1
|
Burgener EB, Gupta A, Nakano K, Gibbs SL, Sommers ME, Khosravi A, Bach MS, Dunn C, Spano J, Secor PR, Tian L, Bollyky PL, Milla CE. Pf bacteriophage is associated with decline in lung function in a longitudinal cohort of patients with cystic fibrosis and Pseudomonas airway infection. J Cyst Fibros 2024:S1569-1993(24)01786-7. [PMID: 39490215 DOI: 10.1016/j.jcf.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The Pseudomonas filamentous bacteriophage (Pf) infects Pseudomonas aeruginosa (Pa) and is abundant in the airways of many people with cystic fibrosis (CF) (pwCF). We previously demonstrated that Pf promotes biofilm growth, as well as generates liquid crystals that confer biofilms with adhesivity, viscosity and resistance to clearance. Consistent with these findings, the presence of Pf in sputum from pwCF has been linked to chronic Pa infection and more severe exacerbations in a cross-sectional cohort study. METHODS We examined the relationships between Pf and clinical outcomes in a longitudinal study of pwCF. Sputum Pa and Pf concentrations were measured by qPCR, as well cytokines and active neutrophil elastase by standardized assays. Recorded clinical data, including spirometry and microbiological results, were analyzed for associations with Pf. Finally, lung explants from pwCF in this cohort who underwent lung transplantation were examined for presence of liquid crystals within secretions. RESULTS In explanted lungs from pwCF with known Pf infection we demonstrate areas of birefringence consistent with liquid crystalline structures within the airways. We find that high concentration of Pf in sputum is associated with accelerated loss of lung function, suggesting a potential role for Pf in the pathogenesis of CF lung disease. We also find Pf to associate with increased airway inflammation and an anti-viral cytokine response. CONCLUSION Pf may serve as a prognostic biomarker and potential therapeutic target for Pa infections in CF.
Collapse
Affiliation(s)
- Elizabeth B Burgener
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Aditi Gupta
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Kayo Nakano
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Sophia L Gibbs
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Maya E Sommers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Arya Khosravi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michelle S Bach
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Colleen Dunn
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jacquelyn Spano
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Lu Tian
- Biomedical Data Science Administration and Statistics, Stanford University, Stanford, CA 94305, USA; Primary Care and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Ramos CDO, Sant'Ana MR, Gonçalves GR, Rios TDS, Nakandakari SCBR, Burger B, Fernandes LGR, Zollner RDL, de Oliveira AN, Ramos RC, da Silva ASR, Pauli JR, de Moura LP, Ropelle ER, Mansour E, Cintra DE. The Effects of High-Fat Diet and Flaxseed Oil-Enriched Diet on the Lung Parenchyma of Obese Mice. Mol Nutr Food Res 2024; 68:e2300050. [PMID: 39205544 DOI: 10.1002/mnfr.202300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Omega-3 (ω3) fatty acids are widely investigated for their anti-inflammatory potential, however, there is little evidence regarding their action in the lung parenchyma in the context of obesity. The objective is to investigate the effects of flaxseed oil (FS), rich in α-linolenic (C18:3 - ω3), on the lungs of obese mice. Mice were fed a high-fat diet (HF) for 8 weeks to induce obesity. Subsequently, a part of these animals received HF containing FS oil for another 8 weeks. The HF consumption induced weight gain and hyperglycemia. The lung parenchyma shows a complete fatty acids profile, compared to the control group (CT). In the lung parenchyma, FS increases the ω3 content and, notwithstanding a reduction in the interleukins (IL) IL1β and IL18 contents compared to HF. However, FS promoted increased alveolar spaces, followed by MCP1 (Monocytes Chemoattractant Protein-1) positive cell infiltration and a dramatic reduction in the anti-inflammatory cytokine, IL10. Despite reducing the pulmonary inflammatory response, the consumption of a food source of ω3 was associated with alterations in the lipid profile and histoarchitecture of the lung parenchyma, which can lead to the development of pulmonary complications. This study brings an alert against the indiscriminate use of ω3 supplements, warranting caution.
Collapse
Affiliation(s)
- Camila de Oliveira Ramos
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Giovana Rios Gonçalves
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Thaiane da Silva Rios
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Susana Castelo Branco Ramos Nakandakari
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Arthur Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Rodrigo Catharino Ramos
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eli Mansour
- Department of Clinical Medicine, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| |
Collapse
|
3
|
Aiassa LV, Battaglia G, Rizzello L. The multivalency game ruling the biology of immunity. BIOPHYSICS REVIEWS 2023; 4:041306. [PMID: 38505426 PMCID: PMC10914136 DOI: 10.1063/5.0166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Macrophages play a crucial role in our immune system, preserving tissue health and defending against harmful pathogens. This article examines the diversity of macrophages influenced by tissue-specific functions and developmental origins, both in normal and disease conditions. Understanding the spectrum of macrophage activation states, especially in pathological situations where they contribute significantly to disease progression, is essential to develop targeted therapies effectively. These states are characterized by unique receptor compositions and phenotypes, but they share commonalities. Traditional drugs that target individual entities are often insufficient. A promising approach involves using multivalent systems adorned with multiple ligands to selectively target specific macrophage populations based on their phenotype. Achieving this requires constructing supramolecular structures, typically at the nanoscale. This review explores the theoretical foundation of engineered multivalent nanosystems, dissecting the key parameters governing specific interactions. The goal is to design targeting systems based on distinct cell phenotypes, providing a pragmatic approach to navigating macrophage heterogeneity's complexities for more effective therapeutic interventions.
Collapse
|
4
|
Pandher U, Kirychuk S, Schneberger D, Thompson B, Aulakh G, Sethi RS, Singh B. Adhesion Molecules in Lung Inflammation from Repeated Glyphosate Exposures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085484. [PMID: 37107767 PMCID: PMC10138447 DOI: 10.3390/ijerph20085484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Glyphosate is an active ingredient in herbicides. Exposure to glyphosate-based herbicides has been associated with respiratory dysfunctions in agricultural workers. The ability of inhaled glyphosate to induce lung inflammation is not well understood. Further, the role of adhesion molecules in glyphosate-induced lung inflammation has not been studied. We evaluated lung inflammatory responses from single and repeated glyphosate exposures. Male C57BL/6 mice were intranasally exposed to glyphosate (1 μg/40 μL) for 1 day or once daily for 5 days or 10 days. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected and analyzed. Repeated exposure to glyphosate for 5 days and 10 days resulted in an increase in neutrophils in BAL fluid and higher eosinophil peroxidase levels in lungs, with leukocyte infiltration further confirmed through lung histology. Repetitive exposure to glyphosate increased IL-33 and Th2 cytokines IL-5 and IL-13. A single glyphosate treatment revealed expression for ICAM-1, VCAM-1, and vWF adhesion molecules in the perivascular region of lung sections; with repeated treatment (5 and 10 days), adhesion molecule expression was found in the perivascular, peribronchiolar, and alveolar regions of the lungs. Repetitive exposure to glyphosate induced cellular inflammation in which adhesion molecules may be important to the lung inflammatory process.
Collapse
Affiliation(s)
- Upkardeep Pandher
- Health Sciences Graduate Program, University of Saskatchewan, 107 Wiggins Road, P.O. Box 23, Saskatoon, SK S7N 5E5, Canada
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, 104 Clinic Place, P.O. Box 23, Saskatoon, SK S7N 2Z4, Canada
| | - Shelley Kirychuk
- Department of Medicine, College of Medicine, Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, 104 Clinic Place, P.O. Box 23, Saskatoon, SK S7N 2Z4, Canada
- Correspondence:
| | - David Schneberger
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, 104 Clinic Place, P.O. Box 23, Saskatoon, SK S7N 2Z4, Canada
| | - Brooke Thompson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, 104 Clinic Place, P.O. Box 23, Saskatoon, SK S7N 2Z4, Canada
| | - Gurpreet Aulakh
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, P.O. Box 23, Saskatoon, SK S7N 5B4, Canada
| | - R. S. Sethi
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Baljit Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, P.O. Box 23, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
5
|
Planer JD, Morrisey EE. After the Storm: Regeneration, Repair, and Reestablishment of Homeostasis Between the Alveolar Epithelium and Innate Immune System Following Viral Lung Injury. ANNUAL REVIEW OF PATHOLOGY 2023; 18:337-359. [PMID: 36270292 PMCID: PMC10875627 DOI: 10.1146/annurev-pathmechdis-031621-024344] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mammalian lung has an enormous environmental-epithelial interface that is optimized to accomplish the principal function of the respiratory system, gas exchange. One consequence of evolving such a large surface area is that the lung epithelium is continuously exposed to toxins, irritants, and pathogens. Maintaining homeostasis in this environment requires a delicate balance of cellular signaling between the epithelium and innate immune system. Following injury, the epithelium can be either fully regenerated in form and function or repaired by forming dysplastic scar tissue. In this review, we describe the major mechanisms of damage, regeneration, and repair within the alveolar niche where gas exchange occurs. With a focus on viral infection, we summarize recent work that has established how epithelial proliferation is arrested during infection and how the innate immune system guides its reconstitution during recovery. The consequences of these processes going awry are also considered, with an emphasis on how this will impact postpandemic pulmonary biology and medicine.
Collapse
Affiliation(s)
- Joseph D Planer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Park HE, Lee W, Choi S, Jung M, Shin MK, Shin SJ. Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol 2022; 13:931876. [PMID: 36505429 PMCID: PMC9730288 DOI: 10.3389/fimmu.2022.931876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium complex (MAC) is the main causative agent of infectious diseases in humans among nontuberculous mycobacteria (NTM) that are ubiquitous organisms found in environmental media such as soil as well as in domestic and natural waters. MAC is a primary causative agent of NTM-lung disease that threaten immunocompromised or structural lung disease patients. The incidence and the prevalence of M. tuberculosis infection have been reduced, while MAC infections and mortality rates have increased, making it a cause of global health concern. The emergence of drug resistance and the side effects of long-term drug use have led to a poor outcome of treatment regimens against MAC infections. Therefore, the development of host-directed therapy (HDT) has recently gained interest, aiming to accelerate mycobacterial clearance and reversing lung damage by employing the immune system using a novel adjuvant strategy to improve the clinical outcome of MAC infection. Therefore, in this review, we discuss the innate immune responses that contribute to MAC infection focusing on macrophages, chief innate immune cells, and host susceptibility factors in patients. We also discuss potential HDTs that can act on the signaling pathway of macrophages, thereby contributing to antimycobacterial activity as a part of the innate immune response during MAC infection. Furthermore, this review provides new insights into MAC infection control that modulates and enhances macrophage function, promoting host antimicrobial activity in response to potential HDTs and thus presenting a deeper understanding of the interactions between macrophages and MACs during infection.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Myunghwan Jung
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| |
Collapse
|
7
|
Yang Y, Wang Y. Autocrine, Paracrine, and Endocrine Signals That Can Alter Alveolar Macrophages Function. Rev Physiol Biochem Pharmacol 2022; 186:177-198. [PMID: 36472676 DOI: 10.1007/112_2022_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar macrophages (AMs) are extremely versatile cells with complex functions involved in health or diseases such as pneumonia, asthma, and pulmonary alveolar proteinosis. In recent years, it has been widely identified that the different functions and states of macrophages are the results from the complex interplay between microenvironmental signals and macrophage lineage. Diverse and complicated signals to which AMs respond are mentioned when they are described individually or in a particular state of AMs. In this review, the microenvironmental signals are divided into autocrine, paracrine, and endocrine signals based on their secreting characteristics. This new perspective on classification provides a more comprehensive and systematic introduction to the complex signals around AMs and is helpful for understanding the roles of AMs affected by physiological environment. The existing possible treatments of AMs are also mentioned in it. The thorough understanding of AMs signals modulation may be contributed to the development of more effective therapies for AMs-related lung diseases.
Collapse
Affiliation(s)
- Yue Yang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
8
|
Williamson M, Casey M, Gabillard-Lefort C, Alharbi A, Teo YQJ, McElvaney NG, Reeves EP. Current evidence on the effect of highly effective CFTR modulation on interleukin-8 in cystic fibrosis. Expert Rev Respir Med 2021; 16:43-56. [PMID: 34726115 DOI: 10.1080/17476348.2021.2001333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetically inherited disease, with mortality and morbidity associated with respiratory disease. The inflammatory response in CF is characterized by excessive neutrophil influx to the airways, mainly due to the increased local production and retention of interleukin-8 (IL-8), a potent neutrophil chemoattractant. AREAS COVERED We discuss how the chemokine IL-8 dominates the inflammatory profile of the airways in CF lung disease. Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies are designed to correct the malfunctioning protein resulting from specific CFTR mutations. This review covers current evidence on the impact of CFTR impairment on levels of IL-8 and outlines the influence of effective CFTR modulation on inflammation in CF with a focus on cytokine production. Review of the literature was carried out using the PUBMED database, Google Scholar, and The Cochrane Library databases, using several appropriate generic terms. EXPERT OPINION Therapeutic interventions specifically targeting the defective CFTR protein have improved the outlook for CF. Accumulating studies on the effect of highly effective CFTR modulation on inflammation indicate an impact on IL-8 levels. Further studies are required to increase our knowledge of early onset innate inflammatory dysregulation and on anti-inflammatory mechanisms of CFTR modulators.
Collapse
Affiliation(s)
- Michael Williamson
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Michelle Casey
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Claudie Gabillard-Lefort
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Aram Alharbi
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Yu Qing Jolene Teo
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Serum inflammatory profiles in cystic fibrosis mice with and without Bordetella pseudohinzii infection. Sci Rep 2021; 11:17535. [PMID: 34475490 PMCID: PMC8413329 DOI: 10.1038/s41598-021-97033-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein, and is marked by an accumulation of mucus in affected airways resulting in persistent infection and chronic inflammation. Quantitative differences in inflammatory markers have been observed in CF patient serum, tracheal cells, and bronchoalveolar lavage fluid, in the absence of detectable infection, implying that absent CFTR function alone may result in dysregulated immune responses. To examine the relationship between absent CFTR and systemic inflammation, 22 analytes were measured in CF mice (F508del/F508del) sera using the MSD multiplex platform. Pro-inflammatory cytokines IL-2, TNF-α, IL-17α, IFN-γ, IL-1β, and MIP-3α are significantly elevated in infection-naïve CF mice (p < 0.050). Anti-inflammatory cytokines IL-10 and IL-4 are also significantly increased (p = 0.00003, p = 0.004). Additionally, six general markers of inflammation are significantly different from non-CF controls (p < 0.050). To elucidate the effects of chronic infection on the CF inflammatory profile, we examined CF mice exposed to spontaneous Bordetella pseudohinzii infections. There are no statistical differences in nearly all inflammatory markers when compared to their infection-naïve CF counterparts, except in the Th2-derived IL-4 and IL-5 which demonstrate significant decreases following exposure (p = 0.046, p = 0.045). Lastly, following acute infection, CF mice demonstrate elevations in nearly all inflammatory markers, but exhibit a shortened return to uninfected levels over time, and suppression of Th1-derived IL-2 and IL-5 (p = 0.043, p = 0.011). These results imply that CF mice have a persistent inflammatory profile often indistinguishable from chronic infection, and a dysregulated humoral response during and following active infection.
Collapse
|
10
|
Mansurov A, Lauterbach A, Budina E, Alpar AT, Hubbell JA, Ishihara J. Immunoengineering approaches for cytokine therapy. Am J Physiol Cell Physiol 2021; 321:C369-C383. [PMID: 34232748 DOI: 10.1152/ajpcell.00515.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the discovery of cytokines, much effort has been put forth to achieve therapeutic translation for treatment of various diseases, including cancer and autoimmune diseases. Despite these efforts, very few cytokines have cleared regulatory approval, and those that were approved are not commonly used due to their challenging toxicity profile and/or limited therapeutic efficacy. The main limitation in translation has been that wild-type cytokines have unfavorable pharmacokinetic and pharmacodynamic profiles, either eliciting unwanted systemic side effects or insufficient residence in secondary lymphoid organs. In this review, we address protein-engineering approaches that have been applied to both proinflammatory and anti-inflammatory cytokines to enhance their therapeutic indices, and we highlight diseases in which administration of engineered cytokines is especially relevant.
Collapse
Affiliation(s)
- Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Abigail Lauterbach
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Erica Budina
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Jun Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois.,Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Aslanhan U, Cakir E, Pur Ozyigit L, Kucuksezer UC, Gelmez YM, Yuksel M, Deniz G, Cetin Aktas E. Pseudomonas aeruginosa colonization in cystic fibrosis: Impact on neutrophil functions and cytokine secretion capacity. Pediatr Pulmonol 2021; 56:1504-1513. [PMID: 33512090 DOI: 10.1002/ppul.25294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/03/2021] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Chronic colonization with Pseudomonas (P.) aeruginosa worsens the prognosis of cystic fibrosis (CF) patients. This study aims to analyze the functional properties of neutrophils in CF patients with P. aeruginosa colonization. METHODS Patients with CF (n = 16) were grouped by positivity of P. aeruginosa in sputum culture, as positive (P.+) or negative (P.-), then compared with age and sex matched healthy controls (n = 8). Adhesion molecules, apoptotic index, intracellular CAP-18, interleukin 8 (IL-8), and tumor necrosis factor α (TNF-α) levels of neutrophils, following P. aeruginosa and lipopolysaccharides (LPS) stimulation, were analyzed by flow cytometry. IL-1β, IL-6, TNF-α, and IL-17 plasma levels were determined by Luminex. RESULTS Patients with CF had increased phagocytosis of Escherichia coli and P. aeruginosa, upregulated oxidative burst and chemotaxis. Increased neutrophil apoptosis was noted in CF patients. In unstimulated conditions, higher levels of CD16+ TNF-α+ and CD16+ IL-8+ neutrophils were determined, whereas bacteria and LPS stimulation significantly decreased secretion of CAP-18 from CD16+ neutrophils of CF patients. Plasma levels of IL-1β, TNF-α and IL-17 in P.+ patients were higher than in P.- group. CONCLUSION Our findings confirm inadequate neutrophil defense towards pathogens in CF. A significant difference in migration, phagocytosis, oxidative burst, percentage of IL-8 producing neutrophils, IL-1β, TNF-α, and IL-17 secretions were noted among CF patients according to their colonization status, which might induce a further destructive effect on airways, resulting in an unfavorable prognosis for children with CF who also have colonization.
Collapse
Affiliation(s)
- Umit Aslanhan
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Immunology, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Erkan Cakir
- Department of Pediatric Pulmonology, Bezmialem Vakif University Medical Faculty, Istanbul, Turkey
| | - Leyla Pur Ozyigit
- Department of Allergy and Immunology, University Hospitals of Leicester, Leicester, UK
| | - Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Yusuf Metin Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mine Yuksel
- Department of Pediatric Pulmonology, Bezmialem Vakif University Medical Faculty, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Cetin Aktas
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Green M, Lindgren N, Henderson A, Keith JD, Oden AM, Birket SE. Ivacaftor partially corrects airway inflammation in a humanized G551D rat. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1093-L1100. [PMID: 33825507 PMCID: PMC8285630 DOI: 10.1152/ajplung.00082.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 01/09/2023] Open
Abstract
Animal models have been highly informative for understanding the pathogenesis and progression of cystic fibrosis (CF) lung disease. In particular, the CF rat models recently developed have addressed mechanistic causes of the airway mucus defect characteristic of CF, and how these may change when cystic fibrosis transmembrane conductance regulator (CFTR) activity is restored using new modulator therapies. We hypothesized that inflammatory changes to the airway would develop spontaneously and progressively, and that these changes would be resolved with modulator therapy. To test this, we used a humanized-CFTR rat expressing the G551D variant that responds to the CFTR modulator ivacaftor. Markers typically found in the CF lung were assessed, including neutrophil influx, small airway histopathology, and inflammatory cytokine concentration. Young hG551D rats did not express inflammatory cytokines at baseline but did upregulate these in response to inflammatory trigger. As the hG551D rats aged, histopathology worsened, accompanied by neutrophil influx into the airway and increasing concentrations of TNF-α, IL-1α, and IL-6 in the airways. Ivacaftor administration reduced concentrations of these cytokines when administered to the rats at baseline but was less effective in the rats that had also received inflammatory stimulus. Therefore, we conclude that administration of ivacaftor resulted in an incomplete resolution of inflammation when rats received an external trigger, suggesting that CFTR activation may not be enough to resolve inflammation in the lungs of patients with CF.
Collapse
Affiliation(s)
- Morgan Green
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Natalie Lindgren
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexander Henderson
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Johnathan D Keith
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashley M Oden
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Susan E Birket
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Wang S, Xiang D, Tian F, Ni M. Lipopolysaccharide from biofilm-forming Pseudomonas aeruginosa PAO1 induces macrophage hyperinflammatory responses. J Med Microbiol 2021; 70. [PMID: 33909550 PMCID: PMC8289208 DOI: 10.1099/jmm.0.001352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction. Macrophages polarization is essential in infection control. Llipopolysaccharide (LPS) plays an essential role in host innate immune system-pathogen interaction. The LPS structure of Pseudomonas aeruginosa modifies in the adaptation of this pathogen to biofilm-related chronic infection.Gap statement. There have been several studies on LPS induced polarization of human and mouse macrophages with different results. And it was reported that the lipid A structure of the LPS derived from biofilm-forming Pseudomonas aeruginosa strain PAO1 was modified.Aim. This study aimed to investigate the effect and the involved pathway of LPS from biofilm-forming PAO1 on human and murine macrophage polarization.Methodology. LPS was isolated from biofilm-forming and planktonic PAO1 and quantified. Then the LPS was added to PMA-differentiated human macrophage THP-1 cells and Raw264.7 murine macrophage cells. The expression of iNOS, Arg-1, IL4, TNF-α, CCL3, and CCL22 was analysed in the different cell lines. The expression of TICAM-1 and MyD88 in human THP-1 macrophages was quantified by Western blot. PAO1 infected macrophages at different polarization states, and the intracellular bacterial growth in macrophages was evaluated.Results. LPS from biofilm-forming PAO1 induced more marked hyperinflammatory responses in THP-1 and Raw264.7 macrophages than LPS derived from planktonic PAO1, and these responses were related to the up-regulation of MyD88. Intracellular growth of PAO1 was significantly increased in THP-1 macrophages polarized by LPS from biofilm-forming PAO1, but decreased both in THP-1 and Raw264.7 macrophages polarized by LPS from planktonic PAO1.Conclusion. The presented in vitro study indicates that LPS derived from biofilm-forming PAO1 induces enhanced M1 polarization in human and murine macrophage cell lines than LPS from planktonic PAO1.
Collapse
Affiliation(s)
- Sufei Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Dandan Xiang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Fangbing Tian
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ming Ni
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
14
|
Yang N, Singhera GK, Yan YX, Pieper MP, Leung JM, Sin DD, Dorscheid DR. Olodaterol exerts anti-inflammatory effects on COPD airway epithelial cells. Respir Res 2021; 22:65. [PMID: 33622325 PMCID: PMC7901009 DOI: 10.1186/s12931-021-01659-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway inflammation is a key feature of chronic obstructive pulmonary disease (COPD) and inhaled corticosteroids (ICS) remain the main treatment for airway inflammation. Studies have noted the increased efficacy of ICS and long-acting beta 2 agonist (LABA) combination therapy in controlling exacerbations and improving airway inflammation than either monotherapy. Further studies have suggested that LABAs may have inherent anti-inflammatory potential, but this has not been well-studied. OBJECTIVE We hypothesize that the LABA olodaterol can inhibit airway inflammation resulting from exposure to respiratory syncytial virus (RSV) via its binding receptor, the β2-adrenergic receptor. METHODS Human bronchial epithelial brushing from patients with and without COPD were cultured into air-liquid interface (ALI) cultures and treated with or without olodaterol and RSV infection to examine the effect on markers of inflammation including interleukin-8 (IL-8) and mucus secretion. The cell line NCI-H292 was utilized for gene silencing of the β2-adrenergic receptor via siRNA as well as receptor blocking via ICI 118,551 and butaxamine. RESULTS At baseline, COPD-ALIs produced greater amounts of IL-8 than control ALIs. Olodaterol reduced RSV-mediated IL-8 secretion in both COPD and control ALIs and also significantly reduced Muc5AC staining in COPD-ALIs infected with RSV. A non-significant reduction was seen in control ALIs. Gene silencing of the β2-adrenergic receptor in NCI-H292 negated the ability of olodaterol to inhibit IL-8 secretion from both RSV infection and lipopolysaccharide stimulus, as did blocking of the receptor with ICI 118,551 and butaxamine. CONCLUSIONS Olodaterol exhibits inherent anti-inflammatory properties on the airway epithelium, in addition to its bronchodilation properties, that is mediated through the β2-adrenergic receptor and independent of ICS usage.
Collapse
Affiliation(s)
- Nan Yang
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gurpreet K Singhera
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Yi Xuan Yan
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Michael P Pieper
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | - Janice M Leung
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Delbert R Dorscheid
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Sponchiado M, Liao YS, Atanasova KR, Collins EN, Schurmann V, Bravo L, Reznikov LR. Overexpression of Substance P in pig airways increases MUC5AC through an NF-kβ pathway. Physiol Rep 2021; 9:e14749. [PMID: 33580593 PMCID: PMC7881348 DOI: 10.14814/phy2.14749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Substance P (SP) is a tachykinin that regulates airway mucous secretion in both health and disease. Our study aimed to determine whether overexpression of SP without pre‐existing inflammation was sufficient to induce changes in mucin secretion and transport in small airways. Utilizing porcine precision‐cut lung slices, we measured the impact of AAV‐mediated overexpression of SP on airway physiology ex vivo. Immunofluorescence signal intensity for MUC5AC was significantly increased in SP‐overexpressed precision‐cut lung slices compared to GFP controls. No difference in MUC5B signal intensity between treatments was detected. SP‐overexpressed precision‐cut lung slices also exhibited decreased IL10 mRNA, an important inhibitor of mucous cell metaplasia. Overt deficits in mucociliary transport were not noted, though a trend for decreased mean transport speed was detected in methacholine‐challenged airways overexpressing SP compared to GFP controls. Pharmacologic inhibition of the NF‐kβ pathway abrogated the effects of overexpression of SP on both MUC5AC and IL10. Collectively, these data suggest that overexpression of SP in the absence of existing inflammation increases MUC5AC via activation of the NF‐kβ pathway. Thus, these data further highlight SP as a key driver of abnormal mucous secretion and underscore NF‐kβ signaling as a pathway of potential therapeutic intervention.
Collapse
Affiliation(s)
- Mariana Sponchiado
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Yan-Shin Liao
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Kalina R Atanasova
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA.,Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Emily N Collins
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Veronica Schurmann
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Laura Bravo
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Abstract
Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores potentially important community-level interactions in disease pathology, perhaps explaining why these treatments are often less effective than predicted based on in vitro testing. Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores potentially important community-level interactions in disease pathology, perhaps explaining why these treatments are often less effective than predicted based on in vitro testing. A better understanding of the ecological dynamics of this ecosystem may enable clinicians to harness these interactions and thereby improve treatment outcomes. Like all ecosystems, the CF lung microbial community develops through a series of stages, each of which may present with distinct microbial communities that generate unique host-microbe and microbe-microbe interactions, metabolic profiles, and clinical phenotypes. While insightful models have been developed to explain some of these stages and interactions, there is no unifying model to describe how these infections develop and persist. Here, we review current perspectives on the ecology of the CF airway and present the CF Ecological Succession (CFES) model that aims to capture the spatial and temporal complexity of CF lung infection, address current challenges in disease management, and inform the development of ecologically driven therapeutic strategies.
Collapse
|
17
|
Bordea IR, Xhajanka E, Candrea S, Bran S, Onișor F, Inchingolo AD, Malcangi G, Pham VH, Inchingolo AM, Scarano A, Lorusso F, Isacco CG, Aityan SK, Ballini A, Dipalma G, Inchingolo F. Coronavirus (SARS-CoV-2) Pandemic: Future Challenges for Dental Practitioners. Microorganisms 2020; 8:E1704. [PMID: 33142764 PMCID: PMC7694165 DOI: 10.3390/microorganisms8111704] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
In the context of the SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) pandemic, the medical system has been subjected to many changes. Face-to-face treatments have been suspended for a period of time. After the lockdown, dentists have to be aware of the modalities to protect themselves and their patients in order not to get infected. Dental practitioners are potentially exposed to a high degree of contamination with SARS-CoV-2 while performing dental procedures that produce aerosols. It should also be noted that the airways, namely the oral cavity and nostrils, are the access pathways for SARS-CoV-2. In order to protect themselves and their patients, they have to use full personal protective equipment. Relevant data regarding this pandemic are under evaluation and are still under test. In this article, we made a synthesis about the way in which SARS-CoV-2 spreads, how to diagnose a novel corona virus infection, what the possible treatments are, and which protective personal equipment we can use to stop its spreading.
Collapse
Affiliation(s)
- Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Edit Xhajanka
- President of Dental School, Medical University of Tirana, Rruga e Dibrës, 1001 Tirana, Albania;
| | - Sebastian Candrea
- Department of Pedodontics, County Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxilofacial Surgery and Implantology, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.B.); (F.O.)
| | - Florin Onișor
- Department of Maxilofacial Surgery and Implantology, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.B.); (F.O.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| | - Van H Pham
- Nam Khoa Laboratories and Pham Chau Trinh University of Medicine, Hoi An 70000, Vietnam;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Ciro Gargiulo Isacco
- Director of Research at Human Stem Cells Research Center HSC, Ho Chi Minh 70000, Vietnam;
- Associate Professor of Embryology and Regenerative Medicine and Immunology at Pham Chau Trinh University of Medicine, Hoi An 70000, Vietnam
- Visiting Professor of Regenerative Medicine and Metabolic Disorders at Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy
| | - Sergey K Aityan
- Director of Multidisciplinary Research Center, Lincoln University, Oakland, CA 94102, USA;
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario “Ernesto Quagliariello” University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Department of Precision Medicine, University of Campania“Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| |
Collapse
|
18
|
Turner MJ, Dauletbaev N, Lands LC, Hanrahan JW. The Phosphodiesterase Inhibitor Ensifentrine Reduces Production of Proinflammatory Mediators in Well Differentiated Bronchial Epithelial Cells by Inhibiting PDE4. J Pharmacol Exp Ther 2020; 375:414-429. [PMID: 33012706 DOI: 10.1124/jpet.120.000080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel that impair airway salt and fluid secretion. Excessive release of proinflammatory cytokines and chemokines by CF bronchial epithelium during airway infection leads to chronic inflammation and a slow decline in lung function; thus, there is much interest in finding safe and effective treatments that reduce inflammation in CF. We showed previously that the cyclic nucleotide phosphodiesterase (PDE) inhibitor ensifentrine (RPL554; Verona Pharma) stimulates the channel function of CFTR mutants with abnormal gating and also those with defective trafficking that are partially rescued using a clinically approved corrector drug. PDE inhibitors also have known anti-inflammatory effects; therefore, we examined whether ensifentrine alters the production of proinflammatory cytokines in CF bronchial epithelial cells. Ensifentrine reduced the production of monocyte chemoattractant protein-1 and granulocyte monocyte colony-stimulating factor (GM-CSF) during challenge with interleukin-1β Comparing the effect of ensifentrine with milrinone and roflumilast, selective PDE3 and PDE4 inhibitors, respectively, demonstrated that the anti-inflammatory effect of ensifentrine was mainly due to inhibition of PDE4. Beneficial modulation of GM-CSF was further enhanced when ensifentrine was combined with low concentrations of the β 2-adrenergic agonist isoproterenol or the corticosteroid dexamethasone. The results indicate that ensifentrine may have beneficial anti-inflammatory effects in CF airways particularly when used in combination with β 2-adrenergic agonists or corticosteroids. SIGNIFICANCE STATEMENT: Airway inflammation that is disproportionate to the burden of chronic airway infection causes much of the pathology in the cystic fibrosis (CF) lung. We show here that ensifentrine beneficially modulates the release of proinflammatory factors in well differentiated CF bronchial epithelial cells that is further enhanced when combined with β2-adrenergic agonists or low-concentration corticosteroids. The results encourage further clinical testing of ensifentrine, alone and in combination with β2-adrenergic agonists or low-concentration corticosteroids, as a novel anti-inflammatory therapy for CF.
Collapse
Affiliation(s)
- Mark J Turner
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Nurlan Dauletbaev
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Larry C Lands
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - John W Hanrahan
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| |
Collapse
|
19
|
Oshalim M, Johansson E, Rabe H, Gilljam M, Lindblad A, Jönsson B. Th17 associated cytokines in sputum samples from patients with cystic fibrosis. Pathog Dis 2020; 78:ftaa050. [PMID: 32876666 DOI: 10.1093/femspd/ftaa050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/29/2020] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease leading to chronic bacterial airway infection and inflammation. T helper 17 (Th17) cells are identified by their production of interleukin (IL)-17A, which recruit neutrophils to the site of airway infection. IL-23 is an important inducer of IL-17 and IL-22 production. The aim of this study was to study the role of Th17 cells in CF airway infection by measuring the levels of Th17 associated cytokines in sputum from CF patients with or without airway infection and by comparison with non-CF-controls. In a cross-sectional screening study, cytokine levels were measured with a Th17 multiplex cytokine ELISA. Significantly lower levels of IL-17A and IL-23 were found in sputa from infected CF patients. The lowest levels of IL-17A were found in patients chronically infected with P. aeruginosa, which also had the lowest IL-17/IL-22 ratio, while children had a higher ratio. Children also had higher IL-23 levels than adults. IL-1ß and IL-10 were significantly lower in CF sputum compared to controls. Thus, in our study CF patients with chronic infections had a lower production of Th17 associated cytokines in sputum compared with non-infected CF patients and infected patient without CF.
Collapse
Affiliation(s)
- Merna Oshalim
- Department of infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden and Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ewa Johansson
- Department of infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden and Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hardis Rabe
- Department of infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden and Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marita Gilljam
- Department of Internal medicine and Clinical Nutrition, Respiratory medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg
- Gothenburg CF Centre, Region Västra Götaland, Gothenburg, Sweden
| | - Anders Lindblad
- Department of Paediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Gothenburg CF Centre, Region Västra Götaland, Gothenburg, Sweden
| | - Bodil Jönsson
- Department of infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden and Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
20
|
Animal models to study the role of pulmonary intravascular macrophages in spontaneous and induced acute pancreatitis. Cell Tissue Res 2020; 380:207-222. [DOI: 10.1007/s00441-020-03211-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
|
21
|
Duruel O, Berker E, Özşin-Özler C, Gharibzadeh-Hızal M, Gürpınar Ö, Eryılmaz-Polat S, Ataman-Duruel ET, Tan Ç, Karabulut E, Tekçiçek M, Eser ÖK, Kiper N, Tezcan İ. Levels of pro- and anti-inflammatory cytokines in cystic fibrosis patients with or without gingivitis. Cytokine 2020; 127:154987. [PMID: 31927460 DOI: 10.1016/j.cyto.2020.154987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Inflammatory periodontal diseases are caused by interaction between gram negative, anaerobic bacteria and host response. Persistent infection of Pseudomonas aeruginosa in cystic fibrosis (CF) patients also cause increased pro-inflammatory response and the imbalance of pro- and anti-inflammatory response in brochoalveolar lavage fluid which leads to destruction of lungs. The aim of this study is to evaluate periodontal status of CF patients, to measure level of cytokines and biochemical molecules in gingival crevicular fluid (GCF), and to detect presence of P. aeruginosa in dental plaque samples. MATERIALS AND METHODS GCF samples were collected from 41 CF patients and 39 healthy (non-CF) subjects. Interleukin (IL)-1ß, IL-17, IL-10, human neutrophil elastase (HNE), cystic fibrosis transmembrane regulator (CFTR) protein, and human β-defensin-1 (HBD1) in GCF were evaluated by ELISA method. Dental plaque samples were collected from 18 CF patients with history of P. aeruginosa colonization and 15 non-CF subjects. Presence of P. aeruginosa was evaluated by using conventional culture methods and molecular methods. RESULTS Levels of IL-1ß, HNE, and HBD1 in CF patients were significantly higher than non-CF subjects. However, IL-10 level was significantly lower in CF patients. Increased pro-inflammatory (IL-1ß) and decreased anti-inflammatory (IL-10) cytokine levels were observed in GCF samples from CF patients, irrespective of their periodontal status. P. aeruginosa were detected in four samples of 18 CF patients, and all were negative in non-CF group. CONCLUSIONS As a result of this study, CF coexists increasing pro-inflammatory and decreasing anti-inflammatory response locally. Due to increasing pro-inflammation, CF patients should be followed-up more often than non-CF children.
Collapse
Affiliation(s)
- Onurcem Duruel
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey.
| | - Ezel Berker
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Cansu Özşin-Özler
- Department of Pediatric Dentistry, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Mina Gharibzadeh-Hızal
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Öznur Gürpınar
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sanem Eryılmaz-Polat
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Çağman Tan
- Division of Immunology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Meryem Tekçiçek
- Department of Pediatric Dentistry, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Özgen Köseoğlu Eser
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nural Kiper
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İlhan Tezcan
- Division of Immunology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
22
|
Patel VI, Metcalf JP. Airway Macrophage and Dendritic Cell Subsets in the Resting Human Lung. Crit Rev Immunol 2019; 38:303-331. [PMID: 30806245 DOI: 10.1615/critrevimmunol.2018026459] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dendritic cells (DCs) and macrophages (MΦs) are antigen-presenting phagocytic cells found in many peripheral tissues of the human body, including the blood, lymph nodes, skin, and lung. They are vital to maintaining steady-state respiration in the human lung based on their ability to clear airways while also directing tolerogenic or inflammatory responses based on specific stimuli. Over the past three decades, studies have determined that there are multiple subsets of these two general cell types that exist in the airways and interstitium. Identifying these numerous subsets has proven challenging, especially with the unique microenvironments present in the lung. Cells found in the vasculature are not the same subsets found in the skin or the lung, as demonstrated by surface marker expression. By transcriptional profiling, these subsets show similarities but also major differences. Primary human lung cells and/ or tissues are difficult to acquire, particularly in a healthy condition. Additionally, surface marker screening and transcriptional profiling are continually identifying new DC and MΦ subsets. While the overall field is moving forward, we emphasize that more attention needs to focus on replicating the steady-state microenvironment of the lung to reveal the physiological functions of these subsets.
Collapse
Affiliation(s)
- Vineet Indrajit Patel
- Pulmonary and Critical Care Division of the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jordan Patrick Metcalf
- Pulmonary and Critical Care Division of the Department of Medicine and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
23
|
Keitsch S, Riethmüller J, Soddemann M, Sehl C, Wilker B, Edwards MJ, Caldwell CC, Fraunholz M, Gulbins E, Becker KA. Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin. Biol Chem 2019; 399:1203-1213. [PMID: 29613852 DOI: 10.1515/hsz-2018-0161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/28/2018] [Indexed: 01/25/2023]
Abstract
Pulmonary infections of cystic fibrosis (CF) patients with Staphylococcus aureus (S. aureus) occur very early in the disease. The molecular details that cause infection-susceptibility of CF patients to and mediate infection with S. aureus are poorly characterized. Therefore, we aimed to identify the role of α-toxin, a major S. aureus toxin, for pulmonary infection of CF mice. Infection with S. aureus JE2 resulted in severe pneumonia in CF mice, while wildtype mice were almost unaffected. Deficiency of α-toxin in JE2-Δhla reduced the pathogenicity of S. aureus in CF mice. However, CF mice were still more susceptible to the mutant S. aureus strain than wildtype mice. The S. aureus JE2 induced a marked increase of ceramide and a downregulation of sphingosine and acid ceramidase expression in bronchi of CF mice. Deletion of α-toxin reduced these changes after infection of CF mice. Similar changes were observed in wildtype mice, but at much lower levels. Our data indicate that expression of α-toxin is a major factor causing S. aureus infections in CF mice. Wildtype S. aureus induces a marked increase of ceramide and a reduction of sphingosine and acid ceramidase expression in bronchial epithelial cells of wildtype and CF mice, changes that determine infection susceptibility.
Collapse
Affiliation(s)
- Simone Keitsch
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | - Joachim Riethmüller
- Center for Pediatric Clinical Studies, Children's Clinic, University of Tübingen, Hoppe-Seyler-Str. 1, D-72076 Tübingen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | - Carolin Sehl
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | - Martin Fraunholz
- Chair of Microbiology, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Erich Gulbins
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany.,Department of Surgery, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | - Katrin Anne Becker
- Department of Molecular Biology, Medical School, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| |
Collapse
|
24
|
Haggadone MD, Peters-Golden M. Microenvironmental Influences on Extracellular Vesicle-Mediated Communication in the Lung. Trends Mol Med 2018; 24:963-975. [DOI: 10.1016/j.molmed.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
|
25
|
Becker KA, Riethmüller J, Seitz AP, Gardner A, Boudreau R, Kamler M, Kleuser B, Schuchman E, Caldwell CC, Edwards MJ, Grassmé H, Brodlie M, Gulbins E. Sphingolipids as targets for inhalation treatment of cystic fibrosis. Adv Drug Deliv Rev 2018; 133:66-75. [PMID: 29698625 DOI: 10.1016/j.addr.2018.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/19/2023]
Abstract
Studies over the past several years have demonstrated the important role of sphingolipids in cystic fibrosis (CF), chronic obstructive pulmonary disease and acute lung injury. Ceramide is increased in airway epithelial cells and alveolar macrophages of CF mice and humans, while sphingosine is dramatically decreased. This increase in ceramide results in chronic inflammation, increased death of epithelial cells, release of DNA into the bronchial lumen and thereby an impairment of mucociliary clearance; while the lack of sphingosine in airway epithelial cells causes high infection susceptibility in CF mice and possibly patients. The increase in ceramide mediates an ectopic expression of β1-integrins in the luminal membrane of CF epithelial cells, which results, via an unknown mechanism, in a down-regulation of acid ceramidase. It is predominantly this down-regulation of acid ceramidase that results in the imbalance of ceramide and sphingosine in CF cells. Correction of ceramide and sphingosine levels can be achieved by inhalation of functional acid sphingomyelinase inhibitors, recombinant acid ceramidase or by normalization of β1-integrin expression and subsequent re-expression of endogenous acid ceramidase. These treatments correct pulmonary inflammation and prevent or treat, respectively, acute and chronic pulmonary infections in CF mice with Staphylococcus aureus and mucoid or non-mucoid Pseudomonas aeruginosa. Inhalation of sphingosine corrects sphingosine levels only and seems to mainly act against the infection. Many antidepressants are functional inhibitors of the acid sphingomyelinase and were designed for systemic treatment of major depression. These drugs could be repurposed to treat CF by inhalation.
Collapse
|
26
|
Truong T, Jones KS. Capsaicin reduces PLGA-induced fibrosis by promoting M2 macrophages and suppressing overall inflammatory Response. J Biomed Mater Res A 2018; 106:2424-2432. [DOI: 10.1002/jbm.a.36436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- T. Truong
- Department of Chemical Engineering; McMaster University; Hamilton ON Canada
| | - K. S. Jones
- Department of Chemical Engineering; McMaster University; Hamilton ON Canada
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
| |
Collapse
|
27
|
Pancreatic Enzyme Replacement Therapy Use in Infants With Cystic Fibrosis Diagnosed by Newborn Screening. J Pediatr Gastroenterol Nutr 2018; 66:657-663. [PMID: 29176494 PMCID: PMC5866181 DOI: 10.1097/mpg.0000000000001829] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of the study is to describe pancreatic enzyme practices during the first year of life in infants with cystic fibrosis (CF) and evaluate associations between dosing and outcomes, including growth and gastrointestinal (GI) symptoms. METHODS We analyzed data from a subset of infants who were in a prospective cohort study conducted at 28 US CF centers. Anthropometric measurements and medications were recorded at each visit. Diaries with infant diet, pancreatic enzyme replacement therapy (PERT) dosing, stool frequency and consistency, and pain were completed by a parent/guardian for 3 days before each visit. RESULTS Two hundred and thirty-one infants were enrolled in the main study; 205 of these met criteria for pancreatic insufficiency (PI). PERT dose between birth and 6 months was on average 1882 LU/kg per meal (range: 492-3727) and was similar between 6 and 12 months (mean: 1842 LU/kg per mean, range: 313-3612). PERT dose had a weak, negative association with weight z score at 3 and 6 months (r = -0.16, 95% confidence interval [CI] -0.29 to -0.02 and r = -0.18, 95% CI -0.31 to -0.04, respectively) but not at 12 months. There was not a clear relationship between PERT dosing and number of stools per day, stool consistency or pain. One hundred and forty-four infants (70%) were placed on acid suppression medication. Weight z score mean was 0.37 higher in infants using proton pump inhibitors (PPIs) exclusively versus those using histamine-2 blockers exclusively (95% CI -0.02 to 0.76, P = 0.06). CONCLUSIONS We did not observe that centers with a higher PERT dosing strategy yielded greater clinical benefit than dosing at the lower end of the recommended range.
Collapse
|
28
|
Muhlebach MS, Zorn BT, Esther CR, Hatch JE, Murray CP, Turkovic L, Ranganathan SC, Boucher RC, Stick SM, Wolfgang MC. Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children. PLoS Pathog 2018; 14:e1006798. [PMID: 29346420 PMCID: PMC5773228 DOI: 10.1371/journal.ppat.1006798] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The cystic fibrosis (CF) lung microbiome has been studied in children and adults; however, little is known about its relationship to early disease progression. To better understand the relationship between the lung microbiome and early respiratory disease, we characterized the lower airways microbiome using bronchoalveolar lavage (BAL) samples obtained from clinically stable CF infants and preschoolers who underwent bronchoscopy and chest computed tomography (CT). Cross-sectional samples suggested a progression of the lower airways microbiome with age, beginning with relatively sterile airways in infancy. By age two, bacterial sequences typically associated with the oral cavity dominated lower airways samples in many CF subjects. The presence of an oral-like lower airways microbiome correlated with a significant increase in bacterial density and inflammation. These early changes occurred in many patients, despite the use of antibiotic prophylaxis in our cohort during the first two years of life. The majority of CF subjects older than four harbored a pathogen dominated airway microbiome, which was associated with a further increase in inflammation and the onset of structural lung disease, despite a negligible increase in bacterial density compared to younger patients with an oral-like airway microbiome. Our findings suggest that changes within the CF lower airways microbiome occur during the first years of life and that distinct microbial signatures are associated with the progression of early CF lung disease.
Collapse
Affiliation(s)
- Marianne S. Muhlebach
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bryan T. Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles R. Esther
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph E. Hatch
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Conor P. Murray
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Australia
| | - Lidija Turkovic
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Sarath C. Ranganathan
- Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen M. Stick
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Australia
- Department of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Matthew C. Wolfgang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
29
|
Vk C, Ty L, Wf L, Ywy WS, An S, S Z, A M. Leptospirosis in human: Biomarkers in host immune responses. Microbiol Res 2017; 207:108-115. [PMID: 29458845 DOI: 10.1016/j.micres.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023]
Abstract
Leptospirosis remains one of the most widespread zoonotic diseases caused by spirochetes of the genus Leptospira, which accounts for high morbidity and mortality globally. Leptospiral infections are often found in tropical and subtropical regions, with people exposed to contaminated environments or animal reservoirs are at high risk of getting the infection. Leptospirosis has a wide range of clinical manifestations with non-specific signs and symptoms and often misdiagnosed with other acute febrile illnesses at early stage of infection. Despite being one of the leading causes of zoonotic morbidity worldwide, there is still a gap between pathogenesis and human immune responses during leptospiral infection. It still remains obscure whether the severity of the infection is caused by the pathogenic properties of the Leptospira itself, or it is a consequence of imbalance host immune factors. Hence, in this review, we seek to summarize the past and present milestone findings on the biomarkers of host immune response aspects during human leptospiral infection, including cytokine and other immune mediators. A profound understanding of the interlink between virulence factors and host immune responses during human leptospirosis is imperative to identify potential biomarkers for diagnostic and prognostic applications as well as designing novel immunotherapeutic strategies in future.
Collapse
Affiliation(s)
- Chin Vk
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Lee Ty
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; School of Foundation Studies, Perdana University, 43400, Serdang, Malaysia.
| | - Lim Wf
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| | - Wan Shahriman Ywy
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| | - Syafinaz An
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Zamberi S
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Maha A
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
30
|
Guan X, Hou Y, Sun F, Yang Z, Li C. Dysregulated Chemokine Signaling in Cystic Fibrosis Lung Disease: A Potential Therapeutic Target. Curr Drug Targets 2017; 17:1535-44. [PMID: 26648071 DOI: 10.2174/1389450117666151209120516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
CF lung disease is characterized by a chronic and non-resolving activation of the innate immune system with excessive release of chemokines/cytokines including IL-8 and persistent infiltration of immune cells, mainly neutrophils, into the airways. Chronic infection and impaired immune response eventually lead to pulmonary damage characterized by bronchiectasis, emphysema, and lung fibrosis. As a complete knowledge of the pathways responsible for the exaggerated inflammatory response in CF lung disease is lacking, understanding these pathways could reveal new therapeutic targets, and lead to novel treatments. Therefore, there is a strong rationale for the identification of mechanisms and pathways underlying the exaggerated inflammatory response in CF lung disease. This article reviews the role of inflammation in the pathogenesis of CF lung disease, with a focus on the dysregulated signaling involved in the overexpression of chemokine IL-8 and excessive recruitment of neutrophils in CF airways. The findings suggest that targeting the exaggerated IL-8/IL-8 receptor (mainly CXCR2) signaling pathway in immune cells (especially neutrophils) may represent a potential therapeutic strategy for CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine. 540 E. Canfield Avenue, 5312 Scott Hall, Detroit, MI 48201, USA
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine. 540 E. Canfield Avenue, 5312 Scott Hall, Detroit, MI 48201, USA
| |
Collapse
|
31
|
Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Arch 2017; 469:561-572. [DOI: 10.1007/s00424-017-1965-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
|
32
|
Patel VI, Booth JL, Duggan ES, Cate S, White VL, Hutchings D, Kovats S, Burian DM, Dozmorov M, Metcalf JP. Transcriptional Classification and Functional Characterization of Human Airway Macrophage and Dendritic Cell Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1183-1201. [PMID: 28031342 PMCID: PMC5262539 DOI: 10.4049/jimmunol.1600777] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Owing to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole-lung bronchoalveolar lavage. Six subsets of phagocytic APC (HLA-DR+) were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1-CD14+, BDCA1+CD14+, BDCA1+CD14-, and BDCA1-CD14- cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared with E. coli Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared with the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole-genome transcriptional profiling revealed a clade of "true dendritic cells" consisting of Langerin+, BDCA1+CD14+, and BDCA1+CD14- cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6 Each clade, and each member of both clades, was discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states.
Collapse
Affiliation(s)
- Vineet I Patel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Elizabeth S Duggan
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Steven Cate
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Vicky L White
- Office of Aviation Medicine, Federal Aviation Administration, Oklahoma City, OK 73169
| | | | - Susan Kovats
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Dennis M Burian
- Office of Aviation Medicine, Federal Aviation Administration, Oklahoma City, OK 73169
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298
| | - Jordan P Metcalf
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104;
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
33
|
CXCR3 May Help Regulate the Inflammatory Response in Acute Lung Injury via a Pathway Modulated by IL-10 Secreted by CD8 + CD122+ Regulatory T Cells. Inflammation 2017; 39:526-33. [PMID: 26475448 PMCID: PMC4819783 DOI: 10.1007/s10753-015-0276-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study is to investigate the role of CXCR3 and IL-10 in lipopolysaccharide (LPS)-induced acute lung injury (ALI). ALI was induced by LPS injection (10 mg/kg) via the tail vein in C57BL/6 mice. Mice were sacrificed after 2 or 12 h to examine the levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and histopathologic assessments. At 12 h after LPS injection, mice exhibited more severe lung infiltration by CD8+ T cell and less infiltration by CD8+CD122+ regulatory T cells than at 2 h after LPS challenge or in the control (mice not exposed to LPS). At 12 h, IFN-γ, CXCR3, and CXCL10 were significantly higher in the lungs. IL-10 in the lungs was significantly lower. CXCR3 may help to recruit CD8+ T cells and promotes IFN-γ and CXCL10 release. Such effects could be inhibited by IL-10 secreted by CD8+CD122+ regulatory T cells.
Collapse
|
34
|
Liu K, Zhang X, Zhang JT, Tsang LL, Jiang X, Chan HC. Defective CFTR- β-catenin interaction promotes NF-κB nuclear translocation and intestinal inflammation in cystic fibrosis. Oncotarget 2016; 7:64030-64042. [PMID: 27588407 PMCID: PMC5325423 DOI: 10.18632/oncotarget.11747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
While inflammation with aberrant activation of NF-κB pathway is a hallmark of cystic fibrosis (CF), the molecular mechanisms underlying the link between CFTR defect and activation of NF-κB-mediated pro-inflammatory response remain elusive. Here, we investigated the link between CFTR defect and NF-κB activation in ΔF508cftr-/- mouse intestine and human intestinal epithelial cell lines. Our results show that the NF-κB/COX-2/PGE2 pathway is activated whereas the β-catenin pathway is suppressed in CF mouse intestine and CFTR-knockdown cells. Activation of β-catenin pathway by GSK3 inhibitors suppresses CFTR mutation/knockdown-induced NF-κB/COX-2/PGE2 pathway in ΔF508 mouse intestine and CFTR-knockdown cells. In contrast, suppression of β-catenin signaling induces the nuclear translocation of NF-κB. In addition, CFTR co-localizes and interacts with β-catenin while CFTR mutation disrupts the interaction between NF-κB and β-catenin in mouse intestine. Treatment with proteasome inhibitor MG132 completely reverses the reduced expression of β-catenin in Caco-2 cells. Collectively, these results indicate that CFTR stabilizes β-catenin and prevents its degradation, defect of which results in the activation of NF-κB-mediated inflammatory cascade. The present study has demonstrated a previously unsuspected interaction between CFTR and β-catenin that regulates NF-κB nuclear translocation in mouse intestine. Therefore, our study provides novel insights into the physiological function of CFTR and pathogenesis of CF-related diseases in addition to the NF-κB-mediated intestinal inflammation seen in CF.
Collapse
Affiliation(s)
- Kaisheng Liu
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaohu Zhang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR China
| | - Jie Ting Zhang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR China
| |
Collapse
|
35
|
Abstract
Cystic fibrosis is the most common, life-shortening autosomal recessive disease, affecting approximately 1 in 3400 live births in the United States. Gastrointestinal and pulmonary manifestations are most common. With the introduction of pancreatic enzyme and vitamin supplementation, lung disease accounts for the vast majority of morbidity and mortality in patients with cystic fibrosis. The lungs of cystic fibrosis patients are essentially normal at birth but demonstrate evidence of airway inflammation and infection in early infancy. A vicious cycle of inflammation, infection and obstruction ultimately leads to destruction of airways, impairment of gas exchange and death. Current pharmacological management of pulmonary disease targets reducing airway obstruction, controlling infection and more recently, controlling inflammation. An increased recovery of unusual and highly resistant bacteria from patients with more advanced disease has been observed. Aggressive treatment of acute pulmonary exacerbations with combination antibiotic therapy for two to three weeks has shown pronounced beneficial effects. The routine use of prophylactic antistaphylococcal antibiotics is still controversial. Although current pharmacologic treatment is symptomatic, new agents are being developed and studied that target the underlying defect in the CFTR protein. This review focuses on current pharmacologic management of pulmonary disease in patients with cystic fibrosis and the role of new agents emerging for the treatment of this disease.
Collapse
Affiliation(s)
- Christine A. Robinson
- University of Kentucky Chandler Medical Center, Department of Pharmacy, 800 Rose Street, C117, Lexington, KY 40536-0293
| | - Robert J. Kuhn
- University of Kentucky Chandler Medical Center, Department of Pharmacy, 800 Rose Street, C117, Lexington, KY 40536-0293,
| |
Collapse
|
36
|
Bruscia EM, Bonfield TL. Cystic Fibrosis Lung Immunity: The Role of the Macrophage. J Innate Immun 2016; 8:550-563. [PMID: 27336915 DOI: 10.1159/000446825] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to efficiently resolve lung infections, contributing to major morbidity and eventually the mortality of patients with this disease. Macrophages (MΦs) are major players in lung homeostasis through their diverse contributions to both the innate and adaptive immune networks. The setting of MΦ function and activity in CF is multifaceted, encompassing the response to the unique environmental cues in the CF lung as well as the intrinsic changes resulting from CFTR dysfunction. The complexity is further enhanced with the identification of modifier genes, which modulate the CFTR contribution to disease, resulting in epigenetic and transcriptional shifts in MΦ phenotype. This review focuses on the contribution of MΦ to lung homeostasis, providing an overview of the diverse literature and various perspectives on the role of these immune guardians in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Conn., USA
| | | |
Collapse
|
37
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
38
|
Abstract
BACKGROUND Mutation of cystic fibrosis transmembrane conductance regulator (CFTR) in the airway epithelial cells can lead to recurrent airway inflammation in cystic fibrosis (CF). Dysfunction of CFTR in neutrophils could contribute to LPS-induced acute lung inflammation. Deficiency of CFTR could also facilitate platelet aggregation and neutrophil-platelet interaction and promote inflammation. AIM To study whether inhibition or mutation of CFTR in alveolar macrophages (AMs) or peritoneal macrophages (PMs) would promote their proinflammatory responses and whether dysfunction of CFTR would deteriorate acute E. coli-induced lung or peritoneal inflammation. DESIGN Laboratory study. METHODS ELISA was used to determine production of proinflammatory cytokines in the CFTR inhibited or mutated macrophages under LPS challenge. Lung or peritoneum lavage was used to analyze proinflammatory parameters and cell differentiation. Excess lung water and lung vascular permeability were measured for evaluating severity of acute lung inflammation. RESULTS Escherichia coli LPS simulation in AMs increased CFTR expression. Inhibition or mutation of CFTR in both AMs and PMs enhanced production of tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2). Mutation of CFTR in macrophages exaggerated production of cytokines through NF-kB and p38 MAPK. Inhibition of CFTR by MalH2 or CFTRinh-172 deteriorates E. coli-induced acute lung inflammation. Deficiency of CFTR promotes migration of monocytes and neutrophils in E. coli pneumonia and peritonitis mouse models. CONCLUSIONS CFTR expressed by alveolar or peritoneal macrophages regulates acute proinflammatory responses.
Collapse
Affiliation(s)
- Z Gao
- From the Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - X Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China and Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0130, USA
| |
Collapse
|
39
|
Ratjen F, Waters V, Klingel M, McDonald N, Dell S, Leahy TR, Yau Y, Grasemann H. Changes in airway inflammation during pulmonary exacerbations in patients with cystic fibrosis and primary ciliary dyskinesia. Eur Respir J 2015; 47:829-36. [PMID: 26585432 DOI: 10.1183/13993003.01390-2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/05/2015] [Indexed: 11/05/2022]
Abstract
Lung disease in patients with both primary ciliary dyskinesia (PCD) or cystic fibrosis (CF) is associated with impaired mucociliary clearance; however, clinical outcomes are typically worse in CF patients. We assessed whether CF and PCD patients differ in inflammatory response in the airways during pulmonary exacerbation.We first studied clinically stable PCD patients with a spectrum of bacterial pathogens to assess inflammatory response to different pathogens. Subsequently, PCD and CF patients with similar bacterial pathogens were studied at the time of a pulmonary exacerbation and after 21 days of antibiotics treatment. Qualitative and quantitative microbiology, cell counts, interleukin-8 concentrations, and neutrophil elastase activity were assessed in sputum samples obtained before and after treatment.In stable PCD patients, no significant differences were found in sputum inflammatory markers between individuals colonised with different bacterial pathogens. Pulmonary exacerbation severity assessed by a pulmonary exacerbation score and lung function decline from their previous baseline did not differ between CF and PCD patients. Bacterial density for Staphylococcus aureus and Haemophilus influenzae was higher in CF versus PCD (p<0.05), but absolute neutrophil counts were higher in PCD patients (p=0.02). While sputum elastase activity was similar in PCD and CF at the time of exacerbation, it decreased with antibiotic therapy in PCD (p<0.05) but not CF patients.PCD patients differ from those with CF in their responses to treatment of pulmonary exacerbations, with higher neutrophil elastase activity persisting in the CF airways at the end of treatment.
Collapse
Affiliation(s)
- Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, Hospital for Sick Children, Toronto, Canada University of Toronto, Toronto, Canada Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Valerie Waters
- Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada Division of Infectious Diseases, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Michelle Klingel
- Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Nancy McDonald
- Division of Respiratory Medicine, Department of Paediatrics, Hospital for Sick Children, Toronto, Canada
| | - Sharon Dell
- Division of Respiratory Medicine, Department of Paediatrics, Hospital for Sick Children, Toronto, Canada University of Toronto, Toronto, Canada Child Health Evaluative Sciences, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Timothy Ronan Leahy
- Division of Infectious Diseases, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Yvonne Yau
- University of Toronto, Toronto, Canada Division of Microbiology, Dept of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, Hospital for Sick Children, Toronto, Canada University of Toronto, Toronto, Canada Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
40
|
Crites KSM, Morin G, Orlando V, Patey N, Cantin C, Martel J, Brochiero E, Mailhot G. CFTR Knockdown induces proinflammatory changes in intestinal epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2015; 12:62. [PMID: 26549988 PMCID: PMC4636765 DOI: 10.1186/s12950-015-0107-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Background Hyperinflammation is a hallmark feature of cystic fibrosis (CF) airways. However, inflammation has also been documented systemically and, more recently, in extrapulmonary CF-affected tissues such as the pancreas and intestine. The pathogenesis of CF-related inflammation and more specifically the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in that respect are not entirely understood. We have tested the hypothesis that genetic depletion of CFTR will affect the inflammatory status of human intestinal epithelial cell lines. Methods CFTR expression was genetically depleted from Caco-2/15 and HT-29 cells using short hairpin RNA interference (shRNAi). Inflammatory conditions were induced by the addition of human recombinant tumor necrosis factor (TNF) or Interleukin-1β (IL-1β) for various periods of time. Gene expression, mRNA stability and secreted levels of interleukin (IL)-6, −8 and 10 were assessed. Analysis of pro- and anti-inflammatory signaling pathways including mitogen-activated protein kinases (p38, ERK 1/2 and JNK), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and nuclear factor-kappa B (NF-κB) was also performed. Eosinophils were counted in the jejunal mucosa of Cftr−/− and Cftr+/+ mice. Results CFTR gene and protein knockdown caused a significant increase in basal secretion of IL-8 as well as in IL-1β-induced secretion of IL-6 and −8. Release of the anti-inflammatory cytokine, IL-10, remained unaffected by CFTR depletion. The enhanced secretion of IL-8 stems in part from increased IL8 mRNA levels and greater activation of ERK1/2 MAPK, IκBα and NF-κB in the CFTR knockdown cells. By contrast, phosphorylation levels of p38 and JNK MAPK did not differ between control and knockdown cells. We also found a higher number of infiltrating eosinophils in the jejunal mucosa of Cftr −/− females, but not males, compared to Cftr +/+ mice, thus providing in vivo support to our in vitro findings. Conclusion Collectively, these data underscore the role played by CFTR in regulating the intestinal inflammatory responses. Such findings lend support to the theory that CFTR exerts functions that may go beyond its role as a chloride channel whereby its disruption may prevent cells to optimally respond to exogenous or endogenous challenges. These observations are of particular interest to CF patients who were found to display alterations in their intestinal microbiota, thus predisposing them to pathogens that may elicit exaggerated inflammatory responses. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0107-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Geneviève Morin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Valérie Orlando
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Natacha Patey
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Catherine Cantin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Judith Martel
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Emmanuelle Brochiero
- Research Center, CHUM, 900 Saint-Denis Street, Montreal, Quebec H2X 0A9 Canada ; Department of Medicine, Université de Montreal, 2900, Édouard-Montpetit Blvd, Montreal, Quebec H3T 1J4 Canada
| | - Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada ; Department of Nutrition, Université de Montreal, 2405 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1A8 Canada
| |
Collapse
|
41
|
Jovic S, Shikhagaie M, Mörgelin M, Erjefält JS, Kjellström S, Egesten A. Osteopontin is increased in cystic fibrosis and can skew the functional balance between ELR-positive and ELR-negative CXC-chemokines. J Cyst Fibros 2015; 14:453-63. [DOI: 10.1016/j.jcf.2014.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
|
42
|
McGuire JK. Regulatory T cells in cystic fibrosis lung disease. More answers, more questions. Am J Respir Crit Care Med 2015; 191:866-8. [PMID: 25876198 DOI: 10.1164/rccm.201502-0315ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- John K McGuire
- 1 Department of Pediatrics University of Washington School of Medicine Seattle, Washington
| |
Collapse
|
43
|
Ruttens D, Vandermeulen E, Verleden SE, Bellon H, Vos R, Van Raemdonck DE, Dupont LJ, Vanaudenaerde BM, Verleden GM. Role of genetics in lung transplant complications. Ann Med 2015; 47:106-15. [PMID: 25766881 DOI: 10.3109/07853890.2015.1004359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is increasing knowledge that patients can be predisposed to a certain disease by genetic variations in their DNA. Extensive genetic variation has been described in molecules involved in short- and long-term complications after lung transplantation (LTx), such as primary graft dysfunction (PGD), acute rejection, respiratory infection, chronic lung allograft dysfunction (CLAD), and mortality. Several of these studies could not be confirmed or were not reproduced in other cohorts. However, large multicenter prospective studies need to be performed to define the real clinical consequence and significance of genotyping the donor and receptor of a LTx. The current review presents an overview of genetic polymorphisms (SNP) investigating an association with different complications after LTx. Finally, the major drawbacks, clinical relevance, and future perspectives will be discussed.
Collapse
Affiliation(s)
- D Ruttens
- KU Leuven, and UZ Leuven, Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit , Leuven , Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saini Y, Dang H, Livraghi-Butrico A, Kelly EJ, Jones LC, O'Neal WK, Boucher RC. Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration. BMC Genomics 2014; 15:726. [PMID: 25204199 PMCID: PMC4247008 DOI: 10.1186/1471-2164-15-726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/15/2014] [Indexed: 12/28/2022] Open
Abstract
Background Defects in airway mucosal defense, including decreased mucus clearance, contribute to the pathogenesis of human chronic obstructive pulmonary diseases. Scnn1b-Tg mice, which exhibit chronic airway surface dehydration from birth, can be used as a model to study the pathogenesis of muco-obstructive lung disease across developmental stages. To identify molecular signatures associated with obstructive lung disease in this model, gene expression analyses were performed on whole lung and purified lung macrophages collected from Scnn1b-Tg and wild-type (WT) littermates at four pathologically relevant time points. Macrophage gene expression at 6 weeks was evaluated in mice from a germ-free environment to understand the contribution of microbes to disease development. Results Development- and disease-specific shifts in gene expression related to Scnn1b over-expression were revealed in longitudinal analyses. While the total number of transgene-related differentially expressed genes producing robust signals was relatively small in whole lung (n = 84), Gene Set Enrichment Analysis (GSEA) revealed significantly perturbed biological pathways and interactions between normal lung development and disease initiation/progression. Purified lung macrophages from Scnn1b-Tg mice exhibited numerous robust and dynamic gene expression changes. The expression levels of Classically-activated (M1) macrophage signatures were significantly altered at post-natal day (PND) 3 when Scnn1b-Tg mice lung exhibit spontaneous bacterial infections, while alternatively-activated (M2) macrophage signatures were more prominent by PND 42, producing a mixed M1-M2 activation profile. While differentially-regulated, inflammation-related genes were consistently identified in both tissues in Scnn1b-Tg mice, there was little overlap between tissues or across time, highlighting time- and tissue-specific responses. Macrophages purified from adult germ-free Scnn1b-Tg mice exhibited signatures remarkably similar to non-germ-free counterparts, indicating that the late-phase macrophage activation profile was not microbe-dependent. Conclusions Whole lung and pulmonary macrophages respond independently and dynamically to local stresses associated with airway mucus stasis. Disease-specific responses interact with normal developmental processes, influencing the final state of disease in this model. The robust signatures observed in Scnn1b-Tg lung macrophages highlight their critical role in disease pathogenesis. These studies emphasize the importance of region-, cell-type-, and time-dependent analyses to fully dissect the natural history of disease and the consequences of disease on normal lung development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-726) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yogesh Saini
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, 7011 Thurston Bowles Building, Chapel Hill, NC 27599-7248, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Staudinger BJ, Muller JF, Halldórsson S, Boles B, Angermeyer A, Nguyen D, Rosen H, Baldursson O, Gottfreðsson M, Guðmundsson GH, Singh PK. Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2014; 189:812-24. [PMID: 24467627 DOI: 10.1164/rccm.201312-2142oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Progress has been made in understanding how the cystic fibrosis (CF) basic defect produces lung infection susceptibility. However, it remains unclear why CF exclusively leads to chronic infections that are noninvasive and highly resistant to eradication. Although biofilm formation has been suggested as a mechanism, recent work raises questions about the role of biofilms in CF. OBJECTIVES To learn how airway conditions attributed to CF transmembrane regulator dysfunction could lead to chronic infection, and to determine if biofilm-inhibiting genetic adaptations that are common in CF isolates affect the capacity of Pseudomonas aeruginosa to develop chronic infection phenotypes. METHODS We studied P. aeruginosa isolates grown in agar and mucus gels containing sputum from patients with CF and measured their susceptibility to killing by antibiotics and host defenses. We also measured the invasive virulence of P. aeruginosa grown in sputum gels using airway epithelial cells and a murine infection model. MEASUREMENTS AND MAIN RESULTS We found that conditions likely to result from increased mucus density, hyperinflammation, and defective bacterial killing could all cause P. aeruginosa to grow in bacterial aggregates. Aggregated growth markedly increased the resistance of bacteria to killing by host defenses and antibiotics, and reduced their invasiveness. In addition, we found that biofilm-inhibiting mutations do not impede aggregate formation in gel growth environments. CONCLUSIONS Our findings suggest that conditions associated with several CF pathogenesis hypotheses could cause the noninvasive and resistant infection phenotype, independently of the bacterial functions needed for biofilm formation.
Collapse
|
46
|
Evaluation of imipenem for prophylaxis and therapy of Yersinia pestis delivered by aerosol in a mouse model of pneumonic plague. Antimicrob Agents Chemother 2014; 58:3276-84. [PMID: 24687492 DOI: 10.1128/aac.02420-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been previously shown that mice subjected to an aerosol exposure to Yersinia pestis and treated with β-lactam antibiotics after a delay of 42 h died at an accelerated rate compared to controls. It was hypothesized that endotoxin release in antibiotic-treated mice accounted for the accelerated death rate in the mice exposed to aerosol Y. pestis. Imipenem, a β-lactam antibiotic, binds to penicillin binding protein 2 with the highest affinity and produces rounded cells. The binding of imipenem causes cells to lyse quickly and thereby to release less free endotoxin. Two imipenem regimens producing fractions of time that the concentration of free, unbound drug was above the MIC (fT>MIC) of approximately 25% (6/24 h) and 40% (9.5/24 h) were evaluated. In the postexposure prophylaxis study, the 40% and 25% regimens produced 90% and 40% survivorship, respectively. In the 42-h treatment study, both regimens demonstrated a 40 to 50% survivorship at therapy cessation and some deaths thereafter, resulting in a 30% survivorship. As this was an improvement over the results with other β-lactams, a comparison of both endotoxin and cytokine levels in mice treated with imipenem and ceftazidime (a β-lactam previously demonstrated to accelerate death in mice during treatment) was performed and supported the original hypotheses; however, the levels observed in animals treated with ciprofloxacin (included as an unrelated antibiotic that is also bactericidal but should cause little lysis due to a different mode of action) were elevated and significantly (7-fold) higher than those with ceftazidime.
Collapse
|
47
|
Abstract
Interleukins are critical immune modulators and since their first description in 1977, there has been a steady increase in the recognition of their roles in many paediatric respiratory diseases. This basic and clinical knowledge is now maturing into both approved and investigational therapies aimed at blocking or modifying the interleukin response. The purpose of this review is to bring up to date what is known about interleukin function in paediatric pulmonology, focusing on nine important lung conditions. This is followed by summaries about 18 interleukins which have been associated with these paediatric pulmonary conditions. Throughout, emphasis is placed on where interventions have been tested. Over the next several years, it is likely that many more treatments based on interleukin biology and function will become available and understanding the basis for these therapies will allow the practicing paediatric pulmonologist to take appropriate advantage of them.
Collapse
Affiliation(s)
- Henry J Rozycki
- Division of Neonatal Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU and Virginia Commonwealth University, Richmond, VA USA.
| | - Wei Zhao
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Richmond at VCU and Virginia Commonwealth University, Richmond, VA USA.
| |
Collapse
|
48
|
Hiroshima Y, Hsu K, Tedla N, Chung YM, Chow S, Herbert C, Geczy CL. S100A8 Induces IL-10 and Protects against Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2014; 192:2800-11. [DOI: 10.4049/jimmunol.1302556] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
|
50
|
Yoon SS, Hassett DJ. Chronic Pseudomonas aeruginosa infection in cystic fibrosis airway disease: metabolic changes that unravel novel drug targets. Expert Rev Anti Infect Ther 2014; 2:611-23. [PMID: 15482224 DOI: 10.1586/14787210.2.4.611] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cystic fibrosis (CF) airways have an incompletely characterized defect in innate defense that eventually leads to bacterial infection and airway inflammation. Persistent Pseudomonas aerugionsa infection resulting from defective innate immunity and a bacterial phenotypic switch to a more intractable mucoid form inside the airway are now well established as important components of CF pathogenesis. Broad-based factors leading to chronic infection will be discussed with respect to: bacterial virulence in the context of biofilm formation, quorum sensing machinery and alginate overproduction, and failure of innate lung immunity in CF airways. In addition, a controversial question as to whether inflammation or infection comes first during CF airway disease will be addressed. Finally, a new hypothesis, that P. aeruginosa thrives as biofilms within the thickened anaerobic mucus layers, will be developed.
Collapse
Affiliation(s)
- Sang Sun Yoon
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, OH 45267-0524, USA.
| | | |
Collapse
|