Bremerich
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Alexander W Sauter
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
23
|
Kypreos M, Batra K, Glazer CS, Adams TN. Impact of number and type of identified antigen on transplant-free survival in hypersensitivity pneumonitis. PLoS One 2022; 17:e0273544. [PMID: 36048790 PMCID: PMC9436128 DOI: 10.1371/journal.pone.0273544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background Identification of inciting antigen can affect diagnostic confidence, quality of life, and prognosis in patients with HP. It is unknown whether the number and type of antigen affect results of diagnostic testing or prognosis, whether antigen identified by clinical history alone affects prognosis, and whether feather exposure is associated with outcomes similar to those of other antigens. Methods To evaluate whether the number or type of antigen identified by clinical history alone affects clinical outcomes, we evaluated a retrospective cohort of patients with a high or definite probability of HP based on recent guidelines. Results In our retrospective cohort, 136 patients met high or definite probability of HP and were included in the analysis. Median transplant-free survival was better in patients with antigen identified on clinical history alone than patients without identified antigen. Feather exposure was associated with improved TFS compared to patients without antigen identified; there was no difference in TFS between patients with feather exposure and either mold or live bird exposure. Mold antigen was associated with increased risk of fibrotic HP compared to avian antigen. Among patients with identified antigen, the number and type of antigen did not affect TFS. Discussion Our study suggests that clinical history is adequate for providing prognostic information to patients with HP and classifying the diagnostic probability of HP according to recent guidelines. Feather exposure should be considered an inciting antigen in patients with ILD.
Collapse
Affiliation(s)
- Margaret Kypreos
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Kiran Batra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Craig S. Glazer
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Traci N. Adams
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
24
|
Quantitative Computed Tomography: What Clinical Questions Can it Answer in Chronic Lung Disease? Lung 2022; 200:447-455. [PMID: 35751660 PMCID: PMC9378468 DOI: 10.1007/s00408-022-00550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023]
Abstract
Quantitative computed tomography (QCT) has recently gained an important role in the functional assessment of chronic lung disease. Its capacity in diagnostic, staging, and prognostic evaluation in this setting is similar to that of traditional pulmonary function testing. Furthermore, it can demonstrate lung injury before the alteration of pulmonary function test parameters, and it enables the classification of disease phenotypes, contributing to the customization of therapy and performance of comparative studies without the intra- and inter-observer variation that occurs with qualitative analysis. In this review, we address technical issues with QCT analysis and demonstrate the ability of this modality to answer clinical questions encountered in daily practice in the management of patients with chronic lung disease.
Collapse
|
25
|
Barros MC, Hochhegger B, Altmayer S, Zanon M, Sartori G, Watte G, do Nascimento MHS, Chatkin JM. The Normal Lung Index From Quantitative Computed Tomography for the Evaluation of Obstructive and Restrictive Lung Disease. J Thorac Imaging 2022; 37:246-252. [PMID: 35749622 DOI: 10.1097/rti.0000000000000629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Our objective was to evaluate whether the normal lung index (NLI) from quantitative computed tomography (QCT) analysis can be used to predict mortality as well as pulmonary function tests (PFTs) in patients with chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD). MATERIALS AND METHODS Normal subjects (n=20) and patients with COPD (n=172) and ILD (n=114) who underwent PFTs and chest CT were enrolled retrospectively in this study. QCT measures included the NLI, defined as the ratio of the lung with attenuation between -950 and -700 Hounsfield units (HU) over the total lung volume (-1024 to -250 HU, mL), high-attenuation area (-700 to -250 HU, %), emphysema index (>6% of pixels < -950 HU), skewness, kurtosis, and mean lung attenuation. Coefficients of correlation between QCT measurements and PFT results in all subjects were calculated. Univariate and multivariate survival analyses were performed to assess mortality prediction by disease. RESULTS The Pearson correlation analysis showed that the NLI correlated moderately with the forced expiratory volume in 1 second in subjects with COPD (r=0.490, P<0.001) and the forced vital capacity in subjects with ILD (r=0.452, P<0.001). Multivariate analysis revealed that the NLI of <70% was a significant independent predictor of mortality in subjects with COPD (hazard ratio=3.14, P=0.034) and ILD (hazard ratio=2.72, P=0.005). CONCLUSION QCT analysis, specifically the NLI, can also be used to predict mortality in individuals with COPD and ILD.
Collapse
Affiliation(s)
| | | | | | - Matheus Zanon
- Irmandade Santa Casa de Misericordia de Porto Alegre, Porto Alegre
| | - Gabriel Sartori
- Irmandade Santa Casa de Misericordia de Porto Alegre, Porto Alegre
| | | | | | | |
Collapse
|
26
|
Choi H, Kim H, Jin KN, Jeong YJ, Chae KJ, Lee KH, Yong HS, Gil B, Lee HJ, Lee KY, Jeon KN, Yi J, Seo S, Ahn C, Lee J, Oh K, Goo JM. A Challenge for Emphysema Quantification Using a Deep Learning Algorithm With Low-dose Chest Computed Tomography. J Thorac Imaging 2022; 37:253-261. [PMID: 35749623 DOI: 10.1097/rti.0000000000000647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE We aimed to identify clinically relevant deep learning algorithms for emphysema quantification using low-dose chest computed tomography (LDCT) through an invitation-based competition. MATERIALS AND METHODS The Korean Society of Imaging Informatics in Medicine (KSIIM) organized a challenge for emphysema quantification between November 24, 2020 and January 26, 2021. Seven invited research teams participated in this challenge. In total, 558 pairs of computed tomography (CT) scans (468 pairs for the training set, and 90 pairs for the test set) from 9 hospitals were collected retrospectively or prospectively. CT acquisition followed the hospitals' protocols to reflect the real-world clinical setting. Using the training set, each team developed an algorithm that generated converted LDCT by changing the pixel values of LDCT to simulate those of standard-dose CT (SDCT). The agreement between SDCT and LDCT was evaluated using the intraclass correlation coefficient (ICC; 2-way random effects, absolute agreement, and single rater) for the percentage of low-attenuated area below -950 HU (LAA-950 HU), κ value for emphysema categorization (LAA-950 HU, <5%, 5% to 10%, and ≥10%) and cosine similarity of LAA-950 HU. RESULTS The mean LAA-950 HU of the test set was 14.2%±10.5% for SDCT, 25.4%±10.2% for unconverted LDCT, and 12.9%±10.4%, 11.7%±10.8%, and 12.4%±10.5% for converted LDCT (top 3 teams). The agreement between the SDCT and converted LDCT of the first-place team was 0.94 (95% confidence interval: 0.90, 0.97) for ICC, 0.71 (95% confidence interval: 0.58, 0.84) for categorical agreement, and 0.97 (interquartile range: 0.94 to 0.99) for cosine similarity. CONCLUSIONS Emphysema quantification with LDCT was feasible through deep learning-based CT conversion strategies.
Collapse
Affiliation(s)
- Hyewon Choi
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine
| | - Hyungjin Kim
- Department of Radiology, Seoul National University College of Medicine
| | - Kwang Nam Jin
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul
| | - Yeon Joo Jeong
- Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Busan
| | - Kum Ju Chae
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju
| | - Kyung Hee Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do
| | - Hwan Seok Yong
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine
| | - Bomi Gil
- Department of Radiology, College of Medicine, The Catholic University of Korea
| | - Hye-Jeong Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine
| | - Ki Yeol Lee
- Department of Radiology, Korea University College of Medicine
| | - Kyung Nyeo Jeon
- Department of Radiology, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | - Kyuhyup Oh
- Bio Medical Research Center, Korea Testing Laboratory
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine
- Cancer Research Institute, Seoul National University, Seoul
| |
Collapse
|
27
|
Suzuki Y, Kitaguchi Y, Ueno F, Droma Y, Goto N, Kinjo T, Wada Y, Yasuo M, Hanaoka M. Associations Between Morphological Phenotypes of COPD and Clinical Characteristics in Surgically Resected Patients with COPD and Concomitant Lung Cancer. Int J Chron Obstruct Pulmon Dis 2022; 17:1443-1452. [PMID: 35761955 PMCID: PMC9233490 DOI: 10.2147/copd.s366265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The associations between morphological phenotypes of COPD based on the chest computed tomography (CT) findings and clinical characteristics in surgically resected patients with COPD and concomitant lung cancer are unclear. The purpose of this study was to clarify the differences in clinical characteristics and prognosis among morphological phenotypes based on the chest CT findings in these patients. Patients and Methods We retrospectively reviewed the medical records of 132 patients with COPD and concomitant lung cancer who had undergone pulmonary resection for primary lung cancer. According to the presence of emphysema and bronchial wall thickness on chest CT, patients were classified into three phenotypes: non-emphysema phenotype, emphysema phenotype, or mixed phenotype. Results The mixed phenotype was associated with poorer performance status, higher score on the modified British Medical Research Council (mMRC) dyspnea scale, higher residual volume in pulmonary function, and higher proportion of squamous cell carcinoma than the other phenotypes. Univariate and multivariate Cox proportional hazards regression analyses showed that the extent of emphysema on chest CT, presented as a low attenuation area (LAA) score, was an independent determinant that predicted prognosis. In the Kaplan-Meier analysis, the Log rank test showed significant differences in survival between the non-emphysema and mixed phenotypes, and between the emphysema and mixed phenotypes. Conclusion The cross-sectional pre-operative LAA score can predict the prognosis in surgically resected patients with COPD and concomitant lung cancer. The COPD phenotype with both emphysema and bronchial wall thickness on chest CT was associated with poorer performance status, greater extent of dyspnea, greater impairment of pulmonary function, and worse prognosis.
Collapse
Affiliation(s)
- Yusuke Suzuki
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yoshiaki Kitaguchi
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Fumika Ueno
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yunden Droma
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Norihiko Goto
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takumi Kinjo
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yosuke Wada
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masanori Yasuo
- Departments of Clinical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
28
|
Luoto J, Pihlsgård M, Pistolesi M, Paoletti M, Occhipinti M, Wollmer P, Elmståhl S. Emphysema severity index (ESI) associated with respiratory death in a large Swedish general population. Respir Med 2022; 200:106899. [PMID: 35716603 DOI: 10.1016/j.rmed.2022.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Recently, it has been shown and validated that presence and severity of emphysema on computed tomography could be estimated by a novel spirometry based index, the emphysema severity index (ESI). However, the clinical relevance of the index has not been established. We conducted cox-regression analyses with adjustment for age, smoking, sex, forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) to study whether ESI was associated with all-cause, respiratory and non-respiratory 10-year mortality. Study population was all participants with acceptable spirometry from the Gott Åldrande i Skåne study, a Swedish general population aged 65-102 years old. ESI is expressed as a continuous numeric parameter on a scale ranging from 0 to 10. Out of the 4453 participants in the main study, 3974 was included in the final analysis. Higher age, higher ESI, lower FEV1 and male sex increased hazard of respiratory death. ESI was significantly correlated to respiratory death but not non-respiratory death, while high age, male sex and low FEV1 was associated with non-respiratory as well as respiratory death. Current smoking habits increased the hazard of respiratory death but did not reach significance (p 0.066) One unit increase in ESI increased hazard of all-cause death by 20% (p 0.0002) and hazard of respiratory death by 57% (p < 0.0001). The ESI is a novel clinical marker of emphysema severity that is associated with respiratory death specifically. Since it can be derived from standard spirometry there are potential benefits for clinical practice in terms of more individualised prognosis and treatment alternatives.
Collapse
Affiliation(s)
- Johannes Luoto
- Department of Clinical Sciences in Malmö, Division of Geriatric Medicine. Skåne University Hospital, Lund University, Malmö, Sweden.
| | - Mats Pihlsgård
- Department of Clinical Sciences in Malmö, Division of Geriatric Medicine. Skåne University Hospital, Lund University, Malmö, Sweden.
| | - Massimo Pistolesi
- Dept. Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Matteo Paoletti
- Dept. Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | | | - Per Wollmer
- Clinical Physiology and Nuclear Medicine Unit, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden.
| | - Sölve Elmståhl
- Department of Clinical Sciences in Malmö, Division of Geriatric Medicine. Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Sin S, Lim MN, Kim J, Bak SH, Kim WJ. Association between plasma sRAGE and emphysema according to the genotypes of AGER gene. BMC Pulm Med 2022; 22:58. [PMID: 35144588 PMCID: PMC8832795 DOI: 10.1186/s12890-022-01848-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Higher soluble receptor for advanced glycation end product (sRAGE) levels are considered to be associated with severe emphysema. However, the relationship remains uncertain when the advanced glycation end-product specific receptor (AGER) gene is involved. We aimed to analyse the association between sRAGE levels and emphysema according to the genotypes of rs2070600 in the AGER gene. Methods We genotyped rs2070600 and measured the plasma concentration of sRAGE in each participant. Emphysema was quantified based on the chest computed tomography findings. We compared sRAGE levels based on the presence or absence and severity of emphysema in each genotype. Multiple logistic and linear regression models were used for the analyses. Results A total of 436 participants were included in the study. Among them, 64.2% had chronic obstructive pulmonary disease and 34.2% had emphysema. Among the CC-genotyped participants, the sRAGE level was significantly higher in participants without emphysema than in those with emphysema (P < 0.001). In addition, sRAGE levels were negatively correlated with emphysema severity in CC-genotyped patients (r = − 0.268 P < 0.001). Multiple regression analysis revealed that sRAGE was an independent protective factor for the presence of emphysema (adjusted odds ratio, 0.24; 95% confidence interval (CI) 0.11–0.51) and severity of emphysema (β = − 3.28, 95% CI − 4.86 to − 1.70) in CC-genotyped participants. Conclusion Plasma sRAGE might be a biomarker with a protective effect on emphysema among CC-genotyped patients of rs2070600 on the AGER gene. This is important in determining the target group for the future prediction and treatment of emphysema. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01848-9.
Collapse
Affiliation(s)
- Sooim Sin
- Department of Internal Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Myung-Nam Lim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - So Hyeon Bak
- Department of Radiology, , School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
30
|
Ezponda A, Casanova C, Divo M, Marín-Oto M, Cabrera C, Marín JM, Bastarrika G, Pinto-Plata V, Martin-Palmero Á, Polverino F, Celli BR, de Torres JP. Chest CT-assessed comorbidities and all-cause mortality risk in COPD patients in the BODE cohort. Respirology 2022; 27:286-293. [PMID: 35132732 PMCID: PMC9303420 DOI: 10.1111/resp.14223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE The availability of chest computed tomography (CT) imaging can help diagnose comorbidities associated with chronic obstructive pulmonary disease (COPD). Their systematic identification and relationship with all-cause mortality have not been explored. Furthermore, whether their CT-detected prevalence differs from clinical diagnosis is unknown. METHODS The prevalence of 10 CT-assessed comorbidities was retrospectively determined at baseline in 379 patients (71% men) with mild to severe COPD attending pulmonary clinics. Anthropometrics, smoking history, dyspnoea, lung function, exercise capacity, BODE (BMI, Obstruction, Dyspnoea and Exercise capacity) index and exacerbations rate were recorded. The prevalence of CT-determined comorbidities was compared with that recorded clinically. Over a median of 78 months of observation, the independent association with all-cause mortality was analysed. A 'CT-comorbidome' graphically expressed the strength of their association with mortality risk. RESULTS Coronary artery calcification, emphysema and bronchiectasis were the most prevalent comorbidities (79.8%, 62.7% and 33.9%, respectively). All were underdiagnosed before CT. Coronary artery calcium (hazard ratio [HR] 2.09; 95% CI 1.03-4.26, p = 0.042), bronchiectasis (HR 2.12; 95% CI 1.05-4.26, p = 0.036) and low psoas muscle density (HR 2.61; 95% CI 1.23-5.57, p = 0.010) were independently associated with all-cause mortality and helped define the 'CT-comorbidome'. CONCLUSION This study of COPD patients shows that systematic detection of 10 CT-diagnosed comorbidities, most of which were not detected clinically, provides information of potential use to patients and clinicians caring for them.
Collapse
Affiliation(s)
- Ana Ezponda
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ciro Casanova
- Pulmonary Department, Hospital Ntra Sra de Candelaria, Tenerife, Spain.,Respiratory Research Unit, Hospital Ntra Sra de Candelaria, Tenerife, Spain
| | - Miguel Divo
- Pulmonary Department, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marta Marín-Oto
- Pulmonary Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Carlos Cabrera
- Pulmonary Department, Hospital Universitario Doctor Negrín, Las Palmas, Spain
| | - Jose M Marín
- Pulmonary Department, Hospital Universitario Miguel Servet, Instituto Aragonés Ciencias Salud & CIBERES, Zaragoza, Spain
| | - Gorka Bastarrika
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Víctor Pinto-Plata
- Pulmonary Department, Baystate Medical Center, Springfield, Massachusetts, USA
| | | | - Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Bartolome R Celli
- Pulmonary Department, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Juan P de Torres
- Pulmonary Department, Clínica Universidad de Navarra, Pamplona, Spain.,Respiratory Investigation Unit, Queen's University, Kingston, Ontario, Canada.,Respirology and Sleep Medicine Division, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
31
|
Martinez FJ, Agusti A, Celli BR, Han MK, Allinson JP, Bhatt SP, Calverley P, Chotirmall SH, Chowdhury B, Darken P, Da Silva CA, Donaldson G, Dorinsky P, Dransfield M, Faner R, Halpin DM, Jones P, Krishnan JA, Locantore N, Martinez FD, Mullerova H, Price D, Rabe KF, Reisner C, Singh D, Vestbo J, Vogelmeier CF, Wise RA, Tal-Singer R, Wedzicha JA. Treatment Trials in Young Patients with Chronic Obstructive Pulmonary Disease and Pre-Chronic Obstructive Pulmonary Disease Patients: Time to Move Forward. Am J Respir Crit Care Med 2022; 205:275-287. [PMID: 34672872 PMCID: PMC8886994 DOI: 10.1164/rccm.202107-1663so] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the end result of a series of dynamic and cumulative gene-environment interactions over a lifetime. The evolving understanding of COPD biology provides novel opportunities for prevention, early diagnosis, and intervention. To advance these concepts, we propose therapeutic trials in two major groups of subjects: "young" individuals with COPD and those with pre-COPD. Given that lungs grow to about 20 years of age and begin to age at approximately 50 years, we consider "young" patients with COPD those patients in the age range of 20-50 years. Pre-COPD relates to individuals of any age who have respiratory symptoms with or without structural and/or functional abnormalities, in the absence of airflow limitation, and who may develop persistent airflow limitation over time. We exclude from the current discussion infants and adolescents because of their unique physiological context and COPD in older adults given their representation in prior randomized controlled trials (RCTs). We highlight the need of RCTs focused on COPD in young patients or pre-COPD to reduce disease progression, providing innovative approaches to identifying and engaging potential study subjects. We detail approaches to RCT design, including potential outcomes such as lung function, patient-reported outcomes, exacerbations, lung imaging, mortality, and composite endpoints. We critically review study design components such as statistical powering and analysis, duration of study treatment, and formats to trial structure, including platform, basket, and umbrella trials. We provide a call to action for treatment RCTs in 1) young adults with COPD and 2) those with pre-COPD at any age.
Collapse
Affiliation(s)
| | - Alvar Agusti
- Catedra Salut Respiratoria and
- Institut Respiratorio, Hospital Clinic, Barcelona, Spain
- Institut d’investigacions biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Bartolome R. Celli
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - MeiLan K. Han
- University of Michigan Health System, Ann Arbor, Michigan
| | - James P. Allinson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Surya P. Bhatt
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter Calverley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | - Carla A. Da Silva
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gavin Donaldson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Mark Dransfield
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rosa Faner
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | | | - Paul Jones
- St. George’s University of London, London, United Kingdom
| | | | | | | | | | - David Price
- Observational and Pragmatic Research Institute, Singapore
- Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Klaus F. Rabe
- LungenClinic Grosshansdorf, Member of the German Center for Lung Research, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University Kiel, Member of the German Center for Lung Research Kiel, Germany
| | | | | | - Jørgen Vestbo
- Manchester University NHS Trust, Manchester, United Kingdom
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | | | | | | |
Collapse
|
32
|
Kooner HK, McIntosh MJ, Desaigoudar V, Rayment JH, Eddy RL, Driehuys B, Parraga G. Pulmonary functional MRI: Detecting the structure-function pathologies that drive asthma symptoms and quality of life. Respirology 2022; 27:114-133. [PMID: 35008127 PMCID: PMC10025897 DOI: 10.1111/resp.14197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary functional MRI (PfMRI) using inhaled hyperpolarized, radiation-free gases (such as 3 He and 129 Xe) provides a way to directly visualize inhaled gas distribution and ventilation defects (or ventilation heterogeneity) in real time with high spatial (~mm3 ) resolution. Both gases enable quantitative measurement of terminal airway morphology, while 129 Xe uniquely enables imaging the transfer of inhaled gas across the alveolar-capillary tissue barrier to the red blood cells. In patients with asthma, PfMRI abnormalities have been shown to reflect airway smooth muscle dysfunction, airway inflammation and remodelling, luminal occlusions and airway pruning. The method is rapid (8-15 s), cost-effective (~$300/scan) and very well tolerated in patients, even in those who are very young or very ill, because unlike computed tomography (CT), positron emission tomography and single-photon emission CT, there is no ionizing radiation and the examination takes only a few seconds. However, PfMRI is not without limitations, which include the requirement of complex image analysis, specialized equipment and additional training and quality control. We provide an overview of the three main applications of hyperpolarized noble gas MRI in asthma research including: (1) inhaled gas distribution or ventilation imaging, (2) alveolar microstructure and finally (3) gas transfer into the alveolar-capillary tissue space and from the tissue barrier into red blood cells in the pulmonary microvasculature. We highlight the evidence that supports a deeper understanding of the mechanisms of asthma worsening over time and the pathologies responsible for symptoms and disease control. We conclude with a summary of approaches that have the potential for integration into clinical workflows and that may be used to guide personalized treatment planning.
Collapse
Affiliation(s)
- Harkiran K Kooner
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Marrissa J McIntosh
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Vedanth Desaigoudar
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jonathan H Rayment
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel L Eddy
- Centre of Heart Lung Innovation, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Centre, Durham, North Carolina, USA
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
33
|
Kellerer C, Jörres RA, Schneider A, Alter P, Kauczor HU, Jobst B, Biederer J, Bals R, Watz H, Behr J, Kauffmann-Guerrero D, Lutter J, Hapfelmeier A, Magnussen H, Trudzinski FC, Welte T, Vogelmeier CF, Kahnert K. Prediction of lung emphysema in COPD by spirometry and clinical symptoms: results from COSYCONET. Respir Res 2021; 22:242. [PMID: 34503520 PMCID: PMC8427948 DOI: 10.1186/s12931-021-01837-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lung emphysema is an important phenotype of chronic obstructive pulmonary disease (COPD), and CT scanning is strongly recommended to establish the diagnosis. This study aimed to identify criteria by which physicians with limited technical resources can improve the diagnosis of emphysema. Methods We studied 436 COPD patients with prospective CT scans from the COSYCONET cohort. All items of the COPD Assessment Test (CAT) and the St George’s Respiratory Questionnaire (SGRQ), the modified Medical Research Council (mMRC) scale, as well as data from spirometry and CO diffusing capacity, were used to construct binary decision trees. The importance of parameters was checked by the Random Forest and AdaBoost machine learning algorithms. Results When relying on questionnaires only, items CAT 1 & 7 and SGRQ 8 & 12 sub-item 3 were most important for the emphysema- versus airway-dominated phenotype, and among the spirometric measures FEV1/FVC. The combination of CAT item 1 (≤ 2) with mMRC (> 1) and FEV1/FVC, could raise the odds for emphysema by factor 7.7. About 50% of patients showed combinations of values that did not markedly alter the likelihood for the phenotypes, and these could be easily identified in the trees. Inclusion of CO diffusing capacity revealed the transfer coefficient as dominant measure. The results of machine learning were consistent with those of the single trees. Conclusions Selected items (cough, sleep, breathlessness, chest condition, slow walking) from comprehensive COPD questionnaires in combination with FEV1/FVC could raise or lower the likelihood for lung emphysema in patients with COPD. The simple, parsimonious approach proposed by us might help if diagnostic resources regarding respiratory diseases are limited. Trial registration ClinicalTrials.gov, Identifier: NCT01245933, registered 18 November 2010, https://clinicaltrials.gov/ct2/show/record/NCT01245933. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01837-2.
Collapse
Affiliation(s)
- Christina Kellerer
- School of Medicine, Institute of General Practice and Health Services Research, Technische Universität München/Klinikum Rechts der Isar, Orleansstr. 47, 81667, Munich, Germany. .,Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M), Ludwig-Maximilians-Universität München, Ziemssenstr. 1, 80336, Munich, Germany.
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M), Ludwig-Maximilians-Universität München, Ziemssenstr. 1, 80336, Munich, Germany
| | - Antonius Schneider
- School of Medicine, Institute of General Practice and Health Services Research, Technische Universität München/Klinikum Rechts der Isar, Orleansstr. 47, 81667, Munich, Germany
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Baldingerstrasse, 35043, Marburg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Bertram Jobst
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany.,Faculty of Medicine, University of Latvia, Raina bulvaris 19, Riga, 1586, Latvia.,Faculty of Medicine, Christian-Albrechts-Universität Zu Kiel, 24098, Kiel, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Kirrberger Straße 1, 66424, Homburg, Germany
| | - Henrik Watz
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Pulmonary Research Institute at LungenClinic Grosshansdorf, Woehrendamm 80, 22927, Grosshansdorf, Germany
| | - Jürgen Behr
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, German Center for Lung Research, Ziemssenstr. 1, 80336, Munich, Germany
| | - Diego Kauffmann-Guerrero
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, German Center for Lung Research, Ziemssenstr. 1, 80336, Munich, Germany
| | - Johanna Lutter
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Institute of Epidemiology, Helmholtz Zentrum München (GmbH) - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Alexander Hapfelmeier
- School of Medicine, Institute of General Practice and Health Services Research, Technische Universität München/Klinikum Rechts der Isar, Orleansstr. 47, 81667, Munich, Germany
| | - Helgo Magnussen
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Pulmonary Research Institute at LungenClinic Grosshansdorf, Woehrendamm 80, 22927, Grosshansdorf, Germany
| | - Franziska C Trudzinski
- Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Thoraxklinik-Heidelberg gGmbH, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Tobias Welte
- Department of Pneumology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Baldingerstrasse, 35043, Marburg, Germany
| | - Kathrin Kahnert
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, German Center for Lung Research, Ziemssenstr. 1, 80336, Munich, Germany
| |
Collapse
|
34
|
Pistenmaa CL, Nardelli P, Ash SY, Come CE, Diaz AA, Rahaghi FN, Barr RG, Young KA, Kinney GL, Simmons JP, Wade RC, Wells JM, Hokanson JE, Washko GR, San José Estépar R. Pulmonary Arterial Pruning and Longitudinal Change in Percent Emphysema and Lung Function: The Genetic Epidemiology of COPD Study. Chest 2021; 160:470-480. [PMID: 33607083 PMCID: PMC8411454 DOI: 10.1016/j.chest.2021.01.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pulmonary endothelial damage has been shown to precede the development of emphysema in animals, and vascular changes in humans have been observed in COPD and emphysema. RESEARCH QUESTION Is intraparenchymal vascular pruning associated with longitudinal progression of emphysema on CT imaging or decline in lung function over 5 years? STUDY DESIGN AND METHODS The Genetic Epidemiology of COPD Study enrolled ever smokers with and without COPD from 2008 through 2011. The percentage of emphysema-like lung, or "percent emphysema," was assessed at baseline and after 5 years on noncontrast CT imaging as the percentage of lung voxels < -950 Hounsfield units. An automated CT imaging-based tool assessed and classified intrapulmonary arteries and veins. Spirometry measures are postbronchodilator. Pulmonary arterial pruning was defined as a lower ratio of small artery volume (< 5 mm2 cross-sectional area) to total lung artery volume. Mixed linear models included demographics, anthropomorphics, smoking, and COPD, with emphysema models also adjusting for CT imaging scanner and lung function models adjusting for clinical center and baseline percent emphysema. RESULTS At baseline, the 4,227 participants were 60 ± 9 years of age, 50% were women, 28% were Black, 47% were current smokers, and 41% had COPD. Median percent emphysema was 2.1 (interquartile range, 0.6-6.3) and progressed 0.24 percentage points/y (95% CI, 0.22-0.26 percentage points/y) over 5.6 years. Mean FEV1 to FVC ratio was 68.5 ± 14.2% and declined 0.26%/y (95% CI, -0.30 to -0.23%/y). Greater pulmonary arterial pruning was associated with more rapid progression of percent emphysema (0.11 percentage points/y per 1-SD increase in arterial pruning; 95% CI, 0.09-0.16 percentage points/y), including after adjusting for baseline percent emphysema and FEV1. Arterial pruning also was associated with a faster decline in FEV1 to FVC ratio (-0.04%/y per 1-SD increase in arterial pruning; 95% CI, -0.008 to -0.001%/y). INTERPRETATION Pulmonary arterial pruning was associated with faster progression of percent emphysema and more rapid decline in FEV1 to FVC ratio over 5 years in ever smokers, suggesting that pulmonary vascular differences may be relevant in disease progression. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
| | - P Nardelli
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - S Y Ash
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - C E Come
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - A A Diaz
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - F N Rahaghi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - R G Barr
- Departments of Medicine and Epidemiology, Columbia University, New York, NY
| | - K A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - G L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - J P Simmons
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - R C Wade
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - J M Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - J E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - G R Washko
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | | |
Collapse
|
35
|
Deep radiomics-based survival prediction in patients with chronic obstructive pulmonary disease. Sci Rep 2021; 11:15144. [PMID: 34312450 PMCID: PMC8313653 DOI: 10.1038/s41598-021-94535-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Heterogeneous clinical manifestations and progression of chronic obstructive pulmonary disease (COPD) affect patient health risk assessment, stratification, and management. Pulmonary function tests are used to diagnose and classify the severity of COPD, but they cannot fully represent the type or range of pathophysiologic abnormalities of the disease. To evaluate whether deep radiomics from chest computed tomography (CT) images can predict mortality in patients with COPD, we designed a convolutional neural network (CNN) model for extracting representative features from CT images and then performed random survival forest to predict survival in COPD patients. We trained CNN-based binary classifier based on six-minute walk distance results (> 440 m or not) and extracted high-throughput image features (i.e., deep radiomics) directly from the last fully connected layer of it. The various sizes of fully connected layers and combinations of deep features were experimented using a discovery cohort with 344 patients from the Korean Obstructive Lung Disease cohort and an external validation cohort with 102 patients from Penang General Hospital in Malaysia. In the integrative analysis of discovery and external validation cohorts, with combining 256 deep features from the coronal slice of the vertebral body and two sagittal slices of the left/right lung, deep radiomics for survival prediction achieved concordance indices of 0.8008 (95% CI, 0.7642–0.8373) and 0.7156 (95% CI, 0.7024–0.7288), respectively. Deep radiomics from CT images could be used to predict mortality in COPD patients.
Collapse
|
36
|
Waatevik M, Frisk B, Real FG, Hardie JA, Bakke P, Eagan TM, Johannessen A. CT-defined emphysema in COPD patients and risk for change in desaturation status in 6-min walk test. Respir Med 2021; 187:106542. [PMID: 34340175 DOI: 10.1016/j.rmed.2021.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Emphysema and exercise induced desaturation (EID) are both related to poorer COPD prognosis. More knowledge of associations between emphysema and desaturation is needed for more efficient disease management. RESEARCH QUESTION Is emphysema a risk factor for both new and repeated desaturation, and is emphysema of more or less importance than other known risk factors? METHODS 283 COPD patients completed a 6-min walk test (6MWT) at baseline and one year later in the Bergen COPD cohort study 2006-2011. Degree of emphysema was assessed as percent of low attenuation areas (%LAA) under -950 Hounsfield units using high-resolution computed tomography at baseline. We performed multinomial logistic regression analysis, receiver operating curves (ROC) and area under the curve (AUC) estimations. Dominance analysis was used to rank emphysema and risk factors in terms of importance. RESULTS A one percent increase in %LAA increases the relative risk (RR) of new desaturation by 10 % (RR 1.1 (95%CI 1.1, 1.2)) and for repeated desaturation by 20 % (RR 1.2 (95%CI 1.1, 1.3)). Compared with other important desaturation risk factors, %LAA ranked as number one in the dominance analysis, accounting for 50 % and 37 % of the predicted variance for new and repeated desaturators, respectively. FEV1% predicted accounted for 9 % and 24 %, and resting SpO2 accounted for 22 % and 21 % for new and repeated desaturation. CONCLUSION Emphysema increases the risk of developing and repeatedly experiencing EID. Emphysema seems to be a more important risk factor for desaturation than FEV1% predicted and resting saturation.
Collapse
Affiliation(s)
- Marie Waatevik
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway.
| | - Bente Frisk
- Dept of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway; Dept of Physiotherapy, Haukeland University Hospital, Bergen, Norway
| | - Francisco Gómez Real
- Dept of Clinical Science, University of Bergen, Bergen, Norway; Dept of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | | | - Per Bakke
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Tomas Mikal Eagan
- Dept of Clinical Science, University of Bergen, Bergen, Norway; Dept of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
37
|
Lim JK, Park B, Park J, Choi KJ, Jung CY, Kim YH, Kim JY, Moon S, Lee YH, Lee J. Impact of Computed Tomography-Quantified Emphysema Score on Clinical Outcome in Patients with COVID-19. Int J Gen Med 2021; 14:3327-3333. [PMID: 34285557 PMCID: PMC8285278 DOI: 10.2147/ijgm.s317295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is considered a risk factor for poor outcomes in patients with coronavirus disease 2019 (COVID-19). However, data on the prognostic impact of radiological emphysema extent on patients with COVID-19 are limited. Thus, this study aimed to examine whether computed tomography (CT)-quantified emphysema score is associated with a worse clinical outcome in patients with COVID-19. Methods Volumetric quantitative analyses of CT images were performed to obtain emphysema scores in COVID-19 patients admitted to four tertiary referral hospitals in Daegu, South Korea, between February 18 and March 25, 2020. Patients were divided into three groups according to emphysema score (emphysema score ≤1%, 1%< emphysema score ≤5%, and emphysema score >5%). Results A total of 146 patients with confirmed SARS-CoV-2 infection were included. The median emphysema score was 1.0% (interquartile range, 0.5–1.8%). Eight patients (6%) had a previous COPD diagnosis. Eighty (55%), 55 (38%), and 11 (8%) patients had emphysema scores ≤1%, between 1% and 5%, and >5%, respectively. The number of patients who received oxygen therapy two weeks after admission was significantly higher in the group with emphysema scores >5% than in other groups (p=0.025). The frequency of deaths was three (27%) in the group with emphysema scores >5% and tended to be higher than that in other groups. Multivariate analysis revealed that age, COPD, and serum lactate dehydrogenase levels were associated with a greater risk of in-hospital mortality in patients with COVID-19. Conclusion The current study demonstrated that patients with CT-quantified emphysema scores >5% tended to progress to severe disease over time; however, they did not exhibit an increased risk of mortality in our COVID-19 cohort. Further studies with consideration of both emphysema extent and airflow limitation degree are warranted.
Collapse
Affiliation(s)
- Jae-Kwang Lim
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Byunggeon Park
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jongmin Park
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Keum-Ju Choi
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Chi-Young Jung
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Young Hwan Kim
- Department of Radiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Jin Young Kim
- Department of Radiology, Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sungjun Moon
- Department of Radiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
38
|
Automated Diseased Lung Volume Percentage Calculation in Quantitative CT Evaluation of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. J Comput Assist Tomogr 2021; 45:649-658. [PMID: 34176875 DOI: 10.1097/rct.0000000000001182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Several software-based quantitative computed tomography (CT) analysis methods have been developed for assessing emphysema and interstitial lung disease. Although the texture classification method appeared to be more successful than the other methods, the software programs are not commercially available, to our knowledge. Therefore, this study aimed to investigate the usefulness of a commercially available software program for quantitative CT analyses. METHODS This prospective cohort study included 80 patients with chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF). RESULTS The percentage of low attenuation volume and high attenuation volume had high sensitivity and high specificity for detecting emphysema and pulmonary fibrosis, respectively. The percentage of diseased lung volume (DLV%) was significantly correlated with the lung diffusion capacity for carbon monoxide in all patients with COPD and IPF patients. CONCLUSIONS The quantitative CT analysis may improve the precision of the assessment of DLV%, which itself could be a useful tool in predicting lung diffusion capacity in patients with the clinical diagnosis of COPD or IPF.
Collapse
|
39
|
Zou C, Li F, Choi J, Haghighi B, Choi S, Rajaraman PK, Comellas AP, Newell JD, Lee CH, Barr RG, Bleecker E, Cooper CB, Couper D, Han M, Hansel NN, Kanner RE, Kazerooni EA, Kleerup EC, Martinez FJ, O’Neal W, Paine R, Rennard SI, Smith BM, Woodruff PG, Hoffman EA, Lin CL. Longitudinal Imaging-Based Clusters in Former Smokers of the COPD Cohort Associate with Clinical Characteristics: The SubPopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). Int J Chron Obstruct Pulmon Dis 2021; 16:1477-1496. [PMID: 34103907 PMCID: PMC8178702 DOI: 10.2147/copd.s301466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Quantitative computed tomography (qCT) imaging-based cluster analysis identified clinically meaningful COPD former-smoker subgroups (clusters) based on cross-sectional data. We aimed to identify progression clusters for former smokers using longitudinal data. PATIENTS AND METHODS We selected 472 former smokers from SPIROMICS with a baseline visit and a one-year follow-up visit. A total of 150 qCT imaging-based variables, comprising 75 variables at baseline and their corresponding progression rates, were derived from the respective inspiration and expiration scans of the two visits. The COPD progression clusters identified were then associated with subject demography, clinical variables and biomarkers. RESULTS COPD severities at baseline increased with increasing cluster number. Cluster 1 patients were an obese subgroup with rapid progression of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%). Cluster 2 exhibited a decrease of fSAD% and Emph%, an increase of tissue fraction at total lung capacity and airway narrowing over one year. Cluster 3 showed rapid expansion of Emph% and an attenuation of fSAD%. Cluster 4 demonstrated severe emphysema and fSAD and significant structural alterations at baseline with rapid progression of fSAD% over one year. Subjects with different progression patterns in the same cross-sectional cluster were identified by longitudinal clustering. CONCLUSION qCT imaging-based metrics at two visits for former smokers allow for the derivation of four statistically stable clusters associated with unique progression patterns and clinical characteristics. Use of baseline variables and their progression rates enables identification of longitudinal clusters, resulting in a refinement of cross-sectional clusters.
Collapse
Affiliation(s)
- Chunrui Zou
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA
| | - Frank Li
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Jiwoong Choi
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, KS, USA
| | - Babak Haghighi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Prathish K Rajaraman
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA
| | | | - John D Newell
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Chang Hyun Lee
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Radiology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - R Graham Barr
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Eugene Bleecker
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | | | - David Couper
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Meilan Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Ella A Kazerooni
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Wanda O’Neal
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Robert Paine
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen I Rennard
- Department of Internal Medicine, University of Nebraska College of Medicine, Omaha, NE, USA
| | - Benjamin M Smith
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, Canada
| | - Prescott G Woodruff
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Eirc A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Ching-Long Lin
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
40
|
Tejwani V, Fawzy A, Putcha N, Castaldi P, Cho MH, Pratte KA, Bhatt SP, Lynch DA, Humphries SM, Kinney GL, D'Alessio FR, Hansel NN. Emphysema Progression and Lung Function Decline Among Angiotensin Converting Enzyme Inhibitors and Angiotensin-Receptor Blockade Users in the COPDGene Cohort. Chest 2021; 160:1245-1254. [PMID: 34029566 DOI: 10.1016/j.chest.2021.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Attenuation of transforming growth factor β by blocking angiotensin II has been shown to reduce emphysema in a murine model. General population studies have demonstrated that the use of angiotensin converting enzyme inhibitors (ACEis) and angiotensin-receptor blockers (ARBs) is associated with reduction of emphysema progression in former smokers and that the use of ACEis is associated with reduction of FEV1 progression in current smokers. RESEARCH QUESTION Is use of ACEi and ARB associated with less progression of emphysema and FEV1 decline among individuals with COPD or baseline emphysema? METHODS Former and current smokers from the Genetic Epidemiology of COPD Study who attended baseline and 5-year follow-up visits, did not change smoking status, and underwent chest CT imaging were included. Adjusted linear mixed models were used to evaluate progression of adjusted lung density (ALD), percent emphysema (%total lung volume <-950 Hounsfield units [HU]), 15th percentile of the attenuation histogram (attenuation [in HU] below which 15% of voxels are situated plus 1,000 HU), and lung function decline over 5 years between ACEi and ARB users and nonusers in those with spirometry-confirmed COPD, as well as all participants and those with baseline emphysema. Effect modification by smoking status also was investigated. RESULTS Over 5 years of follow-up, compared with nonusers, ACEi and ARB users with COPD showed slower ALD progression (adjusted mean difference [aMD], 1.6; 95% CI, 0.34-2.9). Slowed lung function decline was not observed based on phase 1 medication (aMD of FEV1 % predicted, 0.83; 95% CI, -0.62 to 2.3), but was when analysis was limited to consistent ACEi and ARB users (aMD of FEV1 % predicted, 1.9; 95% CI, 0.14-3.6). No effect modification by smoking status was found for radiographic outcomes, and the lung function effect was more pronounced in former smokers. Results were similar among participants with baseline emphysema. INTERPRETATION Among participants with spirometry-confirmed COPD or baseline emphysema, ACEi and ARB use was associated with slower progression of emphysema and lung function decline. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Vickram Tejwani
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD.
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| | | | - Michael H Cho
- Division of Pulmonary and Critical Care Medicine, Boston, MA; Harvard Medical School, Boston, MA
| | | | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | | | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
41
|
Characteristics of chronic obstructive pulmonary disease patients with robust progression of emphysematous change. Sci Rep 2021; 11:9548. [PMID: 33953210 PMCID: PMC8099884 DOI: 10.1038/s41598-021-87724-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Emphysema is a major pathological change in chronic obstructive pulmonary disease (COPD). However, the annual changes in the progression of emphysematous have not been investigated. We aimed to determine possible baseline predicting factors of the change in emphysematous progression in a subgroup of COPD patients who demonstrated rapid progression. In this observational study, we analyzed patients with COPD who were followed up by computed tomography (CT) at least two times over a 3-year period (n = 217). We divided the annual change in the low attenuation area percentage (LAA%) into quartiles and defined a rapid progression group (n = 54) and a non-progression group (n = 163). Predictors of future changes in emphysematous progression differed from predictors of high LAA% at baseline. On multivariate logistic regression analysis, low blood eosinophilic count (odds ratio [OR], 3.22; P = 0.04) and having osteoporosis (OR, 2.13; P = 0.03) were related to rapid changes in emphysematous progression. There was no difference in baseline nutritional parameters, but nutritional parameters deteriorated in parallel with changes in emphysematous progression. Herein, we clarified the predictors of changes in emphysematous progression and concomitant deterioration of nutritional status in COPD patients.
Collapse
|
42
|
Labaki WW, Xia M, Murray S, Hatt CR, Al-Abcha A, Ferrera MC, Meldrum CA, Keith LA, Galbán CJ, Arenberg DA, Curtis JL, Martinez FJ, Kazerooni EA, Han MK. Quantitative Emphysema on Low-Dose CT Imaging of the Chest and Risk of Lung Cancer and Airflow Obstruction: An Analysis of the National Lung Screening Trial. Chest 2021; 159:1812-1820. [PMID: 33326807 PMCID: PMC8129730 DOI: 10.1016/j.chest.2020.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/08/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung cancer risk prediction models do not routinely incorporate imaging metrics available on low-dose CT (LDCT) imaging of the chest ordered for lung cancer screening. RESEARCH QUESTION What is the association between quantitative emphysema measured on LDCT imaging and lung cancer incidence and mortality, all-cause mortality, and airflow obstruction in individuals who currently or formerly smoked and are undergoing lung cancer screening? STUDY DESIGN AND METHODS In 7,262 participants in the CT arm of the National Lung Screening Trial, percent low attenuation area (%LAA) was defined as the percentage of lung volume with voxels less than -950 Hounsfield units on the baseline examination. Multivariable Cox proportional hazards models, adjusting for competing risks where appropriate, were built to test for association between %LAA and lung cancer incidence, lung cancer mortality, and all-cause mortality with censoring at 6 years. In addition, multivariable logistic regression models were built to test the cross-sectional association between %LAA and airflow obstruction on spirometry, which was available in 2,700 participants. RESULTS The median %LAA was 0.8% (interquartile range, 0.2%-2.7%). Every 1% increase in %LAA was independently associated with higher hazards of lung cancer incidence (hazard ratio [HR], 1.02; 95% CI, 1.01-1.03; P = .004), lung cancer mortality (HR, 1.02; 95% CI, 1.00-1.05; P = .045), and all-cause mortality (HR, 1.01; 95% CI, 1.00-1.03; P = .042). Among participants with spirometry, 892 had airflow obstruction. The likelihood of airflow obstruction increased with every 1% increase in %LAA (odds ratio, 1.07; 95% CI, 1.06-1.09; P < .001). A %LAA cutoff of 1% had the best discriminative accuracy for airflow obstruction in participants aged > 65 years. INTERPRETATION Quantitative emphysema measured on LDCT imaging of the chest can be leveraged to improve lung cancer risk prediction and help diagnose COPD in individuals who currently or formerly smoked and are undergoing lung cancer screening.
Collapse
Affiliation(s)
- Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI
| | - Meng Xia
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Susan Murray
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | | | - Abdullah Al-Abcha
- Department of Internal Medicine, Michigan State University, East Lansing, MI
| | - Michael C Ferrera
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI
| | - Catherine A Meldrum
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI
| | | | - Craig J Galbán
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Douglas A Arenberg
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI; Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI; Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, NY
| | | | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
43
|
Thudium RF, Ringheim H, Ronit A, Hoel H, Benfield T, Mocroft A, Gerstoft J, Trøseid M, Borges ÁH, Ostrowski SR, Vestbo J, Nielsen SD. Independent Associations of Tumor Necrosis Factor-Alpha and Interleukin-1 Beta With Radiographic Emphysema in People Living With HIV. Front Immunol 2021; 12:668113. [PMID: 33936110 PMCID: PMC8080065 DOI: 10.3389/fimmu.2021.668113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background People living with HIV (PLWH) have increased systemic inflammation, and inflammation has been suggested to contribute to the pathogenesis of emphysema. We investigated whether elevated cytokine concentrations (interleukin (IL)-1β, IL-1 receptor antagonist (IL-1RA), IL-2, IL-4, IL-6, IL-10, IL-17A, tumor necrosis factor-alpha (TNFα), interferon-gamma (IFNγ), soluble CD14 (sCD14) and sCD163 were independently associated with radiographic emphysema in PLWH. Methods We included PLWH from the Copenhagen Comorbidity in HIV Infection (COCOMO) Study without hepatitis B and C co-infection and with a plasma sample and a chest computed tomography scan available. Emphysema plus trace emphysema was defined as the percentage of low attenuation area under −950 Houndsfield Unit (%LAA-950) using a cut-off at 5%. Cytokine concentrations were measured by ELISA or Luminex immunoassays. An elevated cytokine concentration was defined as above the 75th percentile. Results Of 783 PLWH, 147 (18.8%) had emphysema. PLWH were predominantly male (86.0%) and 743 (94.9%) had undetectable viral replication. PLWH with emphysema had higher concentrations of TNFα (median (IQR): 8.2 (6.4-9.8) versus 7.1 (5.7-8.6) pg/ml, p<0.001), IL-1β (0.21 (0.1-0.4) versus 0.17 (0.1-0.3) pg/ml, p=0.004) and IL-6 (3.6 (2.6-4.9) versus 3.1 (2.0-4.3) pg/ml, p=0.023) than PLWH without. In a logistic regression model adjusted for age, sex, ethnicity, smoking status, BMI and CD4 nadir, elevated TNFα (adjusted odds ratio (aOR): 1.78 [95%CI: 1.14-2.76], p=0.011) and IL-1β (aOR: 1.81 [95%CI: 1.16-2.81], p=0.009) were independently associated with emphysema. The association between IL-1β and emphysema was modified by smoking (p-interaction=0.020) with a more pronounced association in never-smokers (aOR: 4.53 [95%CI: 2.05-9.98], p<0.001). Conclusion Two markers of systemic inflammation, TNFα and IL-1β, were independently associated with emphysema in PLWH and may contribute to the pathogenesis of emphysema. Importantly, the effect of IL-1β seems to be mediated through pathways that are independent of excessive smoking. Clinical Trial Registration clinicaltrials.gov, identifier NCT02382822.
Collapse
Affiliation(s)
- Rebekka F Thudium
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hedda Ringheim
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Ronit
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Mocroft
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, University College London, London, United Kingdom.,Centre for Health and Infectious Diseases (CHIP), Department of Infectious Diseases, Section 2100, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gerstoft
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Álvaro H Borges
- Department of Infectious Diseases Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester and Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Susanne D Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Benlala I, Laurent F, Dournes G. Structural and functional changes in COPD: What we have learned from imaging. Respirology 2021; 26:731-741. [PMID: 33829593 DOI: 10.1111/resp.14047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality worldwide. It is a heterogeneous disease involving different components of the lung to varying extents. Developments in medical imaging and image analysis techniques provide new insights in the assessment of the structural and functional changes of the disease. This article reviews the leading imaging techniques: CT and MRI of the lung in research settings and clinical routine. Both visual and quantitative methods are reviewed, emphasizing their relevance to patient phenotyping and outcome prediction.
Collapse
Affiliation(s)
- Ilyes Benlala
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| | - François Laurent
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| | - Gael Dournes
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| |
Collapse
|
45
|
Predicting long-term mortality with two different criteria of exercise-induced desaturation in COPD. Respir Med 2021; 182:106393. [PMID: 33895625 DOI: 10.1016/j.rmed.2021.106393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND There are few reports on exercise-induced desaturation (EID) as a predictor of mortality in chronic obstructive pulmonary disease (COPD). However, the definitions of EID vary in published reports. The main purpose was to evaluate the association between EID and long-term mortality by applying two criteria of EID. METHODS A total of 507 subjects were selected from the Korean Obstructive Lung Disease cohort. EID was assessed using the 6-min walk test (6MWT) and defined using two different criteria [1]: post-6MWT oxygen saturation (SpO2) of ≤88% (criterion A) and [2] post-6MWT SpO2 < 90% or a decrease of ≥4% compared to baseline (criterion B). RESULTS The prevalence of EID was 5.1% based on criterion A and 13.0% based on criterion B. Regardless of the criteria used, mortality was higher in the EID group than in the non-EID group (A: 50 vs. 11.4%, B: 33.3 vs. 10.4%) during up to 161 months of follow-up. COPD patients without EID survived significantly longer than those with EID (A: 143.5 vs. 92.9, B: 144.8 vs. 115.2 months). Multivariate Cox regression analysis revealed that COPD patients with EID had a 2.4-fold increased risk of death by criterion A (adjusted HR 2.375; 95% CI: 1.217-4.637; P = 0.011). The risk of death increased in COPD patients with EID by criterion B, but the difference was not statistically significant. CONCLUSIONS COPD patients with EID demonstrated significantly higher long-term mortality than those without EID. The EID criterion A has a better predictive value for mortality in COPD.
Collapse
|
46
|
Steiger D, Siddiqi MF, Yip R, Yankelevitz DF, Henschke CI. The importance of low-dose CT screening to identify emphysema in asymptomatic participants with and without a prior diagnosis of COPD. Clin Imaging 2021; 78:136-141. [PMID: 33799061 DOI: 10.1016/j.clinimag.2021.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/24/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Chronic Obstructive Pulmonary Disease (COPD) includes chronic bronchitis, small airways disease, and emphysema. Diagnosis of COPD requires spirometric evidence and may be normal even when small airways disease or emphysema is present. Emphysema increases the risk of exacerbations, and is associated with all-cause mortality and increased risk of lung cancer. We evaluated the prevalence of emphysema in participants with and without a prior history of COPD. METHODS We reviewed a prospective cohort of 52,726 subjects who underwent baseline low dose CT screening for lung cancer from 2003 to 2016 in the International Early Lung Cancer Action Program. RESULTS Of 52,726 participants, 23.8%(12,542) had CT evidence of emphysema. Of these 12,542 participants with emphysema, 76.5%(9595/12,542) had no prior COPD diagnosis even though 23.6% (2258/9595) had moderate or severe emphysema. Among 12,542 participants, significant predictors of no prior COPD diagnosis were: male (OR = 1.47, p < 0.0001), younger age (ORage10 = 0.72, p < 0.0001), lower pack-years of smoking (OR10pack-years = 0.90, p < 0.0001), completed college or higher (OR = 1.54, p < 0.0001), no family history of lung cancer (OR = 1.12, p = 0.04), no self-reported cardiac disease (OR = 0.76, p = 0.0003) or hypertension (OR = 0.74, p < 0.0001). The severity of emphysema was significantly lower among the 9595 participants with no prior COPD diagnosis, the OR for moderate emphysema was ORmoderate = 0.58(p = 0.0007) and for severe emphysema, it was ORsevere = 0.23(p < 0.0001). CONCLUSION Emphysema was identified in 23.8% participants undergoing LDCT and was unsuspected in 76.5%. LDCT provides an opportunity to identify emphysema, and recommend smoking cessation.
Collapse
Affiliation(s)
- David Steiger
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine, Mount Sinai St. Lukes, Mount Sinai West, Mount Sinai Beth Israel, New York, NY, United States of America
| | - M Faisal Siddiqi
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine, Mount Sinai St. Lukes, Mount Sinai West, Mount Sinai Beth Israel, New York, NY, United States of America
| | - Rowena Yip
- Department of Radiology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, United States of America
| | - David F Yankelevitz
- Department of Radiology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, United States of America
| | - Claudia I Henschke
- Department of Radiology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, United States of America; Phoenix Veterans Health Care System, Phoenix, AZ, United States of America.
| | | |
Collapse
|
47
|
Goldin JG. The Emerging Role of Quantification of Imaging for Assessing the Severity and Disease Activity of Emphysema, Airway Disease, and Interstitial Lung Disease. Respiration 2021; 100:277-290. [PMID: 33621969 DOI: 10.1159/000513642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
There has been an explosion of use for quantitative image analysis in the setting of lung disease due to advances in acquisition protocols and postprocessing technology, including machine and deep learning. Despite the plethora of published papers, it is important to understand which approach has clinical validation and can be used in clinical practice. This paper provides an introduction to quantitative image analysis techniques being used in the investigation of lung disease and focusses on the techniques that have a reasonable clinical validation for being used in clinical trials and patient care.
Collapse
Affiliation(s)
- Jonathan Gerald Goldin
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA,
| |
Collapse
|
48
|
Dal Negro RW, Paoletti M, Pistolesi M. Standard spirometry to assess emphysema in patients with chronic obstructive pulmonary disease: the Emphysema Severity Index (ESI). Multidiscip Respir Med 2021; 16:805. [PMID: 35003734 PMCID: PMC8672489 DOI: 10.4081/mrm.2021.805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a generic term identifying a condition characterized by variable changes in peripheral airways and lung parenchyma. Standard spirometry cannot discriminate the relative role of conductive airways inflammatory changes from destructive parenchymal emphysema changes. The aim of this study was to quantify the emphysema component in COPD by a simple parameter (the Emphysema Severity Index - ESI), previously proved to reflect CT-assessed emphysema. METHODS ESI was obtained by fitting the descending limb of MEFV curves by a fully automated procedure providing a 0 to 10 score of emphysema severity. ESI was computed in COPD patients enrolled in the CLIMA Study. RESULTS The vast majority of ESI values ranged from 0 to 4, compatible with no-to-mild/moderate emphysema component. A limited proportion of patients showed ESI values >4, compatible with severe-to-very severe emphysema. ESI values were greatly dispersed within each GOLD class indicating that GOLD classification cannot discriminate emphysema and conductive airways changes in patients with similar airflow limitation. ESI and diffusing capacity (DLCO) were significantly correlated (p<0.001). However, the great dispersion in their correlation suggests that ESI and DLCO reflect partially different anatomo-functional determinants in COPD. CONCLUSIONS Airflow limitation has heterogenous determinants in COPD. Inflammatory and destructive changes may combine in CT densitometric alterations that cannot be detected by standard spirometry. ESI computation from spirometric data helps to define the prevailing pathogenetic mechanism underlying the measured airflow limitation. ESI could be a reliable advancement to select large samples of patients in clinical or epidemiological trials, and to compare different pharmacological treatments.
Collapse
Affiliation(s)
- Roberto W. Dal Negro
- National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology - CESFAR, Verona
| | - Matteo Paoletti
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Massimo Pistolesi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| |
Collapse
|
49
|
Kagimoto A, Mimura T, Miyamoto T, Nakashima C, Yamashita Y. Severity of emphysema as a prognosticator of resected early lung cancer: an analysis classified by Goddard score. Jpn J Clin Oncol 2020; 50:1043-1050. [PMID: 32519745 DOI: 10.1093/jjco/hyaa084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/17/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES This study aimed to investigate whether the severity of emphysema as classified by Goddard score influences the prognosis of patients with early lung cancer, there are few reports about that. METHODS From April 2009 to December 2016, we recruited 412 consecutive patients with completely resected clinical stage 0/IA/IB non-small cell lung cancer. The Goddard score assessed on preoperative computed tomography scan was retrospectively reviewed. Kaplan-Meier and Cox regression analyses were performed to assess the relationship between the Goddard score and early lung cancer prognosis. RESULTS The patients were classified into two groups: Goddard score ≤ 4 points and ≥5 points according to the results of receiver operating characteristic curve analysis for recurrence events. The 3-year relapse-free survival rate of emphysema with Goddard score ≤ 4 points (88.6%) was higher than that of emphysema with Goddard score ≥ 5 points (60.8%) (P < 0.001). There was a higher proportion of cancer-related deaths in the group with Goddard score ≥ 5 points compared with the group with Goddard score ≤ 4 points (50% and 32.1%, respectively) (P = 0.082). A Goddard score ≥ 5 points was a significant prognostic factor for relapse-free survival in the univariate (P < 0.001) and multivariate (P = 0.022) analyses. A Goddard score ≥ 5 points was also a significant prognostic factor for overall survival in the univariate (P < 0.001) and multivariate (P = 0.041) analyses. CONCLUSION Our findings suggest that emphysema with a Goddard score of ≥5 points may be a factor that can influence the prognosis of patients with primary lung cancer.
Collapse
Affiliation(s)
- Atsushi Kagimoto
- Department of Respiratory Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Takeshi Mimura
- Department of Respiratory Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Tatsuya Miyamoto
- Department of Respiratory Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Chika Nakashima
- Department of Respiratory Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yoshinori Yamashita
- Department of Respiratory Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| |
Collapse
|
50
|
Contoli M, Morandi L, Di Marco F, Carone M. A perspective for chronic obstructive pulmonary disease (COPD) management: six key clinical questions to improve disease treatment. Expert Opin Pharmacother 2020; 22:427-437. [PMID: 33021128 DOI: 10.1080/14656566.2020.1828352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION In 2011, the GOLD recommendations for the treatment of Chronic Obstructive Pulmonary Disease (COPD) introduced new clinical elements to classify the severity of the disease and to guide pharmacological choice. For the first time in the GOLD documents, treatment decision was no longer guided only by pulmonary function, but by a more complex combination of pulmonary function and clinical aspects. The recent versions of the GOLD recommendations introduce new aspects for the clinicians and pose new question for the management of the disease. In addition, inflammatory biomarkers and blood eosinophil levels, have been considered to guide treatment selection. AREA COVERED The evolution of disease management proposed by the GOLD document opens several areas of debate. A series of roundtable discussions among respiratory physicians took place in Italy to address key clinical questions. Particularly, the role of lung function and the use of biomarkers, the adherence to international guidelines and the possibility to personalize the pharmacological approach in COPD patients have been discussed, summarized and analyzed. EXPERT OPINION The authors believe that the development of a precision medicine approach tailoring the specific treatment for each patient is the goal of COPD management and may be achieved by considering the phenotypic classification of COPD patients.
Collapse
Affiliation(s)
- Marco Contoli
- Department of Morphology, Surgery and Experimental Medicine, Università Di Ferrara, Ferrara, Italy
| | - Luca Morandi
- Department of Morphology, Surgery and Experimental Medicine, Università Di Ferrara, Ferrara, Italy
| | - Fabiano Di Marco
- Department of Health Science, Università degli studi di Milano, Respiratory Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Mauro Carone
- Division of Pneumology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|