1
|
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Cystic fibrosis. Nat Rev Dis Primers 2024; 10:53. [PMID: 39117676 DOI: 10.1038/s41572-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Cystic fibrosis is a rare genetic disease caused by mutations in CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). The discovery of CFTR in 1989 has enabled the unravelling of disease mechanisms and, more recently, the development of CFTR-directed therapeutics that target the underlying molecular defect. The CFTR protein functions as an ion channel that is crucial for correct ion and fluid transport across epithelial cells lining the airways and other organs. Consequently, CFTR dysfunction causes a complex multi-organ disease but, to date, most of the morbidity and mortality in people with cystic fibrosis is due to muco-obstructive lung disease. Cystic fibrosis care has long been limited to treating symptoms using nutritional support, airway clearance techniques and antibiotics to suppress airway infection. The widespread implementation of newborn screening for cystic fibrosis and the introduction of a highly effective triple combination CFTR modulator therapy that has unprecedented clinical benefits in up to 90% of genetically eligible people with cystic fibrosis has fundamentally changed the therapeutic landscape and improved prognosis. However, people with cystic fibrosis who are not eligible based on their CFTR genotype or who live in countries where they do not have access to this breakthrough therapy remain with a high unmet medical need.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
- German Centre for Lung Research (DZL), Associated Partner Site Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany.
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
- St Thomas' NHS Trust, London, UK
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Division of Paediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
2
|
Badaoui M, Chanson M. Intercellular Communication in Airway Epithelial Cell Regeneration: Potential Roles of Connexins and Pannexins. Int J Mol Sci 2023; 24:16160. [PMID: 38003349 PMCID: PMC10671439 DOI: 10.3390/ijms242216160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Connexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling. The integrity of the airway epithelium, which is the first line of defense against invading microbes, is established and maintained by a repair mechanism that involves processes such as proliferation, migration, and differentiation. Here, we briefly summarize current knowledge on the contribution of connexins and pannexins to necessary processes of tissue repair and speculate on their possible involvement in the shaping of the airway epithelium integrity.
Collapse
Affiliation(s)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
3
|
Huang YA, Chen JC, Chiang PC, Chen LC, Kuo ML. Adeno-Associated Viral Vector-Delivered Pannexin-1 Mimetic Peptide Alleviates Airway Inflammation in an Allergen-Sensitized Mouse Model. Hum Gene Ther 2023; 34:1107-1117. [PMID: 37624738 DOI: 10.1089/hum.2023.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
Asthma is a chronic inflammatory disease around the world. Extracellular adenosine triphosphate works as a dangerous signal in responding to cellular stress, irritation, or inflammation. It has also been reported its association with the pathogenicity in asthma, with increased level in lungs of asthmatics. Pannexin-1 is one of the routes that contributes to the release of adenosine triphosphate form intracellular to extracellular. The aim of this study was to apply pannexin-1 peptide antagonist 10Panx1 into adeno-associated viral (AAV) vectors on ovalbumin (OVA)-induced asthmatic mouse model. The results demonstrated that this treatment was able to reduce the adenosine triphosphate level in bronchoalveolar lavage fluid and downregulate the major relevant to the symptom of asthma attack, airway hyperresponsiveness to methacholine. The histological data also gave a positive support with decreased tissue remodeling and mucus deposition. Other asthmatic related features, including eosinophilic inflammation and OVA-specific T helper type 2 responses, were also decreased by the treatment. Beyond the index of inflammation, the proportion of effector and regulatory T cells was examined to survey the potential mechanism behind. The data provided a slightly downregulated pattern in lung GATA3+ CD4 T cells. However, an upregulated population of CD25+FoxP3+ CD4 T cells was seen in spleens. These data suggested that exogeneous expression of 10Panx1 peptide was potential to alleviated asthmatic airway inflammation, and this therapeutic effect might be from 10Panx1-mediated disruption of T cell activation or differentiation. Collectively, AAV vector-mediated 10Panx1 expression could be a naval therapy option to develop.
Collapse
Affiliation(s)
- Yung-An Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan (R.O.C.)
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Memorial Hospital-Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan (R.O.C.)
| | - Pei-Chuan Chiang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan (R.O.C.)
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan (R.O.C.)
- Department of Pediatrics, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan (R.O.C.)
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan (R.O.C.)
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan (R.O.C.)
- Department of Pediatrics, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan (R.O.C.)
| |
Collapse
|
4
|
Van Campenhout R, Caufriez A, Tabernilla A, Maerten A, De Boever S, Sanz-Serrano J, Kadam P, Vinken M. Pannexin1 channels in the liver: an open enemy. Front Cell Dev Biol 2023; 11:1220405. [PMID: 37492223 PMCID: PMC10363690 DOI: 10.3389/fcell.2023.1220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Pannexin1 proteins form communication channels at the cell plasma membrane surface, which allow the transfer of small molecules and ions between the intracellular compartment and extracellular environment. In this way, pannexin1 channels play an important role in various cellular processes and diseases. Indeed, a plethora of human pathologies is associated with the activation of pannexin1 channels. The present paper reviews and summarizes the structure, life cycle, regulation and (patho)physiological roles of pannexin1 channels, with a particular focus on the relevance of pannexin1 channels in liver diseases.
Collapse
|
5
|
Wang X, Dong YT, Hu XM, Zhang JZ, Shi NR, Zuo YQ, Wang X. The circadian regulation of extracellular ATP. Purinergic Signal 2023; 19:283-295. [PMID: 35939197 PMCID: PMC9984637 DOI: 10.1007/s11302-022-09881-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Extracellular ATP is a potent signaling molecule released from various cells throughout the body and is intimately involved in the pathophysiological functions of the nervous system and immune system by activating P2 purinergic receptors. Recent increasingly studies showed that extracellular ATP exhibits circadian oscillation with an approximately 24-h periodicity, which participates in regulatory pathways of central oscillator suprachiasmatic nucleus and peripheral oscillator bladder, respectively. Oscillators modulate the protein expression of ATP release channels and ectonucleotidase activity through clock genes; indeed, real-time alterations of ATP release and degradation determine outcomes of temporal character on extracellular ATP rhythm. The regulatory pathways on extracellular ATP rhythm are different in central and peripheral systems. In this review, we summarize the circadian rhythm of extracellular ATP and discuss several circadian regulatory pathways in different organs via ATP release and degradation, to provide a new understanding for purinergic signaling in the regulatory mechanism of circadian rhythm and a potential target to research the circadian regulation of extracellular ATP in other circadian oscillators.
Collapse
Affiliation(s)
- Xin Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Yu-Ting Dong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Xiu-Ming Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Ji-Zhou Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Nan-Rui Shi
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Yan-Qin Zuo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Xu Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| |
Collapse
|
6
|
Moroz LL, Romanova DY. Alternative neural systems: What is a neuron? (Ctenophores, sponges and placozoans). Front Cell Dev Biol 2022; 10:1071961. [PMID: 36619868 PMCID: PMC9816575 DOI: 10.3389/fcell.2022.1071961] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
How to make a neuron, a synapse, and a neural circuit? Is there only one 'design' for a neural architecture with a universally shared genomic blueprint across species? The brief answer is "No." Four early divergent lineages from the nerveless common ancestor of all animals independently evolved distinct neuroid-type integrative systems. One of these is a subset of neural nets in comb jellies with unique synapses; the second lineage is the well-known Cnidaria + Bilateria; the two others are non-synaptic neuroid systems in sponges and placozoans. By integrating scRNA-seq and microscopy data, we revise the definition of neurons as synaptically-coupled polarized and highly heterogenous secretory cells at the top of behavioral hierarchies with learning capabilities. This physiological (not phylogenetic) definition separates 'true' neurons from non-synaptically and gap junction-coupled integrative systems executing more stereotyped behaviors. Growing evidence supports the hypothesis of multiple origins of neurons and synapses. Thus, many non-bilaterian and bilaterian neuronal classes, circuits or systems are considered functional rather than genetic categories, composed of non-homologous cell types. In summary, little-explored examples of convergent neuronal evolution in representatives of early branching metazoans provide conceptually novel microanatomical and physiological architectures of behavioral controls in animals with prospects of neuro-engineering and synthetic biology.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova, Moscow, Russia
| |
Collapse
|
7
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Abstract
Pannexin-1 (Panx1) channels contribute to neurological disorders, including stroke and epilepsy, where their function has been linked to N-methyl D-aspartate (NMDA) receptors (NMDARs). We discovered that Ca2+ entry via NMDARs recruits endoplasmic reticulum–resident STIM proteins to activate Panx1 by binding to a hydrophobic region localized to the Panx1 N terminus. Using loss-of-function approaches, combined with molecular replacement and use of a STIM/Panx1 function–blocking antibody, we demonstrate that disrupting the STIM/Panx1 interaction prevents Panx1 activation by NMDARs, but not by hypotonic stimuli. Thus, our findings serve as a basis for the design of modality-specific inhibitors against STIM-dependent Panx1 activation that will aid in understanding the multimodal functions of Panx1 and their contribution to physiology and pathology. Pannexin-1 (Panx1) is a large-pore ion and solute permeable channel highly expressed in the nervous system, where it subserves diverse processes, including neurite outgrowth, dendritic spine formation, and N-methyl D-aspartate (NMDA) receptor (NMDAR)-dependent plasticity. Moreover, Panx1 dysregulation contributes to neurological disorders, including neuropathic pain, epilepsy, and excitotoxicity. Despite progress in understanding physiological and pathological functions of Panx1, the mechanisms that regulate its activity, including its ion and solute permeability, remain poorly understood. In this study, we identify endoplasmic reticulum (ER)-resident stromal interaction molecules (STIM1/2), which are Ca2+ sensors that communicate events within the ER to plasma membrane channels, as binding and signaling partners of Panx1. We demonstrate that Panx1 is activated to its large-pore configuration in response to stimuli that recruit STIM1/2 and map the interaction interface to a hydrophobic region within the N terminus of Panx1. We further characterize a Panx1 N terminus–recognizing antibody as a function-blocking tool able to prevent large-pore Panx1 activation by STIM1/2. Using either the function-blocking antibody or re-expression of Panx1 deletion mutants in Panx1 knockout (KO) neurons, we show that STIM recruitment couples Ca2+ entry via NMDARs to Panx1 activation, thereby identifying a model of NMDAR-STIM-Panx1 signaling in neurons. Our study highlights a previously unrecognized and important role of the Panx1 N terminus in regulating channel activation and membrane localization. Considering past work demonstrating an intimate functional relation between NMDARs and Panx1, our study opens avenues for understanding activation modality and context-specific functions of Panx1, including functions linked to diverse STIM-regulated cellular responses.
Collapse
|
9
|
Vinken M. Toxic talk: pannexin1 channel communication as an emerging mechanism of toxicity. Toxicology 2022; 478:153295. [PMID: 35998787 DOI: 10.1016/j.tox.2022.153295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Pannexin1 channels facilitate the extracellular release of a number of messengers, including adenosine triphosphate. Although fulfilling some physiological functions, pannexin1 channel communication has to date been primarily studied in the context of inflammation and cell death. In the past decade, a variety of chemical substances have been reported to induce pannexin1 channel opening, including metals, chelating agents, particulate matter, nanoparticles and drugs. While the pathophysiological aspects of pannexin1 channel communication have been reviewed on many previous occasions, the present paper intends to provide a short perspective in order to motivate research that will advance mechanistic understanding of the roles of pannexin1 signaling in chemical toxicity.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
10
|
Radecki KC, Ford MJ, Phillipps HR, Lorenson MY, Grattan DR, Yamanaka Y, Walker AM. Multiple cell types in the oviduct express the prolactin receptor. FASEB Bioadv 2022; 4:485-504. [PMID: 35812077 PMCID: PMC9254223 DOI: 10.1096/fba.2022-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Little is known about the physiological role of prolactin in the oviduct. Examining mRNA for all four isoforms of the prolactin receptor (PRLR) in mice by functional oviduct segment and stage of the estrous cycle, we found short form 3 (SF3) to be the most highly expressed, far exceeding the long form (LF) in highly ciliated areas such as the infundibulum, whereas in areas of low ciliation, the SF3 to LF ratio was ~1. SF2 expression was low throughout the oviduct, and SF1 was undetectable. Only in the infundibulum did PRLR ratios change with the estrous cycle. Immunofluorescent localization of SF3 and LF showed an epithelial (both mucosal and mesothelial) distribution aligned with the mRNA results. Despite the high SF3/LF ratio in densely ciliated regions, these regions responded to an acute elevation of prolactin (30 min, intraperitoneal), with LF-tyrosine phosphorylated STAT5 seen within cilia. Collectively, these results show ciliated cells are responsive to prolactin and suggest that prolactin regulates estrous cyclic changes in ciliated cell function in the infundibulum. Changes in gene expression in the infundibulum after prolonged prolactin treatment (7-day) showed prolactin-induced downregulation of genes necessary for cilium development/function, a result supporting localization of PRLRs on ciliated cells, and one further suggesting hyperprolactinemia would negatively impact ciliated cell function and therefore fertility. Flow cytometry, single-cell RNAseq, and analysis of LF-td-Tomato transgenic mice supported expression of PRLRs in at least a proportion of epithelial cells while also hinting at additional roles for prolactin in smooth muscle and other stromal cells.
Collapse
Affiliation(s)
- Kelly C. Radecki
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| | - Matthew J. Ford
- Department of Human GeneticsRosalind and Morris Goodman Cancer Institute, McGill UniversityQuebecCanada
| | - Hollian R. Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Mary Y. Lorenson
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| | - David R. Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Yojiro Yamanaka
- Department of Human GeneticsRosalind and Morris Goodman Cancer Institute, McGill UniversityQuebecCanada
| | - Ameae M. Walker
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
11
|
Meter D, Racetin A, Vukojević K, Balog M, Ivić V, Zjalić M, Heffer M, Filipović N. A Lack of GD3 Synthase Leads to Impaired Renal Expression of Connexins and Pannexin1 in St8sia1 Knockout Mice. Int J Mol Sci 2022; 23:ijms23116237. [PMID: 35682927 PMCID: PMC9181035 DOI: 10.3390/ijms23116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to determine the effects of altered ganglioside composition on the expression of Cx37, Cx40, Cx43, Cx45, and Panx1 in different kidney regions of St8sia1 gene knockout mice (St8sia1 KO) lacking the GD3 synthase enzyme. Experiments were performed in twelve male 6-month-old mice: four wild-type (C57BL/6-type, WT) and eight St8sia1 KO mice. After euthanasia, kidney tissue was harvested, embedded in paraffin wax, and processed for immunohistochemistry. The expression of connexins and Panx1 was determined in different regions of the kidney: cortex (CTX.), outer stripe of outer medulla (O.S.), inner stripe of outer medulla (IN.S.), and inner medulla (IN.MED.). We determined significantly lower expression of Cx37, Cx40, Cx45, and Panx1 in different parts of the kidneys of St8sia1 KO mice compared with WT. The most consistent decrease was found in the O.S. where all markers (Cx 37, 40, 45 and Panx1) were disrupted in St8si1 KO mice. In the CTX. region, we observed decrease in the expression of Cx37, Cx45, and Panx1, while reduced expression of Cx37 and Panx1 was more specific to IN.S. The results of the present study suggest that deficiency of GD3 synthase in St8sia1 KO mice leads to disruption of renal Cx expression, which is probably related to alteration of ganglioside composition.
Collapse
Affiliation(s)
- Diana Meter
- Department of Rheumatology and Clinical Immunology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia;
| | - Anita Racetin
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (A.R.); (K.V.)
| | - Katarina Vukojević
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (A.R.); (K.V.)
- Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.B.); (V.I.); (M.H.)
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.B.); (V.I.); (M.H.)
| | - Milorad Zjalić
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine Rijeka, University of Rijeka, Branchetta brothers 20, 51000 Rijeka, Croatia;
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.B.); (V.I.); (M.H.)
| | - Natalija Filipović
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (A.R.); (K.V.)
- Correspondence:
| |
Collapse
|
12
|
Gajecki D, Gawryś J, Szahidewicz-Krupska E, Doroszko A. Role of Erythrocytes in Nitric Oxide Metabolism and Paracrine Regulation of Endothelial Function. Antioxidants (Basel) 2022; 11:antiox11050943. [PMID: 35624807 PMCID: PMC9137828 DOI: 10.3390/antiox11050943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/27/2023] Open
Abstract
Emerging studies provide new data shedding some light on the complex and pivotal role of red blood cells (RBCs) in nitric oxide (NO) metabolism and paracrine regulation of endothelial function. NO is involved in the regulation of vasodilatation, platelet aggregation, inflammation, hypoxic adaptation, and oxidative stress. Even though tremendous knowledge about NO metabolism has been collected, the exact RBCs’ status still requires evaluation. This paper summarizes the actual knowledge regarding the role of erythrocytes as a mobile depot of amino acids necessary for NO biotransformation. Moreover, the complex regulation of RBCs’ translocases is presented with a particular focus on cationic amino acid transporters (CATs) responsible for the NO substrates and derivatives transport. The main part demonstrates the intraerythrocytic metabolism of L-arginine with its regulation by reactive oxygen species and arginase activity. Additionally, the process of nitrite and nitrate turnover was demonstrated to be another stable source of NO, with its reduction by xanthine oxidoreductase or hemoglobin. Additional function of hemoglobin in NO synthesis and its subsequent stabilization in steady intermediates is also discussed. Furthermore, RBCs regulate the vascular tone by releasing ATP, inducing smooth muscle cell relaxation, and decreasing platelet aggregation. Erythrocytes and intraerythrocytic NO metabolism are also responsible for the maintenance of normotension. Hence, RBCs became a promising new therapeutic target in restoring NO homeostasis in cardiovascular disorders.
Collapse
|
13
|
Pannexin1 channels regulate mechanically stimulated but not spontaneous adenosine release. Anal Bioanal Chem 2022; 414:3781-3789. [PMID: 35381855 DOI: 10.1007/s00216-022-04047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/01/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) is a rapid technique to measure neuromodulators, and using FSCV, two modes of rapid adenosine have been discovered. Spontaneous transients occur randomly in the brain, while mechanical stimulation also causes a rapid adenosine event. Pannexin1 channels are membrane channels that transport ions, including ATP, out of the cell where it is rapidly broken down into adenosine. Pannexin 1 channels (Panx1) have a flickering mode of rapid opening and are also mechanically stimulated. Here, we test the extent to which pannexin channels, specifically pannexin1 (Panx1) channels, are responsible for rapid adenosine events. Spontaneous adenosine release or mechanosensitive adenosine release were measured using fast-scan cyclic voltammetry in hippocampal (CA1) brain slices. In global Panx1KO mice, there is no significant difference in the frequency or concentration of spontaneous adenosine release, indicating Panx1 is not a release mechanism for spontaneous adenosine. Spontaneous adenosine frequency decreased slightly after administration of a large (100 µM) dose of carbenoxolone, a nonspecific inhibitor of many pannexin and connexin channels, suggesting other hemichannels only play a small role at most. For mechanically stimulated adenosine release, the concentration of each adenosine event significantly decreased 30% in Panx1KO mice and the frequency of stimulations that evoked adenosine also decreased. The response was similar in WT mice with carbenoxolone. Thus, Panx1 is a release mechanism for mechanically stimulated adenosine release, but not the only mechanism. These results demonstrate that pannexin channels differentially regulate rapid adenosine release and could be targeted to differentially affect mechanically stimulated adenosine due to brain damage.
Collapse
|
14
|
Mechanisms of Pannexin 1 (PANX1) Channel Mechanosensitivity and Its Pathological Roles. Int J Mol Sci 2022; 23:ijms23031523. [PMID: 35163442 PMCID: PMC8836264 DOI: 10.3390/ijms23031523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Pannexins (PANX) were cloned based on their sequence homology to innexins (Inx), invertebrate gap junction proteins. Although there is no sequence homology between PANX and connexins (Cx), these proteins exhibit similar configurations. The PANX family has three members, PANX1, PANX2 and PANX3. Among them, PANX1 has been the most extensively studied. The PANX1 channels are activated by many factors, including high extracellular K+ ([K+]e), high intracellular Ca2+ ([Ca2+]i), Src family kinase (SFK)-mediated phosphorylation, caspase cleavage and mechanical stimuli. However, the mechanisms mediating this mechanosensitivity of PANX1 remain unknown. Both force-from-lipids and force-from-filaments models are proposed to explain the gating mechanisms of PANX1 channel mechanosensitivity. Finally, both the physiological and pathological roles of mechanosensitive PANX1 are discussed.
Collapse
|
15
|
Caspase-11 promotes NLRP3 inflammasome activation via the cleavage of pannexin1 in acute kidney disease. Acta Pharmacol Sin 2022; 43:86-95. [PMID: 33758356 PMCID: PMC8724289 DOI: 10.1038/s41401-021-00619-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/25/2021] [Indexed: 01/03/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in clinic. The activation of NLRP3 inflammasome is associated with inflammation and renal injury in I/R-induced AKI. In the current study we explored the molecular and cellular mechanisms for NLRP3 inflammasome activation following renal I/R. Mice were subjected to I/R renal injury by clamping bilateral renal pedicles. We showed that I/R injury markedly increased caspase-11 expression and the cleavage of pannexin 1 (panx1) in the kidneys accompanied by NLRP3 inflammasome activation evidenced by the activation of caspase-1 and interlukin-1β (IL-1β) maturation. In Casp-11-/- mice, I/R-induced panx1 cleavage, NLRP3 inflammasome activation as well as renal functional deterioration and tubular morphological changes were significantly attenuated. In cultured primary tubular cells (PTCs) and NRK-52E cells, hypoxia/reoxygenation (H/R) markedly increased caspase-11 expression, NLRP3 inflammasome activation, IL-1β maturation and panx1 cleavage. Knockdown of caspase-11 attenuated all those changes; similar effects were observed in PTCs isolated from Casp-11-/- mice. In NRK-52E cells, overexpression of caspase-11 promoted panx1 cleavage; pretreatment with panx1 inhibitor carbenoxolone or knockdown of panx1 significantly attenuated H/R-induced intracellular ATP reduction, extracellular ATP elevation and NLRP3 inflammasome activation without apparent influence on H/R-induced caspase-11 increase; pretreatment with P2X7 receptor inhibitor AZD9056 also attenuated NLRP3 inflammasome activation. The above results demonstrate that the cleavage of panx1 by upregulated caspase-11 is involved in facilitating ATP release and then NLRP3 inflammasome activation in I/R-induced AKI. This study provides new insight into the molecular mechanism of NLRP3 inflammasome activation in AKI.
Collapse
|
16
|
Larrañaga-Vera A, Marco-Bonilla M, Largo R, Herrero-Beaumont G, Mediero A, Cronstein B. ATP transporters in the joints. Purinergic Signal 2021; 17:591-605. [PMID: 34392490 PMCID: PMC8677878 DOI: 10.1007/s11302-021-09810-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) plays a central role in a wide variety of joint diseases. ATP is generated intracellularly, and the concentration of the extracellular ATP pool is determined by the regulation of its transport out of the cell. A variety of ATP transporters have been described, with connexins and pannexins the most commonly cited. Both form intercellular channels, known as gap junctions, that facilitate the transport of various small molecules between cells and mediate cell-cell communication. Connexins and pannexins also form pores, or hemichannels, that are permeable to certain molecules, including ATP. All joint tissues express one or more connexins and pannexins, and their expression is altered in some pathological conditions, such as osteoarthritis (OA) and rheumatoid arthritis (RA), indicating that they may be involved in the onset and progression of these pathologies. The aging of the global population, along with increases in the prevalence of obesity and metabolic dysfunction, is associated with a rising frequency of joint diseases along with the increased costs and burden of related illness. The modulation of connexins and pannexins represents an attractive therapeutic target in joint disease, but their complex regulation, their combination of gap-junction-dependent and -independent functions, and their interplay between gap junction and hemichannel formation are not yet fully elucidated. In this review, we try to shed light on the regulation of these proteins and their roles in ATP transport to the extracellular space in the context of joint disease, and specifically OA and RA.
Collapse
Affiliation(s)
- Ane Larrañaga-Vera
- Department of Medicine, Division of Translational Medicine, NYU Langone Health, New York, NY, USA
| | - Miguel Marco-Bonilla
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain.
| | - Bruce Cronstein
- Department of Medicine, Division of Translational Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
17
|
Wang T, Wang W, Li W, Duan H, Xu C, Tian X, Zhang D. Genome-wide DNA methylation analysis of pulmonary function in middle and old-aged Chinese monozygotic twins. Respir Res 2021; 22:300. [PMID: 34809630 PMCID: PMC8609861 DOI: 10.1186/s12931-021-01896-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Previous studies have determined the epigenetic association between DNA methylation and pulmonary function among various ethnics, whereas this association is largely unknown in Chinese adults. Thus, we aimed to explore epigenetic relationships between genome-wide DNA methylation levels and pulmonary function among middle-aged Chinese monozygotic twins. METHODS The monozygotic twin sample was drawn from the Qingdao Twin Registry. Pulmonary function was measured by three parameters including forced expiratory volume the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. Linear mixed effect model was used to regress the methylation level of CpG sites on pulmonary function. After that, we applied Genomic Regions Enrichment of Annotations Tool (GREAT) to predict the genomic regions enrichment, and used comb-p python library to detect differentially methylated regions (DMRs). Gene expression analysis was conducted to validate the results of differentially methylated analyses. RESULTS We identified 112 CpG sites with the level of P < 1 × 10-4 which were annotated to 40 genes. We identified 12 common enriched pathways of three pulmonary function parameters. We detected 39 DMRs located at 23 genes, of which PRDM1 was related to decreased pulmonary function, and MPL, LTB4R2, and EPHB3 were related to increased pulmonary function. The gene expression analyses validated DIP2C, ASB2, SLC6A5, and GAS6 related to decreased pulmonary function. CONCLUSION Our DNA methylation sequencing analysis on identical twins provides new references for the epigenetic regulation on pulmonary function. Several CpG sites, genes, biological pathways and DMRs are considered as possible crucial to pulmonary function.
Collapse
Affiliation(s)
- Tong Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China.
| |
Collapse
|
18
|
Finger T, Kinnamon S. Purinergic neurotransmission in the gustatory system. Auton Neurosci 2021; 236:102874. [PMID: 34536906 DOI: 10.1016/j.autneu.2021.102874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Taste buds consist of specialized epithelial cells which detect particular tastants and synapse onto the afferent taste nerve innervating the endorgan. The nature of the neurotransmitter released by taste cells onto the nerve fiber was enigmatic early in this century although neurotransmitters for other sensory receptor cell types, e.g. hair cells, photoreceptors, was known for at least a decade. A 1999 paper by Burnstock and co-workers (Bo et al., 1999) showing the presence of P2X receptors on the afferent nerves served as a springboard for research that ultimately led to the discovery of ATP as the crucial neurotransmitter in the taste system (Finger et al., 2005). Subsequent work showed that a subpopulation of taste cells utilize a unique release channel, CALHM1/3, to release ATP in a voltage-dependent manner. Despite these advances, several aspects of purinergic transmission in this system remain to be elucidated.
Collapse
Affiliation(s)
- T Finger
- Dept. Cell & Developmental Biology, Dept. Otolaryngology, Univ. Colorado School of Medicine, Anschutz Medical Campus, MS 8108, Room L18-11118, RC-1, 12801 E. 17th Ave., Aurora, CO 80045, United States of America.
| | - Sue Kinnamon
- Dept. Cell & Developmental Biology, Dept. Otolaryngology, Univ. Colorado School of Medicine, Anschutz Medical Campus, MS 8108, Room L18-11118, RC-1, 12801 E. 17th Ave., Aurora, CO 80045, United States of America
| |
Collapse
|
19
|
Dossi E, Rouach N. Pannexin 1 channels and ATP release in epilepsy: two sides of the same coin : The contribution of pannexin-1, connexins, and CALHM ATP-release channels to purinergic signaling. Purinergic Signal 2021; 17:533-548. [PMID: 34495463 DOI: 10.1007/s11302-021-09818-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022] Open
Abstract
Purinergic signaling mediated by ATP and its metabolites contributes to various brain physiological processes as well as to several pathological conditions, including neurodegenerative and neurological disorders, such as epilepsy. Among the different ATP release pathways, pannexin 1 channels represent one of the major conduits being primarily activated in pathological contexts. Investigations on in vitro and in vivo models of epileptiform activity and seizures in mice and human tissues revealed pannexin 1 involvement in aberrant network activity and epilepsy, and highlighted that pannexin 1 exerts a complex role. Pannexin 1 can indeed either sustain seizures through release of ATP that can directly activate purinergic receptors, or tune down epileptic activity via ATP-derived adenosine that decreases neuronal excitability. Interestingly, in-depth analysis of the literature unveils that this dichotomy is only apparent, as it depends on the model of seizure induction and the type of evoked epileptiform activity, two factors that can differentially activate pannexin 1 channels and trigger distinct intracellular signaling cascades. Here, we review the general properties and ATP permeability of pannexin 1 channels, and discuss their impact on acute epileptiform activity and chronic epilepsy according to the regime of activity and disease state. These data pave the way for the development of new antiepileptic strategies selectively targeting pannexin 1 channels in a context-dependent manner.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé Et de la Recherche Médicale U1050, Collège de France, Labex Memolife, Université PSL, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé Et de la Recherche Médicale U1050, Collège de France, Labex Memolife, Université PSL, Paris, France.
| |
Collapse
|
20
|
A physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII. Proc Natl Acad Sci U S A 2021; 118:2108967118. [PMID: 34301850 DOI: 10.1073/pnas.2108967118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation-measured by changes in DAPI uptake rate-was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.
Collapse
|
21
|
Arzola-Martínez L, Benavente R, Vega G, Ríos M, Fonseca W, Rasky AJ, Morris S, Lukacs NW, Villalón MJ. Blocking ATP-releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol 2021; 321:L466-L476. [PMID: 34231389 DOI: 10.1152/ajplung.00450.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Allergic asthma is a chronic airway inflammatory response to different triggers like inhaled allergens. Excessive ATP in fluids from patients with asthma is considered an inflammatory signal and an important autocrine/paracrine modulator of airway physiology. Here, we investigated the deleterious effect of increased extracellular ATP (eATP) concentration on the mucociliary clearance (MCC) effectiveness and determined the role of ATP releasing channels during airway inflammation in an ovalbumin (OVA)-sensitized mouse model. Our allergic mouse model exhibited high levels of eATP measured in the tracheal fluid with a luciferin-luciferase assay and reduced MCC velocity determined by microspheres tracking in the trachea ex vivo. Addition of ATP had a dual effect on MCC, where lower ATP concentration (µM) increased microspheres velocity, whereas higher concentration (mM) transiently stopped microspheres movement. Also, an augmented ethidium bromide uptake by the allergic tracheal airway epithelium suggests an increase in ATP release channel functionality during inflammatory conditions. The use of carbenoxolone, a nonspecific inhibitor of connexin and pannexin1 channels reduced the eATP concentration in the allergic mouse tracheal fluid and dye uptake by the airway epithelium, providing evidence that these ATP release channels are facilitating the net flux of ATP to the lumen during airway inflammation. However, only the specific inhibition of pannexin1 with 10Panx peptide significantly reduced eATP in bronchoalveolar lavage and decreased airway hyperresponsiveness in OVA-allergic mouse model. These data provide evidence that blocking eATP may be a pharmacological alternative to be explored in rescue therapy during episodes of airflow restriction in patients with asthma.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rebeca Benavente
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Génesis Vega
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Manuel J Villalón
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Airway Epithelial Nucleotide Release Contributes to Mucociliary Clearance. Life (Basel) 2021; 11:life11050430. [PMID: 34064654 PMCID: PMC8151306 DOI: 10.3390/life11050430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Mucociliary clearance (MCC) is a dominant component of pulmonary host defense. In health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. Airway surface dehydration and production of hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is driven by electrolyte transport activities, which in turn are regulated by airway epithelial purinergic receptors. The activity of these receptors is controlled by the extracellular concentrations of ATP and its metabolite adenosine. Vesicular and conducted pathways contribute to ATP release from airway epithelial cells. In this study, we review the evidence leading to the identification of major components of these pathways: (a) the vesicular nucleotide transporter VNUT (the product of the SLC17A9 gene), the ATP transporter mediating ATP storage in (and release from) mucin granules and secretory vesicles; and (b) the ATP conduit pannexin 1 expressed in non-mucous airway epithelial cells. We further illustrate that ablation of pannexin 1 reduces, at least in part, airway surface liquid (ASL) volume production, ciliary beating, and MCC rates.
Collapse
|
23
|
Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 2021; 153:e202012754. [PMID: 33835130 PMCID: PMC8042604 DOI: 10.1085/jgp.202012754] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Biomedical Engineering and Health Systems Royal Institute of Technology, Huddinge, Sweden
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego School of Medicine, La Jolla, CA
| | - Gerhard Dahl
- Department of Physiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
24
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
25
|
Lazarowski ER, Boucher RC. Purinergic receptors in airway hydration. Biochem Pharmacol 2021; 187:114387. [PMID: 33358825 DOI: 10.1016/j.bcp.2020.114387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Airway epithelial purinergic receptors control key components of the mucociliary clearance (MCC), the dominant component of pulmonary host defense. In healthy airways, the periciliary liquid (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. When the hydration of the airway surface decreases, the mucus becomes hyperconcentrated, the PCL collapses, and the "thickened" mucus layer adheres to cell surfaces, causing plaque/plug formation. Mucus accumulation is a major contributing factor to the progression of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is regulated by finely tuned mechanisms of luminal Cl- secretion and Na+ absorption with concomitant osmotically driven water flow. These activities are regulated by airway surface liquid (ASL) concentrations of adenosine and ATP, acting on airway epithelial A2B and P2Y2 receptors, respectively. The goal of this article is to provide an overview of our understanding of the role of purinergic receptors in the regulation of airway epithelial ion/fluid transport and the mechanisms of nucleotide release and metabolic activities that contribute to airway surface hydration in healthy and chronically obstructed airways.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
26
|
Bhat EA, Sajjad N. Human Pannexin 1 channel: Insight in structure-function mechanism and its potential physiological roles. Mol Cell Biochem 2021; 476:1529-1540. [PMID: 33394272 DOI: 10.1007/s11010-020-04002-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Pannexins, large non-gap junction super family exists in vertebrates, play multiple roles in different cellular functions through their ATP release. Panx1-mediated adenosine 5'-triphosphate (ATP) release plays a vital role in physiological and pathophysiological conditions and is known major extracellular molecule in purinergic signaling. To modulate their function in vivo, a proper regulation of channel is necessary. Post-translational modifications are considered to be some regulating mechanisms for PANX1, while PANX2, PANX3 have been uncharacterized to date. Through their significant evidences, PANXs exclude from gap junction and conduits ATP release and other cellular molecules from cells by various mechanisms. PANX1 is most extensive characterized and implicated in ATP signaling and inflammatory processes. Despite the constant advances, much significance of PANX1 in physiological processes remains elusive. Recently, various research groups along with our group have reported the Cryo-EM structure of Panx1 channel and uncovered the hidden functions in structure-function mechanism as well as to provide the clear understanding in physiological and pathophysiological roles. These research groups reported the novel heptameric structure with contains 4 transmembrane helices (TM), two extracellular loops and one intracellular loop with N and C terminus located at the intracellular side. In addition, the structure contains a large pore of which an inhibitor CBX act as a plug that blocking the passage of substrate. In this context, this review will present current mechanistic understanding in structure and function together with significant physiological roles particularly ATP release in health and disease. As such, this review emphasizes on recent functional properties associated with novel heptameric channel and demystifies channel-mediated ATP release function.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- Life Science Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir, India
| |
Collapse
|
27
|
Fernandez-Abascal J, Graziano B, Encalada N, Bianchi L. Glial Chloride Channels in the Function of the Nervous System Across Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:195-223. [PMID: 35138616 PMCID: PMC11247392 DOI: 10.1007/978-981-16-4254-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the nervous system, the concentration of Cl- in neurons that express GABA receptors plays a key role in establishing whether these neurons are excitatory, mostly during early development, or inhibitory. Thus, much attention has been dedicated to understanding how neurons regulate their intracellular Cl- concentration. However, regulation of the extracellular Cl- concentration by other cells of the nervous system, including glia and microglia, is as important because it ultimately affects the Cl- equilibrium potential across the neuronal plasma membrane. Moreover, Cl- ions are transported in and out of the cell, via either passive or active transporter systems, as counter ions for K+ whose concentration in the extracellular environment of the nervous system is tightly regulated because it directly affects neuronal excitability. In this book chapter, we report on the Cl- channel types expressed in the various types of glial cells focusing on the role they play in the function of the nervous system in health and disease. Furthermore, we describe the types of stimuli that these channels are activated by, the other solutes that they may transport, and the involvement of these channels in processes such as pH regulation and Regulatory Volume Decrease (RVD). The picture that emerges is one of the glial cells expressing a variety of Cl- channels, encoded by members of different gene families, involved both in short- and long-term regulation of the nervous system function. Finally, we report data on invertebrate model organisms, such as C. elegans and Drosophila, that are revealing important and previously unsuspected functions of some of these channels in the context of living and behaving animals.
Collapse
Affiliation(s)
- Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Bianca Graziano
- Department Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Nicole Encalada
- Department Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
28
|
Kamiya Y, Fujisawa T, Katsumata M, Yasui H, Suzuki Y, Karayama M, Hozumi H, Furuhashi K, Enomoto N, Nakamura Y, Inui N, Setou M, Ito M, Suzuki T, Ikegami K, Suda T. Influenza A virus enhances ciliary activity and mucociliary clearance via TLR3 in airway epithelium. Respir Res 2020; 21:282. [PMID: 33109186 PMCID: PMC7590254 DOI: 10.1186/s12931-020-01555-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background Viral respiratory tract infections, such as influenza A virus (IAV), are common and life-threatening illnesses worldwide. The mechanisms by which viruses are removed from the respiratory tract are indispensable for airway host defense. Mucociliary clearance is an airway defense mechanism that removes pathogens from the respiratory tract. The coordination and modulation of the ciliary beating of airway epithelial cells play key roles in maintaining effective mucociliary clearance. However, the impact of respiratory virus infection on ciliary activity and mucociliary clearance remains unclear. Methods Tracheal samples were taken from wild-type (WT) and Toll-like receptor 3 (TLR3)-knockout (KO) mice. Transient organ culture of murine trachea was performed in the presence or absence of IAV, polyI:C, a synthetic TLR3 ligand, and/or reagents. Subsequently, cilia-driven flow and ciliary motility were analyzed. To evaluate cilia-driven flow, red fluorescent beads were loaded into culture media and movements of the beads onto the tracheal surface were observed using a fluorescence microscope. To evaluate ciliary motility, cilia tips were labeled with Indian ink diluted with culture medium. The motility of ink-labeled cilia tips was recorded by high-speed cameras. Results Short-term IAV infection significantly increased cilia-driven flow and ciliary beat frequency (CBF) compared with the control level in WT culture. Whereas IAV infection did not elicit any increases of cilia-driven flow and CBF in TLR3-KO culture, indicating that TLR3 was essential to elicit an increase of cilia-driven flow and CBF in response to IAV infection. TLR3 activation by polyI:C readily induced adenosine triphosphate (ATP) release from the trachea and increases of cilia-driven flow and CBF in WT culture, but not in TLR3-KO culture. Moreover, blockade of purinergic P2 receptors (P2Rs) signaling using P2R antagonist, suramin, suppressed polyI:C-mediated increases of cilia-driven flow and CBF, indicating that TLR3-mediated ciliary activation depended on released extracellular ATP and the autocrine ATP-P2R loop. Conclusions IAV infection readily increases ciliary activity and cilia-driven flow via TLR3 activation in the airway epithelium, thereby hastening mucociliary clearance and “sweeping” viruses from the airway as an initial host defense response. Mechanically, extracellular ATP release in response to TLR3 activation promotes ciliary activity through autocrine ATP-P2R loop.
Collapse
Affiliation(s)
- Yosuke Kamiya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Mineo Katsumata
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.,Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8553, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
29
|
Atkinson SK, Morice AH, Sadofsky LR. Rhinovirus-16 increases ATP release in A549 cells without concomitant increase in production. ERJ Open Res 2020; 6:00159-2020. [PMID: 33123553 PMCID: PMC7569158 DOI: 10.1183/23120541.00159-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Human rhinovirus (RV) is the most common cause of upper respiratory tract infection (URTI) and chronic airway disease exacerbation. Cough is present in 50–80% of URTI cases, accompanied by heightened airway hypersensitivity, yet no effective treatment currently exists for this infectious cough. The mechanism by which RV causes cough and airway hypersensitivity in URTI is still unknown despite recent advances in potential therapies for chronic cough. The effect of RV-16 infection (MOI 1) on intracellular ATP stores and ATP release in A549 alveolar epithelial cells was measured. RV-16 infection was found to significantly increase (by 50% from basal at 24 h) followed by decrease (by 50% from basal at 48 and 72 h) intracellular ATP concentrations, while increasing ATP release (from 72 h) independently of secondary stimulation. This effect was mimicked by intercellular adhesion molecule 1 receptor binding alone through ultraviolet-inactivated sham control. In addition, RV-16-infected cells became more sensitive to secondary stimulation with both hypotonic and isotonic solutions, suggestive of a hypersensitive response. These responses were not mediated via increased TRPV4 or pannexin-1 whole-cell expression as determined by Western blotting. Interestingly, the increased ATP release seen was not a result of increased mitochondrial ATP production. Thus, this is the first report demonstrating that RV-16 infection of airway epithelial cells causes hypersensitivity by increasing ATP release. These finding provide a novel insight into the process by which viruses may cause cough and identify a potential target for treatment of viral and post-viral cough. Rhinovirus-infected airway epithelial cells (A549) show increased ATP release with and without a secondary stimulation (mechanical or hypotonic), which may account for increased cough sensitivity seen during respiratory viral infectionshttps://bit.ly/3eABEY9
Collapse
Affiliation(s)
- Samantha K Atkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Alyn H Morice
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, UK
| | - Laura R Sadofsky
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
30
|
Mazzarda F, D'Elia A, Massari R, De Ninno A, Bertani FR, Businaro L, Ziraldo G, Zorzi V, Nardin C, Peres C, Chiani F, Tettey-Matey A, Raspa M, Scavizzi F, Soluri A, Salvatore AM, Yang J, Mammano F. Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca 2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. LAB ON A CHIP 2020; 20:3011-3023. [PMID: 32700707 DOI: 10.1039/d0lc00427h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Prior work supports the hypothesis that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge (GER) in the developing cochlea; however, direct proof is lacking. To address this issue, we plated cochlear organotypic cultures (COCs) and whole cell-based biosensors with nM ATP sensitivity (ATP-WCBs) at the bottom and top of an ad hoc designed transparent microfluidic chamber, respectively. By performing dual multiphoton Ca2+ imaging, we monitored the propagation of intercellular Ca2+ waves in the GER of COCs and ATP-dependent Ca2+ responses in overlying ATP-WCBs. Ca2+ signals in both COCs and ATP-WCBs were inhibited by supplementing the extracellular medium with ATP diphosphohydrolase (apyrase). Spontaneous Ca2+ signals were strongly depressed in the presence of Gjb6-/- COCs, in which connexin 30 (Cx30) is absent and connexin 26 (Cx26) is strongly downregulated. In contrast, spontaneous Ca2+ signals were not affected by replacement of Panx1-/- with Panx1+/+ COCs in the microfluidic chamber. Similar results were obtained by estimating ATP release from COCs using a classical luciferin-luciferase bioluminescence assay. Therefore, connexin hemichannels and not pannexin 1 channels mediate the release of ATP that is responsible for Ca2+ wave propagation in the developing mouse cochlea. The technological advances presented here have the potential to shed light on a plethora of unrelated open issues that involve paracrine signaling in physiology and pathology and cannot be addressed with standard methods.
Collapse
Affiliation(s)
- Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Annunziata D'Elia
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Roberto Massari
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Adele De Ninno
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | | | - Luca Businaro
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Alessandro Soluri
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Jun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. and Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy.
| |
Collapse
|
31
|
Navis KE, Fan CY, Trang T, Thompson RJ, Derksen DJ. Pannexin 1 Channels as a Therapeutic Target: Structure, Inhibition, and Outlook. ACS Chem Neurosci 2020; 11:2163-2172. [PMID: 32639715 DOI: 10.1021/acschemneuro.0c00333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pannexin 1 (Panx1) channels are transmembrane proteins that release adenosine triphosphate and play an important role in intercellular communication. They are widely expressed in somatic and nervous system tissues, and their activity has been associated with many pathologies such as stroke, epilepsy, inflammation, and chronic pain. While there are a variety of small molecules known to inhibit Panx1, currently little is known about the mechanism of channel inhibition, and there is a dearth of sufficiently potent and selective drugs targeting Panx1. Herein we provide a review of the current literature on Panx1 structural biology and known pharmacological agents that will help provide a basis for rational development of Panx1 chemical modulators.
Collapse
Affiliation(s)
- Kathleen E. Navis
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Churmy Y. Fan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Roger J. Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Darren J. Derksen
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
32
|
Kuang Y, Zorzi V, Buratto D, Ziraldo G, Mazzarda F, Peres C, Nardin C, Salvatore AM, Chiani F, Scavizzi F, Raspa M, Qiang M, Chu Y, Shi X, Li Y, Liu L, Shi Y, Zonta F, Yang G, Lerner RA, Mammano F. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine 2020; 57:102825. [PMID: 32553574 PMCID: PMC7378960 DOI: 10.1016/j.ebiom.2020.102825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.
Collapse
Affiliation(s)
- Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Science, Roma3 University, 00146 Rome, Italy
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | | | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yaru Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, U.S.A..
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy.
| |
Collapse
|
33
|
Swayne LA, Johnstone SR, Ng CS, Sanchez-Arias JC, Good ME, Penuela S, Lohman AW, Wolpe AG, Laubach VE, Koval M, Isakson BE. Consideration of Pannexin 1 channels in COVID-19 pathology and treatment. Am J Physiol Lung Cell Mol Physiol 2020; 319:L121-L125. [PMID: 32519892 PMCID: PMC7347959 DOI: 10.1152/ajplung.00146.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, Virginia.,Department of Biological Sciences, Virginia Tech, Roanoke, Virginia
| | - Chen Seng Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juan C Sanchez-Arias
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
34
|
Filippin KJ, de Souza KFS, de Araujo Júnior RT, Torquato HFV, Dias DA, Parisotto EB, Ferreira AT, Paredes-Gamero EJ. Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 2020; 16:1-15. [PMID: 31863258 PMCID: PMC7166233 DOI: 10.1007/s11302-019-09684-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.
Collapse
Affiliation(s)
- Kelly Juliana Filippin
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | | | - Heron Fernandes Vieira Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
- Universidade Braz Cubas, Av. Francisco Rodrigues Filho 1233, Mogi das Cruzes, SP, 08773-380, Brazil
| | - Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| | - Edgar J Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil.
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| |
Collapse
|
35
|
Tachikawa M, Akaogi R, Taii A, Akanuma SI, Uchida Y, Terasaki T. Distinct Transport Properties of Human Pannexin 1 and Connexin 32 Hemichannels. J Pharm Sci 2020; 109:1395-1402. [PMID: 31837976 DOI: 10.1016/j.xphs.2019.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022]
Abstract
Pannexin (Px) and connexin (Cx) hemichannels mediate bidirectional membrane transport in response to various stimuli and are involved in drug efficacy and toxicity. The purpose of the present study was to clarify in detail the transport characteristics of Px1 and Cx32 hemichannels by establishing transport assay systems using human Px1- and P2RX7 receptor-overexpressing HEK293 cells (Px1/P2RX7/HEK293) and Cx32-overexpressing HEK293 cells (Cx32/HEK293), in which P2RX7 and an extracellular Ca2+-depleted condition serve as the opening trigger, respectively. Uptake of the cationic fluorescent dye propidium iodide (PI) was significantly increased in Px1/P2RX7/HEK293 cells compared to that in mock cells, whereas there was no significant uptake of the anionic fluorescent dye sulforhodamine 101 (SR101). Uptake of [3H]cholesterol by Px1/P2RX7/HEK293 cells was significantly decreased, whereas that of [3H]taurine was not, compared to mock cells. On the other hand, uptakes of PI and SR-101 by Cx32/HEK293 cells were both significantly increased compared to mock cells. The PI uptake by Cx32/HEK293 cells was significantly inhibited by thioacetamide, acetaminophen, and N-acetyl-p-benzoquinoneimine. Cellular uptake of [3H]cholesterol was significantly increased in Cx32/HEK293 cells and that of [3H]taurine was significantly decreased. These results support the idea that Px1 and Cx32 hemichannels have distinct substrate recognition specificities and transport directions.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan; Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| | - Ryo Akaogi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Ayaka Taii
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
36
|
van Heusden C, Button B, Anderson WH, Ceppe A, Morton LC, O'Neal WK, Dang H, Alexis NE, Donaldson S, Stephan H, Boucher RC, Lazarowski ER. Inhibition of ATP hydrolysis restores airway surface liquid production in cystic fibrosis airway epithelia. Am J Physiol Lung Cell Mol Physiol 2020; 318:L356-L365. [PMID: 31800264 PMCID: PMC7052677 DOI: 10.1152/ajplung.00449.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/22/2022] Open
Abstract
Airway surface dehydration is a pathological feature of cystic fibrosis (CF) lung disease. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated Cl- channel controlled in part by the adenosine A2B receptor. An alternative CFTR-independent mechanism of fluid secretion is regulated by ATP via the P2Y2 receptor (P2Y2R) that activates Ca2+-regulated Cl- channels (CaCC/TMEM16) and inhibits Na+ absorption. However, due to rapid ATP hydrolysis, steady-state ATP levels in CF airway surface liquid (ASL) are inadequate to maintain P2Y2R-mediated fluid secretion. Therefore, inhibiting airway epithelial ecto-ATPases to increase ASL ATP levels constitutes a strategy to restore airway surface hydration in CF. Using [γ32P]ATP as radiotracer, we assessed the effect of a series of ATPase inhibitory compounds on the stability of physiologically occurring ATP concentrations. We identified the polyoxometalate [Co4(H2O)2(PW9O34)2]10- (POM-5) as the most potent and effective ecto-ATPase inhibitor in CF airway epithelial cells. POM-5 caused long-lasting inhibition of ATP hydrolysis in airway epithelia, which was reversible upon removal of the inhibitor. Importantly, POM-5 markedly enhanced steady-state levels of released ATP, promoting increased ASL volume in CF cell surfaces. These results provide proof of concept for ecto-ATPase inhibitors as therapeutic agents to restore hydration of CF airway surfaces. As a test of this notion, cell-free sputum supernatants from CF subjects were studied and found to have abnormally elevated ATPase activity, which was markedly inhibited by POM-5.
Collapse
Affiliation(s)
- Catharina van Heusden
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Biophysics and Biochemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Wayne H Anderson
- Marsico Lung Institute/Pulmonary and Critical Care Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Agathe Ceppe
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lisa C Morton
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott Donaldson
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Richard C Boucher
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Eduardo R Lazarowski
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
37
|
Nielsen BS, Toft-Bertelsen TL, Lolansen SD, Anderson CL, Nielsen MS, Thompson RJ, MacAulay N. Pannexin 1 activation and inhibition is permeant-selective. J Physiol 2020; 598:361-379. [PMID: 31698505 DOI: 10.1113/jp278759] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The large-pore channel pannexin 1 (Panx1) is expressed in many cell types and can open upon different, yet not fully established, stimuli. Panx1 permeability is often inferred from channel permeability to fluorescent dyes, but it is currently unknown whether dye permeability translates to permeability to other molecules. Cell shrinkage and C-terminal cleavage led to a Panx1 open-state with increased permeability to atomic ions (current), but did not alter ethidium uptake. Panx1 inhibitors affected Panx1-mediated ion conduction differently from ethidium permeability, and inhibitor efficiency towards a given molecule therefore cannot be extrapolated to its effects on the permeability of another. We conclude that ethidium permeability does not reflect equal permeation of other molecules and thus is no measure of general Panx1 activity. ABSTRACT Pannexin 1 (Panx1) is a large-pore membrane channel connecting the extracellular milieu with the cell interior. While several activation regimes activate Panx1 in a variety of cell types, the selective permeability of an open Panx1 channel remains unresolved: does a given activation paradigm increase Panx1's permeability towards all permeants equally and does fluorescent dye flux serve as a proxy for biological permeation through an open channel? To explore permeant-selectivity of Panx1 activation and inhibition, we employed Panx1-expressing Xenopus laevis oocytes and HEK293T cells. We report that different mechanisms of activation of Panx1 differentially affected ethidium and atomic ion permeation. Most notably, C-terminal truncation or cell shrinkage elevated Panx1-mediated ion conductance, but had no effect on ethidium permeability. In contrast, extracellular pH changes predominantly affected ethidium permeability but not ionic conductance. High [K+ ]o did not increase the flux of either of the two permeants. Once open, Panx1 demonstrated preference for anionic permeants, such as Cl- , lactate and glutamate, while not supporting osmotic water flow. Panx1 inhibitors displayed enhanced potency towards Panx1-mediated currents compared to that of ethidium uptake. We conclude that activation or inhibition of Panx1 display permeant-selectivity and that permeation of ethidium does not necessarily reflect an equal permeation of smaller biological molecules and atomic ions.
Collapse
Affiliation(s)
- Brian Skriver Nielsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Lisberg Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Diana Lolansen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Morten Schak Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Jalaleddine N, El-Hajjar L, Dakik H, Shaito A, Saliba J, Safi R, Zibara K, El-Sabban M. Pannexin1 Is Associated with Enhanced Epithelial-To-Mesenchymal Transition in Human Patient Breast Cancer Tissues and in Breast Cancer Cell Lines. Cancers (Basel) 2019; 11:cancers11121967. [PMID: 31817827 PMCID: PMC6966616 DOI: 10.3390/cancers11121967] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Loss of connexin-mediated cell-cell communication is a hallmark of breast cancer progression. Pannexin1 (PANX1), a glycoprotein that shares structural and functional features with connexins and engages in cell communication with its environment, is highly expressed in breast cancer metastatic foci; however, PANX1 contribution to metastatic progression is still obscure. Here we report elevated expression of PANX1 in different breast cancer (BRCA) subtypes using RNA-seq data from The Cancer Genome Atlas (TCGA). The elevated PANX1 expression correlated with poorer outcomes in TCGA BRCA patients. In addition, gene set enrichment analysis (GSEA) revealed that epithelial-to-mesenchymal transition (EMT) pathway genes correlated positively with PANX1 expression. Pharmacological inhibition of PANX1, in MDA-MB-231 and MCF-7 breast cancer cells, or genetic ablation of PANX1, in MDA-MB-231 cells, reverted the EMT phenotype, as evidenced by decreased expression of EMT markers. In addition, PANX1 inhibition or genetic ablation decreased the invasiveness of MDA-MB-231 cells. Our results suggest PANX1 overexpression in breast cancer is associated with a shift towards an EMT phenotype, in silico and in vitro, attributing to it a tumor-promoting effect, with poorer clinical outcomes in breast cancer patients. This association offers a novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Nour Jalaleddine
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Beirut 1107-2809, Lebanon;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Hassan Dakik
- University of Tours, EA 7501 GICC, CNRS ERL 7001 LNOx, CEDEX 01, 37032 Tours, France;
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, Beirut 1105, Lebanon;
| | - Jessica Saliba
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Beirut 1003, Lebanon;
| | - Rémi Safi
- Department of Dermatology, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Kazem Zibara
- ER045-Laboratory of Stem Cells, PRASE, Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Beirut 1003, Lebanon;
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
- Correspondence: ; Tel.: +961-1-350000 (ext. 4765-4766)
| |
Collapse
|
39
|
Tan JJ, Boudreault F, Adam D, Brochiero E, Grygorczyk R. Type 2 secretory cells are primary source of ATP release in mechanically stretched lung alveolar cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L49-L58. [PMID: 31596106 DOI: 10.1152/ajplung.00321.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular ATP and its metabolites are potent paracrine modulators of lung alveolar cell function, including surfactant secretion and fluid transport, but the sources and mechanism of intra-alveolar ATP release remain unclear. To determine the contribution of gas-exchanging alveolar type 1 (AT1) and surfactant-secreting type 2 (AT2) cells to stretch-induced ATP release, we used quantitative real-time luminescence ATP imaging and rat primary alveolar cells cultured on silicon substrate for 2-7 days. When cultured on solid support, primary AT2 cells progressively transdifferentiated into AT1-like cells with ~20% of cells showing AT1 phenotype by day 2-3 (AT2:AT1 ≈ 4:1), while on day 7, the AT2:AT1 cell ratio was reversed with up to 80% of the cells displaying characteristics of AT1 cells. Stretch (1 s, 5-35%) induced ATP release from AT2/AT1 cell cultures, and it was highest on days 2 and 3 but declined in older cultures. ATP release tightly correlated with the number of remaining AT2 cells in culture, consistent with ~10-fold lower ATP release by AT1 than AT2 cells. ATP release was unaffected by inhibitors of putative ATP channels carbenoxolone and probenecid but was significantly diminished in cells loaded with calcium chelator BAPTA. These pharmacological modulators had similar effects on stretch-induced intracellular Ca2+ responses measured by Fura2 fluorescence. The study revealed that AT2 cells are the primary source of stretch-induced ATP release in heterocellular AT2/AT1 cell cultures, suggesting similar contribution in intact alveoli. Our results support a role for calcium-regulated mechanism but not ATP-conducting channels in ATP release by alveolar epithelial cells.
Collapse
Affiliation(s)
- Ju Jing Tan
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Francis Boudreault
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Damien Adam
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ryszard Grygorczyk
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Liu C, Huang L, Li C, Shen Y, Wang J. [Blocking pannexin-1 alleviates cisplatin-induced acute kidney injury in mice by reducing renal inflammatory cell infiltration]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:508-514. [PMID: 31140412 DOI: 10.12122/j.issn.1673-4254.2019.05.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of blocking pannexin-1 against acute kidney injury induced by cisplatin. METHODS Twenty-six male C57BL/6 mice aged 6-8 weeks were randomly divided into control group, cisplatin model (Cis) group and cisplatin + carbenoxolone treatment group (Cis + CBX). In Cis group and Cis + CBX group, the mice were injected intraperitoneally with 20 mg/kg of cisplatin and with CBX (20 mg/kg) at 30 min before and 24 and 48 h after cisplatin inhjection, respectively. All the mice were sacrificed at 72 h after cisplatin injection, and plasma and kidney samples were collected for testing mRNA and protein expression levels of pannexin-1 in the renal tissue using RT-qPCR and Western blotting and for detecting plasma creatinine and BUN levels; the pathological changes in the renal tissues were observed using Periodic Acid-Schiff staining. The expression of kidney injury molecule 1 (KIM-1) was examined using immunohistochemistry and the mRNA expressions of KIM-1 and neutrophil gelatinase- related lipid transport protein (NGAL) were detected by RT-qPCR to evaluate the injuries of the renal tubules. The infiltration of F4/80-positive macrophages and CD4-positive T cells were observed by immunofluorescence. In the in vitro experiment, human proximal tubule epithelial cell line HK-2 was stimulated with 50 μmol/L cisplatin to establish a cell model of acute kidney injury, and the mRNA and protein expressions of pannexin-1 were detected by RT-qPCR and Western blotting at 4, 6, 12, 18 and 24 h after the stimulation. RESULTS Compared with the control mice, the cisplatin-treated mice showed significantly up-regulated protein levels (P < 0.05) and mRNA levels (P < 0.005) of pannexin-1 in the kidney tissue. Cisplatin stimulation also caused significant increases in the protein levels (P < 0.005) and mRNA levels (P < 0.005) of pannexin-1 in cultured HK-2 cells. Compared with cisplatin-treated mice, the mice treated with both cisplatin and the pannexin-1 inhibitor CBX showed obviously lessened kidney pathologies and milder renal tubular injuries with significantly reduced plasma BUN and Scr levels (P < 0.01), expressions of KIM-1 and NGAL in the kidney (P < 0.05), and infiltration of F4/80-positive macrophages (P < 0.01) and CD4- positive T cells (P < 0.05) in the kidney tissues. CONCLUSIONS In cisplatin induced acute kidney injury mice model, Pannexin-1 expression is up-regulated in the kidneys tissue, and blocking pannexin-1 alleviates the acute kidney injury via reducing renal inflammatory cell infiltration.
Collapse
Affiliation(s)
- Chongbin Liu
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liuwei Huang
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Caizhen Li
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanting Shen
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Wang
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
41
|
Destination and consequences of Panx1 and mutant expression in polarized MDCK cells. Exp Cell Res 2019; 381:235-247. [PMID: 31102595 DOI: 10.1016/j.yexcr.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022]
Abstract
The channel-forming membrane glycoprotein pannexin 1 (Panx1) is best characterized as an ATP release channel. To investigate the trafficking and sorting of Panx1, we used polarized MDCK cells and non-polarized BICR-M1Rk cells to track the fate of GFP-tagged Panx1. In non-polarized cells, Panx1 was found throughout the plasma membrane, including the lamellipodia of the tumor cells and the cell surface-targeting domain was mapped to residues 307-379. Panx1 was preferentially enriched at the apical membrane domain of polarized MDCK cells grown as monolayer sheets or as spheroids. Residual Panx1 localized within basolateral membranes of polarized MDCK cells was independent of a putative dileucine sorting motif LL365/6 found within the C-terminal of Panx1. Unexpectedly, stable expression of a Panx1 mutant, where a putative tyrosine-based basolateral sorting motif (YxxØ) was mutated (Y308F), or a truncated Δ379 Panx1 mutant, caused MDCK cells to lose cell-cell contacts and their ability to polarize as they underwent a switch to a more fibroblast-like phenotype. We conclude that Panx1 is preferentially delivered to the apical domain of polarized epithelial cells, and Panx1 mutants drive phenotypic changes to MDCK cells preventing their polarization.
Collapse
|
42
|
Battistone MA, Merkulova M, Park Y, Peralta MA, Gombar F, Brown D, Breton S. Unravelling purinergic regulation in the epididymis: activation of V-ATPase-dependent acidification by luminal ATP and adenosine. J Physiol 2019; 597:1957-1973. [PMID: 30746715 PMCID: PMC6441927 DOI: 10.1113/jp277565] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In the epididymis, elaborate communication networks between epithelial cells are important with respect to establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa, which is essential for male fertility. Proton secretion by epididymal clear cells is achieved via the proton pumping V-ATPase located in their apical membrane. In the present study, we dissect the molecular mechanisms by which clear cells respond to luminal ATP and adenosine to modulate their acidifying activity via the adenosine receptor ADORA2B and the pH-sensitive ATP receptor P2X4. We demonstrate that the hydrolysis of ATP to produce adenosine by ectonucleotidases plays a key role in V-ATPase-dependent proton secretion, and is part of a feedback loop that ensures acidification of the luminal compartment These results help us better understand how professional proton-secreting cells respond to extracellular cues to modulate their functions, and how they communicate with neighbouring cells. ABSTRACT Cell-cell cross-talk is crucial for the dynamic function of epithelia, although how epithelial cells detect and respond to variations in extracellular stimuli to modulate their environment remains incompletely understood. In the present study, we used the epididymis as a model system to investigate epithelial cell regulation by luminal factors. In the epididymis, elaborate communication networks between the different epithelial cell types are important for establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa. In particular, clear cells (CCs) secrete protons into the lumen via the proton pumping V-ATPase located in their apical membrane, a process that is activated by luminal alkalinization. However, how CCs detect luminal pH variations to modulate their function remains uncharacterized. Purinergic regulation of epithelial transport is modulated by extracellular pH in other tissues. In the present study, functional analysis of the mouse cauda epididymis perfused in vivo showed that luminal ATP and adenosine modulate the acidifying activity of CCs via the purinergic ADORA2B and P2X4 receptors, and that luminal adenosine content is itself regulated by luminal pH. Altogether, our observations illustrate mechanisms by which CCs are activated by pH sensitive P2X4 receptor and ectonucleotidases, providing a feedback mechanism for the maintenance of luminal pH. These novel mechanisms by which professional proton-secreting cells respond to extracellular cues to modulate their functions, as well as how they communicate with neighbouring cells, might be translatable to other acidifying epithelia.
Collapse
Affiliation(s)
- Maria A. Battistone
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Maria Merkulova
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Yoo‐Jin Park
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Maria A. Peralta
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Flavia Gombar
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Dennis Brown
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Sylvie Breton
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
43
|
CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells. Sci Rep 2019; 9:2681. [PMID: 30804437 PMCID: PMC6390109 DOI: 10.1038/s41598-019-39593-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
The CALHM1/CALHM3 channel in the basolateral membrane of polarized taste cells mediates neurotransmitter release. However, mechanisms regulating its localization remain unexplored. Here, we identified CALHM1/CALHM3 in the basolateral membrane of type II taste cells in discrete puncta localized close to afferent nerve fibers. As in taste cells, CALHM1/CALHM3 was present in the basolateral membrane of model epithelia, although it was distributed throughout the membrane and did not show accumulation in puncta. We identified canonical basolateral sorting signals in CALHM1 and CALHM3: tyrosine-based and dileucine motifs. However, basolateral sorting remained intact in mutated channels lacking those signals, suggesting that non-canonical signals reside elsewhere. Our study demonstrates intrinsic basolateral sorting of CALHM channels in polarized cells, and provides mechanistic insights.
Collapse
|
44
|
Inhibition of Pannexin 1 Reduces the Tumorigenic Properties of Human Melanoma Cells. Cancers (Basel) 2019; 11:cancers11010102. [PMID: 30654593 PMCID: PMC6356688 DOI: 10.3390/cancers11010102] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/19/2023] Open
Abstract
Pannexin 1 (PANX1) is a channel-forming glycoprotein expressed in many tissues including the skin. PANX1 channels allow the passage of ions and molecules up to 1 kDa, including ATP and other metabolites. In this study, we show that PANX1 is highly expressed in human melanoma tumors at all stages of disease progression, as well as in patient-derived cells and established melanoma cell lines. Reducing PANX1 protein levels using shRNA or inhibiting channel function with the channel blockers, carbenoxolone (CBX) and probenecid (PBN), significantly decreased cell growth and migration, and increased melanin production in A375-P and A375-MA2 cell lines. Further, treatment of A375-MA2 tumors in chicken embryo xenografts with CBX or PBN significantly reduced melanoma tumor weight and invasiveness. Blocking PANX1 channels with PBN reduced ATP release in A375-P cells, suggesting a potential role for PANX1 in purinergic signaling of melanoma cells. In addition, cell-surface biotinylation assays indicate that there is an intracellular pool of PANX1 in melanoma cells. PANX1 likely modulates signaling through the Wnt/β-catenin pathway, because β-catenin levels were significantly decreased upon PANX1 silencing. Collectively, our findings identify a role for PANX1 in controlling growth and tumorigenic properties of melanoma cells contributing to signaling pathways that modulate melanoma progression.
Collapse
|
45
|
Barría I, Güiza J, Cifuentes F, Zamorano P, Sáez JC, González J, Vega JL. Trypanosoma cruzi Infection Induces Pannexin-1 Channel Opening in Cardiac Myocytes. Am J Trop Med Hyg 2018; 98:105-112. [PMID: 29141748 DOI: 10.4269/ajtmh.17-0293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas diseases, invades the cardiac tissue causing acute myocarditis and heart electrical disturbances. In T. cruzi invasion, the parasite induces [Ca2+]i transients in the host cells, an essential phenomenon for invasion. To date, knowledge on the mechanism that elicits transients of [Ca2+]i during the infection of cardiac myocytes has not been fully characterized. Pannexin1 (Panx1) channel are poorly selective channels found in all vertebrates that serve as a pathway for ATP release. In this article, we demonstrate that T. cruzi infection results in the opening of Panx1 channels in cardiac myocytes. We show that pharmacological blockade of Panx1 channels inhibits T. cruzi-induced [Ca2+]i transients and invasion in cardiac myocytes. Our results indicate that opening of Panx1 channels are required for T. cruzi invasion in cardiac myocytes, and we propose that targeting Panx1 channel could provide new potential therapeutic approaches to treat Chagas disease.
Collapse
Affiliation(s)
- Iván Barría
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan Güiza
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| | - Fredi Cifuentes
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| | - Pedro Zamorano
- Laboratory of Neurobiology, Department of Biomedicine, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge González
- Molecular Parasitology Unit, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - José L Vega
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
46
|
Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl. CURRENT TOPICS IN MEMBRANES 2018; 81:125-176. [PMID: 30243431 DOI: 10.1016/bs.ctm.2018.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An elaborate volume regulation system based on interplay of ion channels and transporters was evolved to cope with constant osmotic challenges caused by intensive metabolism, transport and other physiological/pathophysiological events. In animal cells, two types of anion channels are directly activated by cell swelling and involved in the regulatory volume decrease (RVD): volume-sensitive outwardly rectifying anion channel (VSOR), also called volume-regulated anion channel (VRAC), and Maxi-Cl which is the most major type of maxi-anion channel (MAC). These two channels have very different biophysical profiles and exhibit opposite dependence on intracellular ATP. After several decades of verifying many false-positive candidates for VSOR and Maxi-Cl, LRRC8 family proteins emerged as major VSOR components, and SLCO2A1 protein as a core of Maxi-Cl. Still, neither of these proteins alone can fully reproduce the native channel phenotypes suggesting existence of missing components. Although both VSOR and Maxi-Cl have pores wide enough to accommodate bulky ATP4- and MgATP2- anions, evidence accumulated hitherto, based on pharmacological and gene silencing experiments, suggests that Maxi-Cl, but not VSOR, serves as one of the major pathways for the release of ATP from swollen and ischemic/hypoxic cells. Relations of VSOR and Maxi-Cl with diseases and their selective pharmacology are the topics promoted by recent advance in molecular identification of the two volume-activated, volume-regulatory anion channels.
Collapse
|
47
|
Dahl G. The Pannexin1 membrane channel: distinct conformations and functions. FEBS Lett 2018; 592:3201-3209. [PMID: 29802622 DOI: 10.1002/1873-3468.13115] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
The Pannexin1 (Panx1) membrane channel responds to different stimuli with distinct channel conformations. Most stimuli induce a large cation- and ATP-permeable conformation, hence Panx1 is involved in many physiological processes entailing purinergic signaling. For example, oxygen delivery in the peripheral circulatory system is regulated by ATP released from red blood cells and endothelial cells through Panx1 channels. The same membrane channel, however, when stimulated by positive membrane potential or by cleavage with caspase 3, is highly selective for the passage of chloride ions, excluding cations and ATP. Although biophysical data do not allow a distinction between the chloride-selective channels induced by voltage or by caspase cleavage, there must be other subtle differences in the structure, because overexpression of wtPanx1 is well tolerated by cells, while expression of the truncation mutant Panx1Δ378 results in slow cell death. Thus, in addition to the well-characterized two open conformations, there might be a third, more subtle conformational change involved in cell death.
Collapse
Affiliation(s)
- Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, FL, USA
| |
Collapse
|
48
|
Jankowski J, Perry HM, Medina CB, Huang L, Yao J, Bajwa A, Lorenz UM, Rosin DL, Ravichandran KS, Isakson BE, Okusa MD. Epithelial and Endothelial Pannexin1 Channels Mediate AKI. J Am Soc Nephrol 2018; 29:1887-1899. [PMID: 29866797 DOI: 10.1681/asn.2017121306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/11/2018] [Indexed: 12/24/2022] Open
Abstract
Background Pannexin1 (Panx1), an ATP release channel, is present in most mammalian tissues, but the role of Panx1 in health and disease is not fully understood. Panx1 may serve to modulate AKI; ATP is a precursor to adenosine and may function to block inflammation, or ATP may act as a danger-associated molecular pattern and initiate inflammation.Methods We used pharmacologic and genetic approaches to evaluate the effect of Panx1 on kidney ischemia-reperfusion injury (IRI), a mouse model of AKI.Results Pharmacologic inhibition of gap junctions, including Panx1, by administration of carbenoxolone protected mice from IRI. Furthermore, global deletion of Panx1 preserved kidney function and morphology and diminished the expression of proinflammatory molecules after IRI. Analysis of bone marrow chimeric mice revealed that Panx1 expressed on parenchymal cells is necessary for ischemic injury, and both proximal tubule and vascular endothelial Panx1 tissue-specific knockout mice were protected from IRI. In vitro, Panx1-deficient proximal tubule cells released less and retained more ATP under hypoxic stress.Conclusions Panx1 is involved in regulating ATP release from hypoxic cells, and reducing this ATP release may protect kidneys from AKI.
Collapse
Affiliation(s)
- Jakub Jankowski
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Heather M Perry
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Christopher B Medina
- Pharmacology.,Microbiology, Immunology, and Cancer Biology, and.,Beirne Carter Center for Immunology.,Center for Cell Clearance, University of Virginia, Charlottesville, Virginia
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Ulrike M Lorenz
- Microbiology, Immunology, and Cancer Biology, and.,Beirne Carter Center for Immunology
| | | | - Kodi S Ravichandran
- Microbiology, Immunology, and Cancer Biology, and.,Beirne Carter Center for Immunology.,Center for Cell Clearance, University of Virginia, Charlottesville, Virginia
| | - Brant E Isakson
- Molecular Physiology and Biological Physics.,Robert M. Berne Cardiovascular Research Center, and
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| |
Collapse
|
49
|
Ohbuchi T, Suzuki H. Synchronized roles of pannexin and connexin in nasal mucosal epithelia. Eur Arch Otorhinolaryngol 2018; 275:1657-1661. [PMID: 29574598 PMCID: PMC5951895 DOI: 10.1007/s00405-018-4947-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nasal mucosal epithelial cells express connexins, the prototypical gap junction proteins, and pannexins, a new family of channel proteins homologous to the invertebrate gap junction proteins. The physiological and pathophysiological roles of these transmembrane proteins in nasal mucosa are largely still unknown. PURPOSE Pannexins participate in ATP release into the extracellular space in various tissues, and ATP plays important roles in mucociliary clearance, especially by regulating ciliary beat activity. Therefore, we focused on the functional relationship between connexins, pannexin-1, ATP release, and mucociliary clearance in nasal epithelia. RESULTS AND CONCLUSIONS Connexins participate in the generation of intercellular calcium waves, in which calcium-mediated signaling responses spread to contiguous cells through the gap junction formed by connexins to transmit calcium signaling throughout the airway epithelium. Pannexins in the nasal mucosa may contribute to not only ciliary beat modulation via ATP release, but also regulation of mucus blanket components via H2O efflux. The synchronized roles of pannexin and connexin may provide a new insight into effective mucociliary clearance systems in nasal mucosa.
Collapse
Affiliation(s)
- Toyoaki Ohbuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
50
|
Chanson M, Watanabe M, O'Shaughnessy EM, Zoso A, Martin PE. Connexin Communication Compartments and Wound Repair in Epithelial Tissue. Int J Mol Sci 2018; 19:ijms19051354. [PMID: 29751558 PMCID: PMC5983803 DOI: 10.3390/ijms19051354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.
Collapse
Affiliation(s)
- Marc Chanson
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | - Erin M O'Shaughnessy
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Alice Zoso
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Patricia E Martin
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|