1
|
Wu Y, Zhao Z, Deng X, Jia J, Yuan G. Pregnancy zone protein, a potential research target in multiple diseases. Gene 2024; 935:149013. [PMID: 39433266 DOI: 10.1016/j.gene.2024.149013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Pregnancy zone protein (PZP) is an antiprotease-resistant immunosuppressant belonging to the α-macroglobulin (αM) protein family. PZP is secreted by the liver and was found to be upregulated in plasma during pregnancy. α-2-macroglobulin (Α2M) shares 71 % serial homology with PZP, but low PZP levels do not lead to increased A2M levels in pregnancy. PZP can interact with several factors such as low-density lipoprotein receptor-associated protein (LRP), transforming growth factor-β (TGF-β), 78 kDa glucose-regulated protein (GRP78), and glycoside A (GdA). PZP is involved in the development of glycolipid metabolism disorders, bronchiectasis, Alzheimer's disease (AD), rheumatoid arthritis (RA), myocardial infarction (MI) and inflammatory bowel disease (IBD). PZP is also associated with the progression of tumorigenesis such as breast cancer (BC), homologyepatocellular carcinoma (HCC), lung adenocarcinoma (LAC), and colorectal cancer (CRC). Therefore, this review analyzes the role of PZP in pathophysiology of various diseases.
Collapse
Affiliation(s)
- You Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Zhicong Zhao
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210033, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
2
|
Perea L, Bottier M, Cant E, Richardson H, Dicker AJ, Shuttleworth M, Giam YH, Abo-Leyah H, Finch S, Huang JTJ, Shteinberg M, Goeminne PC, Polverino E, Altenburg J, Blasi F, Welte T, Aliberti S, Sibila O, Chalmers JD, Shoemark A. Airway IL-1β is related to disease severity and mucociliary function in bronchiectasis. Eur Respir J 2024; 64:2301966. [PMID: 38811046 DOI: 10.1183/13993003.01966-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE The inflammasome is a key regulatory complex of the inflammatory response leading to interleukin-1β (IL-1β) release and activation. IL-1β amplifies inflammatory responses and induces mucus secretion and hyperconcentration in other diseases. The role of IL-1β in bronchiectasis has not been investigated. OBJECTIVES To characterise the role of airway IL-1β in bronchiectasis, including the association with mucus properties, ciliary function, airway inflammation, microbiome and disease severity. METHODS Stable bronchiectasis patients were enrolled in an international cohort study (n=269). IL-1β was measured in sputum supernatant. A validation cohort also had sputum rheology and hydration measured (n=53). For analysis, patients were stratified according to the median value of IL-1β in the population (high versus low) to compare disease severity, airway infection, microbiome (16S rRNA sequencing), inflammation and caspase-1 activity. Primary human nasal epithelial cells grown in air-liquid interface culture were used to study the effect of IL-1β on cilia function. RESULTS Patients with high sputum IL-1β had more severe disease, increased caspase-1 activity and an increased T-helper type 1, T-helper type 2 and neutrophil inflammatory response compared with patients with low IL-1β. The active-dominant form of IL-1β was associated with increased disease severity. High IL-1β was related to higher relative abundance of Proteobacteria in the microbiome and increased mucus solid content and viscoelastic properties. Chronic IL-1β treatment reduced the functionality of cilia and tight junctions of epithelial cells in vitro. CONCLUSIONS A subset of stable bronchiectasis patients show increased airway IL-1β, suggesting pulmonary inflammasome activation is linked with more severe disease, airway infection, mucus dehydration and epithelial dysfunction.
Collapse
Affiliation(s)
- Lidia Perea
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mathieu Bottier
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| | - Erin Cant
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Morven Shuttleworth
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hani Abo-Leyah
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Simon Finch
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jeffrey T-J Huang
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
| | | | | | | | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
- Department of Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Tobias Welte
- Department of Respiratory Medicine, Medizinische Hochschule Hannover, Hannover, Germany
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, University of Barcelona, Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Senior authors contributed equally to this manuscript
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Senior authors contributed equally to this manuscript
| |
Collapse
|
3
|
Perea L, Faner R, Chalmers JD, Sibila O. Pathophysiology and genomics of bronchiectasis. Eur Respir Rev 2024; 33:240055. [PMID: 38960613 PMCID: PMC11220622 DOI: 10.1183/16000617.0055-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a complex and heterogeneous inflammatory chronic respiratory disease with an unknown cause in around 30-40% of patients. The presence of airway infection together with chronic inflammation, airway mucociliary dysfunction and lung damage are key components of the vicious vortex model that better describes its pathophysiology. Although bronchiectasis research has significantly increased over the past years and different endotypes have been identified, there are still major gaps in the understanding of the pathophysiology. Genomic approaches may help to identify new endotypes, as has been shown in other chronic airway diseases, such as COPD.Different studies have started to work in this direction, and significant contributions to the understanding of the microbiome and proteome diversity have been made in bronchiectasis in recent years. However, the systematic application of omics approaches to identify new molecular insights into the pathophysiology of bronchiectasis (endotypes) is still limited compared with other respiratory diseases.Given the complexity and diversity of these technologies, this review describes the key components of the pathophysiology of bronchiectasis and how genomics can be applied to increase our knowledge, including the study of new techniques such as proteomics, metabolomics and epigenomics. Furthermore, we propose that the novel concept of trained innate immunity, which is driven by microbiome exposures leading to epigenetic modifications, can complement our current understanding of the vicious vortex. Finally, we discuss the challenges, opportunities and implications of genomics application in clinical practice for better patient stratification into new therapies.
Collapse
Affiliation(s)
- Lidia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Oriol Sibila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Johnson E, Long MB, Chalmers JD. Biomarkers in bronchiectasis. Eur Respir Rev 2024; 33:230234. [PMID: 38960612 PMCID: PMC11220624 DOI: 10.1183/16000617.0234-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a heterogeneous disease with multiple aetiologies and diverse clinical features. There is a general consensus that optimal treatment requires precision medicine approaches focused on specific treatable disease characteristics, known as treatable traits. Identifying subtypes of conditions with distinct underlying biology (endotypes) depends on the identification of biomarkers that are associated with disease features, prognosis or treatment response and which can be applied in clinical practice. Bronchiectasis is a disease characterised by inflammation, infection, structural lung damage and impaired mucociliary clearance. Increasingly there are available methods to measure each of these components of the disease, revealing heterogeneous inflammatory profiles, microbiota, radiology and mucus and epithelial biology in patients with bronchiectasis. Using emerging biomarkers and omics technologies to guide treatment in bronchiectasis is a promising field of research. Here we review the most recent data on biomarkers in bronchiectasis.
Collapse
Affiliation(s)
- Emma Johnson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
5
|
Raboso B, Pou C, Abril R, Erro M, Sánchez C, Manzano C, Zamarrón E, Suarez-Cuartin G, González J. Bronchiectasis. OPEN RESPIRATORY ARCHIVES 2024; 6:100339. [PMID: 39026515 PMCID: PMC11255363 DOI: 10.1016/j.opresp.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 07/20/2024] Open
Abstract
Non-cystic fibrosis bronchiectasis, a condition that remains relatively underrecognized, has garnered increasing research focus in recent years. This scientific interest has catalyzed advancements in diagnostic methodologies, enabling comprehensive clinical and molecular profiling. Such progress facilitates the development of personalized treatment strategies, marking a significant step toward precision medicine for these patients. Bronchiectasis poses significant diagnostic challenges in both clinical settings and research studies. While computed tomography (CT) remains the gold standard for diagnosis, novel alternatives are emerging. These include artificial intelligence-powered algorithms, ultra-low dose chest CT, and magnetic resonance imaging (MRI) techniques, all of which are becoming recognized as feasible diagnostic tools. The precision medicine paradigm calls for refined characterization of bronchiectasis patients by analyzing their inflammatory and molecular profiles. Research into the underlying mechanisms of inflammation and the evaluation of biomarkers such as neutrophil elastase, mucins, and antimicrobial peptides have led to the identification of distinct patient endotypes. These endotypes present variable clinical outcomes, necessitating tailored therapeutic interventions. Among these, eosinophilic bronchiectasis is notable for its prevalence and specific prognostic factors, calling for careful consideration of treatable traits. A deeper understanding of the microbiome's influence on the pathogenesis and progression of bronchiectasis has inspired a holistic approach, which considers the multibiome as an interconnected microbial network rather than treating pathogens as solitary entities. Interactome analysis therefore becomes a vital tool for pinpointing alterations during both stable phases and exacerbations. This array of innovative approaches has revolutionized the personalization of treatments, incorporating therapies such as inhaled mannitol or ARINA-1, brensocatib for anti-inflammatory purposes, and inhaled corticosteroids specifically for patients with eosinophilic bronchiectasis.
Collapse
Affiliation(s)
| | | | - Rosa Abril
- University Hospital Complex Insular-Materno Infantil (CHUIMI) of Gran Canaria, Gran Canaria, Spain
| | - Marta Erro
- Puerta del Hierro University Hospital, Madrid, Spain
| | | | - Carlos Manzano
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | | | - Guillermo Suarez-Cuartin
- Hospital Universitari Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Chotirmall SH, Chalmers JD. The Precision Medicine Era of Bronchiectasis. Am J Respir Crit Care Med 2024; 210:24-34. [PMID: 38949497 PMCID: PMC11197062 DOI: 10.1164/rccm.202403-0473pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
7
|
Kwok WC, Ho JCM, Lam DCL, Ip MSM, Tam TCC. Baseline neutrophil-to-lymphocyte ratio as a predictor of response to hospitalized bronchiectasis exacerbation risks. Eur Clin Respir J 2024; 11:2372901. [PMID: 38946716 PMCID: PMC11212557 DOI: 10.1080/20018525.2024.2372901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Background Bronchiectasis is a disease with predominantly neutrophilic inflammation. As a readily available biomarker, there is little evidence to support the use of blood neutrophil-to-lymphocyte ratio (NLR) to predict bronchiectasis exacerbation severe enough to warrant hospitalization. Methods A registry-based retrospective cohort study was conducted at a in Hong Kong. Chinese patients with non-cystic fibrosis (CF) bronchiectasis were retrospectively reviewed and subsequently followed up to investigate the association of NLR and the need for hospitalization for bronchiectasis exacerbation. Data on the NLR for patients in a clinically stable state in 2018 were collected and patients followed up from 1 January 2019 to 31 December 2022. The primary outcome was the need for hospitalization due to bronchiectasis exacerbation over the next 4 years. Results We reviewed 473 Chinese patients with non-CF bronchiectasis, of whom 94 required hospitalization for bronchiectasis exacerbation during the 4-year follow-up period. Multi-variable logistic regression adjusted for E-FACED score (Exacerbation, Forced expiratory volume in 1 s (FEV1), Age, Chronic colonization, Extension, and Dyspnea score), gender, age, smoking status, and presence of co-existing chronic obstructive pulmonary disease (COPD) was conducted to compare patients with highest and lowest quartile NLR. Results revealed that those with NLR at the highest quartile were at increased risk of hospitalization for bronchiectasis exacerbation with an adjusted odds ratio (aOR) of 2.02 (95% confidence interval = 1.00-4.12, p = 0.05). Conclusion Blood NLR may serve as a marker to predict the need for hospitalization due to bronchiectasis exacerbation.
Collapse
Affiliation(s)
- Wang Chun Kwok
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - James Chung Man Ho
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - David Chi Leung Lam
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Mary Sau Man Ip
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Terence Chi Chun Tam
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| |
Collapse
|
8
|
Wang Y, Zhong F, Xiao F, Li J, Liu X, Ni G, Wang T, Zhang W. Host-defence caerin 1.1 and 1.9 peptides suppress glioblastoma U87 and U118 cell proliferation through the modulation of mitochondrial respiration and induce the downregulation of CHI3L1. PLoS One 2024; 19:e0304149. [PMID: 38848430 PMCID: PMC11161062 DOI: 10.1371/journal.pone.0304149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Glioblastoma, the most aggressive form of brain cancer, poses a significant global health challenge with a considerable mortality rate. With the predicted increase in glioblastoma incidence, there is an urgent need for more effective treatment strategies. In this study, we explore the potential of caerin 1.1 and 1.9, host defence peptides derived from an Australian tree frog, in inhibiting glioblastoma U87 and U118 cell growth. Our findings demonstrate the inhibitory impact of caerin 1.1 and 1.9 on cell growth through CCK8 assays. Additionally, these peptides effectively curtail the migration of glioblastoma cells in a cell scratch assay, exhibiting varying inhibitory effects among different cell lines. Notably, the peptides hinder the G0/S phase replication in both U87 and U118 cells, pointing to their impact on the cell cycle. Furthermore, caerin 1.1 and 1.9 show the ability to enter the cytoplasm of glioblastoma cells, influencing the morphology of mitochondria. Proteomics experiments reveal intriguing insights, with a decrease in CHI3L1 expression and an increase in PZP and JUNB expression after peptide treatment. These proteins play roles in cell energy metabolism and inflammatory response, suggesting a multifaceted impact on glioblastoma cells. In conclusion, our study underscores the substantial anticancer potential of caerin 1.1 and 1.9 against glioblastoma cells. These findings propose the peptides as promising candidates for further exploration in the realm of glioblastoma management, offering new avenues for developing effective treatment strategies.
Collapse
Affiliation(s)
- Yichen Wang
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Furong Zhong
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
| | - Fengyun Xiao
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guoying Ni
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Wei Zhang
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center of Stem Cell Therapy for Pituitary Disease, Guangzhou, China
| |
Collapse
|
9
|
Azoicai A, Lupu A, Alexoae MM, Starcea IM, Mocanu A, Lupu VV, Mitrofan EC, Nedelcu AH, Tepordei RT, Munteanu D, Mitrofan C, Salaru DL, Ioniuc I. Lung microbiome: new insights into bronchiectasis' outcome. Front Cell Infect Microbiol 2024; 14:1405399. [PMID: 38895737 PMCID: PMC11183332 DOI: 10.3389/fcimb.2024.1405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The present treatments for bronchiectasis, which is defined by pathological dilatation of the airways, are confined to symptom relief and minimizing exacerbations. The condition is becoming more common worldwide. Since the disease's pathophysiology is not entirely well understood, developing novel treatments is critically important. The interplay of chronic infection, inflammation, and compromised mucociliary clearance, which results in structural alterations and the emergence of new infection, is most likely responsible for the progression of bronchiectasis. Other than treating bronchiectasis caused by cystic fibrosis, there are no approved treatments. Understanding the involvement of the microbiome in this disease is crucial, the microbiome is defined as the collective genetic material of all bacteria in an environment. In clinical practice, bacteria in the lungs have been studied using cultures; however, in recent years, researchers use next-generation sequencing methods, such as 16S rRNA sequencing. Although the microbiome in bronchiectasis has not been entirely investigated, what is known about it suggests that Haemophilus, Pseudomonas and Streptococcus dominate the lung bacterial ecosystems, they present significant intraindividual stability and interindividual heterogeneity. Pseudomonas and Haemophilus-dominated microbiomes have been linked to more severe diseases and frequent exacerbations, however additional research is required to fully comprehend the role of microbiome in the evolution of bronchiectasis. This review discusses recent findings on the lung microbiota and its association with bronchiectasis.
Collapse
Affiliation(s)
- Alice Azoicai
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Monica Mihaela Alexoae
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Iuliana Magdalena Starcea
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Dragos Munteanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
10
|
Lee HJ, Bae EH, Choi JM, Kim H, Kim HJ, Barreda H, Jung SY, Oh JY, Lee RH. Serum Extracellular Vesicle Protein Profiling for Prediction of Corneal Transplant Rejection. Transplantation 2024; 108:1368-1375. [PMID: 38409732 PMCID: PMC11136603 DOI: 10.1097/tp.0000000000004946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND Corneal transplantation is the most common transplant procedure worldwide. Despite immune and angiogenic privilege of the cornea, 50% to 70% of corneal transplants fail in high-risk recipients, primarily because of immune rejection. Therefore, it is crucial to identify predictive biomarkers of rejection to improve transplant survival. METHODS In search for predictive biomarkers, we performed proteomics analysis of serum extracellular vesicles (EVs) in a fully major histocompatibility complex-mismatched (C57BL/6-to-BALB/c) murine corneal transplantation model, wherein 50% of transplants undergo rejection by day 28 following transplantation. RESULTS Our time course study revealed a decrease in the number of serum EVs on day 1, followed by a gradual increase by day 7. A comparative analysis of proteomics profiles of EVs from transplant recipients with rejection (rejectors) and without rejection (nonrejectors) found a distinct enrichment of histocompatibility 2, Q region locus 2, which is a part of major histocompatibility complex-class I of donor C57BL/6 mice, in day 7 EVs of rejectors, compared with nonrejectors, syngeneic controls, or naïve mice. In contrast, serum amyloid A2, a protein induced in response to injury, was increased in day 7 EVs of nonrejectors. CONCLUSIONS Our findings offer noninvasive EV-based potential biomarkers for predicting corneal allograft rejection or tolerance.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Eun-Hye Bae
- Department of Cell Biology and Genetics, Institute for Regenerative Medicine, School of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, Texas 77845, USA
| | - Jong Min Choi
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyemee Kim
- Department of Cell Biology and Genetics, Institute for Regenerative Medicine, School of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, Texas 77845, USA
| | - Hyeon Ji Kim
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Heather Barreda
- Department of Cell Biology and Genetics, Institute for Regenerative Medicine, School of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, Texas 77845, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Institute for Regenerative Medicine, School of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, Texas 77845, USA
| |
Collapse
|
11
|
Kwok WC, Tam TCC, Lam DCL, Ip MSM, Ho JCM. Systemic immune-inflammation index in predicting hospitalized bronchiectasis exacerbation risks and disease severity. J Thorac Dis 2024; 16:2767-2775. [PMID: 38883640 PMCID: PMC11170410 DOI: 10.21037/jtd-23-1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/07/2024] [Indexed: 06/18/2024]
Abstract
Background Bronchiectasis is a common respiratory disease with neutrophilic inflammation being the predominant pathophysiology. Systemic immune-inflammation index (SII) is a simple and readily available biomarker being studied in various conditions including asthma, chronic obstructive pulmonary disease, and interstitial lung disease, but not in bronchiectasis. We aim to investigate the prognostic role of SII in bronchiectasis with this study. Methods A retrospective cohort study in Chinese patients with non-cystic fibrosis (CF) bronchiectasis was conducted in Hong Kong, to investigate the association between baseline SII and of hospitalized bronchiectasis exacerbation risk over 4.5 years of follow-up, as well as correlating with disease severity in bronchiectasis. The baseline SII in 2018 was calculated based on stable-state complete blood count. Results Among 473 Chinese patients with non-CF bronchiectasis were recruited, 94 of the patients had hospitalized bronchiectasis exacerbation during the follow-up period. Higher SII was associated with increased hospitalized bronchiectasis exacerbation risks with adjusted odds ratio (aOR) of 1.001 [95% confidence interval (CI): 1.000-1.001, P=0.003] for 1 unit (cells/µL) increase in SII count and aOR of 1.403 (95% CI: 1.126-1.748, P=0.003) for 1 standard deviation (SD) increase in SII. SII was found to have significant negative association with baseline forced expiratory volume in the first second (FEV1) (in litre and percentage predicted), forced vital capacity (FVC) in percentage; and significant positive correlation with the extent of bronchiectasis and baseline neutrophil to lymphocyte ratio (NLR). Conclusions SII could serve as biomarker to predict the risks of hospitalized exacerbation in bronchiectasis patients, as well as correlating with the disease severity.
Collapse
Affiliation(s)
- Wang Chun Kwok
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Terence Chi Chun Tam
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - David Chi Leung Lam
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Mary Sau Man Ip
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - James Chung Man Ho
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
12
|
Aliberti S, Ringshausen FC, Dhar R, Haworth CS, Loebinger MR, Dimakou K, Crichton ML, De Soyza A, Vendrell M, Burgel PR, McDonnell M, Skrgat S, Maiz Carro L, de Roux A, Sibila O, Bossios A, van der Eerden M, Kauppi P, Wilson R, Milenkovic B, Menendez R, Murris M, Borekci S, Munteanu O, Obradovic D, Nowinski A, Amorim A, Torres A, Lorent N, Van Braeckel E, Altenburg J, Shoemark A, Shteinberg M, Boersma W, Goeminne PC, Elborn JS, Hill AT, Welte T, Blasi F, Polverino E, Chalmers JD. Objective sputum colour assessment and clinical outcomes in bronchiectasis: data from the European Bronchiectasis Registry (EMBARC). Eur Respir J 2024; 63:2301554. [PMID: 38609095 PMCID: PMC11024393 DOI: 10.1183/13993003.01554-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND A validated 4-point sputum colour chart can be used to objectively evaluate the levels of airway inflammation in bronchiectasis patients. In the European Bronchiectasis Registry (EMBARC), we tested whether sputum colour would be associated with disease severity and clinical outcomes. METHODS We used a prospective, observational registry of adults with bronchiectasis conducted in 31 countries. Patients who did not produce spontaneous sputum were excluded from the analysis. The Murray sputum colour chart was used at baseline and at follow-up visits. Key outcomes were frequency of exacerbations, hospitalisations for severe exacerbations and mortality during up to 5-year follow-up. RESULTS 13 484 patients were included in the analysis. More purulent sputum was associated with lower forced expiratory volume in 1 s (FEV1), worse quality of life, greater bacterial infection and a higher bronchiectasis severity index. Sputum colour was strongly associated with the risk of future exacerbations during follow-up. Compared to patients with mucoid sputum (reference group), patients with mucopurulent sputum experienced significantly more exacerbations (incident rate ratio (IRR) 1.29, 95% CI 1.22-1.38; p<0.0001), while the rates were even higher for patients with purulent (IRR 1.55, 95% CI 1.44-1.67; p<0.0001) and severely purulent sputum (IRR 1.91, 95% CI 1.52-2.39; p<0.0001). Hospitalisations for severe exacerbations were also associated with increasing sputum colour with rate ratios, compared to patients with mucoid sputum, of 1.41 (95% CI 1.29-1.56; p<0.0001), 1.98 (95% CI 1.77-2.21; p<0.0001) and 3.05 (95% CI 2.25-4.14; p<0.0001) for mucopurulent, purulent and severely purulent sputum, respectively. Mortality was significantly increased with increasing sputum purulence, hazard ratio 1.12 (95% CI 1.01-1.24; p=0.027), for each increment in sputum purulence. CONCLUSION Sputum colour is a simple marker of disease severity and future risk of exacerbations, severe exacerbations and mortality in patients with bronchiectasis.
Collapse
Affiliation(s)
- Stefano Aliberti
- Respiratory Unit, IRCCS Humanitas Research Hospital, Pieve Emanuele, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| | | | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital and University of Cambridge, Cambridge, UK
| | - Michael R Loebinger
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK
| | - Katerina Dimakou
- 5th Respiratory Department and Bronchiectasis Unit, "Sotiria" General Hospital of Chest Diseases Medical Practice, Athens, Greece
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Anthony De Soyza
- Population and Health Science Institute, Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle, UK
| | - Montse Vendrell
- Department of Pulmonology, Dr Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), University of Girona, Girona, Spain
| | - Pierre-Regis Burgel
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP, Paris, France
- Université Paris Cité, Inserm U1016, Institut Cochin, Paris, France
| | - Melissa McDonnell
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Sabina Skrgat
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Division of Internal Medicine, Pulmonary Department, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Luis Maiz Carro
- Chronic Bronchial Infection Unit, Pneumology Service, Ramón y Cajal Hospital, Alcalá de Henares University, Madrid, Spain
| | - Andres de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Germany
| | - Oriol Sibila
- Servicio de Neumología, Instituto Clínico de Respiratorio, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Robert Wilson
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK
| | - Branislava Milenkovic
- Clinic for Pulmonary Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Rosario Menendez
- Pneumology Department, Hospital Universitario y Politécnico La Fe - Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Marlene Murris
- Department of Respiratory Diseases, CHU Toulouse, Toulouse, France
| | - Sermin Borekci
- Department of Pulmonology Diseases, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Oxana Munteanu
- Pneumology/Allergology Division, University of Medicine and Pharmacy Nicolae Testemitanu, Chisinau, Moldova
| | - Dusanka Obradovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Institute for Pulmonary Diseases, Sremska Kamenica, Serbia
| | - Adam Nowinski
- Department of Epidemiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Adelina Amorim
- Pulmonology Department, Centro Hospitalar Universitário S. João and Faculty of Medicine, University of Porto, Porto, Portugal
| | - Antoni Torres
- Servicio de Neumología, Instituto Clínico de Respiratorio, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Eva Van Braeckel
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Josje Altenburg
- Department of Pulmonary Diseases, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wim Boersma
- Department of Pulmonary Diseases, Northwest Clinics, Alkmaar, The Netherlands
| | - Pieter C Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - J Stuart Elborn
- Faculty of Medicine, Health and Life Sciences, Queen's University, Belfast, UK
| | - Adam T Hill
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
13
|
Tang RD, Yue JQ, Guan WJ. Sputum colour as a simplified effective biomarker for clinical assessment of bronchiectasis. Eur Respir J 2024; 63:2400152. [PMID: 38636972 DOI: 10.1183/13993003.00152-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Rui-di Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
- Guangzhou National Laboratory, Guangzhou, PR China
- Joint first authors
| | - Jun-Qing Yue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
- Guangzhou National Laboratory, Guangzhou, PR China
- Joint first authors
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
- Guangzhou National Laboratory, Guangzhou, PR China
| |
Collapse
|
14
|
Martins M, Keir HR, Chalmers JD. Endotypes in bronchiectasis: moving towards precision medicine. A narrative review. Pulmonology 2023; 29:505-517. [PMID: 37030997 DOI: 10.1016/j.pulmoe.2023.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Bronchiectasis is a highly complex entity that can be very challenging to investigate and manage. Patients are diverse in their aetiology, symptoms, risk of complications and outcomes. "Endotypes"- subtypes of disease with distinct biological mechanisms, has been proposed as a means of better managing bronchiectasis. This review discusses the emerging field of endotyping in bronchiectasis. We searched PubMed and Google Scholar for randomized controlled trials (RCT), observational studies, systematic reviews and meta-analysis published from inception until October 2022, using the terms: "bronchiectasis", "endotypes", "biomarkers", "microbiome" and "inflammation". Exclusion criteria included commentaries and non-English language articles as well as case reports. Duplicate articles between databases were initially identified and appropriately excluded. Studies identified suggest that it is possible to classify bronchiectasis patients into multiple endotypes deriving from their co-morbidities or underlying causes to complex infective or inflammatory endotypes. Specific biomarkers closely related to a particular endotype might be used to determine response to treatment and prognosis. The most clearly defined examples of endotypes in bronchiectasis are the underlying causes such as immunodeficiency or allergic bronchopulmonary aspergillosis where the underlying causes are clearly related to a specific treatment. The heterogeneity of bronchiectasis extends, however, far beyond aetiology and it is now possible to identify subtypes of disease based on inflammatory mechanisms such airway neutrophil extracellular traps and eosinophilia. In future biomarkers of host response and infection, including the microbiome may be useful to guide treatments and to increase the success of randomized trials. Advances in the understanding the inflammatory pathways, microbiome, and genetics in bronchiectasis are key to move towards a personalized medicine in bronchiectasis.
Collapse
Affiliation(s)
- M Martins
- Pulmonology Department, Centro Hospitalar Universitário de São João, Porto, Portugal.
| | - H R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, United Kinkdom
| | - J D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, United Kinkdom
| |
Collapse
|
15
|
Gao J, Yi X, Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises. Comput Struct Biotechnol J 2023; 21:4933-4943. [PMID: 37867968 PMCID: PMC10585227 DOI: 10.1016/j.csbj.2023.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
The study of the respiratory microbiome has entered a multi-omic era. Through integrating different omic data types such as metagenome, metatranscriptome, metaproteome, metabolome, culturome and radiome surveyed from respiratory specimens, holistic insights can be gained on the lung microbiome and its interaction with host immunity and inflammation in respiratory diseases. The power of multi-omics have moved the field forward from associative assessment of microbiome alterations to causative understanding of the lung microbiome in the pathogenesis of chronic, acute and other types of respiratory diseases. However, the application of multi-omics in respiratory microbiome remains with unique challenges from sample processing, data integration, and downstream validation. In this review, we first introduce the respiratory sample types and omic data types applicable to studying the respiratory microbiome. We next describe approaches for multi-omic integration, focusing on dimensionality reduction, multi-omic association and prediction. We then summarize progresses in the application of multi-omics to studying the microbiome in respiratory diseases. We finally discuss current challenges and share our thoughts on future promises in the field.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
Chen K, Zheng T, Chen C, Liu L, Guo Z, Peng Y, Zhang X, Yang Z. Pregnancy Zone Protein Serves as a Prognostic Marker and Favors Immune Infiltration in Lung Adenocarcinoma. Biomedicines 2023; 11:1978. [PMID: 37509617 PMCID: PMC10377424 DOI: 10.3390/biomedicines11071978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a public enemy with a very high incidence and mortality rate, for which there is no specific detectable biomarker. Pregnancy zone protein (PZP) is an immune-related protein; however, the functions of PZP in LUAD are unclear. In this study, a series of bioinformatics methods, combined with immunohistochemistry (IHC), four-color multiplex fluorescence immunohistochemistry (mIHC), quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), were utilized to explore the prognostic value and potential role of PZP in LUAD. Our data revealed that PZP expression was markedly reduced in LUAD tissues, tightly correlated with clinical stage and could be an independent unfavorable prognostic factor. In addition, pathway analysis revealed that high expression of PZP in LUAD was mainly involved in immune-related molecules. Tumor immune infiltration analysis by CIBERSORT showed a significant correlation between PZP expression and several immune cell infiltrations, and IHC further confirmed a positive correlation with CD4+ T-cell infiltration and a negative correlation with CD68+ M0 macrophage infiltration. Furthermore, mIHC demonstrated that PZP expression gave rise to an increase in CD86+ M1 macrophages and a decrease in CD206+ M2 macrophages. Therefore, PZP can be used as a new biomarker for the prediction of prognosis and may be a promising immune-related molecular target for LUAD.
Collapse
Affiliation(s)
- Kehong Chen
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Taihao Zheng
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Cai Chen
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Liangzhong Liu
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhengjun Guo
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuan Peng
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaoyue Zhang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhenzhou Yang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
17
|
DeBot M, Erickson C, Kelher M, Schaid TR, Moore EE, Sauaia A, Cralley A, LaCroix I, D’Alessandro A, Hansen K, Cohen MJ, Silliman CC, Coleman J. Platelet and cryoprecipitate transfusions from female donors improve coagulopathy in vitro. J Trauma Acute Care Surg 2023; 94:497-503. [PMID: 36728345 PMCID: PMC10038850 DOI: 10.1097/ta.0000000000003857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Females are relatively hypercoagulable compared with males, with increased platelet aggregation and improved clot dynamics. However, sex differences in coagulation have not yet been considered in transfusion guidelines. Therefore, our objective was to evaluate hemostatic differences in sex concordant and sex discordant cryoprecipitate and platelet transfusions. We hypothesized that transfusion of blood products from female donors results in improved coagulopathy compared with male blood products. METHODS This was a cohort study evaluating sex dimorphisms in coagulation assays and clotting factors in healthy volunteer plasma and cryoprecipitate. Sex dimorphisms in transfusions were evaluated using an in vitro coagulopathy model. Female or male platelets or single-donor cryoprecipitate was added to "recipient" whole blood after dilution of recipient blood with citrated saline to provoke a coagulopathic profile. Citrated native thromboelastography was then performed. Liquid chromatography/mass spectroscopy was performed on single-donor cryoprecipitate to evaluate sex dimorphisms in the proteome of cryoprecipitate. RESULTS Females have an increased proportion of functional fibrinogen. Transfusion of female-donor platelets and cryoprecipitate induces a larger decrease in R time and greater increase in angle than male-donor platelets or cryoprecipitate. Female-donor cryoprecipitate has increased factor V and factor XIII compared with male cryoprecipitate, and comprehensive proteomics revealed sex differences in several proteins with potential immunological significance. CONCLUSION Platelets and cryoprecipitate from female donors improve coagulopathy more than male blood products in vitro. Increased factor V and factor XIII activity as well as increased fibrinogen activity in female donors appears to drive this disparity. Sex differences in the proteome of cryoprecipitate may influence how transfusions modulate the thromboinflammation of trauma. The differing hemostatic profiles of female and male blood products suggest the potential role of sex-specific transfusions guidelines in hemostatic resuscitation.
Collapse
Affiliation(s)
- Margot DeBot
- University of Colorado, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Christopher Erickson
- University of Colorado, School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, CO
| | - Marguerite Kelher
- University of Colorado, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
- Vitalant Research Institute, Vitalent Mountain Division, Denver, CO
| | - Terry R. Schaid
- University of Colorado, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Ernest E. Moore
- University of Colorado, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
- Denver Health Medical Center, Ernest E Moore Shock Trauma Center, Denver, CO
| | - Angela Sauaia
- University of Colorado, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
- University of Colorado, School of Public Health, Management and Policy, Department of Health Systems, Aurora, CO
| | - Alexis Cralley
- University of Colorado, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Ian LaCroix
- University of Colorado, School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, CO
| | - Angelo D’Alessandro
- University of Colorado, School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, CO
| | - Kirk Hansen
- University of Colorado, School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, CO
| | - Mitchell J. Cohen
- University of Colorado, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Christopher C. Silliman
- University of Colorado, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
- Vitalant Research Institute, Vitalent Mountain Division, Denver, CO
| | - Julia Coleman
- University of Colorado, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| |
Collapse
|
18
|
Elhussini MSH, Mohammed AM, Eid HA, Gharib A. Bronchiectasis as co morbidity with COPD or ILD: complex interactions and severe consequences. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2023. [DOI: 10.1186/s43168-023-00192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Abstract
Background
Bronchiectasis is a chronic pulmonary disease characterized by widened, malformed bronchi, with profuse expectoration and impaired quality of life. COPD and ILD are common co-morbidities with bronchiectasis.
Methods
The present study evaluated the clinical, laboratory& radiological characteristics of COPD and ILD with/without bronchiectasis. A hospital-based, retrospective study was conducted for 1 year.
Results
A total of 101 patients were analyzed, 60 patients had COPD, 34 had ILD and 7 patients had bronchiectasis without COPD or ILD. It was noticed that, out of the analyzed 60 COPD patients, 10 patients developed bronchiectasis (16.7%) versus10 patients of 34 ILD patients (29.4%). In COPD and ILD accompanied by bronchiectasis, the incidence of hemoptysis was significantly higher in comparison to those without bronchiectasis. Moreover, they showed a significant increase in partial pressure of carbon dioxide (PCO2) in comparison to those without bronchiectasis, as well as in comparison to bronchiectasis only. Sputum culture revealed that COPD with bronchiectasis were significantly associated with Staphlococcus aureus (77.8%), more than ILD with Bronchiectasis (33.3%). While S. pneumoniae were more evident in cases of ILD with bronchiectasis (22.2%). The bilateral, peripheral bronchiectasis was more common than the unilateral, central bronchiectasis among cases of COPD with bronchiectasis followed by ILD with bronchiectasis more than bronchiectasis only.
Conclusion
Patients with COPD /ILD with bronchiectasis can be associated with serious clinical manifestations as hemoptysis. Their sputum cultures detected more positive organisms than negative in comparison to cases of bronchiectasis only. Screening of COPD and ILD patients using HRCT Scanning is a recommended preventive measure for early detection of bronchiectasis.
Collapse
|
19
|
Hu A, Liao H, Guan W, Dong J, Qian X. Support vector machine model based on OTSU segmentation algorithm in diagnosing bronchiectasis with chronic airway infections. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2022.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Wu T, Cao DH, Liu Y, Yu H, Fu DY, Ye H, Xu J. Mating-Induced Common and Sex-Specific Behavioral, Transcriptional Changes in the Moth Fall Armyworm ( Spodoptera frugiperda, Noctuidae, Lepidoptera) in Laboratory. INSECTS 2023; 14:209. [PMID: 36835778 PMCID: PMC9964209 DOI: 10.3390/insects14020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The intermediate process between mating and postmating behavioral changes in insects is still poorly known. Here, we studied mating-induced common and sex-specific behavioral and transcriptional changes in both sexes of Spodoptera frugiperda and tested whether the transcriptional changes are linked to postmating behavioral changes in each sex. A behavioral study showed that mating caused a temporary suppression of female calling and male courting behavior, and females did not lay eggs until the next day after the first mating. The significant differences on daily fecundity under the presence of males or not, and the same or novel males, suggest that females may intentionally retain eggs to be fertilized by novel males or to be fertilized competitively by different males. RNA sequencing in females revealed that there are more reproduction related GO (gene ontology) terms and KEGG (Kyoto encyclopedia of genes and genomes) pathways (mainly related to egg and zygote development) enriched to upregulated DEGs (differentially expressed genes) than to downregulated DEGs at 0 and 24 h postmating. In males, however, mating induced DEGs did not enrich any reproduction related terms/pathways, which may be because male reproductive bioinformatics is relatively limited in moths. Mating also induced upregulation on soma maintenance (such as immune activity and stress reaction) related processes in females at 0, 6 and 24 h postmating. In males, mating also induced upregulation on soma maintenance related processes at 0 h postmating, but induced downregulation on these processes at 6 and 24 h postmating. In conclusion, this study demonstrated that mating induced sex-specific postmating behavioral and transcriptional changes in both sexes of S. frugiperda and suggested that the transcriptional changes are correlated with postmating physiological and behavioral changes in each sex.
Collapse
Affiliation(s)
- Ting Wu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Da-Hu Cao
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Yu Liu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Hong Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- School of Life Science, Southwest Forestry University, Kunming 650224, China
| | - Hui Ye
- School of Ecology and Environment, Yunnan University, Kunming 650091, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
21
|
Xia M, Xu F, Ni H, Wang Q, Zhang R, Lou Y, Zhou J. Neutrophil activation and NETosis are the predominant drivers of airway inflammation in an OVA/CFA/LPS induced murine model. Respir Res 2022; 23:289. [PMID: 36271366 PMCID: PMC9587569 DOI: 10.1186/s12931-022-02209-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background Asthma is one of the most common chronic diseases that affects more than 300 million people worldwide. Though most asthma can be well controlled, individuals with severe asthma experience recurrent exacerbations and impose a substantial economic burden on healthcare system. Neutrophil inflammation often occurs in patients with severe asthma who have poor response to glucocorticoids, increasing the difficulty of clinical treatment. Methods We established several neutrophil-dominated allergic asthma mouse models, and analyzed the airway hyperresponsiveness, airway inflammation and lung pathological changes. Neutrophil extracellular traps (NETs) formation was analyzed using confocal microscopy and western blot. Results We found that the ovalbumin (OVA)/complete Freund’s adjuvant (CFA)/low-dose lipopolysaccharide (LPS)-induced mouse model best recapitulated the complex alterations in the airways of human severe asthmatic patients. We also observed OVA/CFA/LPS-exposed mice produced large quantities of neutrophil extracellular traps (NETs) in lung tissue and bone marrow neutrophils. Furthermore, we found that reducing the production of NETs or increasing the degradation of NETs can reduce airway inflammation and airway hyperresponsiveness. Conclusion Our findings identify a novel mouse model of neutrophilic asthma. We have also identified NETs play a significant role in neutrophilic asthma models and contribute to neutrophilic asthma pathogenesis. NETs may serve as a promising therapeutic target for neutrophilic asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02209-0.
Collapse
Affiliation(s)
- Mengling Xia
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, 310003, Hangzhou, China
| | - Fei Xu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, 310003, Hangzhou, China
| | - Hangqi Ni
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, 310003, Hangzhou, China
| | - Qing Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, 310003, Hangzhou, China
| | - Ruhui Zhang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, 310003, Hangzhou, China
| | - Yafang Lou
- Department of Respiratory Medicine, Hangzhou Hospital of Traditional Chinese Medicine, No. 453, Tiyuchang Road, 310013, Hangzhou, China.
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, 310003, Hangzhou, China.
| |
Collapse
|
22
|
Elucidating Mechanisms of Tolerance to Salmonella Typhimurium across Long-Term Infections Using the Collaborative Cross. mBio 2022; 13:e0112022. [PMID: 35880881 PMCID: PMC9426527 DOI: 10.1128/mbio.01120-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the molecular mechanisms underlying resistance and tolerance to pathogen infection may present the opportunity to develop novel interventions. Resistance is the absence of clinical disease with a low pathogen burden, while tolerance is minimal clinical disease with a high pathogen burden. Salmonella is a worldwide health concern. We studied 18 strains of collaborative cross mice that survive acute Salmonella Typhimurium (STm) infections. We infected these strains orally and monitored them for 3 weeks. Five strains cleared STm (resistant), six strains maintained a bacterial load and survived (tolerant), while seven strains survived >7 days but succumbed to infection within the study period and were called “delayed susceptible.” Tolerant strains were colonized in the Peyer’s patches, mesenteric lymph node, spleen, and liver, while resistant strains had significantly reduced bacterial colonization. Tolerant strains had lower preinfection core body temperatures and had disrupted circadian patterns of body temperature postinfection sooner than other strains. Tolerant strains had higher circulating total white blood cells than resistant strains, driven by increased numbers of neutrophils. Tolerant strains had more severe tissue damage and higher circulating levels of monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (IFN-γ), but lower levels of epithelial neutrophil-activating protein 78 (ENA-78) than resistant strains. Quantitative trait locus (QTL) analysis revealed one significant association and six suggestive associations. Gene expression analysis identified 22 genes that are differentially regulated in tolerant versus resistant animals that overlapped these QTLs. Fibrinogen genes (Fga, Fgb, and Fgg) were found across the QTL, RNA, and top canonical pathways, making them the best candidate genes for differentiating tolerance and resistance.
Collapse
|
23
|
Somayaji R, Chalmers JD. Just breathe: a review of sex and gender in chronic lung disease. Eur Respir Rev 2022; 31:31/163/210111. [PMID: 35022256 DOI: 10.1183/16000617.0111-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic lung diseases are the third leading cause of death worldwide and are increasing in prevalence over time. Although much of our traditional understanding of health and disease is derived from study of the male of the species - be it animal or human - there is increasing evidence that sex and gender contribute to differences in disease risk, prevalence, presentation, severity, treatment approach, response and outcomes. Chronic obstructive pulmonary disease, asthma and bronchiectasis represent the most prevalent and studied chronic lung diseases and have key sex- and gender-based differences which are critical to consider and incorporate into clinical and research approaches. Mechanistic differences present opportunities for therapeutic development whereas behavioural and clinical differences on the part of patients and providers present opportunities for greater education and understanding at multiple levels. In this review, we seek to summarise the sex- and gender-based differences in key chronic lung diseases and outline the clinical and research implications for stakeholders.
Collapse
Affiliation(s)
- Ranjani Somayaji
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada .,Dept of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Canada.,Dept of Community Health Sciences, University of Calgary, Calgary, Canada
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
24
|
Li S, Yu C, Jie H, Han X, Zou S, Tan Q, Luo S, Chen Y, Wang J. Neutrophil side fluorescence: a new indicator for predicting the severity of patients with bronchiectasis. BMC Pulm Med 2022; 22:107. [PMID: 35346147 PMCID: PMC8962496 DOI: 10.1186/s12890-022-01893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/09/2022] [Indexed: 12/01/2022] Open
Abstract
Background Neutrophilic inflammation in the airway is a hallmark of bronchiectasis. Neutrophil extracellular traps (NETs) have been reported to play an important role in the occurrence and development of bronchiectasis. Neutrophil side fluorescence is one of the characteristics of neutrophils that can reflect the activation of neutrophils and the formation of NETs. Objective To explore the relationship between the values of neutrophil side fluorescence (NEUT-SFL) in the peripheral blood of bronchiectasis patients, and the severity of the disease. Methods 82 patients with bronchiectasis from the Department of Respiratory and Critical Medicine, at the Third Affiliated Hospital of Southern Medical University and were scored with Bronchiectasis Severity Index (BSI) (2019–2021). The clinical data such as the value of NEUT-SFL, neutrophil count, C-reactive protein, and procalcitonin levels were collected and retrospectively analyzed. NEUT-SFL values neutrophil count from 28 healthy subjects were also used to ascertain cut-off values. Results Based on the BSI scores, patients were divided into three categories as mild (32%), moderate (29%), and severe (39%). Our results showed that the values of NEUT-SFL were higher in bronchiectasis patients compared to healthy controls. The levels of NEUT-SFL positively correlated with the high BSI scores in patients (P = 0.037, r = 0.23) and negatively correlated with the lung function in these patients (r = − 0.35, P = 0.001). The area under the ROC curve was 0.813, the best cut-off was 42.145, indicating that NEUT-SFL values > 42.145 can potentially predict the severity of bronchiectasis. Conclusions The values of NEUT-SFL in the peripheral blood can be used for predicting the severity of bronchiectasis.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Respiration, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Yu
- Department of Gastroenterology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Hongyu Jie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xinai Han
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shujing Zou
- Department of Respiration, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Quanguang Tan
- Department of Respiration, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shugeng Luo
- Department of Internal Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Youming Chen
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Jinhong Wang
- Department of Respiration, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Huang Y, Liu Y, Huang Q, Sun S, Ji Z, Huang L, Li Z, Huang X, Deng W, Li T. TMT-Based Quantitative Proteomics Analysis of Synovial Fluid-Derived Exosomes in Inflammatory Arthritis. Front Immunol 2022; 13:800902. [PMID: 35359923 PMCID: PMC8961740 DOI: 10.3389/fimmu.2022.800902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo compare the proteomics of synovial fluid (SF)-derived exosomes in rheumatoid arthritis (RA), axial spondyloarthritis (axSpA), gout, and osteoarthritis (OA) patients.MethodsExosomes were separated from SF by the Exoquick kit combined ultracentrifugation method. Tandem mass tags (TMT)-labeled liquid chromatography mass spectrometry (LC-MS/MS) technology was used to analyze the proteomics of SF-derived exosomes. Volcano plot, hierarchical cluster, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted.ResultsA total of 1,678 credible proteins were detected. Sixty-nine differentially expressed proteins were found in gout, compared with OA, axSpA, and RA simultaneously. Twenty-five proteins were found highly expressed in gout uniquely, lysozyme C and protein S100-A9 included, whose bioinformatic analysis was significantly involved in “neutrophil degranulation” and “prion diseases”. Eighty-four differentially expressed proteins were found in axSpA, compared with OA, gout, and RA simultaneously. Thirty-nine proteins were found highly expressed in axSpA uniquely, RNA-binding protein 8A and protein transport protein Sec24C included, whose bioinformatic analysis was significantly involved in “acute-phase response” and “citrate cycle”. One hundred and eighty-four differentially expressed proteins were found in RA, compared with OA, gout, and axSpA simultaneously. Twenty-eight proteins were found highly expressed in RA uniquely, pregnancy zone protein (PZP) and stromelysin-1 included, whose bioinformatic analysis was significantly involved in “serine-type endopeptidase inhibitor activity” and “complement and coagulation cascades”. Enzyme-linked immunosorbent assay (ELISA) result showed that the exosome-derived PZP level of SF in RA was higher than that in OA (p < 0.05).ConclusionOur study for the first time described the protein profiles of SF-derived exosomes in RA, axSpA, gout, and OA patients. Some potential biomarkers and hypothetical molecular mechanisms were proposed, which may provide helpful diagnostic and therapeutic insights for inflammatory arthritis (IA).
Collapse
Affiliation(s)
- Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuqi Liu
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong Second Provincial General Hospital, University of South China, Hengyang, China
| | - Qidang Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shanmiao Sun
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhuyi Ji
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lixin Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhi Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Weiming Deng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Tianwang Li, ; Weiming Deng,
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong Second Provincial General Hospital, University of South China, Hengyang, China
- Department of Rheumatology and Immunology, Zhaoqing Central People’s Hospital, Zhaoqing, China
- *Correspondence: Tianwang Li, ; Weiming Deng,
| |
Collapse
|
26
|
|
27
|
|
28
|
|
29
|
Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur J Pharmacol 2022; 919:174821. [DOI: 10.1016/j.ejphar.2022.174821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
30
|
Gao YH, Lu HW, Mao B, Guan WJ, Song YL, Li YY, Wang DX, Wang B, Gu HY, Li W, Luo H, Wang LW, Li F, Guo FX, Zhang M, Jie ZJ, Hang JQ, Yang C, Ren T, Yuan Z, Meng QW, Jia Q, Chen Y, Chen RC, Qu JM, Xu JF. The Establishment of China Bronchiectasis Registry and Research Collaboration (BE-China): Protocol of a prospective multicenter observational study. Respir Res 2022; 23:328. [PMID: 36463140 PMCID: PMC9719665 DOI: 10.1186/s12931-022-02254-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Bronchiectasis is a highly heterogeneous chronic airway disease with marked geographic and ethnic variations. Most influential cohort studies to date have been performed in Europe and USA, which serve as the examples for developing a cohort study in China where there is a high burden of bronchiectasis. The Establishment of China Bronchiectasis Registry and Research Collaboration (BE-China) is designed to: (1) describe the clinical characteristics and natural history of bronchiectasis in China and identify the differences of bronchiectasis between the western countries and China; (2) identify the risk factors associated with disease progression in Chinese population; (3) elucidate the phenotype and endotype of bronchiectasis by integrating the genome, microbiome, proteome, and transcriptome with detailed clinical data; (4) facilitate large randomized controlled trials in China. METHODS The BE-China is an ongoing prospective, longitudinal, multi-center, observational cohort study aiming to recruit a minimum of 10,000 patients, which was initiated in January 2020 in China. Comprehensive data, including medical history, aetiological testing, lung function, microbiological profiles, radiological scores, comorbidities, mental status, and quality of life (QoL), will be collected at baseline. Patients will be followed up annually for up to 10 years to record longitudinal data on outcomes, treatment patterns and QoL. Biospecimens, if possible, will be collected and stored at - 80 °C for further research. Up to October 2021, the BE-China has enrolled 3758 patients, and collected 666 blood samples and 196 sputum samples from 91 medical centers. The study protocol has been approved by the Shanghai Pulmonary Hospital ethics committee, and all collaborating centers have received approvals from their local ethics committee. All patients will be required to provide written informed consent to their participation. CONCLUSIONS Findings of the BE-China will be crucial to reveal the clinical characteristics and natural history of bronchiectasis and facilitate evidence-based clinical practice in China. Trial registration Registration Number in ClinicalTrials.gov: NCT03643653.
Collapse
Affiliation(s)
- Yong-Hua Gao
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433 China
| | - Hai-Wen Lu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433 China
| | - Bei Mao
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433 China
| | - Wei-Jie Guan
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan-Lin Song
- grid.8547.e0000 0001 0125 2443Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan-Yuan Li
- grid.216417.70000 0001 0379 7164Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Dao-Xin Wang
- grid.412461.40000 0004 9334 6536Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wang
- grid.413679.e0000 0004 0517 0981Department of Pulmonary and Critical Care Medicine, Huzhou Central Hospital, Huzhou, Zhejiang China
| | - Hong-Yan Gu
- Department of Pulmonary and Critical Care Medicine, The Sixth People’s Hospital of Nantong, Nantong, Jiangsu, China
| | - Wen Li
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Hong Luo
- grid.216417.70000 0001 0379 7164Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Ling-Wei Wang
- grid.440218.b0000 0004 1759 7210Pulmonary and Critical Care Department, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, 518020 Guangdong China
| | - Fan Li
- grid.452742.2Department of Respiratory and Critical Care Medicine, Songjiang District Central Hospital, Shanghai, China
| | - Feng-Xia Guo
- grid.459495.0Department of Respiratory and Critical Care Medicine, The Eighth People’s Hospital of Shanghai, Shanghai, China
| | - Min Zhang
- grid.16821.3c0000 0004 0368 8293Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Jun Jie
- grid.8547.e0000 0001 0125 2443Department of Respiratory and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jing-Qing Hang
- Department of Respiratory and Critical Care Medicine, Shanghai Putuo District People’s Hospital, Shanghai, China
| | - Chao Yang
- Department of Respiratory and Critical Care Medicine, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Tao Ren
- grid.412528.80000 0004 1798 5117Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhi Yuan
- Department of Respiratory and Critical Care Medicine, Fenghua District People’s Hospital, Ningbo, Zhejiang China
| | - Qing-Wei Meng
- Department of Respiratory and Critical Care Medicine, Shangrao People’s Hospital, Shangrao, Jiangxi China
| | - Qin Jia
- Department of Respiratory and Critical Care Medicine, Shidong Hospital of Yangpu District, Shanghai, China
| | - Yu Chen
- grid.412449.e0000 0000 9678 1884Department of Respiratory and Critical Care Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Rong-Chang Chen
- grid.440218.b0000 0004 1759 7210Pulmonary and Critical Care Department, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, 518020 Guangdong China
| | - Jie-Ming Qu
- grid.16821.3c0000 0004 0368 8293Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 China
| | - Jin-Fu Xu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433 China
| |
Collapse
|
31
|
Amiri-Dashatan N, Koushki M, Rezaei-Tavirani M. Mass Spectrometry-Based Proteomics Research to Fight COVID-19: An Expert Review on Hopes and Challenges. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:19-34. [PMID: 35005991 DOI: 10.1089/omi.2021.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome (SARS)-CoV-2 infection is a systemic disease and a major planetary health burden. While SARS-CoV-2 impacts host biology extensively, our knowledge of these alterations from a systems perspective remains incomplete. Moreover, there is currently only a limited description of this systemic disease. For precision diagnosis and treatment of SARS-CoV-2, multiomics technologies and systems science research offer significant prospects. This expert review offers a critical analysis of the prospects and challenges of the emerging mass spectrometry-based proteomics approaches to the study of COVID-19 as seen through a systems medicine lens. We also discuss the ways in which proteomics is poised to offer hope for diagnostics and therapeutics innovation on SARS-CoV-2 infection as the disease transitions from a pandemic to an endemic disease, and thus further challenging the health systems and services worldwide in the coming decade. Proteomics is an important high-throughput technology platform to achieve a functional overview of the ways in which COVID-19 changes host biology, and hence, can help identify possible points of entry for innovation in medicines and vaccines, among others.
Collapse
Affiliation(s)
- Nasrin Amiri-Dashatan
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
32
|
Chalmers JD, Keir HR. Less is more? Antibiotic treatment duration for exacerbations of bronchiectasis. Eur Respir J 2021; 58:58/6/2101416. [PMID: 34916253 DOI: 10.1183/13993003.01416-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/05/2022]
Affiliation(s)
- James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
33
|
Keir HR, Chalmers JD. IL-6 trans-signalling: how Haemophilus surfs the NET to amplify inflammation in COPD. Eur Respir J 2021; 58:58/4/2102143. [PMID: 34649972 DOI: 10.1183/13993003.02143-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Holly R Keir
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James D Chalmers
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
34
|
Méndez R, Feced L, Alcaraz-Serrano V, González-Jiménez P, Bouzas L, Alonso R, Martínez-Dolz L, Hervás D, Fernández-Barat L, Torres A, Menéndez R. Cardiovascular Events during and after Bronchiectasis Exacerbations and Long-Term Mortality. Chest 2021; 161:629-636. [PMID: 34656526 DOI: 10.1016/j.chest.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Population-based and retrospective studies have shown that risk for cardiovascular events such as arrythmias, ischemic episodes or heart failure, increase during and after bronchiectasis exacerbations. RESEARCH QUESTION What are the risk factors for cardiovascular events (CVE) during and after bronchiectasis exacerbations and its impact on mortality? STUDY DESIGN AND METHODS This was a post-hoc retrospective analysis of a prospective observational study of 250 patients with bronchiectasis at two tertiary care hospitals. Only the first exacerbation was considered for each patient, collecting demographic, comorbidity, and severity data. The main outcomes were the appearance of CVE and mortality. Risk factors for CVE were analyzed using a semi-competing risks model. RESULTS During a median follow-up of 35 months, 74 (29.6%) patients had a CVE and 93 (37.2%) died. Semi-competing risks analysis indicated that age, arterial hypertension, chronic obstructive pulmonary disease, and potentially the severe exacerbations significantly increased the risk for developing CVE. Compared to patients without CVE, those with CVE had higher mortality. INTERPRETATION Demographic factors and comorbidities are risk factors for the development of CVE after an acute exacerbation of bronchiectasis. The appearance of CVE worsens long-term prognosis.
Collapse
Affiliation(s)
- Raúl Méndez
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain.
| | - Laura Feced
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain; University of Valencia. Valencia, Spain
| | - Victoria Alcaraz-Serrano
- Pneumology Department. University Hospital Clínic of Barcelona. August Pi i Sunyer Biomedical Research Institute (IDIBAPS). Barcelona, Spain; Center for Biomedical Research Network in Respiratory Diseases (CIBERES). Madrid, Spain
| | - Paula González-Jiménez
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain; University of Valencia. Valencia, Spain
| | - Leyre Bouzas
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain
| | - Ricardo Alonso
- Laboratory Department. La Fe University and Polytechnic Hospital. Valencia, Spain
| | - Luis Martínez-Dolz
- Cardiology Department. La Fe University and Polytechnic Hospital. Health Research Institute La Fe. Valencia, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV). Madrid, Spain
| | - David Hervás
- Data Science, Biostatistics & Bioinformatics. Health Research Institute La Fe. Valencia, Spain; Department of Applied Statistics and Operational Research and Quality. Universitat Politècnica de València. Valencia, Spain
| | - Laia Fernández-Barat
- Pneumology Department. University Hospital Clínic of Barcelona. August Pi i Sunyer Biomedical Research Institute (IDIBAPS). Barcelona, Spain; Center for Biomedical Research Network in Respiratory Diseases (CIBERES). Madrid, Spain
| | - Antoni Torres
- Pneumology Department. University Hospital Clínic of Barcelona. August Pi i Sunyer Biomedical Research Institute (IDIBAPS). Barcelona, Spain; Center for Biomedical Research Network in Respiratory Diseases (CIBERES). Madrid, Spain
| | - Rosario Menéndez
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain; University of Valencia. Valencia, Spain; Center for Biomedical Research Network in Respiratory Diseases (CIBERES). Madrid, Spain
| |
Collapse
|
35
|
Villar M, Urra JM, Rodríguez-Del-Río FJ, Artigas-Jerónimo S, Jiménez-Collados N, Ferreras-Colino E, Contreras M, de Mera IGF, Estrada-Peña A, Gortázar C, de la Fuente J. Characterization by Quantitative Serum Proteomics of Immune-Related Prognostic Biomarkers for COVID-19 Symptomatology. Front Immunol 2021; 12:730710. [PMID: 34566994 PMCID: PMC8457011 DOI: 10.3389/fimmu.2021.730710] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 challenges the understanding of factors affecting disease progression and severity. The identification of prognostic biomarkers and physiological processes associated with disease symptoms is relevant for the development of new diagnostic and therapeutic interventions to contribute to the control of this pandemic. To address this challenge, in this study, we used a quantitative proteomics together with multiple data analysis algorithms to characterize serum protein profiles in five cohorts from healthy to SARS-CoV-2-infected recovered (hospital discharge), nonsevere (hospitalized), and severe [at the intensive care unit (ICU)] cases with increasing systemic inflammation in comparison with healthy individuals sampled prior to the COVID-19 pandemic. The results showed significantly dysregulated proteins and associated biological processes and disorders associated to COVID-19. These results corroborated previous findings in COVID-19 studies and highlighted how the representation of dysregulated serum proteins and associated BPs increases with COVID-19 disease symptomatology from asymptomatic to severe cases. The analysis was then focused on novel disease processes and biomarkers that were correlated with disease symptomatology. To contribute to translational medicine, results corroborated the predictive value of selected immune-related biomarkers for disease recovery [Selenoprotein P (SELENOP) and Serum paraoxonase/arylesterase 1 (PON1)], severity [Carboxypeptidase B2 (CBP2)], and symptomatology [Pregnancy zone protein (PZP)] using protein-specific ELISA tests. Our results contributed to the characterization of SARS-CoV-2–host molecular interactions with potential contributions to the monitoring and control of this pandemic by using immune-related biomarkers associated with disease symptomatology.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - José Miguel Urra
- Immunology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.,Medicine School, Universidad de Castilla la Mancha, Ciudad Real, Spain
| | | | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, University of Murcia, Murcia, Spain
| | | | - Agustín Estrada-Peña
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
36
|
Brooke-Hollidge A, Conway J, Lewis A. Gender differences in non-cystic fibrosis bronchiectasis severity and bacterial load: the potential role of hormones. Ther Adv Respir Dis 2021; 15:17534666211035311. [PMID: 34520299 PMCID: PMC8445533 DOI: 10.1177/17534666211035311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Non cystic-fibrosis bronchiectasis (NCFB) is a complex chronic respiratory disease, characterised by excessive sputum production and abnormal permanent dilation of bronchi. Mucus accumulation leads to recurrent bacterial infections and increased bacterial load, causing vicious cycles of structural damage and decreased lung function. Respiratory physiotherapy management of NCFB includes airway clearance techniques and use of nebulised, hypertonic saline. Despite advances in treatment, a consistent relationship has been observed between gender and disease occurrence, with a higher prevalence amongst females. Furthermore, NCFB presents most aggressively amongst post-menopausal females, a group likely exposed to higher levels of progesterone (P4) over a longer period of time. The effects of gender-specific hormones on bacterial load and physiotherapy management of people living with NCFB remain unknown. The aim of this narrative review was to discuss the potential influence of gender specific hormones on NCFB disease progression and influence on physiotherapy, medical management and future research. SCOPUS and PUBMED electronic databases were used to conduct searches for relevant studies using specific inclusion and exclusion criteria. Secondary inclusion of relevant literature was obtained from primary paper references. Previous literature suggests that P4 may impair Cilia Beat Frequency (CBF) in airway epithelium. Reduction in CBF may further reduce ability to expectorate amongst individuals with NCFB, increasing bacterial load and likelihood of exacerbations, negatively impacting on disease progression. Furthermore, coadministration of Estrogen has been suggested to offer opposing effects to that of P4 only. These findings question whether hormonal levels may be monitored, controlled and optimised within management and treatment of females with NCFB to improve airway clearance, reduce exacerbations and improve quality of life. Larger scale, long-term trials are required to further explore the effects of gender specific hormones on NCFB and the viability of treatment with hormone replacement therapy. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
| | | | - Adam Lewis
- College of Health, Medicine and Life Sciences, Brunel University London, Mary Seacole Building, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
37
|
Shao J, Jin Y, Shao C, Fan H, Wang X, Yang G. Serum exosomal pregnancy zone protein as a promising biomarker in inflammatory bowel disease. Cell Mol Biol Lett 2021; 26:36. [PMID: 34376139 PMCID: PMC8353742 DOI: 10.1186/s11658-021-00280-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a kind of intestinal immune dysfunction disease, and its occurrence and prevalence are on the rise worldwide. As a chronic gastrointestinal disease, its pathogenesis is still unknown. Exosomes are vesicles in various body fluids that carry a variety of substances. They can mediate intercellular communication and long-distance transport of multiple media. In this study, we investigated the protein profile of serum exosomes from healthy people and IBD patients to explore a new serological biomarker for IBD. METHODS Initially, exosomes were extracted from serum samples, and the proteins within the exosomes were identified by label-free liquid chromatography/mass spectrometry (LC-MS/MS). Western blot and ELISA were used to assess the identified protein. To further analyze the target protein, an acute colitis mouse model was established, and exosomes in colonic tissue and serum were extracted to investigate the protein in them. RESULTS Firstly, serum exosomes were extracted from samples, and proteins in exosomes were identified by LC-MS/MS. Through statistical analysis, we identified 633 proteins. Among these proteins, pregnancy zone protein (PZP) showed a marked difference between patients with IBD and healthy people, in that its expression level was much higher in the IBD patients This exosomal protein was associated with immunosuppressive effects. Also, the level of PZP in colon tissue exosomes and serum exosomes of acute colitis mice was significantly higher than that of the control group. CONCLUSIONS Our findings indicated that serum exosome PZP was present at a high level in the IBD patients. Hence it might be a promising biomarker and enhance auxiliary diagnosis of IBD.
Collapse
Affiliation(s)
- Jing Shao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunhong Shao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Fan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaorui Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Guang Yang
- Department of General Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, Shandong, China.
| |
Collapse
|
38
|
Jayawardena I, Wilson K, Plebanski M, Grøndahl L, Corrie S. Morphology and Composition of Immunodiffusion Precipitin Complexes Evaluated via Microscopy and Proteomics. J Proteome Res 2021; 20:2618-2627. [PMID: 33823594 DOI: 10.1021/acs.jproteome.0c01042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
New approaches to rapid, simple, in vitro diagnostic immunoassays that do not rely on centralized laboratory facilities are urgently needed for disease diagnosis and to inform treatment strategies. The recent and ongoing COVID-19 pandemic has emphasized that rapid diagnostics are needed to help guide government policies on quarantines, social distancing measures, and community lockdowns. A common approach to developing new immunoassays is to modify existing platforms (e.g., automated ELISA and lateral flow assays) for the new analyte, even though this does not address the drawbacks of existing platforms. An alternate approach is to search for robust assays that have been superseded but could in fact solve important challenges using modern technologies. Immunodiffusion is one such platform based on unique "precipitin ring" patterns formed in gels or paper following interactions between proteins and cognate antibodies in diffusion/reaction systems. Herein, we investigate the microstructure of these precipitin rings using a combination of fluorescence and electron microscopy and also perform a mass spectrometry investigation to determine the proteomic composition of the rings. We observed that the rings were composed of microparticles, which we termed "precipitin complexes", and that these complexes were composed of at least 19 key proteins, including immunoglobulins and complement factors along with a range of plasma proteins, possibly related to immune complexes and/or high-density lipoprotein particles. This information will be useful in developing new in vitro diagnostics using reaction/diffusion systems-techniques that require a single assay step and that only require calibrated length measurements for target protein quantification.
Collapse
Affiliation(s)
- Imanda Jayawardena
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon Corrie
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia.,Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
39
|
Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev Respir Med 2021; 15:649-662. [PMID: 33736539 DOI: 10.1080/17476348.2021.1906225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Bronchiectasis is a chronic endobronchial suppurative disease characterized by irreversibly dilated bronchi damaged by repeated polymicrobial infections and predominantly, neutrophilic airway inflammation. Some consider bronchiectasis a syndromic consequence of several different causes whilst others view it as an individual disease entity. In most patients, identifying an underlying cause remains challenging. The acquisition and colonization of affected airways by Pseudomonas aeruginosa represent a critical and adverse clinical consequence for its progression and management.Areas covered: In this review, we outline clinical and pre-clinical peer-reviewed research published in the last 5 years, focusing on the pathogenesis of bronchiectasis and the role of P. aeruginosa and its virulence in shaping host inflammatory and immune responses in the airway. We further detail its role in airway infection, the lung microbiome, and address therapeutic options in bronchiectasis.Expert opinion: P. aeruginosa represents a key pulmonary pathogen in bronchiectasis that causes acute and/or chronic airway infection. Eradication can prevent adverse clinical consequence and/or disease progression. Novel therapeutic strategies are emerging and include combination-based approaches. Addressing airway infection caused by P. aeruginosa in bronchiectasis is necessary to prevent airway damage, loss of lung function and exacerbations, all of which contribute to adverse clinical outcome.
Collapse
Affiliation(s)
- Celine Vidaillac
- Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
40
|
Yang J, Yang C, Shen H, Wu W, Tian Z, Xu Q, Cao C, Ye S, Ban L, Tong X, Mei J. Discovery and validation of PZP as a novel serum biomarker for screening lung adenocarcinoma in type 2 diabetes mellitus patients. Cancer Cell Int 2021; 21:162. [PMID: 33691685 PMCID: PMC7945354 DOI: 10.1186/s12935-021-01861-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Patients with type 2 diabetes mellitus (T2DM) have an increased risk of suffering from various malignancies. This study aimed to identify specific biomarkers that can detect lung adenocarcinoma (LAC) in T2DM patients for the early diagnosis of LAC. Methods The clinical information of hospitalized T2DM patients diagnosed with various cancers was collected by reviewing medical records in Wuxi People’s Hospital Affiliated to Nanjing Medical University from January 1, 2015, to June 30, 2020. To discover diagnostic biomarkers for early-stage LAC in the T2DM population, 20 samples obtained from 5 healthy controls, 5 T2DM patients, 5 LAC patients and 5 T2DM patients with LAC (T2DM + LAC) were subjected to sequential windowed acquisition of all theoretical fragment ion mass spectrum (SWATH-MS) analysis to identify specific differentially-expressed proteins (DEPs) for LAC in patients with T2DM. Then, these results were validated by parallel reaction monitoring MS (PRM-MS) and ELISA analyses. Results Lung cancer was the most common malignant tumor in patients with T2DM, and LAC accounted for the majority of cases. Using SWATH-MS analysis, we found 13 proteins to be unique in T2DM patients with early LAC. Two serum proteins were further validated by PRM-MS analysis, namely, pregnancy-zone protein (PZP) and insulin-like growth factor binding protein 3 (IGFBP3). Furthermore, the diagnostic values of these proteins were validated by ELISA, and PZP was validated as a novel serum biomarker for screening LAC in T2DM patients. Conclusions Our findings indicated that PZP could be used as a novel serum biomarker for the identification of LAC in T2DM patients, which will enhance auxiliary diagnosis and assist in the selection of surgical treatment at an early stage. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01861-8.
Collapse
Affiliation(s)
- Jiayue Yang
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Cheng Yang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Hong Shen
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Wenjun Wu
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Zhen Tian
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Qinghua Xu
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Cuiping Cao
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Shugao Ye
- Department of Chest Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Le Ban
- Department of Chest Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Xin Tong
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
41
|
Keir HR, Shoemark A, Dicker AJ, Perea L, Pollock J, Giam YH, Suarez-Cuartin G, Crichton ML, Lonergan M, Oriano M, Cant E, Einarsson GG, Furrie E, Elborn JS, Fong CJ, Finch S, Rogers GB, Blasi F, Sibila O, Aliberti S, Simpson JL, Huang JTJ, Chalmers JD. Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: an international, observational, multicohort study. THE LANCET RESPIRATORY MEDICINE 2021; 9:873-884. [PMID: 33609487 DOI: 10.1016/s2213-2600(20)30504-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bronchiectasis is predominantly a neutrophilic inflammatory disease. There are no established therapies that directly target neutrophilic inflammation because little is understood of the underlying mechanisms leading to severe disease. Neutrophil extracellular trap (NET) formation is a method of host defence that has been implicated in multiple inflammatory diseases. We aimed to investigate the role of NETs in disease severity and treatment response in bronchiectasis. METHODS In this observational study, we did a series of UK and international studies to investigate the role of NETs in disease severity and treatment response in bronchiectasis. First, we used liquid chromatography-tandem mass spectrometry to identify proteomic biomarkers associated with disease severity, defined using the bronchiectasis severity index, in patients with bronchiectasis (n=40) in Dundee, UK. Second, we validated these biomarkers in two cohorts of patients with bronchiectasis, the first comprising 175 patients from the TAYBRIDGE study in the UK and the second comprising 275 patients from the BRIDGE cohort study from centres in Italy, Spain, and UK, using an immunoassay to measure NETs. Third, we investigated whether pathogenic bacteria had a role in NET concentrations in patients with severe bronchiectasis. In a separate study, we enrolled patients with acute exacerbations of bronchiectasis (n=20) in Dundee, treated with intravenous antibiotics for 14 days and proteomics were used to identify proteins associated with treatment response. Findings from this cohort were validated in an independent cohort of patients who were admitted to the same hospital (n=20). Fourth, to assess the potential use of macrolides to reduce NETs in patients with bronchiectasis, we examined two studies of long-term macrolide treatment, one in patients with bronchiectasis (n=52 from the UK) in which patients were given 250 mg of azithromycin three times a week for a year, and a post-hoc analysis of the Australian AMAZES trial in patients with asthma (n=47) who were given 500 mg of azithromycin 3 times per week for a year. FINDINGS Sputum proteomics identified that NET-associated proteins were the most abundant and were the proteins most strongly associated with disease severity. This finding was validated in two observational cohorts, in which sputum NETs were associated with bronchiectasis severity index, quality of life, future risk of hospital admission, and mortality. In a subgroup of 20 patients with acute exacerbations, clinical response to intravenous antibiotic treatment was associated with successfully reducing NETs in sputum. Patients with Pseudomonas aeruginosa infection had a lessened proteomic and clinical response to intravenous antibiotic treatment compared with those without Pseudomonas infections, but responded to macrolide therapy. Treatment with low dose azithromycin was associated with a significant reduction in NETs in sputum over 12 months in both bronchiectasis and asthma. INTERPRETATION We identified NETs as a key marker of disease severity and treatment response in bronchiectasis. These data support the concept of targeting neutrophilic inflammation with existing and novel therapies. FUNDING Scottish Government, British Lung Foundation, and European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC).
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Lidia Perea
- Respiratory Department, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Jennifer Pollock
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Guillermo Suarez-Cuartin
- Respiratory Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Mike Lonergan
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Martina Oriano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Erin Cant
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Gisli G Einarsson
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Elizabeth Furrie
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - J Stuart Elborn
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Christopher J Fong
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Simon Finch
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Francesco Blasi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Stefano Aliberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Jeffrey T J Huang
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| |
Collapse
|
42
|
Giam YH, Shoemark A, Chalmers JD. Neutrophil dysfunction in bronchiectasis: an emerging role for immunometabolism. Eur Respir J 2021; 58:13993003.03157-2020. [DOI: 10.1183/13993003.03157-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
Bronchiectasis is a heterogenous disease with multiple underlying causes. The pathophysiology is poorly understood but neutrophilic inflammation and dysfunctional killing of pathogens is believed to be key. There are, however, no licensed therapies for bronchiectasis that directly target neutrophilic inflammation. In this review, we discuss our current understanding of neutrophil dysfunction and therapeutic targeting in bronchiectasis. Immunometabolic reprogramming, a process through which inflammation changes inflammatory cell behaviour by altering intracellular metabolic pathways, is increasingly recognised across multiple inflammatory and autoimmune diseases. Here, we show evidence that much of the neutrophil dysfunction observed in bronchiectasis is consistent with immunometabolic reprogramming. Previous attempts at developing therapies targeting neutrophils have focused on reducing neutrophil numbers, resulting in increased frequency of infections. New approaches are needed and we propose that targeting metabolism could theoretically reverse neutrophil dysfunction and dysregulated inflammation. As an exemplar, 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation has already been shown to reverse phagocytic dysfunction and neutrophil extracellular trap (NET) formation in models of pulmonary disease. AMPK modulates multiple metabolic pathways, including glycolysis which is critical for energy generation in neutrophils. AMPK activators can reverse metabolic reprogramming and are already in clinical use and/or development. We propose the need for a new immunomodulatory approach, rather than an anti-inflammatory approach, to enhance bacterial clearance and reduce bronchiectasis disease severity.
Collapse
|
43
|
Loupy KM, Lee T, Zambrano CA, Elsayed AI, D'Angelo HM, Fonken LK, Frank MG, Maier SF, Lowry CA. Alzheimer's Disease: Protective Effects of Mycobacterium vaccae, a Soil-Derived Mycobacterium with Anti-Inflammatory and Anti-Tubercular Properties, on the Proteomic Profiles of Plasma and Cerebrospinal Fluid in Rats. J Alzheimers Dis 2020; 78:965-987. [PMID: 33074227 DOI: 10.3233/jad-200568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an inflammatory neurodegenerative disease that may be associated with prior bacterial infections. Microbial "old friends" can suppress exaggerated inflammation in response to disease-causing infections or increase clearance of pathogens such as Mycobacterium tuberculosis, which causes tuberculosis (TB). One such "old friend" is Mycobacterium vaccae NCTC 11659, a soil-derived bacterium that has been proposed either as a vaccine for prevention of TB, or as immunotherapy for the treatment of TB when used alongside first line anti-TB drug treatment. OBJECTIVE The goal of this study was to use a hypothesis generating approach to explore the effects of M. vaccae on physiological changes in the plasma and cerebrospinal fluid (CSF). METHODS Liquid chromatography-tandem mass spectrometry-based proteomics were performed in plasma and CSF of adult male rats after immunization with a heat-killed preparation of M. vaccae NCTC 11659 or borate-buffered saline vehicle. Gene enrichment analysis and analysis of protein-protein interactions were performed to integrate physiological network changes in plasma and CSF. We used RT-qPCR to assess immune and metabolic gene expression changes in the hippocampus. RESULTS In both plasma and CSF, immunization with M. vaccae increased proteins associated with immune activation and downregulated proteins corresponding to lipid (including phospholipid and cholesterol) metabolism. Immunization with M. vaccae also increased hippocampal expression of interleukin-4 (IL-4) mRNA, implicating anti-inflammatory effects in the central nervous system. CONCLUSION M. vaccae alters host immune activity and lipid metabolism. These data are consistent with the hypothesis that microbe-host interactions may protect against possible infection-induced, inflammation-related cognitive impairments.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas Lee
- Central Analytical Laboratory and Mass Spectrometry Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ, USA
| |
Collapse
|
44
|
Su L, Zhang G, Kong X. Prognostic Significance of Pregnancy Zone Protein and Its Correlation with Immune Infiltrates in Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:9883-9891. [PMID: 33116846 PMCID: PMC7553665 DOI: 10.2147/cmar.s269215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aim Human pregnancy zone protein (PZP) is a pregnancy-related protein which is increased dramatically during pregnancy. However, the expression of PZP and its prognostic value, association with tumor-infiltrating immune cells (TIICs) in microenvironment and potential biological process in HCC were unclear. Methods The PZP expression, clinicopathology analysis and its influence on survival were analyzed by GEPIA and HPA. Fifty-nine HCC samples and 30 corresponding noncancerous tissues were collected and retrospectively analyzed to verify the results of bioinformatics analysis. Further, TIMER and CIBERSORT were performed to identify the significantly alerted biological process and affections of PZP expression on the immune system in patients with HCC. Finally, IHC assay of CD4+ T cells and Treg cells was performed to confirm the results of immune infiltrates analysis by TIMER and CIBERSORT. Results PZP expression was downregulated in HCC tissues and its low level was substantially correlated with poor prognosis in patients with HCC. TIMER analysis showed that PZP expression had a positive correlation with the levels of macrophage and neutrophil. Furthermore, CIBERSORT analysis showed that resting memory CD4 T cells were increased in high PZP expression group, while the results of Tregs were the opposite. Finally, the IHC results of CD4+ T cells and Treg cells showed that only Tregs were negatively associated with PZP expression. Conclusion PZP was identified as a novel prognosis biomarker of HCC and might play a vital role in the regulation and recruitment of TIICs in HCC immune microenvironment.
Collapse
Affiliation(s)
- Lisa Su
- Department of Genetic and Prenatal Diagnosis Center, Zhengzhou University First Affiliated Hospital, Zhengzhou, People's Republic of China
| | - Genhao Zhang
- Department of Blood Transfusion, Zhengzhou University First Affiliated Hospital, Zhengzhou, People's Republic of China
| | - Xiangdong Kong
- Department of Genetic and Prenatal Diagnosis Center, Zhengzhou University First Affiliated Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
45
|
Wang Z, Zhuang X, Chen B, Feng D, Li G, Wei M. The Role of miR-107 as a Potential Biomarker and Cellular Factor for Acute Aortic Dissection. DNA Cell Biol 2020; 39:1895-1906. [PMID: 32882141 DOI: 10.1089/dna.2020.5506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute aortic dissection (AD) is one of the most severe and highly mortality vascular disease. Its actual prevalence may be seriously underestimated. We studied different expression genes to understand gene profile change between acute AD and nondiseased individuals, and then discover potential biomarkers and therapeutic targets of acute AD. In our study, acute AD differentially expressed mRNAs and miRNAs were identified through bioinformatics analysis on Gene Expression Omnibus data sets GSE52093, GSE98770, and GSE92427. Then, comprehensive target prediction and network analysis methods were used to evaluate protein-protein interaction networks and to identify Gene Ontology terms for differentially expressed mRNAs. Differentially expressed mRNAs-miRNAs involved in acute AD were assessed as well. Finally, the quantitative real-time PCR and in vitro experiment was used to validate the results. We found Integral Membrane Protein 2C (ITM2C) was low expressed and miR-107-5p was highly expressed in acute AD tissues. Meanwhile, overexpression miR-107-5p promoted the cell proliferation and inhibited the cell apoptosis in RASMC cells. miR-107-5p inhibited the progression of acute AD through targeted ITM2C.
Collapse
Affiliation(s)
- Zanxin Wang
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China.,Department of Cardiac Surgery, The University of Hong Kong-Shenzhen Hospital, Guangdong, P.R. China
| | - Xianmian Zhuang
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China
| | - Bailang Chen
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China
| | - Dongjie Feng
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China
| | - Gang Li
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China
| | - Minxin Wei
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China.,Department of Cardiac Surgery, The University of Hong Kong-Shenzhen Hospital, Guangdong, P.R. China
| |
Collapse
|
46
|
Crichton ML, Lonergan M, Barker AF, Sibila O, Goeminne P, Shoemark A, Chalmers JD. Inhaled aztreonam improves symptoms of cough and sputum production in patients with bronchiectasis: a post hoc analysis of the AIR-BX studies. Eur Respir J 2020; 56:13993003.00608-2020. [PMID: 32265309 DOI: 10.1183/13993003.00608-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Inhaled antibiotics may improve symptom scores, but it is not known which specific symptoms improve with therapy. Item-level analysis of questionnaire data may allow us to identify which specific symptoms respond best to treatment. METHODS Post hoc analysis of the AIR-BX1 studies and two trials of inhaled aztreonam versus placebo in bronchiectasis. Individual items from the quality of life bronchiectasis (QOL-B) respiratory symptom scale, were extracted as representing severity of nine distinct symptoms. Generalised linear models were used to evaluate changes in symptoms with treatment versus placebo from baseline to end of first on-treatment cycle and mixed models were used to evaluate changes across the full 16-week trial. RESULTS Aztreonam improved cough (difference 0.22, 95% CI 0.08-0.37; p=0.002), sputum production (0.30, 95% CI 0.15-0.44; p<0.0001) and sputum colour (0.29, 95% CI 0.15-0.43; p<0.0001) versus placebo equating to a 20% improvement in cough and 25% improvement in sputum production and colour. Similar results were observed for cough, sputum production and sputum purulence across the trial duration (all p<0.05). Patients with higher sputum production and sputum colour scores had a greater response on the overall QOL-B (difference 4.82, 95% CI 1.12-8.53; p=0.011 for sputum production and 5.02, 95% CI 1.19-8.86; p=0.01 for sputum colour). In contrast, treating patients who had lower levels of bronchitic symptoms resulted in shorter time to next exacerbation (hazard ratio 1.83, 95% CI 1.02-3.28; p=0.042). CONCLUSION Baseline bronchitic symptoms predict response to inhaled aztreonam in bronchiectasis. More sensitive tools to measure bronchitic symptoms may be useful to better identify inhaled antibiotic responders and to evaluate patient response to treatment.
Collapse
Affiliation(s)
- Megan L Crichton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Mike Lonergan
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Alan F Barker
- Division of Pulmonology and Critical Care, Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Oriol Sibila
- Dept of Respiratory Medicine, Hospital Clinic, Barcelona, Spain
| | - Pieter Goeminne
- Dept of Respiratory Medicine, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
47
|
Suárez-Cuartín G, Sibila O. Inflamación local y sistémica en bronquiectasias. Endotipos y biomarcadores. OPEN RESPIRATORY ARCHIVES 2020. [DOI: 10.1016/j.opresp.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
48
|
|