1
|
Ravi A, Chowdhury S, Dijkhuis A, Dierdorp BS, Dekker T, Kruize R, Sabogal Piñeros YS, Majoor CJ, Sterk PJ, Lutter R. Imprinting of bronchial epithelial cells upon in vivo rhinovirus infection in people with asthma. ERJ Open Res 2022; 8:00522-2021. [PMID: 35449758 PMCID: PMC9016171 DOI: 10.1183/23120541.00522-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background Defective translocation of the translational repressor TIAR (T-cell internal antigen receptor) in bronchial epithelial cells (BECs) from asthma patients underlies epithelial hyperresponsiveness, reflected by an exaggerated production of a select panel of inflammatory cytokines such as CXCL-8, interleukin (IL)-6, granulocyte colony-stimulating factor, CXCL-10, upon exposure to tumour necrosis factor (TNF) and IL-17A. With this study we aimed to clarify whether epithelial hyperresponsiveness is a consistent finding, is changed upon in vivo exposure to rhinovirus (RV)-A16 and applies to the bronchoconstrictor endothelin-1. Methods BECs were obtained from asthma patients (n=18) and healthy individuals (n=11), 1 day before and 6 days post-RV-A16 exposure. BECs were cultured and stimulated with TNF and IL-17A and inflammatory mediators were analysed. The bronchoalveolar lavage fluid (BALF) was obtained in parallel with BECs to correlate differential cell counts and inflammatory mediators with epithelial hyperresponsiveness. Results Epithelial hyperresponsiveness was confirmed in sequential samples and even increased in BECs from asthma patients after RV-A16 exposure, but not in BECs from healthy individuals. Endothelin-1 tended to increase in BECs from asthma patients collected after RV-A16 exposure, but not in BECs from healthy individuals. In vitro CXCL-8 and endothelin-1 production correlated. In vivo relevance for in vitro CXCL-8 and endothelin-1 production was shown by correlations with forced expiratory volume in 1 s % predicted and CXCL-8 BALF levels. Conclusion Epithelial hyperresponsiveness is an intrinsic defect in BECs from asthma patients, which increases upon viral exposure, but not in BECs from healthy individuals. This epithelial hyperresponsiveness also applies to the bronchoconstrictor endothelin-1, which could be involved in airway obstruction. Epithelial hyperresponsiveness is an intrinsic defect in bronchial epithelium from asthma patients, which increases upon rhinovirus exposure, but not in healthy individualshttps://bit.ly/3xLhjuj
Collapse
|
2
|
Harding JN, Gross M, Patel V, Potter S, Cormier SA. Association between particulate matter containing EPFRs and neutrophilic asthma through AhR and Th17. Respir Res 2021; 22:275. [PMID: 34702270 PMCID: PMC8549224 DOI: 10.1186/s12931-021-01867-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Epidemiological data associate high levels of combustion-derived particulate matter (PM) with deleterious respiratory outcomes, but the mechanism underlying those outcomes remains elusive. It has been acknowledged by the World Health Organization that PM exposure contributes to more than 4.2 million all-cause mortalities worldwide each year. Current literature demonstrates that PM exacerbates respiratory diseases, impairs lung function, results in chronic respiratory illnesses, and is associated with increased mortality. The proposed mechanisms revolve around oxidative stress and inflammation promoting pulmonary physiological remodeling. However, our previous data found that PM is capable of inducing T helper cell 17 (Th17) immune responses via aryl hydrocarbon receptor (Ahr) activation, which was associated with neutrophilic invasion characteristic of steroid insensitive asthma. METHODS In the present study, we utilized a combination of microarray and single cell RNA sequencing data to analyze the immunological landscape in mouse lungs following acute exposure to combustion derived particulate matter. RESULTS We present data that suggest epithelial cells produce specific cytokines in the aryl hydrocarbon receptor (Ahr) pathway that inform dendritic cells to initiate the production of pathogenic T helper (eTh17) cells. Using single-cell RNA sequencing analysis, we observed that upon exposure epithelial cells acquire a transcriptomic profile indicative of increased Il-17 signaling, Ahr activation, Egfr signaling, and T cell receptor and co-stimulatory signaling pathways. Epithelial cells further showed, Ahr activation is brought on by Ahr/ARNT nuclear translocation and activation of tyrosine kinase c-src, Egfr, and subsequently Erk1/2 pathways. CONCLUSIONS Collectively, our data corroborates that PM initiates an eTh17 specific inflammatory response causing neutrophilic asthma through pathways in epithelial, dendritic, and T cells that promote eTh17 differentiation during initial PM exposure.
Collapse
Affiliation(s)
- Jeffrey N Harding
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Maureen Gross
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Vivek Patel
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
3
|
Liu T. miR-937 serves as an inflammatory inhibitor in cigarette smoke extract-induced human bronchial epithelial cells by targeting IL1B and regulating TNF-α/IL-17 signaling pathway. Tob Induc Dis 2021; 19:55. [PMID: 34220411 PMCID: PMC8231861 DOI: 10.18332/tid/138227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION This study aimed to elucidate the biological implication of miR-937 in cigarette smoke extract (CSE)-induced human bronchial epithelial (HBE) cells and to further investigate its possible regulatory mechanism. METHODS Public datasets were downloaded to identify differentially expressed genes and subjected to Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis in chronic obstructive pulmonary disease (COPD). Online prediction site and luciferase reporter assay were applied to determine the target correlation between miR-937 and IL1B. RT-qPCR, Western blot and Enzyme-Linked Immunosorbent Assays (ELISA) analyses were used to evaluate the expressions of indicated molecules. HBE cells were exposed with CSE (20 μg/mL) to construct the in vitro COPD model. Cell proliferation and apoptosis were measured through cell counting kit 8 and Annexin-V/propidium iodide (PI) staining assays. RESULTS IL1B was found to be up-regulated in COPD samples compared with healthy controls and had a high correlation with the TNF and IL-17 pathways according to the data from GSE57148. Moreover, IL1B was predicted to be a target of miR-937, and it was negatively regulated by miR-937. CSE treatment reduced the miR-937 expression, meanwhile decreased the HBE cells proliferation, enhanced cells apoptosis, and elevated the expression of IL-6, IL-17, and TNF-α. Moreover, in the CSE model, upregulation of miR-937 promoted cells viability, restrained cells apoptosis, and decreased levels of IL-6, IL-17, and TNF-α were noted, which could be abolished by overexpression IL1B. In contrast, inhibiting miR-937 impeded cells proliferation, promoted cells apoptosis and elevated levels of IL-6, IL-17 and TNF-α, which could be rescued by IL1B-knockdown in CSE-induced HBEs. CONCLUSIONS These findings suggest that miR-937 plays a protective role on the HBEs after CSE damage, which may be achieved via targeting IL1B and inhibiting the TNF-α/IL-17 signaling pathway.
Collapse
Affiliation(s)
- Teng Liu
- Department of Respiratory Medicine, Shandong Provincial Chest Hospital, Shandong University, Jinan, China
| |
Collapse
|
4
|
Ribosome-Profiling Reveals Restricted Post Transcriptional Expression of Antiviral Cytokines and Transcription Factors during SARS-CoV-2 Infection. Int J Mol Sci 2021; 22:ijms22073392. [PMID: 33806254 PMCID: PMC8036502 DOI: 10.3390/ijms22073392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
The global COVID-19 pandemic caused by SARS-CoV-2 has resulted in over 2.2 million deaths. Disease outcomes range from asymptomatic to severe with, so far, minimal genotypic change to the virus so understanding the host response is paramount. Transcriptomics has become incredibly important in understanding host-pathogen interactions; however, post-transcriptional regulation plays an important role in infection and immunity through translation and mRNA stability, allowing tight control over potent host responses by both the host and the invading virus. Here, we apply ribosome profiling to assess post-transcriptional regulation of host genes during SARS-CoV-2 infection of a human lung epithelial cell line (Calu-3). We have identified numerous transcription factors (JUN, ZBTB20, ATF3, HIVEP2 and EGR1) as well as select antiviral cytokine genes, namely IFNB1, IFNL1,2 and 3, IL-6 and CCL5, that are restricted at the post-transcriptional level by SARS-CoV-2 infection and discuss the impact this would have on the host response to infection. This early phase restriction of antiviral transcripts in the lungs may allow high viral load and consequent immune dysregulation typically seen in SARS-CoV-2 infection.
Collapse
|
5
|
Vitenberga Z, Pilmane M, Babjoniševa A. An Insight into COPD Morphopathogenesis: Chronic Inflammation, Remodeling, and Antimicrobial Defense. ACTA ACUST UNITED AC 2019; 55:medicina55080496. [PMID: 31426487 PMCID: PMC6723364 DOI: 10.3390/medicina55080496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
Background and Objectives: Intercellular signaling networks with high complexity cause a spectrum of mechanisms achieving chronic obstructive pulmonary disease (COPD) that still question many uncertainties. Materials and Methods: Immunoreactive cells in bronchial tissue obtained from 40 COPD patients and 49 healthy control subjects were detected by biotin-streptavidin immunohistochemistry method for the following markers of IL-1α, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, TNF-α, MMP-2, TIMP-2, TGF-β1, Hsp−70, hBD−2, hBD−3, hBD−4. Results: Overall the highest numbers (from mostly moderate (++) to abundance (++++)) of IL-1α, IL-4, IL-7, IL-8, IL-10, IL-12, MMP-2, TIMP-2, TGF-β1 immunoreactive cells were marked increasingly in the blood vessel wall, connective tissue, and bronchial epithelium of COPD-affected lung, respectively. We found statistically significant (p < 0.05) higher numbers of immunoreactive cells positive for all of examined interleukins, TNF-α, MMP-2, TIMP-2, TGF-β1, hBD-2, and hBD-3 in the COPD-affected lung compared to the control group, but not for Hsp-70 and hBD-4. Conclusions: COPD-affected lung tissue exhibits mostly inflammatory response patterns of increased IL-1α, IL-4, IL-8, IL-12, and TNF-α, especially in the airway epithelium. Increased MMP-2 and TGF-β1, but decreased Hsp-70, proposes pronounced tissue damage and remodeling in COPD. High numbers of hBD-2 and hBD-3 immunoreactive cells may highlight antimicrobial activity in COPD within stable regulation of local immunity.
Collapse
Affiliation(s)
- Zane Vitenberga
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia.
| | - Māra Pilmane
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Aurika Babjoniševa
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
- Pauls Stradins Clinical University Hospital, Pilsonu street 13, LV-1002 Riga, Latvia
| |
Collapse
|
6
|
Ravi A, Chowdhury S, Dijkhuis A, Bonta PI, Sterk PJ, Lutter R. Neutrophilic inflammation in asthma and defective epithelial translational control. Eur Respir J 2019; 54:13993003.00547-2019. [PMID: 31109984 DOI: 10.1183/13993003.00547-2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/10/2019] [Indexed: 01/25/2023]
Abstract
Neutrophilic inflammation in asthma is associated with interleukin (IL)-17A, corticosteroid-insensitivity and bronchodilator-induced forced expiratory volume in 1 s (FEV1) reversibility. IL-17A synergises with tumour necrosis factor (TNF)-α in the production of the neutrophil chemokine CXCL-8 by primary bronchial epithelial cells (PBECs).We hypothesised that local neutrophilic inflammation in asthma correlates with IL-17A and TNF-α-induced CXCL-8 production by PBECs from asthma patients.PBECs from most asthma patients displayed an exaggerated CXCL-8 production in response to TNF-α and IL-17A, but not to TNF-α alone, and which was also insensitive to corticosteroids. This hyperresponsiveness of PBECs strongly correlated with CXCL-8 levels and neutrophil numbers in bronchoalveolar lavage from the corresponding patients, but not with that of eosinophils. In addition, this hyperresponsiveness also correlated with bronchodilator-induced FEV1 % reversibility. At the molecular level, epithelial hyperresponsiveness was associated with failure of the translational repressor T-cell internal antigen-1 related protein (TiAR) to translocate to the cytoplasm to halt CXCL-8 production, as confirmed by TiAR knockdown. This is in line with the finding that hyperresponsive PBECs also produced enhanced levels of other inflammatory mediators.Hyperresponsive PBECs in asthma patients may underlie neutrophilic and corticosteroid-insensitive inflammation and a reduced FEV1, irrespective of eosinophilic inflammation. Normalising cytoplasmic translocation of TiAR is a potential therapeutic target in neutrophilic, corticosteroid-insensitive asthma.
Collapse
Affiliation(s)
- Abilash Ravi
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Saheli Chowdhury
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Annemiek Dijkhuis
- Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Peter I Bonta
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands
| | - Peter J Sterk
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands
| | - René Lutter
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands .,Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Zhu R, Xie X, Wang N, Chen L, Hong Y. The T helper type 17/regulatory T cell imbalance was associated with Ras-GTPase overexpression in patients with pulmonary hypertension associated with chronic obstructive pulmonary disease. Immunology 2019; 157:304-311. [PMID: 31141166 DOI: 10.1111/imm.13084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Pulmonary hypertension (PH) is a common but dangerous complication in chronic obstructive pulmonary disease (COPD). We hypothesized that dysregulation in the T helper type 17 (Th17) compartment could contribute to the development of COPD-associated PH (COPD-PH). To investigate this hypothesis, patients with COPD-PH and age- and sex-matched healthy controls were recruited, and their circulating CD4+ T cells were activated using anti-CD3/CD28 antibodies. The frequency of interleukin-17 (IL-17) -secreting cells was significantly higher in COPD-PH patients than in healthy controls. The secretion of IL-17 was significantly higher from COPD-PH CD4+ T cells than from control CD4+ T cells, whereas the secretion of interferon-γ and IL-4 was not significantly different. The expression of transforming growth factor-β, on the other hand, was significantly higher in healthy controls than in COPD-PH patients. Activated CD4+ T cells from COPD-PH patients also presented significantly lower forkhead box P3 (FOXP3) and higher retinoic acid receptor-related orphan C2 (RORC2) expression than CD4+ T cells from healthy controls. In both controls and patients, a negative correlation between RORC2 and FOXP3 was found, ex vivo and after CD3/CD28 activation. The serum IL-6 level was slightly higher in COPD-PH patients than in controls, but the IL-6 transcription by monocytes was comparable in COPD-PH patients and controls. Interestingly, CD4+ T cells from COPD-PH patients presented significantly higher levels of Kirsten rat sarcoma viral oncogene homolog and neuroblastoma RAS viral oncogene homolog than CD4+ T cells from healthy controls. Inhibiting Ras-GTPases using farnesylthiosalicylic acid significantly reduced the ratio of RORC2/FOXP3 expression in CD4+ T cells. Overall, we demonstrated that an imbalance of Th17/regulatory T cells was a hallmark of COPD-PH.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Respiratory and Critical Medicine, The Affiliated Huaian No.1, People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xiaochen Xie
- Department of Respiratory and Critical Medicine, The Affiliated Huaian No.1, People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Nana Wang
- Department of Respiratory and Critical Medicine, The Affiliated Huaian No.1, People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Liang Chen
- Department of Respiratory and Critical Medicine, The Affiliated Huaian No.1, People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Yongqing Hong
- Department of Respiratory and Critical Medicine, The Affiliated Huaian No.1, People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
8
|
Rodiño-Janeiro BK, Pardo-Camacho C, Santos J, Martínez C. Mucosal RNA and protein expression as the next frontier in IBS: abnormal function despite morphologically intact small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2019; 316:G701-G719. [PMID: 30767681 DOI: 10.1152/ajpgi.00186.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.
Collapse
Affiliation(s)
- Bruno Kotska Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| |
Collapse
|
9
|
Golebski K, Ros XR, Nagasawa M, van Tol S, Heesters BA, Aglmous H, Kradolfer CMA, Shikhagaie MM, Seys S, Hellings PW, van Drunen CM, Fokkens WJ, Spits H, Bal SM. IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nat Commun 2019; 10:2162. [PMID: 31089134 PMCID: PMC6517442 DOI: 10.1038/s41467-019-09883-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Innate lymphoid cells (ILCs) are crucial for the immune surveillance at mucosal sites. ILCs coordinate early eradication of pathogens and contribute to tissue healing and remodeling, features that are dysfunctional in patients with cystic fibrosis (CF). The mechanisms by which ILCs contribute to CF-immunopathology are ill-defined. Here, we show that group 2 ILCs (ILC2s) transdifferentiated into IL-17-secreting cells in the presence of the epithelial-derived cytokines IL-1β, IL-23 and TGF-β. This conversion is abrogated by IL-4 or vitamin D3. IL-17 producing ILC2s induce IL-8 secretion by epithelial cells and their presence in nasal polyps of CF patients is associated with neutrophilia. Our data suggest that ILC2s undergo transdifferentiation in CF nasal polyps in response to local cytokines, which are induced by infectious agents.
Collapse
Affiliation(s)
- Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Xavier R Ros
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Maho Nagasawa
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Sophie van Tol
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Balthasar A Heesters
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Hajar Aglmous
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Chantal M A Kradolfer
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Medya M Shikhagaie
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Sven Seys
- Department of Immunology and Microbiology, Lab of Clinical Immunology, KU Leuven, Belgium Herestraat 49-box 1030, BE-3000, Leuven, Belgium
| | - P W Hellings
- Department of Immunology and Microbiology, Lab of Clinical Immunology, KU Leuven, Belgium Herestraat 49-box 1030, BE-3000, Leuven, Belgium
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands.
| | - Suzanne M Bal
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| |
Collapse
|
10
|
Setiadi AF, Abbas AR, Jeet S, Wong K, Bischof A, Peng I, Lee J, Bremer M, Eggers EL, DeVoss J, Staton T, Herman A, von Büdingen HC, Townsend MJ. IL-17A is associated with the breakdown of the blood-brain barrier in relapsing-remitting multiple sclerosis. J Neuroimmunol 2019; 332:147-154. [PMID: 31034962 DOI: 10.1016/j.jneuroim.2019.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/29/2023]
Abstract
IL-17 has been implicated in the pathogenesis of multiple sclerosis (MS). Here, we show that blockade of IL-17A, but not IL-17F, attenuated experimental autoimmune encephalomyelitis (EAE). We further show that IL-17A levels were elevated in the CSF of relapsing-remitting MS (RRMS) patients and that they correlated with the CSF/serum albumin quotient (Qalb), a measure of blood-brain barrier (BBB) dysfunction. We then demonstrated that the combination of IL-17A and IL-6 reduced the expression of tight junction (TJ)-associated genes and disrupted monolayer integrity in the BBB cell line hCMEC/D3. However, unlike IL-17A, IL-6 in the CSF from RRMS patients did not correlate with Qalb. These data highlight the potential importance of targeting IL-17A in preserving BBB integrity in RRMS.
Collapse
Affiliation(s)
| | | | - Surinder Jeet
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kit Wong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Antje Bischof
- Weill Institute for Neurosciences, Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, California 94158, USA; Neurology and Neurologic Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Ivan Peng
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James Lee
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meire Bremer
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erica L Eggers
- Weill Institute for Neurosciences, Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Jason DeVoss
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tracy Staton
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ann Herman
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - H-Christian von Büdingen
- Weill Institute for Neurosciences, Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | | |
Collapse
|
11
|
Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, Pękala E, Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci 2018; 75:3943-3961. [PMID: 30101406 PMCID: PMC6182337 DOI: 10.1007/s00018-018-2899-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor β, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.
Collapse
Affiliation(s)
- Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
12
|
The evaluation of inflammatory, anti-inflammatory and regulatory factors contributing to the pathogenesis of COPD in airways. Pathol Res Pract 2018; 215:97-105. [PMID: 30392917 DOI: 10.1016/j.prp.2018.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a progressive chronic disease leading to obstructive lung airways and airflow limitations. The background of COPD is extensive cytopathology and histopathology orchestrated by mostly chronic inflammation with the local release of inflammatory, anti-inflammatory and regulatory mediators, as well as further remodeling and shaping of local architecture. Inflammatory mechanisms are provided by complex intercellular signalling networks and regulation of locally occurring immune responses. MATERIAL AND METHODS In this study, lung tissue specimens obtained from 33 COPD patients and 49 control patients were analysed. Tissue samples were examined by hematoxylin and eosin staining. Immunoreactive cells positive for interleukin (IL)-1α (IL-1α), IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, and tumour necrosis factor-α (TNF-α) were detected by an immunohistochemistry (IHC) method. RESULTS We evaluated overall higher numbers of IL-7, IL-8 and IL-10 (mostly from few (0/+) to almost abundance (++++)) and overall less numbers of IL-1α and IL-6 (mostly from no positive (0) to numerous to abundance (+++/++++)) immunoreactive cells in airway epithelium and connective tissue of COPD affected lung. Furthermore, we evaluated statistically significant (P < 0.05) higher numbers of immunoreactive cells located in control group airway epithelium for IL-4, IL-6, IL-7, IL-10, and IL-12 compared to mucosal and submucosal connective tissue. Moreover, in COPD group airway epithelium for IL-1α, IL-4, IL-6, IL-7, IL-8, and IL-10. We found no statistically significant difference between the numbers of IL-12 and TNF-α immunoreactive cells in airway epithelium and connective tissue of COPD affected lung. In comparison with the control group, we found statistically significant (P < 0.05) higher numbers of immunoreactive cells positive for all examined markers in COPD group. CONCLUSIONS Increased numbers of IL-1α, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, and TNF-α immunoreactive cells highlight the local significance of these markers in COPD pathogenesis. Moreover, the pattern with dominance of immunoreactive cells in COPD affected airway epithelium over connective tissue is highlighting the essentials of epithelium in inflammatory signalling.
Collapse
|
13
|
Gong GQ, Ren FF, Wang YJ, Wan L, Chen S, Yuan J, Yang CM, Liu BH, Kong WJ. Expression of IL-17 and syndecan-1 in nasal polyps and their correlation with nasal polyps. ACTA ACUST UNITED AC 2017; 37:412-418. [DOI: 10.1007/s11596-017-1749-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Indexed: 01/13/2023]
|
14
|
Mori K, Fujisawa T, Kusagaya H, Yamanaka K, Hashimoto D, Enomoto N, Inui N, Nakamura Y, Maekawa M, Suda T. Synergistic Proinflammatory Responses by IL-17A and Toll-Like Receptor 3 in Human Airway Epithelial Cells. PLoS One 2015; 10:e0139491. [PMID: 26418032 PMCID: PMC4587973 DOI: 10.1371/journal.pone.0139491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/13/2015] [Indexed: 12/18/2022] Open
Abstract
Viral respiratory infections activate the innate immune response in the airway epithelium through Toll-like receptors (TLRs) and induce airway inflammation, which causes acute exacerbation of asthma. Although increases in IL-17A expression were observed in the airway of severe asthma patients, the interaction between IL-17A and TLR activation in airway epithelium remains poorly understood. In this study, we demonstrated that IL-17A and polyI:C, the ligand of TLR3, synergistically induced the expression of proinflammatory cytokines and chemokines (G-CSF, IL-8, CXCL1, CXCL5, IL-1F9), but not type I interferon (IFN-α1, -β) in primary culture of normal human bronchial epithelial cells. Synergistic induction after co-stimulation with IL-17A and polyI:C was observed from 2 to 24 hours after stimulation. Treatment with cycloheximide or actinomycin D had no effect, suggesting that the synergistic induction occurred without de novo protein synthesis or mRNA stabilization. Inhibition of the TLR3, TLR/TIR-domain-containing adaptor-inducing interferon β (TRIF), NF-κB, and IRF3 pathways decreased the polyI:C- and IL-17A/polyI:C-induced G-CSF and IL-8 mRNA expression. Comparing the levels of mRNA induction between co-treatment with IL-17A/polyI:C and treatment with polyI:C alone, blocking the of NF-κB pathway significantly attenuated the observed synergism. In western blotting analysis, activation of both NF-κB and IRF3 was observed in treatment with polyI:C and co-treatment with IL-17A/polyI:C; moreover, co-treatment with IL-17A/polyI:C augmented IκB-α phosphorylation as compared to polyI:C treatment alone. Collectively, these findings indicate that IL-17A and TLR3 activation cooperate to induce proinflammatory responses in the airway epithelium via TLR3/TRIF-mediated NF-κB/IRF3 activation, and that enhanced activation of the NF-κB pathway plays an essential role in synergistic induction after co-treatment with IL-17A and polyI:C in vitro.
Collapse
Affiliation(s)
- Kazutaka Mori
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
- * E-mail:
| | - Hideki Kusagaya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Katsumasa Yamanaka
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Dai Hashimoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| |
Collapse
|
15
|
Nolin JD, Tully JE, Hoffman SM, Guala AS, van der Velden JL, Poynter ME, van der Vliet A, Anathy V, Janssen-Heininger YMW. The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor κB family proteins. Free Radic Biol Med 2014; 73:143-53. [PMID: 24816292 PMCID: PMC4111997 DOI: 10.1016/j.freeradbiomed.2014.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Abstract
Interleukin-17A (IL-17A) is a newly emerging player in the pathogenesis of chronic lung diseases that amplifies inflammatory responses and promotes tissue remodeling. Stimulation of lung epithelial cells with IL-17A leads to activation of the transcription factor nuclear factor κB (NF-κB), a key player in the orchestration of lung inflammation. We have previously demonstrated the importance of the redox-dependent posttranslational modification S-glutathionylation in limiting activation of NF-κB and downstream gene induction. Under physiological conditions, the enzyme glutaredoxin 1 (Grx1) acts to deglutathionylate NF-κB proteins, which restores functional activity. In this study, we sought to determine the impact of S-glutathionylation on IL-17A-induced NF-κB activation and expression of proinflammatory mediators. C10 mouse lung alveolar epithelial cells or primary mouse tracheal epithelial cells exposed to IL-17A show rapid activation of NF-κB and the induction of proinflammatory genes. Upon IL-17A exposure, sulfenic acid formation and S-glutathionylated proteins increased. Assessment of S-glutathionylation of NF-κB pathway components revealed S-glutathionylation of RelA (RelA-SSG) and inhibitory κB kinase α (IKKα-SSG) after stimulation with IL-17A. SiRNA-mediated ablation of Grx1 increased both RelA-SSG and IKKα-SSG and acutely increased nuclear content of RelA and tended to decrease nuclear RelB. SiRNA-mediated ablation or genetic ablation of Glrx1 decreased the expression of the NF-κB-regulated genes KC and CCL20 in response to IL-17A, but conversely increased the expression of IL-6. Last, siRNA-mediated ablation of IKKα attenuated nuclear RelA and RelB content and decreased expression of KC and CCL20 in response to IL-17A. Together, these data demonstrate a critical role for the S-glutathionylation/Grx1 redox axis in regulating IKKα and RelA S-glutathionylation and the responsiveness of epithelial cells to IL-17A.
Collapse
Affiliation(s)
- James D Nolin
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jane E Tully
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Sidra M Hoffman
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Amy S Guala
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jos L van der Velden
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Matthew E Poynter
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Albert van der Vliet
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Vikas Anathy
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
16
|
Interleukin-6 is associated with steroid resistance and reflects disease activity in severe pediatric ulcerative colitis. J Crohns Colitis 2013; 7:916-22. [PMID: 23339932 DOI: 10.1016/j.crohns.2012.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/08/2012] [Accepted: 12/26/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIM Approximately one third of patients with acute severe ulcerative colitis (ASC) will fail intravenous corticosteroids (IVCS). Predicting response to IVCS to initiate early salvage therapy remains challenging. The aim of this study was to evaluate the role of serum inflammatory cytokines in ASC and determine their predictive utility with IVCS treatment failure. METHODS This preplanned ancillary study, part of the prospective multicenter OSCI study, evaluated pediatric ASC in North America. Serum samples were obtained from 79 children admitted for ASC on the third day of IVCS treatment. Twenty-three (29%) patients required second-line therapy. ELISA-based cytokine arrays were used [TNF-α, IFN-γ, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, and IL-17], selected based on a systematic literature search. RESULTS In univariate analysis, only IL-6 was significantly different between responders and non-responders (P=0.003). The risk for IVCS failure increased by 40% per each pg/mL increase in IL-6 level. Factor analysis found IL-6 to be associated with IL-17, suggesting involvement of the T-helper (TH)17 pathway. In a multivariate analysis, disease activity [judged by the Pediatric UC Activity Index (PUCAI)] assumed all the association with the treatment outcome while IL-6 was no longer significant (P=0.32; PUCAI score P<0.001). CONCLUSIONS While IL-6 strongly predicted IVCS failure, it likely reflects disease activity and not direct interference with corticosteroid pathway. Nonetheless, IL-6 levels may have a role in predicting IVCS response in severe pediatric UC for treatment decision-making or potentially in medical intervention by virtue of anti-IL-6 antibodies in severe UC.
Collapse
|
17
|
Chowdhury S, Dijkhuis A, Steiert S, Lutter R. IL-17 attenuates degradation of ARE-mRNAs by changing the cooperation between AU-binding proteins and microRNA16. PLoS Genet 2013; 9:e1003747. [PMID: 24086143 PMCID: PMC3784493 DOI: 10.1371/journal.pgen.1003747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/10/2013] [Indexed: 01/25/2023] Open
Abstract
Interleukin 17A (IL-17), a mediator implicated in chronic and severe inflammatory diseases, enhances the production of pro-inflammatory mediators by attenuating decay of the encoding mRNAs. The decay of many of these mRNAs depends on proteins (AUBps) that target AU-rich elements in the 3′-untranslated region of mRNAs and facilitate either mRNA decay or stabilization. Here we show that AUBps and the target mRNA assemble in a novel ribonucleoprotein complex in the presence of microRNA16 (miR16), which leads to the degradation of the target mRNA. Notably, IL-17 attenuates miR16 expression and promotes the binding of stabilizing AUBps over that of destabilizing AUBps, reducing mRNA decay. These findings indicate that miR16 independently of a seed sequence, directs the competition between degrading and stabilizing AUBps for target mRNAs. Since AUBps affect expression of about 8% of the human transcriptome and miR16 is ubiquitously expressed, IL-17 may in addition to inflammation affect many other cellular processes. Inflammation is driven by inflammatory mediators. Interleukin 17A (IL-17) is implicated in chronic and severe inflammation and exaggerates production of inflammatory mediators. This is due, at least in part, to the IL-17-attenuated degradation of mRNAs encoding these inflammatory mediators, but the underlying mechanism has remained elusive. Most of these mRNAs contain AU-rich elements in their 3′-untranslated region and are targeted by AU-binding proteins (AUBps) that promote either mRNA degradation or stabilization. Here we show that IL-17 directs the AU-mediated mRNA degradation (AMD pathway) by modulating the interaction of degrading and stabilizing AUBps via microRNA16 (miR16). Whereas microRNAs target mRNAs to the RISC pathway for degradation by binding to a seed sequence, miR16 drives degradation by the AMD pathway without an apparent seed sequence. Transcriptome analyses have revealed that the expression of 8% of all eukaryotic transcripts is dependent on the AMD pathway. Therefore, the impact of IL-17 on inflammatory diseases may extend beyond the production of inflammatory mediators to processes like tissue repair, cell cycle, etc. In addition, targeting AUBp and/or miR16 may provide a novel therapeutic option to combat the IL-17 axis of inflammation.
Collapse
Affiliation(s)
- Saheli Chowdhury
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Annemiek Dijkhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sabrina Steiert
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Herbert C, Shadie AM, Kumar RK. Interleukin-17 signalling in a murine model of mild chronic asthma. Int Arch Allergy Immunol 2013; 162:253-62. [PMID: 24022125 DOI: 10.1159/000353247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The role of Th17 cell-derived cytokines in the pathogenesis of airway inflammation and remodelling in mild asthma remains unclear. We investigated this in a mouse model which reproduces most of the features of the human disease. METHODS Systemically sensitised BALB/c mice were challenged via the airways with a low mass concentration of ovalbumin aerosol for 8 weeks to induce lesions of mild chronic asthma. Changes were compared with those in animals deficient in signalling via the interleukin (IL)-17 receptor A (IL-17R). Low-passage airway epithelial cells (AEC) and fibroblasts were cultured with IL-17A, or with media from Th17-polarised cells, to assess activation. RESULTS In CD4+ T cells from chronically challenged mice, expression of mRNA for Th17 cytokines IL-17A, IL-17F, IL-21 and IL-22 was significantly increased. Both recombinant IL-17A and media from Th17 cells significantly stimulated the production of various pro-inflammatory and pro-remodelling cytokines by AEC and fibroblasts. In the mouse model, abrogation of IL-17R signalling had no effect on the development of airway inflammation or on most changes of remodelling. However, numbers of mucus-producing cells and expression of mRNA for Gob-5 were attenuated in the absence of IL-17R signalling. CONCLUSIONS Although IL-17A and Th17 cells stimulate cytokine production by structural cells of the airways, and Th17 cells are induced in our model of mild chronic asthma, signalling via IL-17R did not contribute significantly to the development of airway inflammation and most changes of remodelling in this model. However, in mild asthma, IL-17A appears to have a role in the goblet cell response in the airways.
Collapse
Affiliation(s)
- Cristan Herbert
- Inflammation and Infection Research, Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
| | | | | |
Collapse
|
19
|
Tipton DA, Cho S, Zacharia N, Dabbous MK. Inhibition of interleukin-17-stimulated interleukin-6 and -8 production by cranberry components in human gingival fibroblasts and epithelial cells. J Periodontal Res 2013; 48:638-46. [DOI: 10.1111/jre.12050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2013] [Indexed: 01/28/2023]
Affiliation(s)
- D. A. Tipton
- College of Dentistry; The University of Tennessee Health Science Center; Memphis TN USA
- Department of Bioscience Research; The University of Tennessee Health Science Center; Memphis TN USA
| | - S. Cho
- College of Dentistry; The University of Tennessee Health Science Center; Memphis TN USA
| | - N. Zacharia
- College of Dentistry; The University of Tennessee Health Science Center; Memphis TN USA
| | - M. K. Dabbous
- College of Dentistry; The University of Tennessee Health Science Center; Memphis TN USA
- Department of Bioscience Research; The University of Tennessee Health Science Center; Memphis TN USA
- College of Medicine; The University of Tennessee Health Science Center; Memphis TN USA
- Department of Microbiology, Immunology and Biochemistry; The University of Tennessee Health Science Center; Memphis TN USA
| |
Collapse
|
20
|
Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. ANNUAL REVIEW OF PATHOLOGY 2013; 8:477-512. [PMID: 23157335 PMCID: PMC3965671 DOI: 10.1146/annurev-pathol-011110-130318] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent discovery of a new CD4+ T cell subset, Th17, has transformed our understanding of the pathogenetic basis of an increasing number of chronic immune-mediated diseases. Particularly in tissues that interface with the microbial environment-such as the intestinal and respiratory tracts and the skin-where most of the Th17 cells in the body reside, dysregulated immunity to self (or the extended self, the diverse microbiota that normally colonize these tissues) can result in chronic inflammatory disease. In this review, we focus on recent advances in the biology of the Th17 pathway and on genome-wide association studies that implicate this immune pathway in human disease involving these tissues.
Collapse
Affiliation(s)
- Casey T. Weaver
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Charles O. Elson
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lynette A. Fouser
- Inflammation & Immunology Research Unit, Pfizer Worldwide R&D, Cambridge, MA 02140
| | - Jay K. Kolls
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
21
|
Rincon M, Irvin CG. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci 2012; 8:1281-90. [PMID: 23136556 PMCID: PMC3491451 DOI: 10.7150/ijbs.4874] [Citation(s) in RCA: 411] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 08/14/2012] [Indexed: 12/21/2022] Open
Abstract
The incidence and severity of chronic lung diseases is growing and affects between 100 and 150 million people worldwide and is associated with a significant rate of mortality. Unfortunately, the initial cause that triggers most chronic lung diseases remains unknown and current available therapies only ameliorate, but do not cure the disease. Thus, there is a need for identification of new targets and development of novel therapies especially for those most severely affected. IL-6, like other inflammatory cytokines, has been shown to be elevated in different lung diseases, but it was considered a byproduct of ongoing inflammation in the lung. However, recent studies support a dissociation of IL-6 from inflammation in the lung and suggest that this cytokine plays an active role in pathogenesis of asthma and, in all likelihood, COPD. IL-6 may therefore be a germane target for treatment of these and other chronic lung disease. Here, we provide an overview of the studies in mouse models and human patients that provide support for the involvement of IL-6 in lung diseases.
Collapse
Affiliation(s)
- Mercedes Rincon
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
22
|
Abstract
In multiple sclerosis, type I interferon (IFN) is considered immune-modulatory, and recombinant forms of IFN-β are the most prescribed treatment for this disease. This is in contrast to most other autoimmune disorders, because type I IFN contributes to the pathologies. Even within the relapsing-remitting multiple sclerosis (RRMS) population, 30-50% of MS patients are non-responsive to this treatment, and it consistently worsens neuromyelitis optica, a disease similar to RRMS. In this article, we discuss the recent advances in the field of autoimmunity and introduce the theory explain how type I IFNs can be pro-inflammatory in disease that is predominantly driven by a Th17 response and are therapeutic when disease is predominantly Th1.
Collapse
Affiliation(s)
- Robert C Axtell
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305-5316, USA.
| | | |
Collapse
|
23
|
Aujla SJ, Alcorn JF. T(H)17 cells in asthma and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:1066-79. [PMID: 21315804 DOI: 10.1016/j.bbagen.2011.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/25/2011] [Accepted: 02/02/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND The chronic airway disease asthma causes significant burden to patients as well as the healthcare system with limited options for prevention or cure. Inadequate treatment strategies are most likely due to the complex heterogeneous nature of asthma. Furthermore, the severe asthma phenotype is characterized by the lack of a response to standard medication, namely, corticosteroids. SCOPE OF REVIEW In the last several years it has been shown that the eosinophilic/atopic phenotype of asthma driven by T(H)2 mechanisms is not the only immunologic pathway contributing to disease. In fact, there has been evidence revealing that severe asthmatics in particular have neutrophilic inflammation, and this is associated with corticosteroid resistance. T(H)17 cells, a recently discovered lineage of T helper cells, play an important role in lung host defense against multiple pathogens via production of the cytokine IL-17. IL-17 promotes neutrophil production and chemotaxis via multiple factors. MAJOR CONCLUSIONS Mouse and human studies provide robust evidence that T(H)17 cells and IL-17 play a role in severe asthma and may contribute to corticosteroid resistance. GENERAL SIGNIFICANCE As we learn more about T(H)17 cells in severe asthma, the goal is to potentially target this pathway for treatment in the hope of significantly improving the quality of life for those children and adults affected with this disease. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Shean J Aujla
- Department of Pedaitrics, Children's Hospital of Pittsburgh of UPMC, Pitsburgh, PA 15224, USA
| | | |
Collapse
|
24
|
Abstract
Background—
Interleukin-17 (IL-17), which is predominantly produced by T helper 17 cells distinct from T helper 1 or T helper 2 cells, participates in the pathogenesis of infectious, autoimmune, and allergic disorders. However, the precise role in allograft rejection remains uncertain. In the present study, we investigated the role of IL-17 in acute allograft rejection using IL-17-deficient mice.
Methods and Results—
Donor hearts from FVB mice were heterotopically transplanted into either C57BL/6J-IL-17-deficient (IL-17
−
/
−
) or -wild-type mice. Allograft survival was significantly prolonged in IL-17
−
/
−
recipient mice due to reduced local inflammation accompanied by decreased inflammatory cell recruitment and cytokine/chemokine expression. IL-17
−
/
−
recipient mice exhibited decreased IL-6 production and reciprocally enhanced regulatory T cell expansion, suggesting a contribution of regulatory T cells to prolonged allograft survival. Indeed, allografts transplanted into anti-CD25 mAb-treated IL-17
−
/
−
recipient mice (regulatory T cell-depleted) developed acute rejection similar to wild-type recipient mice. Surprisingly, we found that gamma delta T cells rather than CD4
+
and CD8
+
T cells were key IL-17 producers in the allografts. In support, equivalent allograft rejection was observed in Rag-2
−/−
recipient mice engrafted with either wild-type or IL-17
−
/
−
CD4
+
and CD8
+
T cells. Finally, hearts transplanted into gamma delta T cell-deficient mice resulted in decreased allograft rejection compared with wild-type controls.
Conclusions—
During heart transplantation, (1) IL-17 is crucial for acceleration of acute rejection; (2) IL-17-deficiency enhances regulatory T cell expansion; and (3) gamma delta T cells rather than CD4
+
and CD8
+
T cells are a potential source of IL-17. IL-17 neutralization may provide a potential target for novel therapeutic treatment for cardiac allograft rejection.
Collapse
|
25
|
Ness-Schwickerath KJ, Morita CT. Regulation and function of IL-17A- and IL-22-producing γδ T cells. Cell Mol Life Sci 2011; 68:2371-90. [PMID: 21573786 PMCID: PMC3152582 DOI: 10.1007/s00018-011-0700-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/21/2022]
Abstract
The regulation of IL-17A and IL-22 production differs between human and murine γδ T cells. We find that human γδ T cells expressing Vγ2Vδ2 T cell receptors are peripherally polarized to produce IL-17A or IL-22, much like CD4 αβ Th17 T cells. This requires IL-6, IL-1β, and TGF-β, whereas expansion and maintenance requires IL-23, IL-1β, and TGF-β. In contrast, IL-17A and IL-22 production by murine γδ T cells is innately programmed during thymic ontogeny but requires IL-23 and IL-1β for maintenance. Murine γδ cells producing IL-17A and IL-22 play important roles in microbial, autoimmune, and inflammatory responses. However, the roles played by human IL-17A- and IL-22-producing γδ T cells are less clear but are also likely to be important. These observations highlight differences between humans and murine γδ T cells and underscore the importance of IL-17A- and IL-22-producing γδ T cells.
Collapse
Affiliation(s)
- Kristin J. Ness-Schwickerath
- Division of Immunology, Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Craig T. Morita
- Division of Immunology, Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| |
Collapse
|
26
|
Abstract
The regulation of human Th17 cell effector function by Treg cells (regulatory T-cells) is poorly understood. In the present study, we report that human Treg (CD4(+)CD25(+)) cells inhibit the proliferative response of Th17 cells but not their capacity to secrete IL (interleukin)-17. However, they could inhibit proliferation and cytokine production by Th1 and Th2 cells as determined by IFN-γ (interferon-γ) and IL-5 biosynthesis. Currently, as there is interest in the role of IL-17-producing cells and Treg cells in chronic inflammatory diseases in humans, we investigated the presence of CD4(+)CD25(+) T-cells and IL-17 in inflammation in the human lung. Transcripts for IL-17 were expressed in mononuclear cells and purified T-cells from lung tissue of patients with chronic pulmonary inflammation and, when activated, these cells secrete soluble protein. The T-cell-specific transcription factors RORCv2 (retinoic acid-related orphan receptor Cv2; for Th17) and FOXP3 (forkhead box P3; for Treg cells) were enriched in the T-cell fraction of lung mononuclear cells. Retrospective stratification of the patient cohort into those with COPD (chronic obstructive pulmonary disease) and non-COPD lung disease revealed no difference in the expression of IL-17 and IL-23 receptor between the groups. We observed that CD4(+)CD25(+) T-cells were present in comparable numbers in COPD and non-COPD lung tissue and with no correlation between the presence of CD4(+)CD25(+) T-cells and IL-17-producing cells. These results suggest that IL-17-expressing cells are present in chronically inflamed lung tissue, but there is no evidence to support this is due to the recruitment or expansion of Treg cells.
Collapse
|
27
|
Fang JW, Li JCB, Au KY, Yim HCH, Lau ASY. Interleukin-17A differentially modulates BCG induction of cytokine production in human blood macrophages. J Leukoc Biol 2011; 90:333-41. [PMID: 21521755 DOI: 10.1189/jlb.0510311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The pathogenesis of Mtb depends in part on cytokine cross-regulation between macrophages and T cells in host immunity. Th17 cells produce IL-17A to induce granuloma formation and to restrict mycobacterial dissemination. IL-17A also mediates cytokine responses induced by proinflammatory cytokines such as TNF-α. Our previous results showed that BCG induces IL-6, IL-10, and TNF-α via activity of protein kinases, including dsRNA-activated serine/threonine protein kinase and glycogen synthase kinase-3 in primary human monocytes. Therefore, we investigated whether IL-17A, upon its induction by BCG, plays an additional role to aid the production of downstream proinflammatory cytokines in macrophages. Here, we showed that IL-17A enhanced IL-6 mRNA and protein levels inducible by BCG in a time- and dose-dependent manner, whereas it had no effect on IL-10 and TNF-α production. We also demonstrated that IL-17A activated the phosphorylation of ERK1/2 triggered by BCG. With the use of a specific chemical inhibitor of a MAPK/ERK-activating kinase (MEK1/2), we confirmed the correlation between the enhanced ERK1/2 activation and augmented IL-6 production. Additionally, we revealed that IL-17A acts in concert with BCG-induced TNF-α to enhance the level of IL-6 synthesis. Taken together, our results suggest a significant role of IL-17A to serve as a modulator of cytokine expression in innate immune response during mycobacterial infection.
Collapse
Affiliation(s)
- J W Fang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
28
|
Li NYK, Vodovotz Y, Hebda PA, Abbott KV. Biosimulation of inflammation and healing in surgically injured vocal folds. Ann Otol Rhinol Laryngol 2010; 119:412-23. [PMID: 20583741 DOI: 10.1177/000348941011900609] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The pathogenesis of vocal fold scarring is complex and remains to be deciphered. The current study is part of research endeavors aimed at applying systems biology approaches to address the complex biological processes involved in the pathogenesis of vocal fold scarring and other lesions affecting the larynx. METHODS We developed a computational agent-based model (ABM) to quantitatively characterize multiple cellular and molecular interactions involved in inflammation and healing in vocal fold mucosa after surgical trauma. The ABM was calibrated with empirical data on inflammatory mediators (eg, tumor necrosis factor) and extracellular matrix components (eg, hyaluronan) from published studies on surgical vocal fold injury in the rat population. RESULTS The simulation results reproduced and predicted trajectories seen in the empirical data from the animals. Moreover, the ABM studies suggested that hyaluronan fragments might be the clinical surrogate of tissue damage, a key variable that in these simulations both is enhanced by and further induces inflammation. CONCLUSIONS A relatively simple ABM such as the one reported in this study can provide new understanding of laryngeal wound healing and generate working hypotheses for further wet-lab studies.
Collapse
Affiliation(s)
- Nicole Y K Li
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
29
|
Mai J, Wang H, Yang XF. Th 17 cells interplay with Foxp3+ Tregs in regulation of inflammation and autoimmunity. Front Biosci (Landmark Ed) 2010; 15:986-1006. [PMID: 20515737 DOI: 10.2741/3657] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T helper 17 cells (Th17) are a new CD4+ T helper subset that has been implicated in inflammatory and autoimmune diseases. Th17, along with CD4(+)CD25(high) Foxp3(+) regulatory T cells (Tregs) and other new T helper subsets, have expanded the Th1-Th2 paradigm. Although this new eight-subset paradigm significantly improved our understanding on the differentiation and regulation of CD4+ T helper subsets, many questions remain to be answered. Here we will briefly review the following issues: a) Old Th1-Th2 paradigm versus new multi-subset paradigm; b) Structural features of IL-17 family cytokines; c) Th17 cells; d) Effects of IL-17 on various cell types and tissues; e) IL-17 receptor and signaling pathways; f) Th17-mediated inflammations; and g) Protective mechanisms of IL-17 in infections. Lastly, we will examine the interactions of Th17 and Treg in autoimmune diseases and inflammation: Th17 cells interplay with Tregs. Regulation of autoimmunity and inflammation lies in the interplays of the different T helper subsets, therefore, better understanding of these subsets' interactions would greatly improve our approaches in developing therapy to combat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jietang Mai
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
30
|
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) represent two classes of chronic obstructive lung disorders that may share some similar immunologic mechanisms of disease. Asthma is a complex human disease characterized by airway hyperresponsiveness (AHR) and inflammation, whereas COPD is marked by progressive emphysematic changes in the lung. Recently it has been shown that advanced COPD is characterized by lymphoid follicles, drawing attention to immunological mechanisms in COPD. Despite numerous studies in mice to elucidate the immunologic mechanisms of asthma, sufficient current treatment options are limited. Clinically, many asthma patients fail to satisfactorily respond to standard steroid therapy, and this type of steroid-resistant, severe asthma has been linked to the presence of neutrophilic inflammation in the lung. The role of neutrophils, macrophages, and their secreted proteases in COPD needs to be better defined. Recently, the T lymphocyte subset T(H)17 was shown to play a role in regulating neutrophilic and macrophage inflammation in the lung, suggesting a potential role for T(H)17 cells in severe, steroid-insensitive asthma and COPD.
Collapse
Affiliation(s)
- John F Alcorn
- Department of Pediatrics, Division of Pulmonology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15201, USA.
| | | | | |
Collapse
|
31
|
Fan XY, van den Berg A, Snoek M, van der Flier LG, Smids B, Jansen HM, Liu RY, Lutter R. Arginine deficiency augments inflammatory mediator production by airway epithelial cells in vitro. Respir Res 2009; 10:62. [PMID: 19575800 PMCID: PMC2714041 DOI: 10.1186/1465-9921-10-62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022] Open
Abstract
Background Previously we showed that reduced availability of the essential amino acid tryptophan per se attenuates post-transcriptional control of interleukin (IL)-6 and IL-8 leading to hyperresponsive production of these inflammatory mediators by airway epithelial cells. Availability of the non-essential amino acid arginine in the inflamed airway mucosa of patients with asthma is reduced markedly, but it is not known whether this can also lead to an exaggerated production of IL-6 and IL-8. Methods IL-6 and IL-8 were determined by ELISA in culture supernatants of NCI-H292 airway epithelial-like cells and normal bronchial epithelial (NHBE) cells that were exposed to TNF-α, LPS or no stimulus, in medium with or without arginine. Arginine deficiency may also result from exposure to poly-L-arginine or major basic protein (MBP), which can block arginine uptake. Epithelial cells were exposed to these polycationic proteins and L-14C-arginine uptake was assessed as well as IL-6 and IL-8 production. To determine the mode of action, IL-6 and IL-8 mRNA profiles over time were assessed as were gene transcription and post-transcriptional mRNA degradation. Results For both NCI-H292 and NHBE cells, low arginine concentrations enhanced basal epithelial IL-6 and IL-8 production and synergized with TNF-α-induced IL-6 and IL-8 production. Poly-L-arginine enhanced the stimulus-induced IL-6 and IL-8 production, however, blocking arginine uptake and the enhanced IL-6 and IL-8 production appeared unrelated. The exaggerated IL-6 and IL-8 production due to arginine deficiency and to poly-L-arginine depend on a post-transcriptional and a transcriptional process, respectively. Conclusion We conclude that both reduced arginine availability per se and the presence of polycationic proteins may promote airway inflammation by enhanced pro-inflammatory mediator production in airway epithelial cells, but due to distinct mechanisms.
Collapse
Affiliation(s)
- Xiao-Yun Fan
- Department of Pulmonology, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
SUMMARY Our understanding of the role of T cells in human disease is undergoing revision as a result of the discovery of T-helper 17 (Th17) cells, a unique CD4(+) T-cell subset characterized by production of interleukin-17 (IL-17). IL-17 is a highly inflammatory cytokine with robust effects on stromal cells in many tissues. Recent data in humans and mice suggest that Th17 cells play an important role in the pathogenesis of a diverse group of immune-mediated diseases, including psoriasis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and asthma. Initial reports also propose a role for Th17 cells in tumorigenesis and transplant rejection. Important differences, as well as many similarities, are emerging when the biology of Th17 cells in the mouse is compared with corresponding phenomena in humans. As our understanding of human Th17 biology grows, the mechanisms underlying many diseases are becoming more apparent, resulting in a new appreciation for both previously known and more recently discovered cytokines, chemokines, and feedback mechanisms. Given the strong association between excessive Th17 activity and human disease, new therapeutic approaches targeting Th17 cells are highly promising, but the potential safety of such treatments may be limited by the role of these cells in normal host defenses against infection.
Collapse
Affiliation(s)
- Laura A Tesmer
- Department of Internal Medicine, Division of Rheumatology, Rheumatic Disease Core Center, University of Michigan, Ann Arbor, MI 48109-5358, USA
| | | | | | | |
Collapse
|
33
|
Abstract
SUMMARY Our understanding of the role of T cells in human disease is undergoing revision as a result of the discovery of T-helper 17 (Th17) cells, a unique CD4(+) T-cell subset characterized by production of interleukin-17 (IL-17). IL-17 is a highly inflammatory cytokine with robust effects on stromal cells in many tissues. Recent data in humans and mice suggest that Th17 cells play an important role in the pathogenesis of a diverse group of immune-mediated diseases, including psoriasis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and asthma. Initial reports also propose a role for Th17 cells in tumorigenesis and transplant rejection. Important differences, as well as many similarities, are emerging when the biology of Th17 cells in the mouse is compared with corresponding phenomena in humans. As our understanding of human Th17 biology grows, the mechanisms underlying many diseases are becoming more apparent, resulting in a new appreciation for both previously known and more recently discovered cytokines, chemokines, and feedback mechanisms. Given the strong association between excessive Th17 activity and human disease, new therapeutic approaches targeting Th17 cells are highly promising, but the potential safety of such treatments may be limited by the role of these cells in normal host defenses against infection.
Collapse
Affiliation(s)
- Laura A Tesmer
- Department of Internal Medicine, Division of Rheumatology, Rheumatic Disease Core Center, University of Michigan, Ann Arbor, MI 48109-5358, USA
| | | | | | | |
Collapse
|
34
|
Nembrini C, Marsland BJ, Kopf M. IL-17-producing T cells in lung immunity and inflammation. J Allergy Clin Immunol 2009; 123:986-94; quiz 995-6. [PMID: 19410688 DOI: 10.1016/j.jaci.2009.03.033] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 11/19/2022]
Abstract
T(H)17 cells are a recently described effector CD4 T-cell subset characterized by the production of IL-17A, IL-17F, and IL-22, which have been implicated in the pathogenesis of several autoimmune diseases. T(H)17 and other IL-17A-producing T cells, including a population of gammadelta T cells and natural killer T cells, have also been associated with the development of skin, intestinal, and lung inflammatory diseases, such as asthma, granulomatous disease, chronic obstructive pulmonary disease, and cystic fibrosis. On the other hand, IL-17-producing T cells play important roles in protective immunity against some bacterial infections, mainly through the recruitment and activation of neutrophils. Thus, their regulation appears to be critical, and excess or deficient IL-17 elaboration leads either to deficient responses or disease. This review will summarize T(H)17 cell differentiation and discuss the host beneficial and detrimental function of IL-17A and related cytokines produced by different subpopulations of T cells.
Collapse
Affiliation(s)
- Chiara Nembrini
- Institute of Integrative Biology, Molecular Biomedicine, ETH, Zurich, Switzerland
| | | | | |
Collapse
|
35
|
Synergism between tumor necrosis factor alpha and interleukin-17 to induce IL-23 p19 expression in fibroblast-like synoviocytes. Mol Immunol 2009; 46:1854-9. [PMID: 19201028 DOI: 10.1016/j.molimm.2009.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/06/2009] [Indexed: 11/20/2022]
Abstract
In order to determine the mechanisms by which a chronic inflammatory network can be maintained in the arthritic joint, we examined whether fibroblast-like synoviocytes (FLS) could provide feedback signals after their stimulation by inflammatory cytokines. FLS and dermal fibroblasts (DF) were derived from rheumatoid arthritis (RA), osteoarthritis (OA) and post-trauma patients. These two cell types were then stimulated with 10 nanogram/ml of TNFalpha, IL-1beta and IL-17 alone or in combination treatments. Specific mRNA expression of IL-23 p19 was quantitated by real-time PCR and its protein by immunoprecipitation. A striking specific synergistic induction of IL-23 p19 versus IL-12 p35 mRNA expression was noted after stimulation with IL-17 and TNFalpha in FLS, and to a lesser degree in DF (p<0.043). This synergistic response was composed of an initial priming step by IL-17, thus making FLS hyperresponsive to TNFalpha-mediated stimulation. In contrast, IL-1beta mediated induction of IL-23 p19 expression was cell-specific. Induction of IL-23 p19 expression by IL-1beta was present in FLS but almost absent in the DF derived from the same patients. Furthermore, IL-1beta did not synergize with IL-17 to induce IL-23 p19 expression. Immunoprecipitation of FLS cellular lysates after stimulation with IL-17 and TNFalpha detected p19 protein and this was enhanced by the addition of IL-1beta. However, no co-immunoprecipitation of the p40 subunit of IL-23 was noted from the same cells. Thus, FLS are potently regulated by inflammatory cytokines to specifically express IL-23 p19. Additional byproducts of the inflammatory milieu may be required for the generation and secretion of bioactive IL-23.
Collapse
|
36
|
Abstract
Dry eye is a potent stimulus of both innate and adaptive immune systems. At the nexus of the dry eye inflammatory/immune response is the dynamic interplay between the ocular surface epithelia and the bone marrow-derived immune cells. On the one hand, ocular surface epithelial cells play a key initiating role in this inflammatory reaction. On the other hand, they are targets of cytokines produced by activated T cells that are recruited to the ocular surface in response to dry eye. This interaction between epithelial and immune cells in dry eye will be thoroughly reviewed.
Collapse
|
37
|
Venza I, Cucinotta M, Visalli M, De Grazia G, Oliva S, Teti D. Pseudomonas aeruginosa induces interleukin-8 (IL-8) gene expression in human conjunctiva through the recruitment of both RelA and CCAAT/enhancer-binding protein beta to the IL-8 promoter. J Biol Chem 2008; 284:4191-9. [PMID: 19064995 DOI: 10.1074/jbc.m805429200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to identify the Pseudomonas aeruginosa-activated signaling pathway leading to interleukin (IL)-8 gene expression and protein synthesis by human conjunctival epithelium. IL-8 protein and mRNA were determined by enzyme-linked immunosorbent assay and reverse transcription-PCR, respectively. Activation of MAPKs and NF-kappaB was analyzed by Western blotting using phosphospecific antibodies. We used transfection with wild-type or mutated IL-8 promoters and cotransfection with transcription factor overexpressing plasmids or small interfering RNAs. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) were performed for in vitro and in vivo protein-DNA binding studies, respectively. P. aeruginosa increased IL-8 expression at the transcriptional level by phosphorylating CCAAT/enhancer-binding protein beta (C/EBPbeta) via p38MAPK and activating NF-kappaB. The simultaneous involvement of RelA and C/EBPbeta and the integrity of the corresponding consensus sites were required, whereas c-Jun was involved only in basal IL-8 expression. Re-ChIP experiments showed that RelA and C/EBPbeta act together at the IL-8 promoter level upon P. aeruginosa infection. Taken together, our results suggest that P. aeruginosa induces IL-8 promoter expression and protein production in conjunctival epithelial cells by activating RelA and C/EBPbeta and by promoting the cooperative binding of these transcription factors to the IL-8 promoter that in turn activates transcription.
Collapse
Affiliation(s)
- Isabella Venza
- Departments of Surgical Specialties and Experimental Pathology and Microbiology, University of Messina, 98125 Messina, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Vandooren B, Cantaert T, Borg MT, Noordenbos T, Kuhlman R, Gerlag D, Bongartz T, Reedquist K, Tak PP, Baeten D. Tumor necrosis factor α drives cadherin 11 expression in rheumatoid inflammation. ACTA ACUST UNITED AC 2008; 58:3051-62. [DOI: 10.1002/art.23886] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Abstract
The identification of novel helper T (Th) cell subsets, i.e., IL-17-producing Th cells (Th17 cells) and regulatory T cells (Treg cells), provided new insight into our understanding of the molecular mechanisms involved in the development of infectious and autoimmune diseases as well as immune responses, and thus led to revision of the classic Th1/Th2 paradigm. Several current lines of evidence from gene-deficient mice indicate that IL-17 and Th17 cells, but not IFN-gamma and Th1 cells, are responsible for the development of autoimmune diseases such as murine arthritis and encephalomyelitis, which have classically been considered to be Th1-mediated disorders. Th17 cells may also contribute to the pathogenesis of classically recognized Th2-mediated allergic disorders. In this review, we summarize the current knowledge regarding IL-17 and Th17 cells and discuss their potential roles in the pathogenesis of allergic disorders.
Collapse
Affiliation(s)
- Keisuke Oboki
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Toyko, Japan
| | | | | | | |
Collapse
|
40
|
Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, Antonini JM, Feng WH, Kommineni C, Reynolds J, Barchowsky A, Castranova V, Kagan VE. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 2007; 38:579-90. [PMID: 18096873 DOI: 10.1165/rcmb.2007-0255oc] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carbon nanotubes (CNT), with their applications in industry and medicine, may lead to new risks to human health. CNT induce a robust pulmonary inflammation and oxidative stress in rodents. Realistic exposures to CNT may occur in conjunction with other pathogenic impacts (microbial infections) and trigger enhanced responses. We evaluated interactions between pharyngeal aspiration of single-walled CNT (SWCNT) and bacterial pulmonary infection of C57BL/6 mice with Listeria monocytogenes (LM). Mice were given SWCNT (0, 10, and 40 mug/mouse) and 3 days later were exposed to LM (10(3) bacteria/mouse). Sequential exposure to SWCNT/LM amplified lung inflammation and collagen formation. Despite this robust inflammatory response, SWCNT pre-exposure significantly decreased the pulmonary clearance of LM-exposed mice measured 3 to 7 days after microbial infection versus PBS/LM-treated mice. Decreased bacterial clearance in SWCNT-pre-exposed mice was associated with decreased phagocytosis of bacteria by macrophages and a decrease in nitric oxide production by these phagocytes. Pre-incubation of naïve alveolar macrophages with SWCNT in vitro also resulted in decreased nitric oxide generation and suppressed phagocytizing activity toward LM. Failure of SWCNT-exposed mice to clear LM led to a continued elevation in nearly all major chemokines and acute phase cytokines into the later course of infection. In SWCNT/LM-exposed mice, bronchoalveolar lavage neutrophils, alveolar macrophages, and lymphocytes, as well as lactate dehydrogenase level, were increased compared with mice exposed to SWCNT or LM alone. In conclusion, enhanced acute inflammation and pulmonary injury with delayed bacterial clearance after SWCNT exposure may lead to increased susceptibility to lung infection in exposed populations.
Collapse
Affiliation(s)
- Anna A Shvedova
- Pathology/Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schmidt-Weber CB, Akdis M, Akdis CA. TH17 cells in the big picture of immunology. J Allergy Clin Immunol 2007; 120:247-54. [PMID: 17666214 DOI: 10.1016/j.jaci.2007.06.039] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 06/25/2007] [Accepted: 06/29/2007] [Indexed: 02/02/2023]
Abstract
The pathogenesis of chronic inflammatory diseases is assumed to depend on activated T cells interacting with resident tissue cells or migratory inflammatory cells. The discovery of new T-cell subsets such as the IL-17-producing T(H)17 and T-regulatory cells innovated our understanding of T-cell biology. Studies on new subsets confirm the important role of T cells in the instruction of tissue cells and also demonstrate the important role of feedback regulation for the polarization toward distinct T-cell subsets. The understanding of IL-17 and T(H)17 differentiation pathways has also changed the perspective of immunologists regarding the basis of chronic tissue inflammation, particularly where T(H)1 cells were considered as driving force of the pathology. This review summarizes the recent developments on T(H) cell subsets and integrates these findings into existing concepts of immunopathologic mechanisms.
Collapse
|
42
|
Bjornsson GL, Thorsteinsson L, Gudmundsson KO, Jonsson H, Gudmundsson S, Gudbjornsson B. Inflammatory cytokines in relation to adrenal response following total hip replacement. Scand J Immunol 2007; 65:99-105. [PMID: 17212773 DOI: 10.1111/j.1365-3083.2006.01872.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Our objective was to investigate the initiation and course of pro- and anti-inflammatory cytokines in early inflammatory response and to elucidate the cytokine system in relation to the adrenal response caused by stress. Seven blood samples were collected, pre- and postoperatively (0-72 h) after total hip replacement (THR) due to osteoarthritis. The following cytokines were measured using Cytometric Bead Array: interleukin-1beta (IL-1beta), IL-6, tumour necrosis factor-alpha, IL-8, IL-12 and IL-10 (B&D). Thirteen patients took part in the study (67 +/- 9 years). C-reactive protein increased from <6 to over 200 mg/l on the second post-op day. The concentration of IL-6 increased 10-fold just 3 h post-op (4-47 pg/ml) and reached its maximum value 6 h post-op (77 pg/ml; Wilcoxon test P < 0.01) Repeated measurements were also significant (Friedman P < 0.05). The concentration of IL-8 doubled the day of surgery but did not reach a significant level (Friedman test =0.069). None of the other cytokines showed any significant changes. The diurnal cortisol rhythm was interrupted after the surgery and there was a significant correlation between the cortisol secretion and IL-6 response. This study demonstrates an isolated elevation in IL-6 levels with only a minor elevation in IL-8 following THR. This pro-inflammatory response seemed to decline without activation of anti-inflammatory cytokines (IL-10), but cortisol seemed to play a complicated role in halting the acute inflammatory response.
Collapse
Affiliation(s)
- G L Bjornsson
- Centre for Rheumatology Research, Landspitali-University Hospital, Reykjavik, Iceland
| | | | | | | | | | | |
Collapse
|
43
|
Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS. IL-17 enhances IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 292:L1023-9. [PMID: 17189320 DOI: 10.1152/ajplung.00306.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies into the pathogenesis of airway disorders such as asthma have revealed a dynamic role for airway smooth muscle cells in the perpetuation of airway inflammation via secretion of cytokines and chemokines. In this study, we evaluated whether IL-17 could enhance IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells (HASMC) and investigated the upstream and downstream signaling events regulating the induction of CXCL-8. CXCL-8 mRNA and protein induction were assessed by real-time RT-PCR and ELISA from primary HASMC cultures. HASMC transfected with site-mutated activator protein (AP)-1/NF-kappaB CXCL-8 promoter constructs were treated with selective p38, MEK1/2, and phosphatidylinositol 3-kinase (PI3K) inhibitors to determine the importance of MAPK and PI3K signaling pathways as well as AP-1 and NF-kappaB promoter binding sites. We demonstrate IL-17 induced and synergized with IL-1beta to upregulate CXCL-8 mRNA and protein levels. Erk1/2 and p38 modulated IL-17 and IL-1beta CXCL-8 promoter activity; however, IL-1beta also activated the PI3K pathway. The synergistic response mediating CXCL-8 promoter activity was dependent on both MAPK and PI3K signal transduction pathways and required the cooperation of AP-1 and NF-kappaB cis-acting elements upstream of the CXCL-8 gene. Collectively, our observations indicate MAPK and PI3K pathways regulate the synergy of IL-17 and IL-1beta to enhance CXCL-8 promoter activity, mRNA induction, and protein synthesis in HASMC via the cooperative activation of AP-1 and NF-kappaB trans-acting elements.
Collapse
Affiliation(s)
- Stéphane Dragon
- Department of Immunology, University of Manitoba, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Henness S, van Thoor E, Ge Q, Armour CL, Hughes JM, Ammit AJ. IL-17A acts via p38 MAPK to increase stability of TNF-alpha-induced IL-8 mRNA in human ASM. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1283-90. [PMID: 16684953 DOI: 10.1152/ajplung.00367.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human airway smooth muscle (ASM) plays an immunomodulatory role in asthma. Recently, IL-17A has become of increasing interest in asthma, being found at elevated levels in asthmatic airways and emerging as playing an important role in airway neutrophilia. IL-17A predominantly exerts its neutrophil orchestrating role indirectly via the induction of cytokines by resident airway structural cells. Here, we perform an in vitro study to show that although IL-17A did not induce secretion of the CXC chemokine IL-8 from ASM cells, IL-17A significantly potentiates TNF-alpha-induced IL-8 protein secretion and gene expression in a concentration- and time-dependent manner (P < 0.05). Levels of IL-8 protein produced after 24 h of incubation with TNF-alpha were enhanced 2.7-fold in the presence of IL-17A, and conditioned media significantly enhanced neutrophil chemotaxis in vitro. As IL-17A had no effect on the activity of NF-kappaB, a key transcriptional regulator of IL-8 gene expression, we then examined whether IL-17A acts at the posttranscriptional level. We found that IL-17A significantly augmented TNF-alpha-induced IL-8 mRNA stability. Interestingly, this enhanced stability occurred via a p38 MAPK-dependent pathway. The decay of IL-8 mRNA transcripts proceeded at a significantly faster rate when cells were pretreated with the p38 MAPK inhibitor SB-203580 (-0.05763 +/- 0.01964, t(1/2) = 12.0 h), compared with vehicle (-0.01030 +/- 0.007963, t(1/2) = 67.3 h) [results are expressed as decay constant (means +/- SE) and half-life (t(1/2) in h): P < 0.05]. Collectively, these results demonstrate that IL-17A amplifies the synthetic function of ASM cells, acting via a p38 MAPK-dependent posttranscriptional pathway to augment TNF-alpha-induced secretion of the potent neutrophil chemoattractant IL-8 from ASM cells.
Collapse
|
45
|
Koenders MI, Lubberts E, van de Loo FAJ, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Kolls JK, Di Padova FE, Joosten LAB, van den Berg WB. Interleukin-17 acts independently of TNF-alpha under arthritic conditions. THE JOURNAL OF IMMUNOLOGY 2006; 176:6262-9. [PMID: 16670337 DOI: 10.4049/jimmunol.176.10.6262] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proinflammatory T cell cytokine IL-17 is a potent inducer of other cytokines such as IL-1 and TNF-alpha. The contribution of TNF in IL-17-induced joint inflammation is unclear. In this work we demonstrate using TNF-alpha-deficient mice that TNF-alpha is required in IL-17-induced joint pathology under naive conditions in vivo. However, overexpression of IL-17 aggravated K/BxN serum transfer arthritis to a similar degree in TNF-alpha-deficient mice and their wild-type counterparts, indicating that the TNF dependency of IL-17-induced pathology is lost under arthritic conditions. Also, during the course of the streptococcal cell wall-induced arthritis model, IL-17 was able to enhance inflammation and cartilage damage in the absence of TNF. Additional blocking of IL-1 during IL-17-enhanced streptococcal cell wall-induced arthritis did not reduce joint pathology in TNF-deficient mice, indicating that IL-1 is not responsible for this loss of TNF dependency. These data provide further understanding of the cytokine interplay during inflammation and demonstrate that, despite a strong TNF dependency under naive conditions, IL-17 acts independently of TNF under arthritic conditions.
Collapse
Affiliation(s)
- Marije I Koenders
- Experimental Rheumatology and Advanced Therapeutics, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
van den Berg A, Freitas J, Keles F, Snoek M, van Marle J, Jansen HM, Lutter R. Cytoskeletal architecture differentially controls post-transcriptional processing of IL-6 and IL-8 mRNA in airway epithelial-like cells. Exp Cell Res 2006; 312:1496-506. [PMID: 16499908 DOI: 10.1016/j.yexcr.2006.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 11/18/2022]
Abstract
Airway epithelial cells are critically dependent on an intact cytoskeleton for innate defense functions. There are various pathophysiological conditions that affect the cytoskeletal architecture. We studied the effect of cytoskeletal distortion in polarized airway epithelial-like NCI-H292 cells on inflammatory gene expression, exemplified by interleukin(IL)-6 and IL-8. Disruption of microtubule structure with vinblastin and of actin with cytochalasin D did not affect TNF-alpha-induced IL-6 and IL-8 gene transcription but stabilized IL-8 and IL-6 mRNA. In line with previous studies, IL-8 mRNA stabilization was paralleled by hyperresponsive IL-8 production, but surprisingly, IL-6 production was reduced despite IL-6 mRNA stabilization. Polysome profiling revealed that, in cells with a disrupted cytoskeleton, translational efficiency of IL-6 mRNA was reduced, whereas that of IL-8 mRNA remained unaffected. Our findings indicate that distortion of the cytoskeleton in airway epithelial cells differentially affects both degradation and translation of IL-6 and IL-8 mRNA, modifying inflammatory gene expression and thus their innate defense function.
Collapse
Affiliation(s)
- Arjen van den Berg
- Department of Pulmonology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Current World Literature. Curr Opin Allergy Clin Immunol 2006; 6:67-9. [PMID: 16505615 DOI: 10.1097/01.all.0000202355.95779.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Lajoie-Kadoch S, Joubert P, Létuvé S, Halayko AJ, Martin JG, Soussi-Gounni A, Hamid Q. TNF-alpha and IFN-gamma inversely modulate expression of the IL-17E receptor in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1238-46. [PMID: 16428271 DOI: 10.1152/ajplung.00301.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interleukin-17B receptor (IL-17BR) is expressed in a variety of tissues and is upregulated under inflammatory conditions. This receptor binds both its cognate ligand IL-17B and IL-17E/IL-25, a novel cytokine known to promote Th2 responses. The present study shows that airway smooth muscle cells express IL-17BR in vitro and that its expression is upregulated by TNF-alpha and downregulated by IFN-gamma. Our data indicate that TNF-alpha upregulates IL-17BR mainly through nuclear factor-kappaB as assessed with the IkappaB kinase 2 inhibitor AS-602868. In addition, both IFN-gamma and dexamethasone are able to antagonize a TNF-alpha-induced IL-17BR increase in mRNA expression. The mitogen-activated protein kinase kinase inhibitor U0126 totally reversed the inhibition observed with IFN-gamma, suggesting the involvement of the extracellular signal-regulated kinase pathway in this effect. In addition, on stimulation with IL-17E, airway smooth muscle cells increase their expression of ECM components, namely procollagen-alphaI and lumican mRNA. Furthermore, immunohistochemical analysis of biopsies from asthmatic subjects reveals that this receptor is abundant in smooth muscle layers. This is the first report showing IL-17BR receptor in structural cells of the airways. Our results suggest a potential proremodeling effect of IL-17E on airway smooth muscle cells through the induction of ECM and that its receptor is upregulated by proinflammatory conditions.
Collapse
Affiliation(s)
- Stéphane Lajoie-Kadoch
- Meakins-Christie Laboratories, McGill University, 3626 St-Urbain Street, Montreal, Québec, Canada H2X 2P2
| | | | | | | | | | | | | |
Collapse
|
49
|
Fuss IJ, Becker C, Yang Z, Groden C, Hornung RL, Heller F, Neurath MF, Strober W, Mannon PJ. Both IL-12p70 and IL-23 are synthesized during active Crohn's disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis 2006; 12:9-15. [PMID: 16374252 DOI: 10.1097/01.mib.0000194183.92671.b6] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Interleukin (IL)-12p70 and IL-23 are key T helper-1 (TH1) cytokines that drive the inflammation seen in numerous models of intestinal inflammation. These molecules contain an identical p40 chain that is bound to a p35 chain in IL-12 and a p19 chain in IL-23, making both potentially susceptible to modulation by an anti-IL-12p40 monoclonal antibody (mAb). METHODS In the present study, we sought to determine whether active inflammation in Crohn's disease (CD) is associated with the increased synthesis of both of these cytokines and whether patients treated with an anti-IL-12p40 mAb down-regulate IL-23 as well as IL-12p70 as previous reported. RESULTS To this end we initially determined that IL-12p70 secretion by control and CD antigen-presenting cells (macrophages) in lamina propria mononuclear populations is optimized by stimulation with CD40L and interferon-gamma. In subsequent studies using these stimulation conditions we found that patients with CD manifested both increased IL-12p70 and IL-23 secretion before anti-IL-12p40 mAb treatment and normal levels of secretion of these cytokines following cessation of treatment. Antigen-presenting cells in lamina propria mononuclear cells from ulcerative colitis patients, in contrast, produced only baseline levels of IL-23. Finally, we found that IL-23-induced T cell production of IL-17 and IL-6 are also greatly reduced after antibody treatment. The latter data are parallel to those from previous studies showing that anti-IL-12p40 down-regulates IFN-gamma and tumor necrosis factor-alpha secretion. CONCLUSIONS We conclude that CD but not ulcerative colitis is associated with high levels of both IL-12p70 and IL-23 secretion as well as the secretion of downstream effector cytokines, and that this cytokine production is down-regulated following administration of IL-12p40 mAb.
Collapse
Affiliation(s)
- Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 , USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
van den Berg A, Snoek M, Jansen HM, Lutter R. E1A expression dysregulates IL-8 production and suppresses IL-6 production by lung epithelial cells. Respir Res 2005; 6:111. [PMID: 16185356 PMCID: PMC1261537 DOI: 10.1186/1465-9921-6-111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 09/26/2005] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The adenoviral protein E1A has been proposed to play a role in the pathophysiology of COPD, in particular by increasing IL-8 gene transcription of lung epithelial cells in response to cigarette smoke-constituents such as LPS. As IL-8 production is also under tight post-transcriptional control, we planned to study whether E1A affected IL-8 production post-transcriptionally. The production of IL-6 by E1A-positive cells had not been addressed and was studied in parallel. Based on our previous work into the regulation of IL-8 and IL-6 production in airway epithelial cells, we used the lung epithelial-like cell line NCI-H292 to generate stable transfectants expressing either E1A and/or E1B, which is known to frequently co-integrate with E1A. We analyzed IL-8 and IL-6 production and the underlying regulatory processes in response to LPS and TNF-alpha. METHODS Stable transfectants were generated and characterized with immunohistochemistry, western blot and flow cytometry. IL-8 and IL-6 protein production was measured by ELISA. Levels of IL-8 and IL-6 mRNA were measured using specific radiolabeled probes. EMSA was used to assess transcriptional activation of relevant transcription factors. Post-transcriptional regulation of mRNA half-life was measured by Actinomycin D chase experiments. RESULTS Most of the sixteen E1A-expressing transfectants showed suppression of IL-6 production, indicative of biologically active E1A. Significant but no uniform effects on IL-8 production, nor on transcriptional and post-transcriptional regulation of IL-8 production, were observed in the panel of E1A-expressing transfectants. E1B expression exerted similar effects as E1A on IL-8 production. CONCLUSION Our results indicate that integration of adenoviral DNA and expression of E1A and E1B can either increase or decrease IL-8 production. Furthermore, we conclude that expression of E1A suppresses IL-6 production. These findings question the unique role of E1A protein in the pathophysiology of COPD, but do not exclude a role for adenoviral E1A/E1B DNA in modulating inflammatory responses nor in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Arjen van den Berg
- Department of Pulmonology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mieke Snoek
- Department of Pulmonology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk M Jansen
- Department of Pulmonology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Pulmonology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|