1
|
Xu Z, Wu Y, Zhao X, Zhou H. Integrating nontargeted metabolomics and RNA sequencing of dexamethasone-treated and untreated asthmatic mice reveals changes of amino acids and aminoacyl-tRNA in group 2 innate lymphoid cells. Int J Biol Macromol 2024; 283:137630. [PMID: 39547613 DOI: 10.1016/j.ijbiomac.2024.137630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Bronchial asthma is the most common multifactorial and heterogeneous disease in childhood. The glucocorticoid dexamethasone is a classic treatment for asthma. Research indicates that group 2 innate lymphoid cells (ILC2s) are crucial to the pathogenesis of asthma. However, few studies have focused on ILC2s metabolism and transcription. This study aims to establish an ovalbumin (OVA)-induced asthma model and a dexamethasone-treated asthma model to explore the regulation of lung ILC2s at the genetic and metabolic levels during the progression and remission of asthma, utilizing single-cell metabolomics and transcriptomics approaches. The results showed that ILC2s regulated the metabolic pathways and transcriptional levels of amino acids (such as arginine, proline, and histidine) and linoleic acid, as well as the metabolic biomarkers of arginine, urocanic acid, and linoleic acid in asthma. Additionally, the cytokine pathways and NF-γB pathways have been altered at the genetic level. At the same time, we revealed that dexamethasone regulates ILC2s amino acid and aminoacyl tRNA metabolism, as well as related genes, thereby alleviating asthma symptoms. Furthermore, we identified the genes Eno3 and Tap1, which are significantly associated with asthma. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the accuracy of the RNA sequencing results. This study, for the first time, revealed the mechanistic changes of ILC2s in the development and treatment of asthma using multiomics techniques, laying a foundation for targeted therapies in asthma.
Collapse
Affiliation(s)
- Zhiwei Xu
- Department of Pediatrics, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Yaling Wu
- Department of Pediatrics, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Xiaoman Zhao
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China
| | - Haoquan Zhou
- Department of Pediatrics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
2
|
Toki S, Abney M, Zhang J, Rusznak M, Warren CM, Newcomb DC, Cahill KN, Drucker DJ, Niswender KD, Peebles RS. Endogenous Glucagon-Like Peptide-1 Receptor and Glucose-Dependent Insulinotropic Polypeptide Receptor Signaling Inhibits Aeroallergen-Induced Innate Airway Inflammation. Allergy 2024; 79:3373-3384. [PMID: 39559998 DOI: 10.1111/all.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Anti-inflammatory effects of incretin signaling through the glucagon-like peptide-1 receptor (GLP-1R) and the glucose-dependent insulinotropic polypeptide receptor (GIPR) in mice have been reported. Therefore, we hypothesized that signaling through the endogenous GLP-1R and the GIPR individually decreases allergic airway inflammation and that the combination of GLP-1R and GIPR signaling together additively inhibits allergen-induced lung and airway inflammation. METHODS WT (C57BL/6J), GLP-1R knockout (KO), GIPR KO, and GLP-1R/GIPR double KO (DKO) mice were challenged intranasally with Alternaria alternata extract (Alt-Ext) or vehicle to evaluate the impact of signaling through these receptors on the innate allergen-induced inflammatory response that is primarily driven by group 2 innate lymphoid cells (ILC2). RESULTS Alt-Ext-induced IL-33 release in the bronchoalveolar lavage fluid (BALF) was not different between the mouse strains, but thymic stromal lymphopoietin (TSLP) was significantly increased in GLP-1R/GIPR DKO mice challenged with Alt-Ext compared to the other strains. Furthermore, Alt-Ext-induced protein expression of IL-5, IL-13, CCL11, and CCL24 in the lung homogenates, the number of eosinophils, lymphocytes, and neutrophils in the BALF, and the number of lung GATA3+ ILC2 were significantly increased in GLP-1R/GIPR DKO mice compared to the other 3 strains. Furthermore, ICAM-1 expression on lung epithelial cells was increased in GLP-1R/GIPR DKO mice challenged with Alt-Ext compared to the other 3 strains. CONCLUSIONS Deficiency of both GLP-1R and GIPR signaling together increased TSLP release, ILC2 activation, and early type 2 innate immune responses to aeroallergen exposure. Combined GLP-1R and GIPR signaling should be explored for the treatment of asthma.
Collapse
Affiliation(s)
- Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Masako Abney
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark Rusznak
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christian M Warren
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katherine N Cahill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kevin D Niswender
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ray Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Ebihara T, Yamada T, Fuchimukai A, Takasuga S, Endo T, Yamada T, Tatematsu M. Dysfunction of type 1 and type 2 immune cells: a lesson from exhausted-like ILC2s and their activation-induced cell death. Int Immunol 2024; 36:585-594. [PMID: 38788198 PMCID: PMC11511622 DOI: 10.1093/intimm/dxae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
The concept of immune cell exhaustion/dysfunction has developed mainly to understand impaired type 1 immune responses, especially by CD8 T-cells against tumors or virus-infected cells, and has been applied to other lymphocytes. Natural killer (NK) cells and CD4 T cells support the efficient activation of CD8 T cells but exhibit dysfunctional phenotypes in tumor microenvironments and in chronic viral infections. In contrast, the concept of type 2 immune cell exhaustion/dysfunction is poorly established. Group 2 innate lymphoid cells (ILC2s) and T-helper 2 (Th2) cells are the major lymphocyte subsets that initiate and expand type 2 immune responses for antiparasitic immunity or allergy. In mouse models of chronic parasitic worm infections, Th2 cells display impaired type 2 immune responses. Chronic airway allergy induces exhausted-like ILC2s that quickly fall into activation-induced cell death to suppress exaggerated inflammation. Thus, the modes of exhaustion/dysfunction are quite diverse and rely on the types of inflammation and the cells. In this review, we summarize current knowledge of lymphocyte exhaustion/dysfunction in the context of type 1 and type 2 immune responses and discuss ILC2-specific regulatory mechanisms during chronic allergy.
Collapse
Affiliation(s)
- Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan
| | - Toshiki Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Akane Fuchimukai
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shunsuke Takasuga
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tentaro Endo
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Megumi Tatematsu
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
4
|
Radhouani M, Starkl P. Adjuvant-independent airway sensitization and infection mouse models leading to allergic asthma. FRONTIERS IN ALLERGY 2024; 5:1423938. [PMID: 39157265 PMCID: PMC11327155 DOI: 10.3389/falgy.2024.1423938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Asthma is a chronic respiratory disease of global importance. Mouse models of allergic asthma have been instrumental in advancing research and novel therapeutic strategies for patients. The application of relevant allergens and physiological routes of exposure in such models has led to valuable insights into the complexities of asthma onset and development as well as key disease mechanisms. Furthermore, environmental microbial exposures and infections have been shown to play a fundamental part in asthma pathogenesis and alter disease outcome. In this review, we delve into physiological mouse models of allergic asthma and explore literature reports on most significant interplays between microbial infections and asthma development with relevance to human disease.
Collapse
Affiliation(s)
- Mariem Radhouani
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
朱 静, 柴 向. [Expression of prostacyclin receptor in chronic rhinosinusitis and its relationship with type 2 inflammation]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:697-702. [PMID: 39118507 PMCID: PMC11612766 DOI: 10.13201/j.issn.2096-7993.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 08/10/2024]
Abstract
Objective:The purpose of this study is to explore the expression of prostacyclin receptor(IP) in patients with chronic rhinosinusitis(CRS) and its possible association with type 2 inflammation. Methods:HE staining was used to observe the morphological changes of nasal mucosa, qRT-PCR was used to detect the expression of IP in polyps and nasal mucosa, and IHC was used to detect the expression of IP, IL-4, IL-5 and IL-13 in polyps and nasal mucosa. Results:Compared with the control group, the nasal mucosa of patients with various types of CRS was obviously thickened, accompanied by inflammatory cell infiltration and gland hyperplasia. The statistical results of IHC showed that the expression levels of IL-4, IL-5 and IL-13 in CRS group were significantly higher than those in control group(P<0.05), and the IP expression in control group was significantly higher than that in ECRS group and non-ECRS group(P<0.05). The IP expression in ECRS group was negatively correlated with IL-4, IL-5 and IL-13. The results of qRT-PCR showed that the expression of IP mRNA in control group was significantly higher than that in ECRS group and non-ECRS group(P<0.05). Conclusion:IL-4, IL-5 and IL-13 are highly expressed in the nasal mucosa of CRS patients, while IP is poorly expressed in the nasal mucosa of CRS patients, and IP is negatively correlated with IL-4, IL-5 and IL-13, suggesting that IP is related to the occurrence and development of type 2 inflammation and may be a potential therapeutic target for CRS patients.
Collapse
Affiliation(s)
- 静云 朱
- 山西医科大学第一临床医学院(太原,030000)First Clinical Medical College, Shanxi Medical University, Taiyuan, 030000, China
| | - 向斌 柴
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University
| |
Collapse
|
6
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
7
|
Lu HF, Zhou YC, Luo DD, Yang DH, Wang XJ, Cheng BH, Zeng XH. ILC2s: Unraveling the innate immune orchestrators in allergic inflammation. Int Immunopharmacol 2024; 131:111899. [PMID: 38513576 DOI: 10.1016/j.intimp.2024.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
The prevalence rate of allergic diseases including asthma, atopic rhinitis (AR) and atopic dermatitis (AD) has been significantly increasing in recent decades due to environmental changes and social developments. With the study of innate lymphoid cells, the crucial role played by type 2 innate lymphoid cells (ILC2s) have been progressively unveiled in allergic diseases. ILC2s, which are a subset of innate lymphocytes initiate allergic responses. They respond swiftly during the onset of allergic reactions and produce type 2 cytokines, working in conjunction with T helper type 2 (Th2) cells to induce and sustain type 2 immune responses. The role of ILC2s represents an intriguing frontier in immunology; however, the intricate immune mechanisms of ILC2s in allergic responses remain relatively poorly understood. To gain a comphrehensive understanding of the research progress of ILC2, we summarize recent advances in ILC2s biology in pathologic allergic inflammation to inspire novel approaches for managing allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen 518172, China
| | - Dan-Dan Luo
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Xi-Jia Wang
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| | - Xian-Hai Zeng
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| |
Collapse
|
8
|
Dai Z, Gong Z, Wang C, Long W, Liu D, Zhang H, Lei A. The role of hormones in ILC2-driven allergic airway inflammation. Scand J Immunol 2024; 99:e13357. [PMID: 39008023 DOI: 10.1111/sji.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 07/16/2024]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a type of innate immune cells that produce a large amount of IL-5 and IL-13 and two cytokines that are crucial for various processes such as allergic airway inflammation, tissue repair and tissue homeostasis. It is known that damaged epithelial-derived alarmins, such as IL-33, IL-25 and thymic stromal lymphopoietin (TSLP), are the predominant ILC2 activators that mediate the production of type 2 cytokines. In recent years, abundant studies have found that many factors can regulate ILC2 development and function. Hormones synthesized by the body's endocrine glands or cells play an important role in immune response. Notably, ILC2s express hormone receptors and their proliferation and function can be modulated by multiple hormones during allergic airway inflammation. Here, we summarize the effects of multiple hormones on ILC2-driven allergic airway inflammation and discuss the underlying mechanisms and potential therapeutic significance.
Collapse
Affiliation(s)
- Zhongling Dai
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhande Gong
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - WeiXiang Long
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Duo Liu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haijun Zhang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
9
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
10
|
Laidlaw TM, Buchheit KM, Cahill KN, Hacker J, Cho L, Cui J, Feng C, Chen CC, Le M, Israel E, Boyce JA. Trial of thromboxane receptor inhibition with ifetroban: TP receptors regulate eicosanoid homeostasis in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2023; 152:700-710.e3. [PMID: 37068712 PMCID: PMC10524565 DOI: 10.1016/j.jaci.2023.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is the triad of asthma, nasal polyposis, and respiratory reactions to COX-1 inhibitors. Overproduction of cysteinyl leukotrienes and underproduction of prostaglandin E2 (PGE2) are hallmarks of AERD. A mouse model predicted a key role for the thromboxane-prostanoid (TP) receptor in AERD. OBJECTIVE Our aim was to determine whether ifetroban, a TP receptor antagonist, attenuates aspirin-induced respiratory symptoms in patients with AERD. METHODS A total of 35 patients with AERD completed a 4-week double-blinded, placebo-controlled trial of ifetroban and underwent an oral aspirin challenge. The primary outcome was change in the provocative dose of aspirin that caused a 2-point increase in Total Nasal Symptom Score. Changes in lung function, eicosanoid levels, and platelet and mast cell activation were assessed. Cultured human nasal fibroblasts were stimulated with or without the TP agonist U46619 and assayed for prostanoid production. RESULTS Ifetroban was well tolerated in AERD and did not change the mean 2-point increase in Total Nasal Symptom Score (P = .763). Participants taking ifetroban had greater aspirin-induced nasal symptoms and a greater decline in FEV1 value than did participants receiving placebo (-18.8% ± 3.6% with ifetroban vs -8.4% ± 2.1% with placebo [P = .017]). Four weeks of ifetroban significantly increased urinary leukotriene E4 levels and decreased nasal PGE2 levels compared with placebo. Peak aspirin-induced urinary thromboxane levels correlated with peak urinary leukotriene E4 and prostaglandin D2 metabolite levels in participants taking ifetroban. U46119 significantly potentiated the production of PGE2 by cultured nasal fibroblasts from subjects with AERD but not by cultured nasal fibroblasts from controls without polypoid sinusitis. CONCLUSION Contrary to our hypothesis, TP receptor blockade worsened aspirin-induced reactions in AERD, possibly by exacerbating dysregulation of the eicosanoid system. TP signaling on stromal cells may be critical to maintaining PGE2 production when COX-2 function is low.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass.
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Katherine N Cahill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Jonathan Hacker
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Laura Cho
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Jing Cui
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Mass
| | - Chunli Feng
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Chongjia C Chen
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Meghan Le
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Mass
| | - Elliot Israel
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|
11
|
Matsuyama T, Machida K, Mizuno K, Matsuyama H, Dotake Y, Shinmura M, Takagi K, Inoue H. The Functional Role of Group 2 Innate Lymphoid Cells in Asthma. Biomolecules 2023; 13:893. [PMID: 37371472 DOI: 10.3390/biom13060893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation. Group 2 innate lymphoid cells (ILC2) play an important role in the pathogenesis of asthma. ILC2s lack antigen-specific receptors and respond to epithelial-derived cytokines, leading to the induction of airway eosinophilic inflammation in an antigen-independent manner. Additionally, ILC2s might be involved in the mechanism of steroid resistance. Numerous studies in both mice and humans have shown that ILC2s induce airway inflammation through inflammatory signals, including cytokines and other mediators derived from immune or non-immune cells. ILC2s and T helper type 2 (Th2) cells collaborate through direct and indirect interactions to organize type 2 immune responses. Interestingly, the frequencies or numbers of ILC2 are increased in the blood and bronchoalveolar lavage fluid of asthma patients, and the numbers of ILC2s in the blood and sputum of severe asthmatics are significantly larger than those of mild asthmatics. These findings may contribute to the regulation of the immune response in asthma. This review article highlights our current understanding of the functional role of ILC2s in asthma.
Collapse
Affiliation(s)
- Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiromi Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yoichi Dotake
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Masahiro Shinmura
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
12
|
Robb CT, Zhou Y, Felton JM, Zhang B, Goepp M, Jheeta P, Smyth DJ, Duffin R, Vermeren S, Breyer R, Narumiya S, McSorley HJ, Maizels RM, Schwarze JKJ, Rossi AG, Yao C. Metabolic regulation by prostaglandin E 2 impairs lung group 2 innate lymphoid cell responses. Allergy 2023; 78:714-730. [PMID: 36181709 PMCID: PMC10952163 DOI: 10.1111/all.15541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play a critical role in asthma pathogenesis. Non-steroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is associated with reduced signaling via EP2, a receptor for prostaglandin E2 (PGE2 ). However, the respective roles for the PGE2 receptors EP2 and EP4 (both share same downstream signaling) in the regulation of lung ILC2 responses has yet been deciphered. METHODS The roles of PGE2 receptors EP2 and EP4 on ILC2-mediated lung inflammation were investigated using genetically modified mouse lines and pharmacological approaches in IL-33-induced lung allergy model. The effects of PGE2 receptors and downstream signals on ILC2 metabolic activation and effector function were examined using in vitro cell cultures. RESULTS Deficiency of EP2 rather than EP4 augments IL-33-induced mouse lung ILC2 responses and eosinophilic inflammation in vivo. In contrast, exogenous agonism of EP4 and EP2 or inhibition of phosphodiesterase markedly restricts IL-33-induced lung ILC2 responses. Mechanistically, PGE2 directly suppresses IL-33-dependent ILC2 activation through the EP2/EP4-cAMP pathway, which downregulates STAT5 and MYC pathway gene expression and ILC2 energy metabolism. Blocking glycolysis diminishes IL-33-dependent ILC2 responses in mice where endogenous PG synthesis or EP2 signaling is blocked but not in mice with intact PGE2 -EP2 signaling. CONCLUSION We have defined a mechanism for optimal suppression of mouse lung ILC2 responses by endogenous PGE2 -EP2 signaling which underpins the clinical findings of defective EP2 signaling in patients with NERD. Our findings also indicate that exogenously targeting the PGE2 -EP4-cAMP and energy metabolic pathways may provide novel opportunities for treating the ILC2-initiated lung inflammation in asthma and NERD.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Jennifer M. Felton
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Birong Zhang
- Systems Immunity University Research Institute and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Privjyot Jheeta
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Danielle J. Smyth
- Division of Cell Signaling and Immunology, School of Life SciencesWellcome Trust Building, University of DundeeDundeeUK
| | - Rodger Duffin
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Sonja Vermeren
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Richard M. Breyer
- Department of Veterans AffairsTennessee Valley Health AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Henry J. McSorley
- Division of Cell Signaling and Immunology, School of Life SciencesWellcome Trust Building, University of DundeeDundeeUK
| | - Rick M. Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Jürgen K. J. Schwarze
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
13
|
Higashiyama M, Miura S, Hokari R. Modulation by luminal factors on the functions and migration of intestinal innate immunity. Front Immunol 2023; 14:1113467. [PMID: 36860849 PMCID: PMC9968923 DOI: 10.3389/fimmu.2023.1113467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Luminal antigens, nutrients, metabolites from commensal bacteria, bile acids, or neuropeptides influence the function and trafficking of immune cells in the intestine. Among the immune cells in the gut, innate lymphoid cells, including macrophages, neutrophils, dendritic cells, mast cells, and innate lymphoid cells, play an important role for the maintenance of intestinal homeostasis through a rapid immune response to luminal pathogens. These innate cells are influenced by several luminal factors, possibly leading to dysregulated gut immunity and intestinal disorders such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and intestinal allergy. Luminal factors are sensed by distinct neuro-immune cell units, which also have a strong impact on immunoregulation of the gut. Immune cell trafficking from the blood stream through the lymphatic organ to lymphatics, an essential function for immune responses, is also modulated by luminal factors. This mini-review examines knowledge of luminal and neural factors that regulate and modulate response and migration of leukocytes including innate immune cells, some of which are clinically associated with pathological intestinal inflammation.
Collapse
Affiliation(s)
- Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan,*Correspondence: Masaaki Higashiyama,
| | - Soichiro Miura
- International University of Health and Welfare, Tokyo, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
14
|
Patel K, Peebles RS. Prostacyclin Regulation of Allergic Inflammation. Biomedicines 2022; 10:2862. [PMID: 36359381 PMCID: PMC9687206 DOI: 10.3390/biomedicines10112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Prostacyclin is a metabolic product of the cyclooxygenase pathway that is constitutively expressed and can be induced during inflammatory conditions. While prostacyclin and its analogs have historically been considered effective vasodilators and used in treating pulmonary hypertension, prostacyclin has demonstrated potent anti-inflammatory effects in animal models of allergic airway inflammation. In vitro studies reveal that prostacyclin directly inhibits type 2 cytokine production from CD4+ Th2 cells and ILC2 and reduces the ability of dendritic cells to generate Th2 cytokine production from CD4+ T cells in an antigen-specific manner. Thus, there is strong evidence that prostacyclin may be an additional therapeutic target for treating allergic inflammation and asthma in human subjects.
Collapse
Affiliation(s)
- Kunj Patel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2650, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2650, USA
- United States Department of Veterans Affairs, Nashville, TN 37232-2650, USA
- T-1218 MCN, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232-2650, USA
| |
Collapse
|
15
|
Beckstette M, Lu CW, Herppich S, Diem EC, Ntalli A, Ochel A, Kruse F, Pietzsch B, Neumann K, Huehn J, Floess S, Lochner M. Profiling of epigenetic marker regions in murine ILCs under homeostatic and inflammatory conditions. J Exp Med 2022; 219:213389. [PMID: 35938981 PMCID: PMC9386974 DOI: 10.1084/jem.20210663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Epigenetic modifications such as DNA methylation play an essential role in imprinting specific transcriptional patterns in cells. We performed genome-wide DNA methylation profiling of murine lymph node–derived ILCs, which led to the identification of differentially methylated regions (DMRs) and the definition of epigenetic marker regions in ILCs. Marker regions were located in genes with a described function for ILCs, such as Tbx21, Gata3, or Il23r, but also in genes that have not been related to ILC biology. Methylation levels of the marker regions and expression of the associated genes were strongly correlated, indicating their functional relevance. Comparison with T helper cell methylomes revealed clear lineage differences, despite partial similarities in the methylation of specific ILC marker regions. IL-33–mediated challenge affected methylation of ILC2 epigenetic marker regions in the liver, while remaining relatively stable in the lung. In our study, we identified a set of epigenetic markers that can serve as a tool to study phenotypic and functional properties of ILCs.
Collapse
Affiliation(s)
- Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Bielefeld Institute for Bioinformatics Infrastructure, Department of Technology, Bielefeld University, Bielefeld, Germany
| | - Chia-Wen Lu
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elia C Diem
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Anna Ntalli
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Kruse
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Beate Pietzsch
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Lochner
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
16
|
Badrani JH, Strohm AN, Lacasa L, Civello B, Cavagnero K, Haung YA, Amadeo M, Naji LH, Lund SJ, Leng A, Kim H, Baum RE, Khorram N, Mondal M, Seumois G, Pilotte J, Vanderklish PW, McGee HM, Doherty TA. RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R. Nat Commun 2022; 13:4435. [PMID: 35908044 PMCID: PMC9338970 DOI: 10.1038/s41467-022-32176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Innate lymphoid cells (ILC) promote lung inflammation in asthma through cytokine production. RNA-binding proteins (RBPs) are critical post-transcriptional regulators, although less is known about RBPs in ILC biology. Here, we demonstrate that RNA-binding motif 3 (RBM3) is highly expressed in lung ILCs and is further induced by alarmins TSLP and IL-33. Rbm3-/- and Rbm3-/-Rag2-/- mice exposed to asthma-associated Alternaria allergen develop enhanced eosinophilic lung inflammation and ILC activation. IL-33 stimulation studies in vivo and in vitro show that RBM3 suppressed lung ILC responses. Further, Rbm3-/- ILCs from bone marrow chimeric mice display increased ILC cytokine production suggesting an ILC-intrinsic suppressive function of RBM3. RNA-sequencing of Rbm3-/- lung ILCs demonstrates increased expression of type 2/17 cytokines and cysteinyl leukotriene 1 receptor (CysLT1R). Finally, Rbm3-/-Cyslt1r-/- mice show dependence on CysLT1R for accumulation of ST2+IL-17+ ILCs. Thus, RBM3 intrinsically regulates lung ILCs during allergen-induced type 2 inflammation that is partially dependent on CysLT1R.
Collapse
Affiliation(s)
- Jana H. Badrani
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Allyssa N. Strohm
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| | - Lee Lacasa
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Blake Civello
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Kellen Cavagnero
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Yung-An Haung
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.145695.a0000 0004 1798 0922Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Michael Amadeo
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Luay H. Naji
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Sean J. Lund
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Anthea Leng
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Hyojoung Kim
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Rachel E. Baum
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Naseem Khorram
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Monalisa Mondal
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Grégory Seumois
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Julie Pilotte
- grid.214007.00000000122199231The Scripps Research Institute, La Jolla, CA USA
| | | | - Heather M. McGee
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.250671.70000 0001 0662 7144NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA USA ,grid.410425.60000 0004 0421 8357Departments of Radiation Oncology and Immuno-Oncology, City of Hope, Duarte, CA USA ,Department of Molecular Medicine, La Jolla, CA USA
| | - Taylor A. Doherty
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| |
Collapse
|
17
|
Matsuyama T, Matsuyama H, Dotake Y, Takagi K, Machida K, Inoue H. The Therapeutic Potential for Targeting Group 2 Innate Lymphoid Cells in Asthma. Front Immunol 2022; 13:930862. [PMID: 35911708 PMCID: PMC9327784 DOI: 10.3389/fimmu.2022.930862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
T helper type 2 cells (Th2 cells) and group 2 innate lymphoid cells (ILC2s) play an important role in the pathophysiology of asthma, including airway eosinophilic inflammation. ILC2s are activated by epithelial-derived cytokines [interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP)] from airway epithelial cells, leading to the release of high amounts of type 2 cytokines, such as IL-5 and IL-13. ILC2s induce airway inflammation in an antigen-independent manner, and ILC2s are considered to be involved in the pathogenesis of asthma exacerbation. Furthermore, ILC2 activation might also confer steroid resistance. Many recent studies in humans and mice are increasingly demonstrating that the function of ILC2s is regulated not just by epithelial-derived cytokines but by a variety of cytokines and mediators derived from innate immune cells. Furthermore, the biologics targeting these cytokines and/or their receptors have been shown to reduce asthma exacerbations and improve lung function and quality of life in asthmatics. This article reviews the current treatment landscape for type 2 airway inflammation in asthma and discusses the therapeutic potential for targeting ILC2s.
Collapse
|
18
|
Olguín-Martínez E, Muñoz-Paleta O, Ruiz-Medina BE, Ramos-Balderas JL, Licona-Limón I, Licona-Limón P. IL-33 and the PKA Pathway Regulate ILC2 Populations Expressing IL-9 and ST2. Front Immunol 2022; 13:787713. [PMID: 35711429 PMCID: PMC9197159 DOI: 10.3389/fimmu.2022.787713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 Innate lymphoid cells (ILC2s) are tissue-resident immune cells activated by epithelial-derived alarmins upon tissue damage. They regulate immunity against helminth parasites and allergies by expressing type 2 immune response cytokines including IL-9, known to be critical for inducing and potentiating the immune response in such context. Although ILC2s are reported to be the main source of IL-9 in mice during N. brasiliensis infection, the mechanisms that regulate the expression of IL-9 in these cells are yet to be described. Recent studies have shown that in addition to cytokines, multiple molecules can differentially modulate the functions of ILC2s in various contexts both in vitro and in vivo. Among these stimuli are lipid mediators and neuropeptides, which activate the PKA pathway and have been associated with the regulation of type 2 immune cytokines. In this work we found that ILC2s in mice infected with N. brasiliensis can be classified into different groups based on the expression of IL-9 and ST2. These distinct populations were distributed in the lung and the small intestine. Through the development of an in vitro culture system, we sought to determine the stimuli that regulate the expression of these markers in ILC2s. We identified the alarmin IL-33 as being a key player for increased IL-9 expression. Additionally, we found the PKA pathway to be a dual regulator of ILC2 cells, working synergistically with IL-33 to enhance IL-9 production and capable of modulating proliferation and the expression of ILC2 markers. These data provide further evidence of a high heterogeneity between ILC2 subsets in a context dependent manner and calls for careful consideration when choosing the markers to identify these cells in vivo. Distinguishing ILC2 subsets and dissecting their mechanisms of activation is critical for a deeper understanding of the biology of these cells, allowing their manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- Enrique Olguín-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Ofelia Muñoz-Paleta
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Blanca E. Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jose Luis Ramos-Balderas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | | | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
- *Correspondence: Paula Licona-Limón,
| |
Collapse
|
19
|
Ekpruke CD, Silveyra P. Sex Differences in Airway Remodeling and Inflammation: Clinical and Biological Factors. FRONTIERS IN ALLERGY 2022; 3:875295. [PMID: 35769576 PMCID: PMC9234861 DOI: 10.3389/falgy.2022.875295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is characterized by an increase in the contraction and inflammation of airway muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females than in males until the start of puberty, and higher in adult women than men. This sex disparity and switch at the onset of puberty has been an object of debate among many researchers. Hence, in this review, we have summarized these observations to pinpoint areas needing more research work and to provide better sex-specific diagnosis and management of asthma. While some researchers have attributed it to the anatomical and physiological differences in the male and female respiratory systems, the influences of hormonal interplay after puberty have also been stressed. Other hormones such as leptin have been linked to the sex differences in asthma in both obese and non-obese patients. Recently, many scientists have also demonstrated the influence of the sex-specific genomic framework as a key player, and others have linked it to environmental, social lifestyle, and occupational exposures. The majority of studies concluded that adult men are less susceptible to developing asthma than women and that women display more severe forms of the disease. Therefore, the understanding of the roles played by sex- and gender-specific factors, and the biological mechanisms involved will help develop novel and more accurate diagnostic and therapeutic plans for sex-specific asthma management.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Patricia Silveyra
| |
Collapse
|
20
|
Modeling Asthma in Mice Using Common Aeroallergens. Methods Mol Biol 2022; 2506:1-18. [PMID: 35771460 PMCID: PMC9721467 DOI: 10.1007/978-1-0716-2364-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aeroallergens are common inducers of asthma in humans and are widely used in experimental research to generate animal models of this disease. In this chapter, we describe four mouse models of aeroallergen-induced asthma. These models differ in type and number of allergens used, route and duration of allergen exposure, and utilization of an adjuvant, representing different mechanistic variants of asthma. In addition, we describe several basic methods that are commonly used in mechanistic studies of asthma in mice. These methods include tracheotomy and bronchoalveolar lavage, cytospin and morphologic analysis of bronchoalveolar lavage cells, and lung harvest and digestion for generation of single-cell suspension.
Collapse
|
21
|
Kabata H, Motomura Y, Kiniwa T, Kobayashi T, Moro K. ILCs and Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:75-95. [DOI: 10.1007/978-981-16-8387-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Olguín-Martínez E, Ruiz-Medina BE, Licona-Limón P. Tissue-Specific Molecular Markers and Heterogeneity in Type 2 Innate Lymphoid Cells. Front Immunol 2021; 12:757967. [PMID: 34759931 PMCID: PMC8573327 DOI: 10.3389/fimmu.2021.757967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently described group of lymphoid subpopulations. These tissue-resident cells display a heterogeneity resembling that observed on different groups of T cells, hence their categorization as cytotoxic NK cells and helper ILCs type 1, 2 and 3. Each one of these groups is highly diverse and expresses different markers in a context-dependent manner. Type 2 innate lymphoid cells (ILC2s) are activated in response to helminth parasites and regulate the immune response. They are involved in the etiology of diseases associated with allergic responses as well as in the maintenance of tissue homeostasis. Markers associated with their identification differ depending on the tissue and model used, making the study and understanding of these cells a cumbersome task. This review compiles evidence for the heterogeneity of ILC2s as well as discussion and analyses of molecular markers associated with their identity, function, tissue-dependent expression, and how these markers contribute to the interaction of ILC2s with specific microenvironments to maintain homeostasis or respond to pathogenic challenges.
Collapse
Affiliation(s)
- Enrique Olguín-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Blanca E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
23
|
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 2021; 76:3332-3348. [PMID: 33866593 DOI: 10.1111/all.14863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery led to dramatic improvement in our understanding of the mechanism of non-IgE-mediated allergic inflammation. Numerous studies conducted in the past decade have elucidated the characteristics of each ILC subset in various organs and tissues and their ontogeny. We now know that each ILC subset exhibits heterogeneity. Moreover, the functions and activating/suppressing factors of each ILC subset were found to differ among both organs and types of tissue. Therefore, in this review, we summarize our current knowledge of ILCs by focusing on the organ/tissue-specific features of each subset to understand their roles in various organs. We also discuss ILCs' involvement in human inflammatory diseases in various organs and potential therapeutic/preventive strategies that target ILCs.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency Saitama Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| |
Collapse
|
24
|
Toki S, Newcomb DC, Printz RL, Cahill KN, Boyd KL, Niswender KD, Peebles RS. Glucagon-like peptide-1 receptor agonist inhibits aeroallergen-induced activation of ILC2 and neutrophilic airway inflammation in obese mice. Allergy 2021; 76:3433-3445. [PMID: 33955007 PMCID: PMC8597133 DOI: 10.1111/all.14879] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Obesity is a risk factor for the development of asthma. However, pharmacologic therapeutic strategies that specifically target obese asthmatics have not been identified. We hypothesize that glucagon-like peptide-1 receptor agonist (GLP-1RA) treatment inhibits aeroallergen-induced early innate airway inflammation in a mouse model of asthma in the setting of obesity. METHODS SWR (lean) and TALLYHO (obese) mice were challenged intranasally with Alternaria alternata extract (Alt-Ext) or PBS for 4 consecutive days concurrent with GLP-1RA or vehicle treatment. RESULTS TALLYHO mice had greater Alt-Ext-induced airway neutrophilia and lung protein expression of IL-5, IL-13, CCL11, CXCL1, and CXCL5, in addition to ICAM-1 expression on lung epithelial cells compared with SWR mice, and all endpoints were reduced by GLP-1RA treatment. Alt-Ext significantly increased BALF IL-33 in both TALLYHO and SWR mice compared to PBS challenge, but there was no difference in the BALF IL-33 levels between these two strains. However, TALLYHO, but not SWR, mice had significantly higher airway TSLP in BALF following Alt-Ext challenge compared to PBS, and BALF TSLP was significantly greater in TALLYHO mice compared to SWR mice following airway Alt-Ext challenge. GLP-1RA treatment significantly decreased the Alt-Ext-induced TSLP and IL-33 release in TALLYHO mice. While TSLP or ST2 inhibition with a neutralizing antibody decreased airway eosinophils, they did not reduce airway neutrophils in TALLYHO mice. CONCLUSIONS These results suggest that GLP-1RA treatment may be a novel pharmacologic therapeutic strategy for obese persons with asthma by inhibiting aeroallergen-induced neutrophilia, a feature not seen with either TSLP or ST2 inhibition.
Collapse
Affiliation(s)
- Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University School of MedicineNashvilleTNUSA
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University School of MedicineNashvilleTNUSA
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Richard L. Printz
- Division of Diabetes, Endocrinology, and MetabolismVanderbilt University School of MedicineNashvilleTNUSA
| | - Katherine N. Cahill
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University School of MedicineNashvilleTNUSA
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Kevin D. Niswender
- Division of Diabetes, Endocrinology, and MetabolismVanderbilt University School of MedicineNashvilleTNUSA
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
- United States Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University School of MedicineNashvilleTNUSA
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University School of MedicineNashvilleTNUSA
- United States Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| |
Collapse
|
25
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
26
|
Oyesola OO, Tait Wojno ED. Prostaglandin regulation of type 2 inflammation: From basic biology to therapeutic interventions. Eur J Immunol 2021; 51:2399-2416. [PMID: 34396535 PMCID: PMC8843787 DOI: 10.1002/eji.202048909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Type 2 immunity is critical for the protective and repair responses that mediate resistance to parasitic helminth infection. This immune response also drives aberrant inflammation during atopic diseases. Prostaglandins are a class of critical lipid mediators that are released during type 2 inflammation and are integral in controlling the initiation, activation, maintenance, effector functions, and resolution of Type 2 inflammation. In this review, we explore the roles of the different prostaglandin family members and the receptors they bind to during allergen‐ and helminth‐induced Type 2 inflammation and the mechanism through which prostaglandins promote or suppress Type 2 inflammation. Furthermore, we discuss the potential role of prostaglandins produced by helminth parasites in the regulation of host–pathogen interactions, and how prostaglandins may regulate the inverse relationship between helminth infection and allergy. Finally, we discuss opportunities to capitalize on our understanding of prostaglandin pathways to develop new therapeutic options for humans experiencing Type 2 inflammatory disorders that have a significant prostaglandin‐driven component including allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| |
Collapse
|
27
|
Innate immune cell dysregulation drives inflammation and disease in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2021; 148:309-318. [PMID: 34364539 DOI: 10.1016/j.jaci.2021.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/06/2023]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a complex inflammatory disorder that is not generally viewed as a disease involving the adaptive immune system but instead one largely driven by the innate immune system. This article focuses on the cellular dysregulation involving 4 central cell types: eosinophils, basophils, mast cells, and innate lymphoid type 2 cells. AERD can be envisioned as involving a self-perpetuating vicious circle in which mediators produced by a differentiated activated epithelial layer, such as IL-25, IL-33, and thymic stromal lymphopoietin, engage and activate each of these innate immune cells. The activation of these innate immune cells with their production of additional cytokine/chemokine and lipid mediators leads to further recruitment and activation of these innate immune cells. More importantly, numerous mediators produced by these innate immune cells provoke the epithelium to induce further inflammation. This self-perpetuating cycle of inflammation partially explains both current interventions suggested to ameliorate AERD (eg, aspirin desensitization, leukotriene modifiers, anti-IL-5/IL-5 receptor, anti-IL-4 receptor, and anti-IgE) and invites exploration of novel targets as specific therapies for this condition (prostaglandin D2 antagonists or cytokine antagonists [IL-25, IL-33, thymic stromal lymphopoietin]). Several of these interventions currently show promise in small retrospective analyses but now require definite clinical trials.
Collapse
|
28
|
Sahiner UM, Layhadi JA, Golebski K, István Komlósi Z, Peng Y, Sekerel B, Durham SR, Brough H, Morita H, Akdis M, Turner P, Nadeau K, Spits H, Akdis C, Shamji MH. Innate lymphoid cells: The missing part of a puzzle in food allergy. Allergy 2021; 76:2002-2016. [PMID: 33583026 DOI: 10.1111/all.14776] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Food allergy is an increasingly prevalent disease driven by uncontrolled type 2 immune response. Currently, knowledge about the underlying mechanisms that initiate and promote the immune response to dietary allergens is limited. Patients with food allergy are commonly sensitized through the skin in their early life, later on developing allergy symptoms within the gastrointestinal tract. Food allergy results from a dysregulated type 2 response to food allergens, characterized by enhanced levels of IgE, IL-4, IL-5, and IL-13 with infiltration of mast cells, eosinophils, and basophils. Recent studies raised a possible role for the involvement of innate lymphoid cells (ILCs) in driving food allergy. Unlike lymphocytes, ILCs lack They represent a group of lymphocytes that lack specific antigen receptors. ILCs contribute to immune responses not only by releasing cytokines and other mediators but also by responding to cytokines produced by activated cells in their local microenvironment. Due to their localization at barrier surfaces of the airways, gut, and skin, ILCs form a link between the innate and adaptive immunity. This review summarizes recent evidence on how skin and gastrointestinal mucosal immune system contribute to both homeostasis and the development of food allergy, as well as the involvement of ILCs toward inflammatory processes and regulatory mechanisms.
Collapse
Affiliation(s)
- Umit M Sahiner
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK.,School of Medicine Department of Pediatric Allergy, Hacettepe University, Ankara, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Yaqi Peng
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Bulent Sekerel
- School of Medicine Department of Pediatric Allergy, Hacettepe University, Ankara, Turkey
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK
| | - Helen Brough
- Children's Allergy Service, Evelina London, Guys and St Thomas, NHS Trust, London, UK.,Paediatric Allergy Group, Department of Women and Children's Heath, School of Life Course Sciences, London, UK.,Paediatric Allergy Group, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Hideaki Morita
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.,Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Paul Turner
- Section of Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK
| |
Collapse
|
29
|
The dual function of ILC2: From host protection to pathogenic players in type 2 asthma. Mol Aspects Med 2021; 80:100981. [PMID: 34193344 DOI: 10.1016/j.mam.2021.100981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
Innate lymphoid cells type 2 (ILC2) are considered the innate counterpart of Th2 cells and cooperate with them in host protection against helminths and in the pathogenesis of allergic diseases. ILC2 are characterized by type 2 cytokines production (IL-13, IL-4 and IL-5) and by GATA-3 transcription factor expression. Belonging to innate immune system, ILC2 lack of antigen specific receptor and their activation is controlled mainly by epithelial derived cytokines, such as TSLP, IL-25, and IL-33. ILC2 are located in a strategic position in the airway mucosa and are important to patrol the airways, to recruit other immune system cells and to activate resident cells in response to pathogens injury and/or tissue damage. In the last decade, many studies, in both humans and mice, focused on ILC2, fully investigating their main features such as the development from the precursor, the stimuli for their activation or inhibition, their plasticity, their classification in different subsets, and finally, their pathogenetic role in type 2 immune-mediated disorders. In this review we performed an excursus on phenotypical and functional properties on both human and mouse ILC2, in physiological and pathological conditions (mainly in type 2 asthma), considering this cell subset as target for specific therapeutic strategies.
Collapse
|
30
|
de Los Reyes Jiménez M, Lechner A, Alessandrini F, Bohnacker S, Schindela S, Trompette A, Haimerl P, Thomas D, Henkel F, Mourão A, Geerlof A, da Costa CP, Chaker AM, Brüne B, Nüsing R, Jakobsson PJ, Nockher WA, Feige MJ, Haslbeck M, Ohnmacht C, Marsland BJ, Voehringer D, Harris NL, Schmidt-Weber CB, Esser-von Bieren J. An anti-inflammatory eicosanoid switch mediates the suppression of type-2 inflammation by helminth larval products. Sci Transl Med 2021; 12:12/540/eaay0605. [PMID: 32321863 DOI: 10.1126/scitranslmed.aay0605] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Eicosanoids are key mediators of type-2 inflammation, e.g., in allergy and asthma. Helminth products have been suggested as remedies against inflammatory diseases, but their effects on eicosanoids are unknown. Here, we show that larval products of the helminth Heligmosomoides polygyrus bakeri (HpbE), known to modulate type-2 responses, trigger a broad anti-inflammatory eicosanoid shift by suppressing the 5-lipoxygenase pathway, but inducing the cyclooxygenase (COX) pathway. In human macrophages and granulocytes, the HpbE-driven induction of the COX pathway resulted in the production of anti-inflammatory mediators [e.g., prostaglandin E2 (PGE2) and IL-10] and suppressed chemotaxis. HpbE also abrogated the chemotaxis of granulocytes from patients suffering from aspirin-exacerbated respiratory disease (AERD), a severe type-2 inflammatory condition. Intranasal treatment with HpbE extract attenuated allergic airway inflammation in mice, and intranasal transfer of HpbE-conditioned macrophages led to reduced airway eosinophilia in a COX/PGE2-dependent fashion. The induction of regulatory mediators in macrophages depended on p38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor-1α (HIF-1α), and Hpb glutamate dehydrogenase (GDH), which we identify as a major immunoregulatory protein in HpbE Hpb GDH activity was required for anti-inflammatory effects of HpbE in macrophages, and local administration of recombinant Hpb GDH to the airways abrogated allergic airway inflammation in mice. Thus, a metabolic enzyme present in helminth larvae can suppress type-2 inflammation by inducing an anti-inflammatory eicosanoid switch, which has important implications for the therapy of allergy and asthma.
Collapse
Affiliation(s)
- Marta de Los Reyes Jiménez
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Sonja Schindela
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois, 1066 Epalinges, Switzerland
| | - Pascal Haimerl
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - André Mourão
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Center Munich, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Center Munich, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Adam M Chaker
- Department of Otolaryngology, Allergy Section, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Rolf Nüsing
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institute Stockholm, 171 76 Stockholm, Sweden
| | - Wolfgang A Nockher
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, 35043 Marburg, Germany
| | - Matthias J Feige
- Center for Integrated Protein Science Munich at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC 3004, Australia
| | - David Voehringer
- Department of Infection Biology, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC 3004, Australia
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany.,Member of the German Center of Lung Research (DZL)
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany.
| |
Collapse
|
31
|
Wirtz S, Schulz-Kuhnt A, Neurath MF, Atreya I. Functional Contribution and Targeted Migration of Group-2 Innate Lymphoid Cells in Inflammatory Lung Diseases: Being at the Right Place at the Right Time. Front Immunol 2021; 12:688879. [PMID: 34177944 PMCID: PMC8222800 DOI: 10.3389/fimmu.2021.688879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
During the last decade, group-2 innate lymphoid cells (ILC2s) have been discovered and successfully established as crucial mediators of lung allergy, airway inflammation and fibrosis, thus affecting the pathogenesis and clinical course of many respiratory diseases, like for instance asthma, cystic fibrosis and chronic rhinosinusitis. As an important regulatory component in this context, the local pulmonary milieu at inflammatory tissue sites does not only determine the activation status of lung-infiltrating ILC2s, but also influences their motility and migratory behavior. In general, many data collected in recent murine and human studies argued against the former concept of a very strict tissue residency of innate lymphoid cells (ILCs) and instead pointed to a context-dependent homing capacity of peripheral blood ILC precursors and the inflammation-dependent capacity of specific ILC subsets for interorgan trafficking. In this review article, we provide a comprehensive overview of the so far described molecular mechanisms underlying the pulmonary migration of ILC2s and thereby the numeric regulation of local ILC2 pools at inflamed or fibrotic pulmonary tissue sites and discuss their potential to serve as innovative therapeutic targets in the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Stefan Wirtz
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
32
|
Zheng H, Zhang Y, Pan J, Liu N, Qin Y, Qiu L, Liu M, Wang T. The Role of Type 2 Innate Lymphoid Cells in Allergic Diseases. Front Immunol 2021; 12:586078. [PMID: 34177881 PMCID: PMC8220221 DOI: 10.3389/fimmu.2021.586078] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Allergic diseases are significant diseases that affect many patients worldwide. In the past few decades, the incidence of allergic diseases has increased significantly due to environmental changes and social development, which has posed a substantial public health burden and even led to premature death. The understanding of the mechanism underlying allergic diseases has been substantially advanced, and the occurrence of allergic diseases and changes in the immune system state are known to be correlated. With the identification and in-depth understanding of innate lymphoid cells, researchers have gradually revealed that type 2 innate lymphoid cells (ILC2s) play important roles in many allergic diseases. However, our current studies of ILC2s are limited, and their status in allergic diseases remains unclear. This article provides an overview of the common phenotypes and activation pathways of ILC2s in different allergic diseases as well as potential research directions to improve the understanding of their roles in different allergic diseases and ultimately find new treatments for these diseases.
Collapse
Affiliation(s)
- Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiachuang Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nannan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Qin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Qiu
- Journal Press of Global Traditional Chinese Medicine, Beijing, China
| | - Min Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
Rodriguez-Rodriguez N, Gogoi M, McKenzie AN. Group 2 Innate Lymphoid Cells: Team Players in Regulating Asthma. Annu Rev Immunol 2021; 39:167-198. [PMID: 33534604 PMCID: PMC7614118 DOI: 10.1146/annurev-immunol-110119-091711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.
Collapse
Affiliation(s)
- Noe Rodriguez-Rodriguez
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Andrew N.J. McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK,Corresponding author:
| |
Collapse
|
34
|
Mathä L, Martinez-Gonzalez I, Steer CA, Takei F. The Fate of Activated Group 2 Innate Lymphoid Cells. Front Immunol 2021; 12:671966. [PMID: 33968080 PMCID: PMC8100346 DOI: 10.3389/fimmu.2021.671966] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) reside in both mucosal and non-mucosal tissues and play critical roles in the first line of defense against parasites and irritants such as allergens. Upon activation by cytokines released from epithelial and stromal cells during tissue damage or stimulation, ILC2s produce copious amounts of IL-5 and IL-13, leading to type 2 inflammation. Over the past 10 years, ILC2 involvement in a variety of human diseases has been unveiled. However, questions remain as to the fate of ILC2s after activation and how that might impact their role in chronic inflammatory diseases such as asthma and fibrosis. Here, we review studies that have revealed novel properties of post-activation ILC2s including the generation of immunological memory, exhausted-like phenotype, transdifferentiation and activation-induced migration.
Collapse
Affiliation(s)
- Laura Mathä
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | | | - Catherine A Steer
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Ebihara T, Tatematsu M, Fuchimukai A, Yamada T, Yamagata K, Takasuga S, Yamada T. Trained innate lymphoid cells in allergic diseases. Allergol Int 2021; 70:174-180. [PMID: 33328130 DOI: 10.1016/j.alit.2020.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) reside in peripheral tissues such as the lungs, skin, nasal cavity, and gut and provoke innate type 2 immunity against allergen exposure, parasitic worm infection, and respiratory virus infection by producing TH2 cytokines. Recent advances in understanding ILC2 biology revealed that ILC2s can be trained by IL-33 or allergic inflammation, are long-lived, and mount memory-like type 2 immune responses to any other allergens afterwards. In contrast, IL-33, together with retinoic acid, induces IL-10-producing immunosuppressive ILC2s. In this review, we discuss how the allergic cytokine milieu and other immune cells direct the generation of trained ILC2s with immunostimulatory or immunosuppressive recall capability in allergic diseases and infections associated with type 2 immunity. The molecular mechanisms of trained immunity by ILCs and the physiological relevance of trained ILC2s are also discussed.
Collapse
Affiliation(s)
- Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan.
| | - Megumi Tatematsu
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akane Fuchimukai
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Toshiki Yamada
- Department of Otorhinolaryngology, Head & Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenki Yamagata
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shunsuke Takasuga
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head & Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
36
|
Scadding GK, Scadding GW. Innate and Adaptive Immunity: ILC2 and Th2 Cells in Upper and Lower Airway Allergic Diseases. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1851-1857. [PMID: 33618052 DOI: 10.1016/j.jaip.2021.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Advances in our understanding of the immune system, with the recent discovery of a parallel set of innate T lymphocytes, the innate lymphocytes (ILCs), have led to a reassessment of the pathogenesis of allergic and eosinophilic airway disorders, including allergic rhinitis (AR), asthma, and chronic rhinosinusitis with nasal polyps. We review current understanding of both elements of type-2 inflammatory responses and their relative influence in these common conditions and consider possible impacts of this on treatment selection.
Collapse
|
37
|
Ren X, Wang Z. High chemokine ligand 11 levels in nasal lavage fluid: A potential predictor of and therapeutic target for murine eosinophilic chronic rhinosinusitis. Life Sci 2021; 271:119218. [PMID: 33592198 DOI: 10.1016/j.lfs.2021.119218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
AIM We aimed to discover whether group 2 innate lymphoid cells (ILC2s) and cytokines in nasal lavage fluid could be used to predict eosinophilic infiltration in mice with eosinophilic chronic rhinosinusitis (ECRS). METHODS Ten mice were divided into two groups. The ECRS group received an intranasal challenge of Aspergillus oryzae protease (AP) and ovalbumin (OVA) to establish disease. A control group received intranasal phosphate-buffered saline. Histopathology of nasal cavities and paranasal sinuses, and cytokine and ILC2s levels in nasal lavage fluid were analyzed and compared between the ECRS and control mouse groups. KEY FINDINGS ILC2s numbers were not significantly higher in the nasal lavage fluid of the ECRS group mice compared with those of the control group. Eotaxin/chemokine (CC motif) ligand 11 (CCL11) levels were significantly higher in the nasal lavage fluid of mice in the ECRS group compared with those in the control group. However, no statistical differences were seen in the classic proinflammatory cytokines, IL-33, IL-25, and thymic stromal thymopoietin (TSLP), or the classic type 2 cytokines, IL-4, IL-5, and IL-13 between groups. SIGNIFICANCE Eotaxin/CCL11 levels in nasal lavage fluid rather than that of ILC2s and classic proinflammatory and type 2 cytokines were significantly higher in ECRS mice compared with control ones. Eotaxin/CCL11 showed diagnostic and therapeutic value; however, more studies are needed to test and verify its value.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Otorhinolaryngology, Head and Neck Surgery Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology, Head and Neck Surgery Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the complex cellular interactions of aspirin-exacerbated respiratory disease (AERD) and how these interactions promote pathogenic mechanisms of AERD. RECENT FINDINGS In addition to characteristic changes in eicosanoid levels, recent studies have identified increases in alarmin cytokines (IL-33, thymic stromal lymphopoietin) as well as activated innate lymphoid and plasma cell populations in samples from AERD patients. SUMMARY Patients with AERD typically demonstrate high levels of proinflammatory eicosanoids including cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) and hyporesponsiveness to prostaglandin E2 (PGE2). CysLTs are released by mast cells, eosinophils, and adherent platelets and promote epithelial release of IL-33, which activates mast cells and group 2 innate lymphoid cells (ILC2s) in concert with CysLTs. TSLP induces PGD2 release from mast cells which activates and recruits eosinophils, basophils, Th2 cells, and ILC2s via CRTH2. In turn, ILC2s and other cell types produce Th2 cytokines IL-4, IL-5, and IL-13 that, along with CysLTs and PGD2, promote bronchoconstriction, eosinophilic tissue inflammation, and mucus production.
Collapse
Affiliation(s)
- Jana H. Badrani
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Taylor A. Doherty
- Department of Medicine, University of California-San Diego, La Jolla, CA
- Veterans Affairs San Diego Health Care System, La Jolla, CA
| |
Collapse
|
39
|
Vu SH, Bernardo Reyes AW, Ngoc Huy TX, Min W, Lee HJ, Kim HJ, Lee JH, Kim S. Prostaglandin I2 (PGI 2) inhibits Brucella abortus internalization in macrophages via PGI 2 receptor signaling, and its analogue affects immune response and disease outcome in mice. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103902. [PMID: 33091457 DOI: 10.1016/j.dci.2020.103902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
To date, the implications of prostaglandin I2 (PGI2), a prominent lipid mediator for modulation of immune responses, has not been clearly understood in Brucella infection. In this study, we found that cyclooxygenase-2 (COX-2) was significantly expressed in both infected bone marrow-derived macrophages (BMMs) and RAW 264.7 cells. Prostaglandin I2 synthase (PTGIS) expression was not significantly changed, and PGI2receptor (PTGIR) expression was downregulated in BMMs but upregulated in RAW 264.7 macrophages at late infection. Here, we presented that PGI2, a COX-derived metabolite, was produced by macrophages during Brucella infection and its production was regulated by COX-2 and IL-10. We suggested that PGI2 and selexipag, a potent PGI2 analogue, inhibited Brucella internalization through IP signaling which led to down-regulation of F-actin polymerization and p38α MAPK activity. Administration with selexipag suppressed immune responses and resulted in a notable reduction in bacterial burden in spleen of Brucella-challenged mice. Taken together, our study is the first to characterize PGI2 synthesis and its effect in evasion strategy of macrophages against Brucella infection.
Collapse
Affiliation(s)
- Son Hai Vu
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam; Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | | | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun-Jin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
40
|
Cavagnero KJ, Doherty TA. Lipid-mediated innate lymphoid cell recruitment and activation in aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2021; 126:135-142. [PMID: 32950684 PMCID: PMC7855910 DOI: 10.1016/j.anai.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To synthesize investigations into the role of lipid-mediated recruitment and activation of group 2 innate lymphoid cells (ILC2s) in aspirin-exacerbated respiratory disease (AERD). DATA SOURCES A comprehensive literature review of reports pertaining to cellular mechanisms, cytokine, and lipid mediators in AERD, as well as ILC2 activation and recruitment, was performed using PubMed and Google Scholar. STUDY SELECTIONS Selections of studies were based on reports of lipid mediators in AERD, cytokine mediators in AERD, type 2 effector cells in AERD, platelets in AERD, AERD treatment, ILC2s in allergic airway disease, and ILC2 activation, inhibition, and trafficking. RESULTS The precise mechanisms of AERD pathogenesis are not well understood. Greater levels of proinflammatory lipid mediators and type 2 cytokines are found in tissues derived from patients with AERD relative to controls. After pathognomonic cyclooxygenase-1 inhibitor reactions, proinflammatory mediator concentrations (prostaglandin D2 and cysteinyl leukotrienes) are rapidly increased, as are ILC2 levels in the nasal mucosa. The ILC2s, which potently generate type 2 cytokines in response to lipid mediator stimulation, may play a key role in AERD pathogenesis. CONCLUSION Although the literature suggests that lipid-mediated ILC2 activation may occur in AERD, there is a dearth of definitive evidence. Future investigations leveraging novel next-generation single-cell sequencing approaches along with recently developed AERD murine models will better define lipid mediator-induced ILC2 trafficking in patients with AERD.
Collapse
Affiliation(s)
- Kellen J Cavagnero
- Department of Medicine, University of California, San Diego, La Jolla, California; Department of Dermatology, University of California, San Diego, La Jolla, California
| | - Taylor A Doherty
- Department of Medicine, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Health Care System, La Jolla, California.
| |
Collapse
|
41
|
Cephus J, Gandhi VD, Shah R, Brooke Davis J, Fuseini H, Yung JA, Zhang J, Kita H, Polosukhin VV, Zhou W, Newcomb DC. Estrogen receptor-α signaling increases allergen-induced IL-33 release and airway inflammation. Allergy 2021; 76:255-268. [PMID: 32648964 DOI: 10.1111/all.14491] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2) are stimulated by IL-33 to increase IL-5 and IL-13 production and airway inflammation. While sex hormones regulate airway inflammation, it remained unclear whether estrogen signaling through estrogen receptor-α (ER-α, Esr1) or ER-β (Esr2) increased ILC2-mediated airway inflammation. We hypothesize that estrogen signaling increases allergen-induced IL-33 release, ILC2 cytokine production, and airway inflammation. METHODS Female Esr1-/- , Esr2-/- , wild-type (WT), and IL33fl/fl eGFP mice were challenged with Alternaria extract (Alt Ext) or vehicle for 4 days. In select experiments, mice were administered tamoxifen or vehicle pellets for 21 days prior to challenge. Lung ILC2, IL-5 and IL-13 production, and BAL inflammatory cells were measured on day 5 of Alt Ext challenge model. Bone marrow from WT and Esr1-/- female mice was transferred (1:1 ratio) into WT female recipients for 6 weeks followed by Alt Ext challenge. hBE33 cells and normal human bronchial epithelial cells (NHBE) were pretreated with 17β-estradiol (E2), propyl-pyrazole-triol (PPT, ER-α agonist), or diarylpropionitrile (DPN, ER-β agonist) before allergen challenge to determine IL-33 gene expression and release, extracellular ATP release, DUOX-1 production, and necrosis. RESULTS Alt Ext challenged Esr1-/- , but not Esr2-/- , mice had decreased IL-5 and IL-13 production, BAL eosinophils, and IL-33 release compared to WT mice. Tamoxifen decreased IL-5 and IL-13 production and BAL eosinophils. IL-33eGFP + epithelial cells were decreased in Alt Ext challenged Esr1-/- mice compared to WT mice. 17β-E2 or PPT, but not DPN, increased IL-33 gene expression, release, and DUOX-1 production in hBE33 or NHBE cells. CONCLUSION Estrogen receptor -α signaling increased IL-33 release and ILC2-mediated airway inflammation.
Collapse
Affiliation(s)
- Jacqueline‐Yvonne Cephus
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Vivek D. Gandhi
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Ruchi Shah
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Jordan Brooke Davis
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Hubaida Fuseini
- Department of Pathology, Microbiology, and Immunology Vanderbilt University Nashville Tennessee USA
| | - Jeffrey A. Yung
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Jian Zhang
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Hirohito Kita
- Allergic Diseases Research Laboratory Mayo Clinic Phoenix Arizona USA
| | - Vasiliy V. Polosukhin
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Weisong Zhou
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Dawn C. Newcomb
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
- Department of Pathology, Microbiology, and Immunology Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
42
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
43
|
Oyesola OO, Früh SP, Webb LM, Tait Wojno ED. Cytokines and beyond: Regulation of innate immune responses during helminth infection. Cytokine 2020; 133:154527. [PMID: 30241895 PMCID: PMC6422760 DOI: 10.1016/j.cyto.2018.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Parasitic helminth infection elicits a type 2 cytokine-mediated inflammatory response. During type 2 inflammation, damaged or stimulated epithelial cells exposed to helminths and their products produce alarmins and cytokines including IL-25, IL-33, and thymic stromal lymphopoietin. These factors promote innate immune cell activation that supports the polarization of CD4+ T helper type 2 (Th2) cells. Activated innate and Th2 cells produce the cytokines IL-4, -5, -9, and -13 that perpetuate immune activation and act back on the epithelium to cause goblet cell hyperplasia and increased epithelial cell turnover. Together, these events facilitate worm expulsion and wound healing processes. While the role of Th2 cells in this context has been heavily studied, recent work has revealed that epithelial cell-derived cytokines are drivers of key innate immune responses that are critical for type 2 anti-helminth responses. Cutting-edge studies have begun to fully assess how other factors and pathways, including lipid mediators, chemokines, Fc receptor signaling, danger-associated molecular pattern molecules, and direct cell-cell interactions, also participate in shaping innate cell-mediated type 2 inflammation. In this review, we discuss how these pathways intersect and synergize with pathways controlled by epithelial cell-derived cytokines to coordinate innate immune responses that drive helminth-induced type 2 inflammation.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Simon P Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Lauren M Webb
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
44
|
Zhou W, Zhang J, Toki S, Goleniewska K, Norlander AE, Newcomb DC, Wu P, Boyd KL, Kita H, Peebles RS. COX Inhibition Increases Alternaria-Induced Pulmonary Group 2 Innate Lymphoid Cell Responses and IL-33 Release in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:1157-1166. [PMID: 32690653 DOI: 10.4049/jimmunol.1901544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
The cyclooxygenase (COX) metabolic pathway regulates immune responses and inflammation. The effect of the COX pathway on innate pulmonary inflammation induced by protease-containing fungal allergens, such as Alternaria alternata, is not fully defined. In this study, we tested the hypothesis that COX inhibition augments Alternaria-induced pulmonary group 2 innate lymphoid cell (ILC2) responses and IL-33 release. Mice were treated with the COX inhibitors indomethacin, flurbiprofen, or vehicle and challenged intranasally with Alternaria extract for four consecutive days to induce innate lung inflammation. We found that indomethacin and flurbiprofen significantly increased the numbers of ILC2 and IL-5 and IL-13 expression by ILC2 in the lung. Indomethacin also increased ILC2 proliferation, the percentages of eosinophils, and mucus production in the lung. Both indomethacin and flurbiprofen augmented the release of IL-33 in bronchoalveolar lavage fluid after Alternaria challenge, suggesting that more IL-33 was available for ILC2 activation and that a COX product(s) inhibited IL-33 release. This is supported by the in vitro finding that the COX product PGE2 and the PGI2 analogs cicaprost decreased Alternaria extract-induced IL-33 release by human bronchial epithelial cells. Although contrasting effects of PGD2, PGE2, and PGI2 on ILC2 responses have been previously reported, the overall effect of the COX pathway on ILC2 function is inhibitory in Alternaria-induced innate airway inflammation.
Collapse
Affiliation(s)
- Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232;
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Allison E Norlander
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Pingsheng Wu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Hirohito Kita
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| |
Collapse
|
45
|
Huang N, Wang M, Peng J, Wei H. Role of arachidonic acid-derived eicosanoids in intestinal innate immunity. Crit Rev Food Sci Nutr 2020; 61:2399-2410. [PMID: 32662287 DOI: 10.1080/10408398.2020.1777932] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arachidonic acid (ARA), an n-6 essential fatty acid, plays an important role in human and animal growth and development. The ARA presents in the membrane phospholipids can be released by phospholipase A2. These free arachidonic acid molecules are then used to produce eicosanoids through three different pathways. Previous studies have demonstrated that eicosanoids have a wide range of physiological functions. Although they are generally considered to be pro-inflammatory molecules, recent advances have elucidated they have an effect on innate immunity via regulating the development, and differentiation of innate immune cells and the function of the intestinal epithelial barrier. Here, we review eicosanoids generation in intestine and their role in intestinal innate immunity, focusing on intestinal epithelial barrier, innate immune cell in lamina propria (LP) and their crosstalk.
Collapse
Affiliation(s)
- Ningning Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Miaomiao Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
46
|
Toki S, Goleniewska K, Zhang J, Zhou W, Newcomb DC, Zhou B, Kita H, Boyd KL, Peebles RS. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy 2020; 75:1606-1617. [PMID: 31975538 PMCID: PMC7354889 DOI: 10.1111/all.14196] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/16/2019] [Accepted: 11/28/2019] [Indexed: 01/10/2023]
Abstract
Background The epithelial cell‐derived danger signal mediators thymic stromal lymphopoietin (TSLP) and IL‐33 are consistently associated with adaptive Th2 immune responses in asthma. In addition, TSLP and IL‐33 synergistically promoted group 2 innate lymphoid cell (ILC2) activation to induce innate allergic inflammation. However, the mechanism of this synergistic ILC2 activation is unknown. Methods BALB/c WT and TSLP receptor‐deficient (TSLPR−/−) mice were challenged intranasally with Alternaria extract (Alt‐Ext) or PBS for 4 consecutive days to evaluate innate airway allergic inflammation. WT mice pre‐administered with rTSLP or vehicle, TSLPR−/− mice, and IL‐33 receptor‐deficient (ST2−/−) mice were challenged intranasally with Alt‐Ext or vehicle once or twice to evaluate IL‐33 release and TSLP expression in the lung. TSLPR and ST2 expression on lung ILC2 were measured by flow cytometry after treatment of rTSLP, rIL‐33, rTSLP + rIL‐33, or vehicle. Results Thymic stromal lymphopoietin receptor deficient mice had significantly decreased the number of lung ILC2 expressing IL‐5 and IL‐13 following Alt‐Ext‐challenge compared to WT mice. Further, eosinophilia, protein level of lung IL‐4, IL‐5, and IL‐13, and airway mucus score were also significantly decreased in TSLPR−/− mice compared to WT mice. Endogenous and exogenous TSLP increased Alt‐Ext‐induced IL‐33 release into BALF, and ST2 deficiency decreased Alt‐Ext‐induced TSLP expression in the lung. Further, rTSLP and rIL‐33 treatment reciprocally increased each other's receptor expression on lung ILC2 in vivo and in vitro. Conclusion Thymic stromal lymphopoietin and IL‐33 signaling reciprocally enhanced each other's protein release and expression in the lung following Alt‐Ext‐challenge and each other's receptor expression on lung ILC2 to enhance ILC2 activation.
Collapse
Affiliation(s)
- Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
| | - Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
- Department of Pathology, Microbiology, and Immunology Vanderbilt University School of Medicine Nashville TN USA
| | - Baohua Zhou
- Wells Center for Pediatric Research Department of Pediatrics Indiana University School of Medicine Indianapolis IN USA
| | - Hirohito Kita
- Division of Allergic Diseases Department of Internal Medicine Mayo Clinic Rochester MN USA
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology Vanderbilt University School of Medicine Nashville TN USA
| | - Ray S. Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
- Department of Pathology, Microbiology, and Immunology Vanderbilt University School of Medicine Nashville TN USA
| |
Collapse
|
47
|
Schulz-Kuhnt A, Wirtz S, Neurath MF, Atreya I. Regulation of Human Innate Lymphoid Cells in the Context of Mucosal Inflammation. Front Immunol 2020; 11:1062. [PMID: 32655549 PMCID: PMC7324478 DOI: 10.3389/fimmu.2020.01062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since their identification as a unique cell population, innate lymphoid cells (ILCs) have revolutionized our understanding of immune responses, leaving their impact on multiple inflammatory and fibrotic pathologies without doubt. Thus, a tightly controlled regulation of local ILC numbers and their activity is of crucial importance. Even though this has been extensively studied in murine ILCs in the last few years, our knowledge of human ILCs is still lagging behind. Our review article will therefore summarize recent insights into the function of human ILCs and will particularly focus on their regulation under inflammatory conditions. The quality and intensity of ILC involvement into local immune responses at mucosal sites of the human body can potentially be modulated via three different axes: (1) activation of tissue-resident mature ILCs, (2) plasticity and local transdifferentiation of specific ILC subsets, and (3) tissue migration and accumulation of peripheral ILCs. Despite a still ongoing scientific effort in this field, already existing data on the fate of human ILCs under different pathologic conditions clearly indicate that all three of these mechanisms are of relevance for the clinical course of chronic inflammatory and autoimmune diseases and might likewise provide new target structures for future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
48
|
Palmer LD, Maloney KN, Boyd KL, Goleniewska AK, Toki S, Maxwell CN, Chazin WJ, Peebles RS, Newcomb DC, Skaar EP. The Innate Immune Protein S100A9 Protects from T-Helper Cell Type 2-mediated Allergic Airway Inflammation. Am J Respir Cell Mol Biol 2020; 61:459-468. [PMID: 30943376 DOI: 10.1165/rcmb.2018-0217oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calprotectin is a heterodimer of the proteins S100A8 and S100A9, and it is an abundant innate immune protein associated with inflammation. In humans, calprotectin transcription and protein abundance are associated with asthma and disease severity. However, mechanistic studies in experimental asthma models have been inconclusive, identifying both protective and pathogenic effects of calprotectin. To clarify the role of calprotectin in asthma, calprotectin-deficient S100A9-/- and wild-type (WT) C57BL/6 mice were compared in a murine model of allergic airway inflammation. Mice were intranasally challenged with extracts of the clinically relevant allergen, Alternaria alternata (Alt Ext), or PBS every third day over 9 days. On Day 10, BAL fluid and lung tissue homogenates were harvested and allergic airway inflammation was assessed. Alt Ext challenge induced release of S100A8/S100A9 to the alveolar space and increased protein expression in the alveolar epithelium of WT mice. Compared with WT mice, S100A9-/- mice displayed significantly enhanced allergic airway inflammation, including production of IL-13, CCL11, CCL24, serum IgE, eosinophil recruitment, and airway resistance and elastance. In response to Alt Ext, S100A9-/- mice accumulated significantly more IL-13+IL-5+CD4+ T-helper type 2 cells. S100A9-/- mice also accumulated a significantly lower proportion of CD4+ T regulatory (Treg) cells in the lung that had significantly lower expression of CD25. Calprotectin enhanced WT Treg cell suppressive activity in vitro. Therefore, this study identifies a role for the innate immune protein, S100A9, in protection from CD4+ T-helper type 2 cell hyperinflammation in response to Alt Ext. This protection is mediated, at least in part, by CD4+ Treg cell function.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology.,Vanderbilt Institute for Infection, Immunology and Inflammation, and
| | - K Nichole Maloney
- Department of Pathology, Microbiology, and Immunology.,Vanderbilt Institute for Infection, Immunology and Inflammation, and
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology.,Vanderbilt Institute for Infection, Immunology and Inflammation, and
| | - A Kasia Goleniewska
- Vanderbilt Institute for Infection, Immunology and Inflammation, and.,Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Shinji Toki
- Vanderbilt Institute for Infection, Immunology and Inflammation, and.,Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - C Noel Maxwell
- Department of Biochemistry and.,Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee
| | - Walter J Chazin
- Vanderbilt Institute for Infection, Immunology and Inflammation, and.,Department of Biochemistry and.,Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee
| | - R Stokes Peebles
- Department of Pathology, Microbiology, and Immunology.,Vanderbilt Institute for Infection, Immunology and Inflammation, and.,Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Dawn C Newcomb
- Department of Pathology, Microbiology, and Immunology.,Vanderbilt Institute for Infection, Immunology and Inflammation, and.,Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology.,Vanderbilt Institute for Infection, Immunology and Inflammation, and
| |
Collapse
|
49
|
Liu J, Jiang X, Li L, Liu H, Zhang X, Liu K, Yang C. Iloprost inhibits acute allergic nasal inflammation by GATA3 -ILC2 pathway in mice. Respir Physiol Neurobiol 2020; 276:103364. [DOI: 10.1016/j.resp.2019.103364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 12/26/2022]
|
50
|
Guia S, Narni-Mancinelli E. Helper-like Innate Lymphoid Cells in Humans and Mice. Trends Immunol 2020; 41:436-452. [PMID: 32223931 DOI: 10.1016/j.it.2020.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
The innate lymphoid cell (ILC) family consists of natural killer (NK) cells, helper-like lymphoid cells (ILC1s, ILC2s, and ILC3s), and lymphoid tissue inducer (LTi) cells. Helper-like ILCs are considered the innate counterpart of T-helper cells because of similarities in their cytokine output and expression of key transcription factors. ILCs provide and regulate innate immune functions before the development of adaptive immunity. They are involved in host defense against pathogens, inflammation, tissue repair, and metabolic homeostasis. However, they can also be involved in inflammatory disorders and carcinogenesis. In this review, we summarize the latest research on ILC development and plasticity in humans and mice, focusing on the pathogenic role of helper-like ILCs in inflammatory disorders, such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Sophie Guia
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|