1
|
Urra G, Valdés-Muñoz E, Suardiaz R, Hernández-Rodríguez EW, Palma JM, Ríos-Rozas SE, Flores-Morales CA, Alegría-Arcos M, Yáñez O, Morales-Quintana L, D’Afonseca V, Bustos D. From Proteome to Potential Drugs: Integration of Subtractive Proteomics and Ensemble Docking for Drug Repurposing against Pseudomonas aeruginosa RND Superfamily Proteins. Int J Mol Sci 2024; 25:8027. [PMID: 39125594 PMCID: PMC11312079 DOI: 10.3390/ijms25158027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat as a nosocomial pathogen due to its robust resistance mechanisms and virulence factors. This study integrates subtractive proteomics and ensemble docking to identify and characterize essential proteins in P. aeruginosa, aiming to discover therapeutic targets and repurpose commercial existing drugs. Using subtractive proteomics, we refined the dataset to discard redundant proteins and minimize potential cross-interactions with human proteins and the microbiome proteins. We identified 12 key proteins, including a histidine kinase and members of the RND efflux pump family, known for their roles in antibiotic resistance, virulence, and antigenicity. Predictive modeling of the three-dimensional structures of these RND proteins and subsequent molecular ensemble-docking simulations led to the identification of MK-3207, R-428, and Suramin as promising inhibitor candidates. These compounds demonstrated high binding affinities and effective inhibition across multiple metrics. Further refinement using non-covalent interaction index methods provided deeper insights into the electronic effects in protein-ligand interactions, with Suramin exhibiting superior binding energies, suggesting its broad-spectrum inhibitory potential. Our findings confirm the critical role of RND efflux pumps in antibiotic resistance and suggest that MK-3207, R-428, and Suramin could be effectively repurposed to target these proteins. This approach highlights the potential of drug repurposing as a viable strategy to combat P. aeruginosa infections.
Collapse
Affiliation(s)
- Gabriela Urra
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
| | - Elizabeth Valdés-Muñoz
- Doctorado en Biotecnología Traslacional, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3480094, Chile;
| | - Reynier Suardiaz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Erix W. Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
- Unidad de Bioinformática Clínica, Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Jonathan M. Palma
- Facultad de Ingeniería, Universidad de Talca, Curicó 3344158, Chile;
| | - Sofía E. Ríos-Rozas
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
| | | | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile; (M.A.-A.); (O.Y.)
| | - Osvaldo Yáñez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile; (M.A.-A.); (O.Y.)
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Pte. N° 1670, Talca 3467987, Chile;
| | - Vívian D’Afonseca
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Ave. San Miguel 3605, Talca 3466706, Chile
| | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
| |
Collapse
|
2
|
Ribeiro CMP, Higgs MG, Muhlebach MS, Wolfgang MC, Borgatti M, Lampronti I, Cabrini G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int J Mol Sci 2023; 24:ijms24055010. [PMID: 36902441 PMCID: PMC10003689 DOI: 10.3390/ijms24055010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (C.M.P.R.); (G.C.)
| | - Matthew G. Higgs
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (C.M.P.R.); (G.C.)
| |
Collapse
|
3
|
The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2022; 11:antibiotics11101366. [PMID: 36290026 PMCID: PMC9598984 DOI: 10.3390/antibiotics11101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa can cause several life-threatening infections among immunocompromised patients (e.g., cystic fibrosis) due to its ability to adapt and develop resistance to several antibiotics. In recent years, P. aeruginosa infections has become difficult to treat using conventional antibiotics due to the increase multidrug-resistant P. aeruginosa strains. Therefore, there is a growing interest to develop novel treatments against antibiotic-resistance P. aeruginosa strains. One novel method includes the application of antimicrobial peptides secreted by P. aeruginosa strains, known as pyocins. In this review, we will discuss the structure, function, and use of pyocins in the pathogenesis and treatment of P. aeruginosa infection.
Collapse
|
4
|
Amara AAAF. The Role of Divalent Cations in Antibiotic Sensitivity. BIOMOLECULES FROM NATURAL SOURCES 2022:252-277. [DOI: 10.1002/9781119769620.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Pseudomonas aeruginosa Triggered Exosomal Release of ADAM10 Mediates Proteolytic Cleavage in Trans. Int J Mol Sci 2022; 23:ijms23031259. [PMID: 35163191 PMCID: PMC8835980 DOI: 10.3390/ijms23031259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Pneumonia is a life-threatening disease often caused by infection with Streptococcus pneumoniae and Pseudomonas aeruginosa. Many of the mediators (e.g., TNF, IL-6R) and junction molecules (e.g., E-cadherin) orchestrating inflammatory cell recruitment and loss of barrier integrity are proteolytically cleaved through a disintegrin and metalloproteinases (ADAMs). We could show by Western blot, surface expression analysis and measurement of proteolytic activity in cell-based assays, that ADAM10 in epithelial cells is upregulated and activated upon infection with Pseudomonas aeruginosa and Exotoxin A (ExoA), but not upon infection with Streptococcus pneumoniae. Targeting ADAM10 by pharmacological inhibition or gene silencing, we demonstrated that this activation was critical for cleavage of E-cadherin and modulated permeability and epithelial integrity. Stimulation with heat-inactivated bacteria revealed that the activation was based on the toxin repertoire rather than the interaction with the bacterial particle itself. Furthermore, calcium imaging experiments showed that the ExoA action was based on the induction of calcium influx. Investigating the extracellular vesicles and their proteolytic activity, we could show that Pseudomonas aeruginosa triggered exosomal release of ADAM10 and proteolytic cleavage in trans. This newly described mechanism could constitute an essential mechanism causing systemic inflammation in patients suffering from Pseudomonas aeruginosa-induced pneumonia stimulating future translational studies.
Collapse
|
6
|
Watkinson RL, Looi K, Laing IA, Cianferoni A, Kicic A. Viral Induced Effects on a Vulnerable Epithelium; Lessons Learned From Paediatric Asthma and Eosinophilic Oesophagitis. Front Immunol 2021; 12:773600. [PMID: 34912343 PMCID: PMC8666438 DOI: 10.3389/fimmu.2021.773600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
The epithelium is integral to the protection of many different biological systems and for the maintenance of biochemical homeostasis. Emerging evidence suggests that particular children have epithelial vulnerabilities leading to dysregulated barrier function and integrity, that resultantly contributes to disease pathogenesis. These epithelial vulnerabilities likely develop in utero or in early life due to various genetic, epigenetic and environmental factors. Although various epithelia are uniquely structured with specific function, prevalent allergic-type epithelial diseases in children potentially have common or parallel disease processes. These include inflammation and immune response dysregulation stemming from atypical epithelial barrier function and integrity. Two diseases where aetiology and pathogenesis are potentially linked to epithelial vulnerabilities include Paediatric Asthma and Eosinophilic Oesophagitis (EoE). For example, rhinovirus C (RV-C) is a known risk factor for paediatric asthma development and is known to disrupt respiratory epithelial barrier function causing acute inflammation. In addition, EoE, a prevalent atopic condition of the oesophageal epithelium, is characterised by similar innate immune and epithelial responses to viral injury. This review examines the current literature and identifies the gaps in the field defining viral-induced effects on a vulnerable respiratory epithelium and resulting chronic inflammation, drawing from knowledge generated in acute wheezing illness, paediatric asthma and EoE. Besides highlighting the importance of epithelial structure and barrier function in allergic disease pathogenesis regardless of specific epithelial sub-types, this review focuses on the importance of examining other parallel allergic-type disease processes that may uncover commonalities driving disease pathogenesis. This in turn may be beneficial in the development of common therapeutics for current clinical management and disease prevention in the future.
Collapse
Affiliation(s)
- Rebecca L Watkinson
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Kevin Looi
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| | - Ingrid A Laing
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Antonella Cianferoni
- Pediatrics Department, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
7
|
Verceles AC, Bhat P, Nagaria Z, Martin D, Patel H, Ntem-Mensah A, Hyun SW, Hahn A, Jeudy J, Cross AS, Lillehoj EP, Goldblum SE. MUC1 ectodomain is a flagellin-targeting decoy receptor and biomarker operative during Pseudomonas aeruginosa lung infection. Sci Rep 2021; 11:22725. [PMID: 34811449 PMCID: PMC8608881 DOI: 10.1038/s41598-021-02242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reported that flagellin-expressing Pseudomonas aeruginosa (Pa) provokes NEU1 sialidase-mediated MUC1 ectodomain (MUC1-ED) desialylation and MUC1-ED shedding from murine lungs in vivo. Here, we asked whether Pa in the lungs of patients with ventilator-associated pneumonia might also increase MUC1-ED shedding. The levels of MUC1-ED and Pa-expressed flagellin were dramatically elevated in bronchoalveolar lavage fluid (BALF) harvested from Pa-infected patients, and each flagellin level, in turn, predicted MUC1-ED shedding in the same patient. Desialylated MUC1-ED was only detected in BALF of Pa-infected patients. Clinical Pa strains increased MUC1-ED shedding from cultured human alveolar epithelia, and FlaA and FlaB flagellin-expressing strains provoked comparable levels of MUC1-ED shedding. A flagellin-deficient isogenic mutant generated dramatically reduced MUC1-ED shedding compared with the flagellin-expressing wild-type strain, and purified FlaA and FlaB recapitulated the effect of intact bacteria. Pa:MUC1-ED complexes were detected in the supernatants of alveolar epithelia exposed to wild-type Pa, but not to the flagellin-deficient Pa strain. Finally, human recombinant MUC1-ED dose-dependently disrupted multiple flagellin-driven processes, including Pa motility, Pa biofilm formation, and Pa adhesion to human alveolar epithelia, while enhancing human neutrophil-mediated Pa phagocytosis. Therefore, shed desialylated MUC1-ED functions as a novel flagellin-targeting, Pa-responsive decoy receptor that participates in the host response to Pa at the airway epithelial surface.
Collapse
Affiliation(s)
- Avelino C Verceles
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- U.S. Department of Veterans Affairs, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Pavan Bhat
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zain Nagaria
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Destiny Martin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Harsh Patel
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Afua Ntem-Mensah
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sang W Hyun
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- U.S. Department of Veterans Affairs, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Andrea Hahn
- Division of Infectious Diseases, Children's National Health System, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jean Jeudy
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan S Cross
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Simeon E Goldblum
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- U.S. Department of Veterans Affairs, Baltimore VA Medical Center, Baltimore, MD, USA
| |
Collapse
|
8
|
Burzyńska P, Sobala ŁF, Mikołajczyk K, Jodłowska M, Jaśkiewicz E. Sialic Acids as Receptors for Pathogens. Biomolecules 2021; 11:831. [PMID: 34199560 PMCID: PMC8227644 DOI: 10.3390/biom11060831] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrates have long been known to mediate intracellular interactions, whether within one organism or between different organisms. Sialic acids (Sias) are carbohydrates that usually occupy the terminal positions in longer carbohydrate chains, which makes them common recognition targets mediating these interactions. In this review, we summarize the knowledge about animal disease-causing agents such as viruses, bacteria and protozoa (including the malaria parasite Plasmodium falciparum) in which Sias play a role in infection biology. While Sias may promote binding of, e.g., influenza viruses and SV40, they act as decoys for betacoronaviruses. The presence of two common forms of Sias, Neu5Ac and Neu5Gc, is species-specific, and in humans, the enzyme converting Neu5Ac to Neu5Gc (CMAH, CMP-Neu5Ac hydroxylase) is lost, most likely due to adaptation to pathogen regimes; we discuss the research about the influence of malaria on this trait. In addition, we present data suggesting the CMAH gene was probably present in the ancestor of animals, shedding light on its glycobiology. We predict that a better understanding of the role of Sias in disease vectors would lead to more effective clinical interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Jaśkiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (P.B.); (Ł.F.S.); (K.M.); (M.J.)
| |
Collapse
|
9
|
Molecular cloning and functional studies on magang goose toll-like receptor 5. Vet Immunol Immunopathol 2021; 236:110236. [PMID: 33892385 DOI: 10.1016/j.vetimm.2021.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
Disease outbreaks heavily impact the economic viability of animal industries. Little is known about the mechanisms of immune system-related diseases in geese. Toll-like receptors (TLRs) play a major role in the anti-inflammatory immunity process in most animal species, but they have not been studied in the Magang goose. To elucidate the role of TLRs, reverse transcription polymerase chain reaction (RT-PCR) and PCR amplification of cDNA ends (Smart RACE) were used to clone the Magang goose TLR5 gene (mgTLR5). The full-length cDNA of mgTLR5 was 2967 bp in length, including a 5'-terminal untranslated region (UTR) of 215 bp, a 3'-terminal UTR of 384 bp, and an open reading frame of 2583 bp that encodes a protein of 860 amino acids. Structurally, mgTLR5 has a toll/interleukin-receptor (TIR) domain, a transmembrane domain, and seven leucine-rich repeats (LRRs) domains. Homology alignment of TLR5 and its TIR domains with other species revealed that mgTLR5 shared 98 % and 81.3 % of sequence similarity with white goose TLR5 and chicken TLR5, respectively. Quantitative RT-PCR showed that the mgTLR5 gene of the goose is widely expressed in all tested tissues, with the highest expression in the kidney and spleen. The increase in NF-κB promoter activity stimulated by flagellin was dependent on mgTLR5 expression in 293 T cells. Salmonella pullorum and flagellin significantly upregulated the expression of TLR5, IL-8, and IL-1 mRNA in peripheral blood mononucleotide cells of Magang goose cultured in vitro. Stimulation by S. pullorum for 24 h upregulated mgTLR5 expression in the cecum and kidney. We conclude that Magang goose TLR5 is a functional TLR5 homologue of the protein in other species and plays an important role in bacterial recognition.
Collapse
|
10
|
Coates MS, Alton EWFW, Rapeport GW, Davies JC, Ito K. Pseudomonas aeruginosa induces p38MAP kinase-dependent IL-6 and CXCL8 release from bronchial epithelial cells via a Syk kinase pathway. PLoS One 2021; 16:e0246050. [PMID: 33524056 PMCID: PMC7850485 DOI: 10.1371/journal.pone.0246050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) infection is a major cause of airway inflammation in immunocompromised and cystic fibrosis (CF) patients. Mitogen-activated protein (MAP) and tyrosine kinases are integral to inflammatory responses and are therefore potential targets for novel anti-inflammatory therapies. We have determined the involvement of specific kinases in Pa-induced inflammation. The effects of kinase inhibitors against p38MAPK, MEK 1/2, JNK 1/2, Syk or c-Src, a combination of a p38MAPK with Syk inhibitor, or a novel narrow spectrum kinase inhibitor (NSKI), were evaluated against the release of the proinflammatory cytokine/chemokine, IL-6 and CXCL8 from BEAS-2B and CFBE41o- epithelial cells by Pa. Effects of a Syk inhibitor against phosphorylation of the MAPKs were also evaluated. IL-6 and CXCL8 release by Pa were significantly inhibited by p38MAPK and Syk inhibitors (p<0.05). Phosphorylation of HSP27, but not ERK or JNK, was significantly inhibited by Syk kinase inhibition. A combination of p38MAPK and Syk inhibitors showed synergy against IL-6 and CXCL8 induction and an NSKI completely inhibited IL-6 and CXCL8 at low concentrations. Pa-induced inflammation is dependent on p38MAPK primarily, and Syk partially, which is upstream of p38MAPK. The NSKI suggests that inhibiting specific combinations of kinases is a potent potential therapy for Pa-induced inflammation.
Collapse
Affiliation(s)
- Matthew S. Coates
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| | - Eric W. F. W. Alton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Garth W. Rapeport
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Pulmocide Ltd, London, United Kingdom
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Pulmocide Ltd, London, United Kingdom
| |
Collapse
|
11
|
Sanchez H, Hopkins D, Demirdjian S, Gutierrez C, O'Toole GA, Neelamegham S, Berwin B. Identification of cell-surface glycans that mediate motility-dependent binding and internalization of Pseudomonas aeruginosa by phagocytes. Mol Immunol 2020; 131:68-77. [PMID: 33358569 DOI: 10.1016/j.molimm.2020.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 11/15/2022]
Abstract
Phagocytic cells are critical to host defense against Pseudomonas aeruginosa, a Gram-negative bacterium that is an opportunistic pathogen. Accordingly, susceptible individuals frequently have impaired innate immune responses, including those with cystic fibrosis or neutropenia. Previous studies identified that the downregulation, or loss, of bacterial flagellar motility enables bacteria to evade interactions with phagocytic cells that result in phagocytic uptake of the bacteria. However, the mechanistic bases for motility-dependent interactions between P. aeruginosa and host cell surfaces that lead to phagocytic uptake of the bacteria are poorly understood. A recent insight is that exogenous addition of a negatively charged phospholipid, phosphatidylinositol-(3,4,5)-triphosphate (PIP3), promotes the engagement of non-motile strains of P. aeruginosa with phagocytes leading to uptake of the bacteria. Thus, we hypothesized that the engagement of P. aeruginosa by phagocytic cells is mediated by motility-dependent interactions with cell-surface polyanions. Here we report that endogenous polyanionic N-linked glycans and heparan sulfate mediate bacterial binding of P. aeruginosa by human monocytic cells. These specific interactions resulted in P. aeruginosa phagocytosis, bacterial type 3 secretion system (T3SS)-mediated cellular intoxication and the IL-1β response of host innate immune cells. Importantly, the bacterial interactions with the glycans were motility-dependent and could be recapitulated with purified, immobilized glycans. Therefore, this work describes novel interactions of P. aeruginosa with specific phagocyte cell-surface glycans that modulate relevant host innate immune responses to the bacteria, including phagocytosis, inflammation and cytotoxicity.
Collapse
Affiliation(s)
- Hector Sanchez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Daniel Hopkins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Sally Demirdjian
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Cecilia Gutierrez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Sriram Neelamegham
- Department of Chemical & Biological Engineering and Clinical &Translational Research Center, State University of New York, Buffalo, NY, 14260 USA
| | - Brent Berwin
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
12
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Cai Y, Varasteh S, van Putten JPM, Folkerts G, Braber S. Mannheimia haemolytica and lipopolysaccharide induce airway epithelial inflammatory responses in an extensively developed ex vivo calf model. Sci Rep 2020; 10:13042. [PMID: 32747652 PMCID: PMC7400546 DOI: 10.1038/s41598-020-69982-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/20/2020] [Indexed: 01/27/2023] Open
Abstract
Pulmonary infection is associated with inflammation and damage to the bronchial epithelium characterized by an increase in the release of inflammatory factors and a decrease in airway barrier function. Our objective is to optimize a method for the isolation and culture of primary bronchial epithelial cells (PBECs) and to provide an ex vivo model to study mechanisms of epithelial airway inflammation. PBECs were isolated and cultured from the airways of calves in a submerged cell culture and liquid-liquid interface system. A higher yield and cell viability were obtained after stripping the epithelium from the bronchial section compared to cutting the bronchial section in smaller pieces prior to digestion. Mannheimia haemolytica and lipopolysaccharide (LPS) as stimulants increased inflammatory responses (IL-8, IL-6 and TNF-α release), possibly, by the activation of "TLR-mediated MAPKs and NF-κB" signaling. Furthermore, M. haemolytica and LPS disrupted the bronchial epithelial layer as observed by a decreased transepithelial electrical resistance and zonula occludens-1 and E-cadherin expression. An optimized isolation and culture method for calf PBECs was developed, which cooperated with animal use Replacement, Reduction and Refinement (3R's) principle, and can also contribute to the increased knowledge and development of effective therapies for other animal and humans (childhood) respiratory diseases.
Collapse
Affiliation(s)
- Yang Cai
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Soheil Varasteh
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Scagnolari C, Bitossi C, Frasca F, Viscido A, Brazzini G, Trancassini M, Pietropaolo V, Midulla F, Cimino G, Palange P, Pierangeli A, Antonelli G. Differential toll like receptor expression in cystic fibrosis patients' airways during rhinovirus infection. J Infect 2020; 81:726-735. [PMID: 32712204 DOI: 10.1016/j.jinf.2020.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/27/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Since an inappropriate and sustained activation of TLRs may contribute to a chronic inflammatory response resulting in detrimental effects in cystic fibrosis (CF) patients, we sought to examine whether HRV infection might alter the respiratory expression of TLRs according to the microbiological status of CF patients. METHODS Respiratory samples were collected from the respiratory tract of CF patients (n = 294) over a period of 12 months. In addition to the usual microbiological investigation, HRV-RNA detection and typing were performed by RT-PCR and sequencing. HRV viral load and TLRs levels were measured by RT-Real Time PCR. RESULTS HRV-RNA was detected in 80 out of 515 respiratory samples (15.5%) with a similar rate in all age groups (0-10 years, 11-24 years, ≥ 25 years). Patients infected with different HRV A, B and C species exhibited higher levels of TLR2, TLR4 and TLR8 as compared to HRV negative patients. Moreover, the expression level of TLR2, TLR4 and TLR8 correlated with high level of HRV viral load. HRV positive patients co-colonized by Staphylococcus aureus or Pseudomonas aeruginosa showed also enhanced amounts of TLR2 and TLR2/4-mRNAs expression respectively. In the case of presence of both bacteria, TLR2, TLR4, TLR8 and TLR9 levels are elevated in positive HRV patients. CONCLUSIONS TLRs, especially TLR2 and TLR4, increased in HRV positive CF individuals and varies according to the presence of S. aureus, P. aeruginosa and both bacteria.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Virology Laboratory, Department of Molecular Medicine, Affiliated to Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University, Viale di Porta Tiburtina, 28, 00185 Rome, Italy.
| | - Camilla Bitossi
- Virology Laboratory, Department of Molecular Medicine, Affiliated to Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University, Viale di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Federica Frasca
- Virology Laboratory, Department of Molecular Medicine, Affiliated to Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University, Viale di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Agnese Viscido
- Virology Laboratory, Department of Molecular Medicine, Affiliated to Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University, Viale di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Gabriele Brazzini
- Virology Laboratory, Department of Molecular Medicine, Affiliated to Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University, Viale di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Maria Trancassini
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Fabio Midulla
- Department of Pediatrics, Policlinico Umberto I University Hospital, Sapienza University, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Giuseppe Cimino
- Lazio Reference Center for Cystic Fibrosis, Policlinico Umberto I University Hospital, Sapienza University, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Alessandra Pierangeli
- Virology Laboratory, Department of Molecular Medicine, Affiliated to Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University, Viale di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Guido Antonelli
- Virology Laboratory, Department of Molecular Medicine, Affiliated to Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University, Viale di Porta Tiburtina, 28, 00185 Rome, Italy
| |
Collapse
|
15
|
Ramos RT, Sodré CS, de Sousa Rodrigues PMGR, da Silva AMP, Fuly MS, Dos Santos HF, Gonçalves LS, de Carvalho Ferreira D, Ribeiro MG. High-throughput nucleotide sequencing for bacteriome studies in oral squamous cell carcinoma: a systematic review. Oral Maxillofac Surg 2020; 24:387-401. [PMID: 32621033 DOI: 10.1007/s10006-020-00873-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 06/29/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Dysbiosis has been identified in oral squamous cell carcinoma (OSCC). The aim of this study was to carry out a systematic review of an electronic research that was carried out on articles published between January 2008 and September 2018. METHODS Eight studies were selected after applying the inclusion and exclusion criteria. RESULTS All articles targeted the hypervariable regions of the 16S rRNA gene. At the phylum level, it was found reduction of Bacteroidetes (2/8 studies) and increase of Firmicutes (2/8 studies). At the genus level, Rothia increased (1/8 studies) and decreased (2/8 studies) in tumor samples, and Streptococcus also was found increased (3/8 studies) and reduced (3/8 studies). Fusobacterium only increased in OSCC samples (3/8 studies). At species level, an increase in F. nucleatum subsp. polymorphum was more associated to OSCC (2/8 studies) than with controls, as was P. aeruginosa (3/8 studies). CONCLUSION In summary, the results corroborated dysbiosis in OSCC patients, with enrichment of microbial taxa that are associated with inflammation and production of acetaldehyde. However, variations of study design and sample size were observed among the studies, as well as a shortage of more detailed analyses of possible correlations between risk habits and OSCC. This lack of more detailed analysis may be the cause of the inconsistencies in regard of the alterations reported for certain genera and species. In conclusion, there is an association between OSCC and oral microbiota dysbiosis, but its role in oral carcinogenesis needs to be clarified in more detail.
Collapse
Affiliation(s)
- Ruth Tramontani Ramos
- Department of Medical Clinic, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Camila Stofella Sodré
- Department of Medical Clinic, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | - Milenna Silva Fuly
- Faculty of Dentistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | | | - Marcia Gonçalves Ribeiro
- Service of Medical Genetics, IPPMG - Martagão Gesteira Pediatric Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Vilaplana L, Marco MP. Phenazines as potential biomarkers of Pseudomonas aeruginosa infections: synthesis regulation, pathogenesis and analytical methods for their detection. Anal Bioanal Chem 2020; 412:5897-5912. [PMID: 32462363 DOI: 10.1007/s00216-020-02696-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Infectious diseases are still a worldwide important problem. This fact has led to the characterization of new biomarkers that would allow an early, fast and reliable diagnostic and targeted therapy. In this context, Pseudomonas aeruginosa can be considered one of the most threatening pathogens since it causes a wide range of infections, mainly in patients that suffer other diseases. Antibiotic treatment is not trivial given the incidence of resistance processes and the fewer new antibiotics that are placed on the market. With this scenario, relevant quorum sensing (QS) molecules that regulate the secretion of virulence factors and biofilm formation can play an important role in diagnostic and therapeutic issues. In this review, we have focused our attention on phenazines, as possible new biomarkers. They are pigmented metabolites that are produced by diverse bacteria, characterized for presenting unique redox properties. Phenazines are involved in virulence, competitive fitness and are an essential component of the bacterial QS system. Here we describe their role in bacterial pathogenesis and we revise phenazine production regulation systems. We also discuss phenazine levels previously reported in bacterial isolates and in clinical samples to evaluate them as putative good candidates to be used as P. aeruginosa infection biomarkers. Moreover we deeply go through all analytical techniques that have been used for their detection and also new approaches are discussed from a critical point. Graphical abstract.
Collapse
Affiliation(s)
- Lluïsa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain
| |
Collapse
|
17
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nat Commun 2020; 11:2013. [PMID: 32332720 PMCID: PMC7181671 DOI: 10.1038/s41467-020-15738-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
The long external filament of bacterial flagella is composed of several thousand copies of a single protein, flagellin. Here, we explore the role played by lysine methylation of flagellin in Salmonella, which requires the methylase FliB. We show that both flagellins of Salmonella enterica serovar Typhimurium, FliC and FljB, are methylated at surface-exposed lysine residues by FliB. A Salmonella Typhimurium mutant deficient in flagellin methylation is outcompeted for gut colonization in a gastroenteritis mouse model, and methylation of flagellin promotes bacterial invasion of epithelial cells in vitro. Lysine methylation increases the surface hydrophobicity of flagellin, and enhances flagella-dependent adhesion of Salmonella to phosphatidylcholine vesicles and epithelial cells. Therefore, posttranslational methylation of flagellin facilitates adhesion of Salmonella Typhimurium to hydrophobic host cell surfaces, and contributes to efficient gut colonization and host infection. Flagellin proteins of Salmonella flagella are methylated. Here, the authors show that flagellin methylation facilitates adhesion of Salmonella to hydrophobic host-cell surfaces, and contributes to efficient gut colonization and host infection.
Collapse
|
19
|
Ha J, Kim S, Lee J, Lee H, Choi Y, Oh H, Yoon Y, Choi KH. The role of Pseudomonas aeruginosa DesB in pathogen-host interaction. Int Microbiol 2020; 23:549-555. [PMID: 32323095 DOI: 10.1007/s10123-020-00130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 04/13/2020] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa, commonly found in environments, can cause chronic lung disease in immunocompromised patients. In previous study, an aerobic desaturase (DesB) in P. aeruginosa exerted considerable effects on virulence factor production. The objective of this study was to analyze the role of DesB on the virulence traits of P. aeruginosa in the host. For the in vitro experiments, cells and supernatants from wild-type (WT) P. aeruginosa and its desB mutant were collected. The diluted cells were added to the A549 cell monolayer in order to determine cell viability, invasion ability, and/or immune response. For the in vivo experiments, 6-week-old ICR mice were infected with 6-7 log CFU bacterial cells using endotracheal intubation. The ratio of lung weight to body weight and survival rate of each bacterial strain in the lung were measured. The histopathology of lung tissue was also studied. desB mutants exhibited lower cytotoxicity in A549 cells. In addition, more pro-inflammatory cytokines and chemokines were present in desB mutant-treated. In the lungs of mouse model, WT survived longer than desB mutant, and the WT migrated from the lung to the liver and spleen. The results suggest that P. aeruginosa DesB affects the pathogenicity of the organism in the host.
Collapse
Affiliation(s)
- Jimyeong Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Sejeong Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Jeeyeon Lee
- Department of Food and Nutrition, Dong-eui University, Busan, 47340, South Korea
| | - Heeyoung Lee
- Food Standard Research Center, Korea Food Research Institute, Wanju, Jeollabuk-do, 55365, South Korea
| | - Yukyung Choi
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Hyemin Oh
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310, South Korea
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, 54538, South Korea.
| |
Collapse
|
20
|
Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28:795-817. [PMID: 32189104 DOI: 10.1007/s10787-020-00698-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
|
21
|
Guła G, Dorotkiewicz-Jach A, Korzekwa K, Valvano MA, Drulis-Kawa Z. Complex Signaling Networks Controlling Dynamic Molecular Changes in Pseudomonas aeruginosa Biofilm. Curr Med Chem 2019; 26:1979-1993. [PMID: 30207213 DOI: 10.2174/0929867325666180912110151] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
The environment exerts strong influence on microbes. Adaptation of microbes to changing conditions is a dynamic process regulated by complex networks. Pseudomonas aeruginosa is a life-threating, versatile opportunistic and multi drug resistant pathogen that provides a model to investigate adaptation mechanisms to environmental changes. The ability of P. aeruginosa to form biofilms and to modify virulence in response to environmental changes is coordinated by various mechanisms including two-component systems (TCS), and secondary messengers involved in quorum sensing (QS) and c-di-GMP networks (diguanylate cyclase systems, DGC). In this review, we focus on the role of c-di-GMP during biofilm formation. We describe TCS and QS signal cascades regulated by c-di-GMP in response to changes in the external environment. We present a complex signaling network dynamically changing during the transition of P. aeruginosa from the free-living to sessile mode of growth.
Collapse
Affiliation(s)
- Grzegorz Guła
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Agata Dorotkiewicz-Jach
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Kamila Korzekwa
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Miguel A Valvano
- Wellcome- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
22
|
Rimessi A, Bezzerri V, Salvatori F, Tamanini A, Nigro F, Dechecchi MC, Santangelo A, Prandini P, Munari S, Provezza L, Garreau de Loubresse N, Muller J, Ribeiro CMP, Lippi G, Gambari R, Pinton P, Cabrini G. PLCB3 Loss of Function Reduces Pseudomonas aeruginosa-Dependent IL-8 Release in Cystic Fibrosis. Am J Respir Cell Mol Biol 2019; 59:428-436. [PMID: 29668297 DOI: 10.1165/rcmb.2017-0267oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The lungs of patients with cystic fibrosis (CF) are characterized by an exaggerated inflammation driven by secretion of IL-8 from bronchial epithelial cells and worsened by Pseudomonas aeruginosa infection. To identify novel antiinflammatory molecular targets, we previously performed a genetic study of 135 genes of the immune response, which identified the c.2534C>T (p.S845L) variant of phospholipase C-β3 (PLCB3) as being significantly associated with mild progression of pulmonary disease. Silencing PLCB3 revealed that it potentiates the Toll-like receptor's inflammatory signaling cascade originating from CF bronchial epithelial cells. In the present study, we investigated the role of the PLCB3-S845L variant together with two synthetic mutants paradigmatic of impaired catalytic activity or lacking functional activation in CF bronchial epithelial cells. In experiments in which cells were exposed to P. aeruginosa, the supernatant of mucopurulent material from the airways of patients with CF or different agonists revealed that PLCB3-S845L has defects of 1) agonist-induced Ca2+ release from endoplasmic reticulum and rise of Ca2+ concentration, 2) activation of conventional protein kinase C isoform β, and 3) induction of IL-8 release. These results, besides identifying S845L as a loss-of-function variant, strengthen the importance of targeting PLCB3 to mitigate the CF inflammatory response in bronchial epithelial cells without blunting the immune response.
Collapse
Affiliation(s)
| | - Valentino Bezzerri
- 2 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Francesca Salvatori
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Tamanini
- 2 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Federica Nigro
- 1 Department of Morphology, Surgery and Experimental Medicine and
| | - Maria Cristina Dechecchi
- 2 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Alessandra Santangelo
- 2 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Paola Prandini
- 2 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Silvia Munari
- 2 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Lisa Provezza
- 2 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Nicolas Garreau de Loubresse
- 4 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Jean Muller
- 5 Laboratoire de diagnostic génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; and
| | - Carla M P Ribeiro
- 6 Department of Medicine, and.,7 Department of Cell Biology and Physiology, Cystic Fibrosis Research Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Giuseppe Lippi
- 2 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Roberto Gambari
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- 1 Department of Morphology, Surgery and Experimental Medicine and
| | - Giulio Cabrini
- 2 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| |
Collapse
|
23
|
Lillehoj EP, Guang W, Hyun SW, Liu A, Hegerle N, Simon R, Cross AS, Ishida H, Luzina IG, Atamas SP, Goldblum SE. Neuraminidase 1-mediated desialylation of the mucin 1 ectodomain releases a decoy receptor that protects against Pseudomonas aeruginosa lung infection. J Biol Chem 2018; 294:662-678. [PMID: 30429216 DOI: 10.1074/jbc.ra118.006022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) expresses an adhesin, flagellin, that engages the mucin 1 (MUC1) ectodomain (ED) expressed on airway epithelia, increasing association of MUC1-ED with neuraminidase 1 (NEU1) and MUC1-ED desialylation. The MUC1-ED desialylation unmasks both cryptic binding sites for Pa and a protease recognition site, permitting its proteolytic release as a hyperadhesive decoy receptor for Pa. We found here that intranasal administration of Pa strain K (PAK) to BALB/c mice increases MUC1-ED shedding into the bronchoalveolar compartment. MUC1-ED levels increased as early as 12 h, peaked at 24-48 h with a 7.8-fold increase, and decreased by 72 h. The a-type flagellin-expressing PAK strain and the b-type flagellin-expressing PAO1 strain stimulated comparable levels of MUC1-ED shedding. A flagellin-deficient PAK mutant provoked dramatically reduced MUC1-ED shedding compared with the WT strain, and purified flagellin recapitulated the WT effect. In lung tissues, Pa increased association of NEU1 and protective protein/cathepsin A with MUC1-ED in reciprocal co-immunoprecipitation assays and stimulated MUC1-ED desialylation. NEU1-selective sialidase inhibition protected against Pa-induced MUC1-ED desialylation and shedding. In Pa-challenged mice, MUC1-ED-enriched bronchoalveolar lavage fluid (BALF) inhibited flagellin binding and Pa adhesion to human airway epithelia by up to 44% and flagellin-driven motility by >30%. Finally, Pa co-administration with recombinant human MUC1-ED dramatically diminished lung and BALF bacterial burden, proinflammatory cytokine levels, and pulmonary leukostasis and increased 5-day survival from 0% to 75%. We conclude that Pa flagellin provokes NEU1-mediated airway shedding of MUC1-ED, which functions as a decoy receptor protecting against lethal Pa lung infection.
Collapse
Affiliation(s)
| | | | - Sang W Hyun
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Anguo Liu
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Nicolas Hegerle
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Raphael Simon
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Alan S Cross
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu 501-1193 Japan
| | - Irina G Luzina
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Sergei P Atamas
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Simeon E Goldblum
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and.,Pathology and
| |
Collapse
|
24
|
Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt Within the Host? Front Immunol 2018; 9:2416. [PMID: 30405616 PMCID: PMC6204374 DOI: 10.3389/fimmu.2018.02416] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/01/2018] [Indexed: 01/29/2023] Open
Abstract
Bacteria that readily adapt to different natural environments, can also exploit this versatility upon infection of the host to persist. Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium, is harmless to healthy individuals, and yet a formidable opportunistic pathogen in compromised hosts. When pathogenic, P. aeruginosa causes invasive and highly lethal disease in certain compromised hosts. In others, such as individuals with the genetic disease cystic fibrosis, this pathogen causes chronic lung infections which persist for decades. During chronic lung infections, P. aeruginosa adapts to the host environment by evolving toward a state of reduced bacterial invasiveness that favors bacterial persistence without causing overwhelming host injury. Host responses to chronic P. aeruginosa infections are complex and dynamic, ranging from vigorous activation of innate immune responses that are ineffective at eradicating the infecting bacteria, to relative host tolerance and dampened activation of host immunity. This review will examine how P. aeruginosa subverts host defenses and modulates immune and inflammatory responses during chronic infection. This dynamic interplay between host and pathogen is a major determinant in the pathogenesis of chronic P. aeruginosa lung infections.
Collapse
Affiliation(s)
- Emmanuel Faure
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Kelly Kwong
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Dao Nguyen
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
25
|
Comparative genomic analyses of two novel qnrVC6 carrying multidrug-resistant Pseudomonas. spp strains. Microb Pathog 2018; 123:269-274. [DOI: 10.1016/j.micpath.2018.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022]
|
26
|
Bastaert F, Kheir S, Saint-Criq V, Villeret B, Dang PMC, El-Benna J, Sirard JC, Voulhoux R, Sallenave JM. Pseudomonas aeruginosa LasB Subverts Alveolar Macrophage Activity by Interfering With Bacterial Killing Through Downregulation of Innate Immune Defense, Reactive Oxygen Species Generation, and Complement Activation. Front Immunol 2018; 9:1675. [PMID: 30083156 PMCID: PMC6064941 DOI: 10.3389/fimmu.2018.01675] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, in particular, in hospital patients undergoing ventilation and in patients with cystic fibrosis. Among the virulence factors secreted or injected into host cells, the physiopathological relevance of type II secretions system (T2SS) is less studied. Although there is extensive literature on the destructive role of LasB in vitro on secreted innate immune components and on some stromal cell receptors, studies on its direct action on myeloid cells are scant. Using a variety of methods, including the use of bacterial mutants, gene-targeted mice, and proteomics technology, we show here, using non-opsonic conditions (thus mimicking resting and naïve conditions in the alveolar space), that LasB, an important component of the P.a T2SS is highly virulent in vivo, and can subvert alveolar macrophage (AM) activity and bacterial killing, in vitro and in vivo by downregulating important secreted innate immune molecules (complement factors, cytokines, etc.) and receptors (IFNAR, Csf1r, etc.). In particular, we show that LasB downregulates the production of C3 and factor B complement molecules, as well as the activation of reactive oxygen species production by AM. In addition, we showed that purified LasB impaired significantly the ability of AM to clear an unrelated bacterium, namely Streptococcus pneumoniae. These data provide a new mechanism of action for LasB, potentially partly explaining the early onset of P.a, alone, or with other bacteria, within the alveolar lumen in susceptible individuals, such as ventilated, chronic obstructive pulmonary disease and cystic fibrosis patients.
Collapse
Affiliation(s)
- Fabien Bastaert
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Saadé Kheir
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Vinciane Saint-Criq
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bérengère Villeret
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pham My-Chan Dang
- INSERM UMR1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jamel El-Benna
- INSERM UMR1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jean-Claude Sirard
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, INSERM, U1019, Lille, CNRS, UMR 8204, Université de Lille, Lille, France
| | - Romé Voulhoux
- CNRS & Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Jean-Michel Sallenave
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
27
|
Vijayan A, Rumbo M, Carnoy C, Sirard JC. Compartmentalized Antimicrobial Defenses in Response to Flagellin. Trends Microbiol 2018; 26:423-435. [PMID: 29173868 DOI: 10.1016/j.tim.2017.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022]
Abstract
Motility is often a pathogenicity determinant of bacteria targeting mucosal tissues. Flagella constitute the machinery that propels bacteria into appropriate niches. Besides motility, the structural component, flagellin, which forms the flagella, targets Toll-like receptor 5 (TLR5) to activate innate immunity. The compartmentalization of flagellin-mediated immunity and the contribution of epithelial cells and dendritic cells in detecting flagellin within luminal and basal sides are highlighted here, respectively. While a direct stimulation of the epithelium mainly results in recruitment of immune cells and production of antimicrobial molecules, TLR5 engagement on parenchymal dendritic cells can contribute to the stimulation of innate lymphocytes such as type 3 innate lymphoid cells, as well as T helper cells. This review, therefore, illustrates how the innate and adaptive immunity to flagellin are differentially regulated by the epithelium and the dendritic cells in response to pathogens that either colonize or invade mucosa.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - CONICET - National Universtity of La Plata, 1900 La Plata, Argentina
| | - Christophe Carnoy
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Jean-Claude Sirard
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
28
|
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018; 197:708-727. [PMID: 29087211 PMCID: PMC5855068 DOI: 10.1164/rccm.201705-1043so] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas Bolig
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Hamonic G, Pasternak JA, Wilson HL. Recognizing conserved non-canonical localization patterns of toll-like receptors in tissues and across species. Cell Tissue Res 2018; 372:1-11. [PMID: 29330675 DOI: 10.1007/s00441-017-2767-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Toll-like receptors (TLR) 1, 2, 4, 5 and 6 were originally characterized as exclusively expressed on the cell surface and TLR 3, 7, 8 and 9 were said to be localized to the endosomes. However, continued research in this area shows that TLR localization may be altered across cell-types, and in response to stimulation, age or disease. Mucosal surfaces must remain tolerant to the commensal flora and thus intracellular or basal lateral localization of TLRs at mucosal surfaces may be necessary to prevent induction of an inflammatory response to commensal flora while still allowing the possibility for the receptors to prime an immune response when a pathogen has crossed the epithelial barrier. Here, we highlight the research specifying 'non-canonical' localization of TLRs in human and animal mucosal tissues and blood-derived cells, while excluding cultured polarized immortalized cells. Reports that only indicate TLR gene/protein expression and/or responsiveness to agonists have been excluded unless the report also indicates surface/intracellular distribution in the cell. Understanding the tissue- and species-specific localization of these specific pattern recognition receptors will lead to a greater appreciation of the way in which TLR ligands promote innate immunity and influence the adaptive immune response. A more comprehensive understanding of this information will potentially aid in the exploitation of the therapeutic or adjuvant potential of selectively localized TLRs and in opening new perspectives in understanding the basis of immunity.
Collapse
Affiliation(s)
- Glenn Hamonic
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr. Saskatoon, Saskatoon, SK, S7N 5B4, Canada
| | - J Alex Pasternak
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr. Saskatoon, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
30
|
Perng DW, Chen PK. The Relationship between Airway Inflammation and Exacerbation in Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2017; 80:325-335. [PMID: 28905537 PMCID: PMC5617848 DOI: 10.4046/trd.2017.0085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/11/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory response and airflow limitation. Acute exacerbation involves increased inflammatory burden leading to worsening respiratory symptoms, including dyspnea and sputum production. Some COPD patients have frequent exacerbations (two or more exacerbations per year). A substantial proportion of COPD patients may remain stable without exacerbation. Bacterial and viral infections are the most common causative factors that breach airway stability and lead to exacerbation. The increasing prevalence of exacerbation is associated with deteriorating lung function, hospitalization, and risk of death. In this review, we summarize the mechanisms of airway inflammation in COPD and discuss how bacterial or viral infection, temperature, air pollution, eosinophilic inflammation, and concomitant chronic diseases increase airway inflammation and the risk of exacerbation.
Collapse
Affiliation(s)
- Diahn Warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Pei Ku Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Mizutani M, Bérubé J, Ahlgren HG, Bernier J, Matouk E, Nguyen D, Rousseau S. Corticosteroid-resistant inflammatory signalling in Pseudomonas-infected bronchial cells. ERJ Open Res 2017; 3:00144-2016. [PMID: 28656134 PMCID: PMC5478864 DOI: 10.1183/23120541.00144-2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/17/2017] [Indexed: 12/01/2022] Open
Abstract
Decreasing the inflammatory response that leads to tissue damage during cystic fibrosis (CF) lung disease has been a long-standing goal of CF therapy. While corticosteroids are widely used anti-inflammatory drugs, their efficacy in CF lung disease remains debated. The complex interaction between the colonising bacteria and the host environment may impact corticosteroid responsiveness. In this study, sputum samples from adult CF patients were collected at baseline and during pulmonary exacerbation episodes. Lung function measurements and sputum microbiological analyses were performed. In parallel, the inflammatory response and corticosteroid sensitivity of airway epithelial cells to Pseudomonas-derived exoproducts was investigated. We report that adult CF patients colonised with mucoid Pseudomonas aeruginosa have higher levels of baseline inflammation, more frequent exacerbations and worse lung function compared with patients colonised with nonmucoid P. aeruginosa. Moreover, mucoid P. aeruginosa activates NF-κB via Toll-like receptor (TLR) 2, which acts in an additive manner to TLR5 to drive inflammation in airway epithelial cells. Furthermore, TLR2-mediated intracellular signalling is more resistant to the anti-inflammatory effects of corticosteroid when compared with other TLR signalling pathways. Overall, these results suggest that airway inflammation triggered by mucoid P. aeruginosa is less responsive to the anti-inflammatory action of corticosteroids. Whether this translates into a diminished response of CF patients to corticosteroid therapy should be examined in future clinical studies. TLR2 activation by mucoid Pseudomonas increases corticosteroid-resistant inflammation in airway epithelial cellshttp://ow.ly/lR3d30bsRrr
Collapse
Affiliation(s)
- Mirai Mizutani
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Julie Bérubé
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Joanie Bernier
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Elias Matouk
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Dept of Medicine, McGill University, Montreal, QC, Canada.,These authors contributed equally to this work
| | - Simon Rousseau
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Dept of Medicine, McGill University, Montreal, QC, Canada.,These authors contributed equally to this work
| |
Collapse
|
32
|
Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level. Sci Rep 2017; 7:1433. [PMID: 28469201 PMCID: PMC5431167 DOI: 10.1038/s41598-017-01619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/30/2017] [Indexed: 01/02/2023] Open
Abstract
Host-microbe interactions determine the outcome of host responses to commensal and pathogenic microbes. Previously, two epithelial cell-binding peptides were found to be homologues of two sites (B, aa168–174; F, aa303–309) in the flagellar hook protein FlgE of Pseudomonas aeruginosa. Tertiary modeling predicted these sites at the interface of neighboring FlgE monomers in the fully formed hook. Recombinant FlgE protein stimulated proinflammatory cytokine production in a human cell line and in murine lung organoid culture as detected with real-time RT-PCR and ELISA assays. When administered to mice, FlgE induced lung inflammation and enhanced the Th2-biased humoral response to ovalbumin. A pull-down assay performed with FlgE-saturated resin identified caveolin-1 as an FlgE-binding protein, and caveolin-1 deficiency impaired FlgE-induced inflammation and downstream Erk1/2 pathway activation in lung organoids. Intact flagellar hooks from bacteria were also proinflammatory. Mutations to sites B and F impaired bacteria motility and proinflammatory potency of FlgE without altering adjuvanticity of FlgE. These findings suggest that the flagellar hook and FlgE are novel players in host-bacterial interactions at immunological level. Further studies along this direction would provide new opportunities for understanding and management of diseases related with bacterial infection.
Collapse
|
33
|
Hassan R, El-Naggar W, Abd El-Aziz AM, Shaaban M, Kenawy HI, Ali YM. Immunization with outer membrane proteins (OprF and OprI) and flagellin B protects mice from pulmonary infection with mucoid and nonmucoid Pseudomonas aeruginosa. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:312-320. [PMID: 28291719 DOI: 10.1016/j.jmii.2016.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 07/24/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium, which considered as a common cause of nosocomial infection and life-threatening complications in immunocompromized and cystic fibrosis patients. Here, we evaluate the protective effect of recombinant vaccines composed of outer membrane proteins OprF and OprI alone or in combination with flagellin B against mucoid and nonmucoid pseudomonas infection. METHODS BALB/C mice were immunized subcutaneous using OprF and OprI with or without flagellin B and antibody titers were determined. Serum bactericidal and opsonophagocytosis activities of immunized and control sera were estimated against mucoid and nonmucoid pseudomonas strains. Lung tissue sections from immunized and nonimmunized mice were analyzed and the levels of peripheral neutrophils infiltration into the lung and tissue inflammation were scored. RESULTS Subcutaneous immunization using OprF and OprI with or without flagellin B elicited higher antibody titers against OprF, OprI, and flagellin B. The produced antibodies successfully opsonized both mucoid and nonmucoid strains with subsequent activation of the terminal pathway of complement that enhances killing of nonmucoid strains via complement-mediated lysis. Furthermore, opsonized mucoid and nonmucoid strains showed enhanced opsonophagocytosis via human peripheral neutrophils, a mechanism that kills P. aeruginosa when complement mediated lysis is not effective especially with mucoid strains. Immunized mice also showed a significant prolonged survival time, lower bacteremia, and reduced lung damage when compared with control nonimmunized mice. CONCLUSION Our data showed that mice immunized with OprF/OprI or OprF/OprI and flagellin B are significantly protected from infection caused by mucoid and nonmucoid strains of P. aeruginosa.
Collapse
Affiliation(s)
- Ramadan Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Wael El-Naggar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt; Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Abeer M Abd El-Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mona Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Hany I Kenawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Youssif M Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.
| |
Collapse
|
34
|
Saeb AT, Abouelhoda M, Selvaraju M, Althawadi SI, Mutabagani M, Adil M, Al Hokail A, Tayeb HT. The Use of Next-Generation Sequencing in the Identification of a Fastidious Pathogen: A Lesson From a Clinical Setup. Evol Bioinform Online 2017; 12:1176934316686072. [PMID: 28469373 PMCID: PMC5395265 DOI: 10.1177/1176934316686072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/20/2016] [Indexed: 01/25/2023] Open
Abstract
Clostridium haemolyticum is the causal agent of bacillary hemoglobinuria in cattle, goat, sheep, and ruminants. In this study, we report the first recorded human-infecting C. haemolyticum strain collected from an 18-year-old woman diagnosed with acute lymphoblastic leukemia. After failure of traditional techniques, only next-generation sequencing (NGS) technology in combination with bioinformatics, phylogenetic, and pathogenomics analyses revealed that our King Faisal Specialist Hospital and Research Center (KFSHRC) bacterial isolate belongs to C. haemolyticum species. KFSHRC isolate is composed of 1 chromosome and 4 plasmids. The total genome size is estimated to be 2.7 Mbp with a low GC content of 28.02%. Comparative pathogenomics analysis showed that C. haemolyticum KFSHRC isolate is a potential virulent pathogenic bacterium as it possesses the virulence factors necessary to establish an infection, acquire essential nutrients, resist antimicrobial agents, and tolerate hostile conditions both in the human host and in its surrounding environment. These factors are included in the main chromosome in addition to novel recombination of the plasmids, and they could be the reason for the incidence of that human infection. This work demonstrated the importance of using NGS in medical microbiology for pathogen identification. It also demonstrates the importance of sequencing more microbial samples and sharing this information in public databases to facilitate the identification of pathogenic microbes with better accuracy.
Collapse
Affiliation(s)
- Amr Tm Saeb
- Genetics and Biotechnology Department, Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Genetics Department, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Manojkumar Selvaraju
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Integrated Gulf Biosystems, Riyadh, Saudi Arabia
| | - Sahar I Althawadi
- Department of Pathology & Laboratory Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Maysoon Mutabagani
- Department of Pathology & Laboratory Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Abdullah Al Hokail
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Alfaisal University, Riyadh, Saudi Arabia
| | - Hamsa T Tayeb
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Genetics Department, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Roussel L, LaFayette S, Nguyen D, Baglole CJ, Rousseau S. Differential Contribution of the Aryl-Hydrocarbon Receptor and Toll-Like Receptor Pathways to IL-8 Expression in Normal and Cystic Fibrosis Airway Epithelial Cells Exposed to Pseudomonas aeruginosa. Front Cell Dev Biol 2016; 4:148. [PMID: 28066767 PMCID: PMC5177610 DOI: 10.3389/fcell.2016.00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa are gram-negative bacteria that frequently infect the lungs of cystic fibrosis (CF) patients. This bacterium is highly responsive to changes in its environment, resulting in the expression of a diverse array of genes that may contribute to the host inflammatory response. P. aeruginosa is well-known to induce neutrophilic inflammation via the activation of Toll-Like Receptors (TLRs). Recently, it was shown that pyocyanin, a phenazine produced by P. aeruginosa, binds to the aryl hydrocarbon receptor (AhR), leading to neutrophilic inflammation as part of the host defense response. In this study, we have investigated the contribution of the TLR and AhR signaling pathways to the expression of the neutrophil chemoattractant IL-8 in response to P. aeruginosa diffusible material. Although both pathways are involved in IL-8 synthesis, the AhR played a greater role when planktonic P. aeruginosa was grown in a media favoring phenazine synthesis. However, when P. aeruginosa was grown in a media that mimics the nutritional composition of CF sputa, both pathways contributed similarly to IL-8 synthesis. Finally, when P. aeruginosa was grown as a biofilm, the TLR pathway did not contribute to biofilm-driven IL-8 synthesis and AhR was found to only partially contribute to IL-8 synthesis, suggesting the contribution of another unknown signaling pathway. Therefore, the interaction between P. aeruginosa and airway epithelial cells is very dynamic, and sensor engagement is variable according to the adaptation of P. aeruginosa to the CF lung environment.
Collapse
Affiliation(s)
- Lucie Roussel
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute Montreal, QC, Canada
| | - Shantelle LaFayette
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute Montreal, QC, Canada
| | - Dao Nguyen
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute Montreal, QC, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute Montreal, QC, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute Montreal, QC, Canada
| |
Collapse
|
36
|
Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Sci Rep 2016; 6:39172. [PMID: 27982111 PMCID: PMC5159919 DOI: 10.1038/srep39172] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Determining bacterial gene expression during infection is fundamental to understand pathogenesis. In this study, we used dual RNA-seq to simultaneously measure P. aeruginosa and the murine host’s gene expression and response to respiratory infection. Bacterial genes encoding products involved in metabolism and virulence were differentially expressed during infection and the type III and VI secretion systems were highly expressed in vivo. Strikingly, heme acquisition, ferric-enterobactin transport, and pyoverdine biosynthesis genes were found to be significantly up-regulated during infection. In the mouse, we profiled the acute immune response to P. aeruginosa and identified the pro-inflammatory cytokines involved in acute response to the bacterium in the lung. Additionally, we also identified numerous host iron sequestration systems upregulated during infection. Overall, this work sheds light on how P. aeruginosa triggers a pro-inflammatory response and competes for iron with the host during infection, as iron is one of the central elements for which both pathogen and host fight during acute pneumonia.
Collapse
|
37
|
Golovkine G, Lemelle L, Burny C, Vaillant C, Palierne JF, Place C, Huber P. Host cell surfaces induce a Type IV pili-dependent alteration of bacterial swimming. Sci Rep 2016; 6:38950. [PMID: 27966607 PMCID: PMC5155295 DOI: 10.1038/srep38950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/16/2016] [Indexed: 11/30/2022] Open
Abstract
For most pathogenic bacteria, flagellar motility is recognized as a virulence factor. Here, we analysed the swimming behaviour of bacteria close to eukaryotic cellular surfaces, using the major opportunistic pathogen Pseudomonas aeruginosa as a model. We delineated three classes of swimming trajectories on both cellular surfaces and glass that could be differentiated by their speeds and local curvatures, resulting from different levels of hydrodynamic interactions with the surface. Segmentation of the trajectories into linear and curved sections or pause allowed us to precisely describe the corresponding swimming patterns near the two surfaces. We concluded that (i) the trajectory classes were of same nature on cells and glass, however the trajectory distribution was strikingly different between surface types, (ii) on cell monolayers, a larger fraction of bacteria adopted a swimming mode with stronger bacteria-surface interaction mostly dependent upon Type IV pili. Thus, bacteria swim near boundaries with diverse patterns and importantly, Type IV pili differentially influence swimming near cellular and abiotic surfaces.
Collapse
Affiliation(s)
- Guillaume Golovkine
- Univ. Grenoble Alpes, F-38000 Grenoble, France.,CNRS, ERL5261, F-38000 Grenoble, France.,CEA, BIG-BCI, F-38000 Grenoble, France.,INSERM, U1036, F-38000 Grenoble, France
| | - Laurence Lemelle
- CNRS, USR3010, F-69342 Lyon, France.,Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, LGL-TPE, F-69342 Lyon, France
| | | | - Cedric Vaillant
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Jean-Francois Palierne
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Christophe Place
- CNRS, USR3010, F-69342 Lyon, France.,Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Philippe Huber
- Univ. Grenoble Alpes, F-38000 Grenoble, France.,CNRS, ERL5261, F-38000 Grenoble, France.,CEA, BIG-BCI, F-38000 Grenoble, France.,INSERM, U1036, F-38000 Grenoble, France
| |
Collapse
|
38
|
Aureli M, Schiumarini D, Loberto N, Bassi R, Tamanini A, Mancini G, Tironi M, Munari S, Cabrini G, Dechecchi MC, Sonnino S. Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chem Phys Lipids 2016; 200:94-103. [DOI: 10.1016/j.chemphyslip.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
39
|
Dehus O, Hartung T, Hermann C. Endotoxin evaluation of eleven lipopolysaccharides by whole blood assay does not always correlate with Limulus amebocyte lysate assay. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
More than 90% of all publications on endotoxin were carried out with endotoxins (lipopolysaccharide, LPS) from enterobacteriaceae. We compared the immune stimulatory potency of 11 different LPSs using human whole blood incubations. While the majority of LPSs induced cytokine release equipotently, a 1000-fold more LPS from Pseudomonas aeruginosa or Vibrio cholerae was still less potent in inducing TNF, IL-1β, IL-10 and IFN-γ though it potently induced nanogram quantities IL-8. All LPSs tested, regardless of the micro-organism, showed Toll-like receptor (TLR)4-dependence, except for the LPSs from P. aeruginosa and V. cholerae, which were both TLR4- and TLR2-dependent. Interestingly, UV-inactivated P. aeruginosa bacteria, although Gram-negative, also showed TLR2- and TLR4-dependence. Repurification of commercial LPS preparations by phenol re-extraction led to a complete loss of the TLR2 dependency, indicating contamination with lipoproteins. In the Limulus amebocyte lysate assay, often performed to exclude contamination in purified water likely to originate from P. aeruginosa, P. aeruginosa LPS was only 2-fold less potent than LPS from S. abortus equi or the assay standard LPS from E. coli. This results in an overestimation of pyrogenic burden by a factor of 500 in the sample when compared with the biological activity of highly purified P. aeruginosa LPS in human whole blood.
Collapse
Affiliation(s)
- Oliver Dehus
- Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | | | - Corinna Hermann
- Biochemical Pharmacology, University of Konstanz, Konstanz, Germany,
| |
Collapse
|
40
|
Chai SD, Liu T, Dong MF, Li ZK, Tang PZ, Wang JT, Ma SJ. Inactivated Pseudomonas aeruginosa inhibits hypoxia-induced pulmonary hypertension by preventing TGF-β1/Smad signaling. ACTA ACUST UNITED AC 2016; 49:e5526. [PMID: 27580007 PMCID: PMC5007076 DOI: 10.1590/1414-431x20165526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is one of the common colonizing bacteria of the human body and is an opportunistic pathogen frequently associated with respiratory infections. Inactivated P. aeruginosa (IPA) have a variety of biological effects against inflammation and allergy. Transforming growth factor-β (TGF-β) signaling plays a critical role in the regulation of cell growth, differentiation, and development in a wide range of biological systems. The present study was designed to investigate the effects of IPA on TGF-β/Smad signaling in vivo, using a hypoxia-induced pulmonary hypertension (PH) rat model. Sprague Dawley rats (n=40) were exposed to 10% oxygen for 21 days to induce PH. At the same time, IPA was administered intravenously from day 1 to day 14. Mean pulmonary artery pressure (mPAP) and the right ventricle (RV) to left ventricle plus the interventricular septum (LV+S) mass ratio were used to evaluate the development of PH. Vessel thickness and density were measured using immunohistochemistry. Primary arterial smooth muscle cells (PASMCs) were isolated and the proliferation of PASMCs was assayed by flow cytometry. The production of TGF-β1 in cultured supernatant of PASMCs was assayed by ELISA. The expression levels of α-smooth muscle actin (α-SMA), TGF-β1 and phospho-Smad 2/3 in PASMCs were assayed by western blot. Our data indicated that IPA attenuated PH, RV hypertrophy and pulmonary vascular remodeling in rats, which was probably mediated by restraining the hypoxia-induced overactive TGF-β1/Smad signaling. In conclusion, IPA is a promising protective treatment in PH due to the inhibiting effects on TGF-β1/Smad 2/3 signaling.
Collapse
Affiliation(s)
- S D Chai
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - T Liu
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - M F Dong
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - Z K Li
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - P Z Tang
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - J T Wang
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - S J Ma
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| |
Collapse
|
41
|
Saeb ATM. Presence of Bacterial Virulence Gene Homologues in the dibenzo-p-dioxins degrading bacterium Sphingomonas wittichii. Bioinformation 2016; 12:241-248. [PMID: 28197061 PMCID: PMC5290665 DOI: 10.6026/97320630012241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022] Open
Abstract
Sphingomonas wittichii, a close relative of the human pathogen Sphingomonas paucimobilis, is a microorganism of great interest to the bioremediation community for its ability of biodegradation to a large number of toxic polychlorinated dioxins. In the present study we investigated the presence of different virulence factors and genes in S. wittichii. We utilized phylogenetic, comparative genomics and bioinformatics analysis to investigate the potentiality of S. wittichii as a potential virulent pathogen. The 16SrDNA phylogenetic tree showed that the closest bacterial taxon to S. wittichii is Brucella followed by Helicobacter, Campylobacter, Pseudomonas then Legionella. Despite their close phylogenetic relationship, S. wittichii did not share any virulence factors with Helicobacter or Campylobacter. On the contrary, in spite of the phylogenetic divergence between S. wittichii and Pseudomonas spp., they shared many major virulence factors, such as, adherence, antiphagocytosis, Iron uptake, proteases and quorum sensing. S. wittichii contains several major virulence factors resembling Pseudomonas sp., Legionella sp., Brucella sp. and Bordetella sp. virulence factors. Similarity of virulence factors did not match phylogenetic relationships. These findings suggest horizontal gene transfer of virulence factors rather than sharing a common pathogenic ancestor. S. wittichii is a potential virulent bacterium. Another possibility is that reductive evolution process attenuated S. wittichii pathogenic capabilities. Thus plenty of care must be taken when using this bacterium in soil remediation purposes.
Collapse
Affiliation(s)
- Amr T. M. Saeb
- Biotechnology Department, Strategic Center for Diabetes Research, College of medicine, King Saud University, Saudi Arabia
| |
Collapse
|
42
|
Forstnerič V, Ivičak-Kocjan K, Ljubetič A, Jerala R, Benčina M. Distinctive Recognition of Flagellin by Human and Mouse Toll-Like Receptor 5. PLoS One 2016; 11:e0158894. [PMID: 27391968 PMCID: PMC4938411 DOI: 10.1371/journal.pone.0158894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/22/2016] [Indexed: 11/23/2022] Open
Abstract
Toll-like receptor 5 (TLR5) is a receptor of the innate immune system that recognizes flagellin from certain bacterial species and triggers an inflammatory response. The Salmonella dublin flagellin in complex with zebrafish TLR5 has been crystallized previously. In the present study, we extrapolate the structure of this complex using structure-guided mutagenesis to determine the recognition modes of human and mouse TLR5 receptors and demonstrate species-specific differences in flagellin recognition. In general, the recognition mode of the mouse receptor can be said to be more robust in comparison to that of the human receptor. All-atom molecular dynamics simulation showed differences between the two receptors within the primary binding region. Using a functional motility assay, we show that although the highly conserved area of the flagellin analyzed in this study encompasses key structural requirements for flagella formation, a direct correlation between immune recognition and structure on the level of amino acid residues is not observed.
Collapse
Affiliation(s)
- Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Karolina Ivičak-Kocjan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
- * E-mail: (RJ); (MB)
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
- * E-mail: (RJ); (MB)
| |
Collapse
|
43
|
Ralhan A, Laval J, Lelis F, Ballbach M, Grund C, Hector A, Hartl D. Current Concepts and Controversies in Innate Immunity of Cystic Fibrosis Lung Disease. J Innate Immun 2016; 8:531-540. [PMID: 27362371 PMCID: PMC6738757 DOI: 10.1159/000446840] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. The inflammatory response in CF is dominated by the activation of the innate immune system. Bacteria and fungi represent the key pathogens chronically colonizing the CF airways. In response, innate immune pattern recognition receptors, expressed by airway epithelial and myeloid cells, sense the microbial threat and release chemoattractants to recruit large numbers of neutrophils into CF airways. However, neutrophils fail to efficiently clear the invading pathogens, but instead release harmful proteases and oxidants and finally cause tissue injury. Here, we summarize and discuss current concepts and controversies in the field of innate immunity in CF lung disease, facing the ongoing questions of whether inflammation is good or bad in CF and how innate immune mechanisms could be harnessed therapeutically.
Collapse
Affiliation(s)
- Anjali Ralhan
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Julie Laval
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Felipe Lelis
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Marlene Ballbach
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Charlotte Grund
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Andreas Hector
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Dominik Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
- Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
44
|
Yue L, Xie Z, Li H, Pang Z, Junkins RD, Tremblay ML, Chen X, Lin TJ. Protein Tyrosine Phosphatase-1B Negatively Impacts Host Defense against Pseudomonas aeruginosa Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1234-44. [DOI: 10.1016/j.ajpath.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/26/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
|
45
|
Vencken SF, Greene CM. Toll-Like Receptors in Cystic Fibrosis: Impact of Dysfunctional microRNA on Innate Immune Responses in the Cystic Fibrosis Lung. J Innate Immun 2016; 8:541-549. [PMID: 27043239 DOI: 10.1159/000444687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors that are particularly expressed in the sentinel and epithelial cells in the body, including the lung. They are central players in the innate immune system in response to microbial infection, and are the triggers of a complex pathway network that both promotes the inflammatory response and influences the adaptive immune response. These pathways are transiently and finely tuned by cellular factors, including a cell's microRNA response program. MicroRNAs are small, non-coding RNAs that specifically regulate gene expression. In this article, we review the disease-specific microRNA regulatory network of cystic fibrosis, a debilitating and ultimately fatal disease and, specifically, its effect on TLR signalling.
Collapse
Affiliation(s)
- Sebastian F Vencken
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
46
|
Batah J, Denève-Larrazet C, Jolivot PA, Kuehne S, Collignon A, Marvaud JC, Kansau I. Clostridium difficile flagella predominantly activate TLR5-linked NF-κB pathway in epithelial cells. Anaerobe 2016; 38:116-124. [DOI: 10.1016/j.anaerobe.2016.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022]
|
47
|
Iannitti RG, Napolioni V, Oikonomou V, De Luca A, Galosi C, Pariano M, Massi-Benedetti C, Borghi M, Puccetti M, Lucidi V, Colombo C, Fiscarelli E, Lass-Flörl C, Majo F, Cariani L, Russo M, Porcaro L, Ricciotti G, Ellemunter H, Ratclif L, De Benedictis FM, Talesa VN, Dinarello CA, van de Veerdonk FL, Romani L. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat Commun 2016; 7:10791. [PMID: 26972847 PMCID: PMC4793079 DOI: 10.1038/ncomms10791] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/21/2016] [Indexed: 02/06/2023] Open
Abstract
Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF. IL-1-mediated inflammation contributes to the pathogenesis of cystic fibrosis. Here the authors show that this is largely due to NLRP3 activation, whereas NLRP4 induces IL-1Ra, limiting the overall inflammasome activity and providing a therapeutic angle to ameliorate the disease.
Collapse
Affiliation(s)
- Rossana G Iannitti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Valerio Napolioni
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Claudia Galosi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Matteo Puccetti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Vincenzina Lucidi
- Unit of Endocrinology and Diabetes, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Carla Colombo
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | | | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Fabio Majo
- Unit of Endocrinology and Diabetes, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Lisa Cariani
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Maria Russo
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Luigi Porcaro
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | | | | | - Luigi Ratclif
- Servizio di Supporto Fibrosi Cistica, Istituto Ospedale G. Tatarella, Foggia, 71042 Cerignola, Italy
| | | | | | - Charles A Dinarello
- Radboud Center for Infectious Diseases, Nijmegen, 6500 HB, The Netherlands.,Division of Infectious Diseases, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Frank L van de Veerdonk
- Division of Infectious Diseases, University of Colorado Denver, Aurora, Colorado 80045, USA.,Department of Internal Medicine, Radboud Center for Infectious diseases (RCI), Radboudumc, Nijmegen, 6500 HB, The Netherlands
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
48
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
49
|
Toubiana J, Rossi AL, Belaidouni N, Grimaldi D, Pene F, Chafey P, Comba B, Camoin L, Bismuth G, Claessens YE, Mira JP, Chiche JD. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway. Innate Immun 2015; 21:685-97. [DOI: 10.1177/1753425915586075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells.
Collapse
Affiliation(s)
- Julie Toubiana
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Department of Pediatrics, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Anne-Lise Rossi
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Nadia Belaidouni
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
| | - David Grimaldi
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Frederic Pene
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Philippe Chafey
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Béatrice Comba
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
| | - Luc Camoin
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Georges Bismuth
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Yann-Erick Claessens
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Jean-Paul Mira
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Jean-Daniel Chiche
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|
50
|
Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, Liu G. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. THE JOURNAL OF IMMUNOLOGY 2015; 194:6082-9. [PMID: 25964487 DOI: 10.4049/jimmunol.1402469] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/07/2015] [Indexed: 12/13/2022]
Abstract
The M1 and M2 polarized phenotypes dictate distinctive roles for macrophages as they participate in inflammatory disorders. There has been growing interest in the role of cellular metabolism in macrophage polarization. However, it is currently unclear whether different aspects of a specific metabolic program coordinately regulate this cellular process. In this study, we found that pyruvate dehydrogenase kinase 1 (PDK1), a key regulatory enzyme in glucose metabolism, plays an important role in the differential activation of macrophages. Knockdown of PDK1 diminished M1, whereas it enhanced M2 activation of macrophages. Mechanistically, PDK1 knockdown led to diminished aerobic glycolysis in M1 macrophages, which likely accounts for the attenuated inflammatory response in these cells. Furthermore, we found that mitochondrial respiration is enhanced during and required by the early activation of M2 macrophages. Suppression of glucose oxidation, but not that of fatty acids, inhibits this process. Consistent with its inhibitory role in early M2 activation, knockdown of PDK1 enhanced mitochondrial respiration in macrophages. Our data suggest that two arms of the glucose metabolism synergistically regulate the differential activation of macrophages. Our findings also highlight the central role of PDK1 in this event via controlling glycolysis and glucose oxidation.
Collapse
Affiliation(s)
- Zheng Tan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Na Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Douglas R Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Edward Abraham
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|