1
|
Montesano G, Rabiolo A, Ometto G, Crabb DP, Garway-Heath DF. Relationship Between Intraocular Pressure and the True Rate of Functional and Structural Progression in the United Kingdom Glaucoma Treatment Study. Invest Ophthalmol Vis Sci 2025; 66:32. [PMID: 39808119 PMCID: PMC11737456 DOI: 10.1167/iovs.66.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS). Methods UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors). Structural tests measured rim area (RA) with Heidelberg retina tomography (HRT) and average peripapillary retinal nerve fiber layer (pRNFL) thickness with optical coherence tomography (OCT). One eye of 436 patients (222 on Latanoprost) was analyzed. A Bayesian hierarchical model estimated the true RoP of VF and structural metrics, and their correlations, using sign-reversed multivariable exponential distribution. RA and pRNFL measurements were converted to a dB scale, matching the VF metric (mean deviation [MD]). The effect of average IOP on the true RoPs was estimated. Results True RoP at the mean average IOP (17 mm Hg) was faster (P < 0.001) for VF-MD (-0.59 [-0.73, -0.48] dB/year) than HRT-RA (-0.05 [-0.07, -0.03] dB/year) and OCT-pRNFL (-0.08 [-0.11, -0.06] dB/year). The proportional acceleration of RoP per mm Hg increase was, however, not significantly different (smallest P = 0.15). Accounting for the structural floor-effect largely eliminated the differences in RoPs (smallest P = 0.25). Conclusions VF appeared to deteriorate at a faster rate than structural measurements. However, this could be explained by the floor-effect from nonfunctional tissue. IOP induced a similar acceleration in RoP per mm Hg increase.
Collapse
Affiliation(s)
- Giovanni Montesano
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- City, University of London, Optometry and Visual Sciences, London, United Kingdom
| | - Alessandro Rabiolo
- Department of Health Sciences, University Eastern Piedmont “A. Avogadro”, Novara, Italy
- Eye Clinic, University Hospital Maggiore della Carità, Novara, Italy
| | - Giovanni Ometto
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- City, University of London, Optometry and Visual Sciences, London, United Kingdom
| | - David P. Crabb
- City, University of London, Optometry and Visual Sciences, London, United Kingdom
| | - David F. Garway-Heath
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
2
|
Elul D, Levin N. The Role of Population Receptive Field Sizes in Higher-Order Visual Dysfunction. Curr Neurol Neurosci Rep 2024; 24:611-620. [PMID: 39266871 PMCID: PMC11538192 DOI: 10.1007/s11910-024-01375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE OF REVIEW Population receptive field (pRF) modeling is an fMRI technique used to retinotopically map visual cortex, with pRF size characterizing the degree of spatial integration. In clinical populations, most pRF mapping research has focused on damage to visual system inputs. Herein, we highlight recent work using pRF modeling to study high-level visual dysfunctions. RECENT FINDINGS Larger pRF sizes, indicating coarser spatial processing, were observed in homonymous visual field deficits, aging, and autism spectrum disorder. Smaller pRF sizes, indicating finer processing, were observed in Alzheimer's disease and schizophrenia. In posterior cortical atrophy, a unique pattern was found in which pRF size changes depended on eccentricity. Changes to pRF properties were observed in clinical populations, even in high-order impairments, explaining visual behavior. These pRF changes likely stem from altered interactions between brain regions. Furthermore, some studies suggested that pRF sizes change as part of cortical reorganization, and they can point towards future prognosis.
Collapse
Affiliation(s)
- Deena Elul
- fMRI Unit, Neurology Department Hadassah Medical Organization, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12000, Jerusalem, 91120, Israel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department Hadassah Medical Organization, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
3
|
Marte ME, Kurokawa K, Jung H, Liu Y, Bernucci MT, King BJ, Miller DT. Characterizing Presumed Displaced Retinal Ganglion Cells in the Living Human Retina of Healthy and Glaucomatous Eyes. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39259176 PMCID: PMC11401130 DOI: 10.1167/iovs.65.11.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Purpose The purpose of this study was to investigate the large somas presumed to be displaced retinal ganglion cells (dRGCs) located in the inner nuclear layer (INL) of the living human retina. Whereas dRGCs have previously been studied in mammals and human donor tissue, they have never been investigated in the living human retina. Methods Five young, healthy subjects and three subjects with varying types of glaucoma were imaged at multiple locations in the macula using adaptive optics optical coherence tomography. In the acquired volumes, bright large somas at the INL border with the inner plexiform layer were identified, and the morphometric biomarkers of soma density, en face diameter, and spatial distribution were measured at up to 13 degrees retinal eccentricity. Susceptibility to glaucoma was assessed. Results In the young, healthy individuals, mean density of the bright, large somas was greatest foveally (550 and 543 cells/mm2 at 2 degrees temporal and nasal, respectively) and decreased with increasing retinal eccentricity (38 cells/mm2 at 13 degrees temporal, the farthest we measured). Soma size distribution showed the opposite trend with diameters and size variation increasing with retinal eccentricity, from 12.7 ± 1.8 µm at 2 degrees to 15.7 ± 3.5 µm at 13 degrees temporal, and showed evidence of a bimodal distribution in more peripheral locations. Within and adjacent to the arcuate defects of the subjects with glaucoma, density of the bright large somas was significantly lower than found in the young, healthy individuals. Conclusions Our results suggest that the bright, large somas at the INL border are likely comprised of dRGCs but amacrine cells may contribute too. These somas appear highly susceptible to glaucomatous damage.
Collapse
Affiliation(s)
- Mary E Marte
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Kazuhiro Kurokawa
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - HaeWon Jung
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Yan Liu
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Marcel T Bernucci
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Brett J King
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Donald T Miller
- Indiana University School of Optometry, Bloomington, Indiana, United States
| |
Collapse
|
4
|
Cimaglia G, Tribble JR, Votruba M, Williams PA, Morgan JE. Oral nicotinamide provides robust, dose-dependent structural and metabolic neuroprotection of retinal ganglion cells in experimental glaucoma. Acta Neuropathol Commun 2024; 12:137. [PMID: 39180087 PMCID: PMC11342512 DOI: 10.1186/s40478-024-01850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
A compromised capacity to maintain NAD pools is recognized as a key underlying pathophysiological feature of neurodegenerative diseases. NAD acts as a substrate in major cell functions including mitochondrial homeostasis, cell signalling, axonal transport, axon/Wallerian degeneration, and neuronal energy supply. Dendritic degeneration is an early marker of neuronal stress and precedes cell loss. However, little is known about dendritic structural preservation in pathologic environments and remodelling in mature neurons. Retinal ganglion cell dendritic atrophy is an early pathological feature in animal models of the disease and has been demonstrated in port-mortem human glaucoma samples. Here we report that a nicotinamide (a precursor to NAD through the NAD salvage pathway) enriched diet provides robust retinal ganglion cell dendritic protection and preserves dendritic structure in a rat model of experimental glaucoma. Metabolomic analysis of optic nerve samples from the same animals demonstrates that nicotinamide provides robust metabolic neuroprotection in glaucoma. Advances in our understanding of retinal ganglion cell metabolic profiles shed light on the energetic shift that triggers early neuronal changes in neurodegenerative diseases. As nicotinamide can improve visual function short term in existing glaucoma patients, we hypothesize that a portion of this visual recovery may be due to dendritic preservation in stressed, but not yet fully degenerated, retinal ganglion cells.
Collapse
Affiliation(s)
- Gloria Cimaglia
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, UK
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, UK
- University Hospital of Wales, Heath Park, Cardiff, Wales, UK
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, UK.
- University Hospital of Wales, Heath Park, Cardiff, Wales, UK.
| |
Collapse
|
5
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Dada T, Mahalingam K, Bhartiya S. Reversing Aging and Improving Health Span in Glaucoma Patients: The Next Frontier? J Curr Glaucoma Pract 2024; 18:87-93. [PMID: 39575133 PMCID: PMC11576344 DOI: 10.5005/jp-journals-10078-1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
How to cite this article: Dada T, Mahalingam K, Bhartiya S. Reversing Aging and Improving Health Span in Glaucoma Patients: The Next Frontier? J Curr Glaucoma Pract 2024;18(3):87-93.
Collapse
Affiliation(s)
- Tanuj Dada
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Karthikeyan Mahalingam
- Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Shibal Bhartiya
- Department of Ophthalmology and Community Outreach, Marengo Asia Hospitals, Gurugram and Faridabad, Haryana, India; Mayo Clinic, Jacksonville, Florida, United States
| |
Collapse
|
7
|
Iwase A, Higashide T, Fujii M, Ohno Y, Tanaka Y, Kikawa T, Araie M. Aging-associated changes of optical coherence tomography-measured ganglion cell-related retinal layer thickness and visual sensitivity in normal Japanese. Jpn J Ophthalmol 2024; 68:117-125. [PMID: 38498066 DOI: 10.1007/s10384-024-01049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/06/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE To report aging-associated change rates in circumpapillary retinal nerve fiber layer thickness (cpRNFLT) and macular ganglion cell-inner plexiform layer and complex thickness (MGCIPLT, MGCCT) in normal Japanese eyes and to compare the data in linear scaled visual field (VF) sensitivity of central 4 points of Humphrey Field Analyzer (HFA) 24-2 test (VF4TestPoints) to that in MGCIPLT in four 0.6-mm-diameter circles corresponding to the four central points of HFA 24-2 adjusted for retinal ganglion cell displacement (GCIPLT4TestPoints). STUDY DESIGN Prospective observational study METHODS: HFA 24-2 tests and spectral-domain optical coherence tomography (SD-OCT) measurements of cpRNFLT, MGCIPLT, MGCCT and GCIPLT4TestPoints were performed every 3 months for 3 years in 73 eyes of 37 healthy Japanese with mean age of 50.4 years. The time changes of SD-OCT-measured parameters and VF4TestPoints were analyzed using a linear mixed model. RESULTS The aging-associated change rates were -0.064 μm/year for MGCIPLT and and -0.095 for MGCCT (P=0.020 and 0.017), but could not be detected for cpRNFLT. They accelerated with aging at -0.009μm/year/year of age for MGCIPLT (P<0.001), at 0.011 for MGCCT (P<0.001) and at 0.013 for cpRNFLT(0.031). The aging-associated decline of -82.1 [1/Lambert]/year of VF4TestPoints corresponded to -0.095 μm/year of GCIPLT4TestPoints. CONCLUSION We report that aging-associated change rates of cpRNFLT, MGCIPLT and MGCCT in normal Japanese eyes were found to be significantly accelerated along with aging. Relationship between VF sensitivity decline rates and SD-OCT measured GCIPLT decline rates during physiological aging in the corresponding parafoveal retinal areas are also documented.
Collapse
Affiliation(s)
- Aiko Iwase
- Tajimi Iwase Eye Clinic, 3-101-1, Honmachi, Tajimi, Gifu Prefecture, 507-0033, Japan.
| | - Tomomi Higashide
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Makoto Fujii
- Division of Health and Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuko Ohno
- Division of Health and Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | - Makoto Araie
- Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Tokyo, Japan
| |
Collapse
|
8
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Oxidative stress plays a central role in cataract pathogenesis, a leading cause of global blindness. This review delves into the role of oxidative stress in cataract development and key biomarkers - glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE) - to clarify their functions and potential applications in predictive diagnostics and therapies. RECENT FINDINGS Antioxidants serve as pivotal markers in cataract pathogenesis. GSH affects the central lens due to factors such as enzyme depletion and altered connexin expression, impairing GSH diffusion. Age-related oxidative stress may hinder GSH transport via connexin channels or an internal microcirculation system. N-acetylcysteine, a GSH precursor, shows promise in mitigating lens opacity when applied topically. Additionally, SOD, particularly SOD1, correlates with increased cataract development and gel formulations have exhibited protective effects against posterior subscapular cataracts. Lastly, markers of lipid peroxidation, MDA and 4-HNE, have been shown to reflect disease severity. Studies suggest a potential link between 4-HNE and connexin channel modification, possibly contributing to reduced GSH levels. SUMMARY Oxidative stress is a significant contributor to cataract development, underscoring the importance of antioxidants in diagnosis and treatment. Notably, GSH depletion, SOD decline, and lipid peroxidation markers are pivotal factors in cataract pathogenesis, offering promising avenues for both diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- Bryanna Lee
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California, USA
| | | | | |
Collapse
|
10
|
Verticchio Vercellin A, Siesky B, Antman G, Oddone F, Chang M, Eckert G, Arciero J, Kellner RL, Fry B, Coleman-Belin J, Carnevale C, Harris A. Regional Vessel Density Reduction in the Macula and Optic Nerve Head of Patients With Pre-Perimetric Primary Open Angle Glaucoma. J Glaucoma 2023; 32:930-941. [PMID: 37725789 PMCID: PMC10841039 DOI: 10.1097/ijg.0000000000002310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
PRCIS Capillary and neuronal tissue loss occur both globally and with regional specificity in pre-perimetric glaucoma patients at the level of the optic nerve and macula, with perifovea regions affected earlier than parafovea areas. PURPOSE To investigate optic nerve head (ONH) and macular vessel densities (VD) and structural parameters assessed by optical coherence tomography angiography in pre-perimetric open angle glaucoma (ppOAG) patients and healthy controls. MATERIALS AND METHODS In all, 113 healthy and 79 ppOAG patients underwent global and regional (hemispheric/quadrants) assessments of retinal, ONH, and macular vascularity and structure, including ONH parameters, retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) thickness. Comparisons between outcomes in ppOAG and controls were adjusted for age, sex, race, BMI, diabetes, and hypertension, with P <0.05 considered statistically significant. RESULTS In ppOAG compared with healthy controls: RNFL thicknesses were statistically significantly lower for all hemispheres, quadrants, and sectors ( P <0.001-0.041); whole image peripapillary all and small blood vessels VD were statistically significantly lower for all the quadrants ( P <0.001-0.002), except for the peripapillary small vessels in the temporal quadrant (ppOAG: 49.66 (8.40), healthy: 53.45 (4.04); P =0.843); GCC and inner and full macular thicknesses in the parafoveal and perifoveal regions were significantly lower in all the quadrants ( P =0.000- P =0.033); several macular VD were significantly lower ( P =0.006-0.034), with the exceptions of macular center, parafoveal superior and inferior quadrant, and perifoveal superior quadrant ( P >0.05). CONCLUSIONS In ppOAG patients, VD biomarkers in both the macula and ONH, alongside RNFL, GCC, and macular thickness, were significantly reduced before detectable visual field loss with regional specificity. The most significant VD reduction detected was in the peripheric (perifovea) regions. Macular and ONH decrease in VD may serve as early biomarkers of glaucomatous disease.
Collapse
Affiliation(s)
| | - Brent Siesky
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gal Antman
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Rabin Medical Center, Petah Tikva, Israel
| | | | - Michael Chang
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Eckert
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Julia Arciero
- Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | | | - Brendan Fry
- Department of Mathematics and Statistics, Metropolitan State University of Denver, Denver, CO, United States
| | | | | | - Alon Harris
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Silva EHA, Santana NNM, Seixas NRM, Bezerra LLF, Silva MMO, Santos SF, Cavalcante JS, Leocadio-Miguel MA, Engelberth RC. Blue light exposure-dependent improvement in robustness of circadian rest-activity rhythm in aged rats. PLoS One 2023; 18:e0292342. [PMID: 37792859 PMCID: PMC10550138 DOI: 10.1371/journal.pone.0292342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The aging effects on circadian rhythms have diverse implications including changes in the pattern of rhythmic expressions, such as a wide fragmentation of the rhythm of rest-activity and decrease in amplitude of activity regulated by the suprachiasmatic nucleus (SCN). The study of blue light on biological aspects has received great current interest due, among some aspects, to its positive effects on psychiatric disorders in humans. This study aims to evaluate the effect of blue light therapy on the SCN functional aspects, through the evaluation of the rest-activity rhythm, in aging rats. For this, 33 sixteen-months-old male Wistar rats underwent continuous records of locomotor activity and were exposed to periods of 6 hours of blue light during the first half of the light phase (Zeitgeber times 0-6) for 14 days. After this, the rats were maintained at 12h:12h light:dark cycle to check the long-term effect of blue light for 14 days. Blue light repeated exposure showed positive effects on the rhythmic variables of locomotor activity in aged rats, particularly the increase in amplitude, elevation of rhythmic robustness, phase advance in acrophase, and greater consolidation of the resting phase. This effect depends on the presence of daily blue light exposure. In conclusion, our results indicate that blue light is a reliable therapy to reduce circadian dysfunctions in aged rats, but other studies assessing how blue light modulates the neural components to modulate this response are still needed.
Collapse
Affiliation(s)
- Eryck Holmes A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Narita Renata M. Seixas
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lyzandro Lucas F. Bezerra
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Milena O. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
12
|
Hsueh HT, Chou RT, Rai U, Kolodziejski P, Liyanage W, Pejavar J, Mozzer A, Davison C, Appell MB, Kim YC, Leo KT, Kwon H, Sista M, Anders NM, Hemingway A, Rompicharla SVK, Pitha I, Zack DJ, Hanes J, Cummings MP, Ensign LM. Engineered peptide-drug conjugate provides sustained protection of retinal ganglion cells with topical administration in rats. J Control Release 2023; 362:371-380. [PMID: 37657693 PMCID: PMC10591956 DOI: 10.1016/j.jconrel.2023.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Effective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury. We combined two promising delivery technologies, namely, a hypotonic gel-forming eye drop delivery system, and an engineered melanin binding and cell-penetrating peptide that sustains intraocular drug residence time. We found that once daily topical dosing of HR97-SunitiGel provided up to 2 weeks of neuroprotection after the last dose, effectively doubling the therapeutic window observed with SunitiGel. For chronic ocular diseases affecting the posterior segment, the convenience of an eye drop combined with intermittent dosing frequency could result in greater patient adherence, and thus, improved disease management.
Collapse
Affiliation(s)
- Henry T Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renee Ti Chou
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Usha Rai
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Mozzer
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charlotte Davison
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Yoo Chun Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirby T Leo
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - HyeYoung Kwon
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Maanasa Sista
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Avelina Hemingway
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Pitha
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Mamidipaka A, Di Rosa I, Lee R, Zhu Y, Chen Y, Salowe R, Addis V, Sankar P, Daniel E, Ying GS, O’Brien JM. Factors Associated with Large Cup-to-Disc Ratio and Blindness in the Primary Open-Angle African American Glaucoma Genetics (POAAGG) Study. Genes (Basel) 2023; 14:1809. [PMID: 37761949 PMCID: PMC10530848 DOI: 10.3390/genes14091809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND/AIMS Primary open-angle glaucoma (POAG) disproportionately affects individuals of African ancestry. In these patients' eyes, a large cup-to-disc ratio (LCDR > 0.90) suggests greater retinal ganglion cell loss, though these patients often display varied visual ability. This study investigated the prevalence and risk factors associated with LCDR in African ancestry individuals with POAG and explored the differences between blind (>20/200) and not blind (≤20/200) LCDR eyes. METHODS A case-control methodology was used to investigate the demographic, optic disc, and genetic risk factors of subjects in the Primary Open-Angle African American Glaucoma Genetics Study. Risk factors were analyzed using univariable and multivariable logistic regression models with inter-eye correlation adjusted using generalized estimating equations. RESULTS Out of 5605 eyes with POAG, 1440 eyes (25.7%) had LCDR. In the multivariable analysis, LCDR was associated with previous glaucoma surgery (OR = 1.72), increased intraocular pressure (OR = 1.04), decreased mean deviation (OR = 1.08), increased pattern standard deviation (OR = 1.06), thinner retinal nerve fiber layer (OR = 1.05), nasalization of vessels (OR = 2.67), bayonetting of vessels (OR = 1.98), visible pores in the lamina cribrosa (OR = 1.68), and a bean-shaped cup (OR = 2.11). Of LCDR eyes, 30.1% were classified as blind (≤20/200). In the multivariable analysis, the statistically significant risk factors of blindness in LCDR eyes were previous glaucoma surgery (OR = 1.72), increased intraocular pressure (OR = 1.05), decreased mean deviation (OR = 1.04), and decreased pattern standard deviation (OR = 0.90). CONCLUSIONS These findings underscore the importance of close monitoring of intraocular pressure and visual function in African ancestry POAG patients, particularly those with LCDR, to preserve visual function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Joan M. O’Brien
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.); (I.D.R.); (R.L.); (Y.Z.); (Y.C.); (R.S.); (V.A.); (P.S.); (E.D.); (G.-S.Y.)
| |
Collapse
|
14
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
15
|
Zhi JJ, Wu SL, Wu HQ, Ran Q, Gao X, Chen JF, Gu XM, Li T, Wang F, Xiao L, Ye J, Mei F. Insufficient Oligodendrocyte Turnover in Optic Nerve Contributes to Age-Related Axon Loss and Visual Deficits. J Neurosci 2023; 43:1859-1870. [PMID: 36725322 PMCID: PMC10027114 DOI: 10.1523/jneurosci.2130-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Age-related decline in visual functions is a prevalent health problem among elderly people, and no effective therapies are available up-to-date. Axon degeneration and myelin loss in optic nerves (ONs) are age-dependent and become evident in middle-aged (13-18 months) and old (20-22 months) mice of either sex compared with adult mice (3-8 months), accompanied by functional deficits. Oligodendrocyte (OL) turnover is actively going on in adult ONs. However, the longitudinal change and functional significance of OL turnover in aging ONs remain largely unknown. Here, using cell-lineage labeling and tracing, we reported that oligodendrogenesis displayed an age-dependent decrease in aging ONs. To understand whether active OL turnover is required for maintaining axons and visual function, we conditionally deleted the transcription factor Olig2 in the oligodendrocyte precursor cells of young mice. Genetically dampening OL turnover by Olig2 ablation resulted in accelerated axon loss and retinal degeneration, and subsequently impaired ON signal transmission, suggesting that OL turnover is an important mechanism to sustain axon survival and visual function. To test whether enhancing oligodendrogenesis can prevent age-related visual deficits, 12-month-old mice were treated with clemastine, a pro-myelination drug, or induced deletion of the muscarinic receptor 1 in oligodendrocyte precursor cells. The clemastine treatment or muscarinic receptor 1 deletion significantly increased new OL generation in the aged ONs and consequently preserved visual function and retinal integrity. Together, our data indicate that dynamic OL turnover in ONs is required for axon survival and visual function, and enhancing new OL generation represents a potential approach to reversing age-related declines of visual function.SIGNIFICANCE STATEMENT Oligodendrocyte (OL) turnover has been reported in adult optic nerves (ONs), but the longitudinal change and functional significance of OL turnover during aging remain largely unknown. Using cell-lineage tracing and oligodendroglia-specific manipulation, this study reported that OL generation was active in adult ONs and the efficiency decreased in an age-dependent manner. Genetically dampening OL generation by Olig2 ablation resulted in significant axon loss and retinal degeneration, along with delayed visual signal transmission. Conversely, pro-myelination approaches significantly increased new myelin generation in aging ONs, and consequently preserved retinal integrity and visual function. Our findings indicate that promoting OL generation might be a promising strategy to preserve visual function from age-related decline.
Collapse
Affiliation(s)
- Jun-Jie Zhi
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuang-Ling Wu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Hao-Qian Wu
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qi Ran
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xing Gao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing-Fei Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xing-Mei Gu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Medical English Teaching and Research, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jian Ye
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Feng Mei
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
16
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Dias SB, de Lemos L, Sousa L, Bitoque DB, Silva GA, Seabra MC, Tenreiro S. Age-Related Changes of the Synucleins Profile in the Mouse Retina. Biomolecules 2023; 13:biom13010180. [PMID: 36671565 PMCID: PMC9855780 DOI: 10.3390/biom13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alpha-synuclein (aSyn) plays a central role in Parkinson's disease (PD) and has been extensively studied in the brain. This protein is part of the synuclein family, which is also composed of beta-synuclein (bSyn) and gamma-synuclein (gSyn). In addition to its neurotoxic role, synucleins have important functions in the nervous system, modulating synaptic transmission. Synucleins are expressed in the retina, but they have been poorly characterized. However, there is evidence that they are important for visual function and that they can play a role in retinal degeneration. This study aimed to profile synucleins in the retina of naturally aged mice and to correlate their patterns with specific retinal cells. With aging, we observed a decrease in the thickness of specific retinal layers, accompanied by an increase in glial reactivity. Moreover, the aSyn levels decreased, whereas bSyn increased with aging. The colocalization of both proteins was decreased in the inner plexiform layer (IPL) of the aged retina. gSyn presented an age-related decrease at the inner nuclear layer but was not significantly changed in the ganglion cell layer. The synaptic marker synaptophysin was shown to be preferentially colocalized with aSyn in the IPL with aging. At the same time, aSyn was found to exist at the presynaptic endings of bipolar cells and was affected by aging. Overall, this study suggests that physiological aging can be responsible for changes in the retinal tissue, implicating functional alterations that could affect synuclein family function.
Collapse
Affiliation(s)
- Sarah Batista Dias
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luísa de Lemos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luís Sousa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Gabriela Araújo Silva
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Miguel C. Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
18
|
Keuken A, Subramanian A, Mueller-Schotte S, Barbur JL. Age-related normal limits for spatial vision. Ophthalmic Physiol Opt 2022; 42:1363-1378. [PMID: 35979702 DOI: 10.1111/opo.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To establish age-related, normal limits of monocular and binocular spatial vision under photopic and mesopic conditions. METHODS Photopic and mesopic visual acuity (VA) and contrast thresholds (CTs) were measured with both positive and negative contrast optotypes under binocular and monocular viewing conditions using the Acuity-Plus (AP) test. The experiments were carried out on participants (age range from 10 to 86 years), who met pre-established, normal sight criteria. Mean and ± 2.5σ limits were calculated within each 5-year subgroup. A biologically meaningful model was then fitted to predict mean values and upper and lower threshold limits for VA and CT as a function of age. The best-fit model parameters describe normal aging of spatial vision for each of the 16 experimental conditions investigated. RESULTS Out of the 382 participants recruited for this study, 285 participants passed the selection criteria for normal aging. Log transforms were applied to ensure approximate normal distributions. Outliers were also removed for each of the 16 stimulus conditions investigated based on the ±2.5σ limit criterion. VA, CTs and the overall variability were found to be age-invariant up to ~50 years in the photopic condition. A lower, age-invariant limit of ~30 years was more appropriate for the mesopic range with a gradual, but accelerating increase in both mean thresholds and intersubject variability above this age. Binocular thresholds were smaller and much less variable when compared to the thresholds measured in either eye. Results with negative contrast optotypes were significantly better than the corresponding results measured with positive contrast (p < 0.004). CONCLUSIONS This project has established the expected age limits of spatial vision for monocular and binocular viewing under photopic and high mesopic lighting with both positive and negative contrast optotypes using a single test, which can be implemented either in the clinic or in an occupational setting.
Collapse
Affiliation(s)
- Arjan Keuken
- Applied Vision Research Centre, The Henry Wellcome Laboratories for Vision Science, City, University of London, London, UK.,Department of Optometry, University of Applied Sciences, Utrecht, The Netherlands
| | - Ahalya Subramanian
- Applied Vision Research Centre, The Henry Wellcome Laboratories for Vision Science, City, University of London, London, UK
| | - Sigrid Mueller-Schotte
- Department of Optometry, University of Applied Sciences, Utrecht, The Netherlands.,Department Technology for Healthcare Innovations, University of Applied Sciences, Utrecht, The Netherlands
| | - John L Barbur
- Applied Vision Research Centre, The Henry Wellcome Laboratories for Vision Science, City, University of London, London, UK
| |
Collapse
|
19
|
Balaratnasingam C, An D, Hein M, Yu P, Yu DY. Studies of the retinal microcirculation using human donor eyes and high-resolution clinical imaging: Insights gained to guide future research in diabetic retinopathy. Prog Retin Eye Res 2022; 94:101134. [PMID: 37154065 DOI: 10.1016/j.preteyeres.2022.101134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The microcirculation plays a key role in delivering oxygen to and removing metabolic wastes from energy-intensive retinal neurons. Microvascular changes are a hallmark feature of diabetic retinopathy (DR), a major cause of irreversible vision loss globally. Early investigators have performed landmark studies characterising the pathologic manifestations of DR. Previous works have collectively informed us of the clinical stages of DR and the retinal manifestations associated with devastating vision loss. Since these reports, major advancements in histologic techniques coupled with three-dimensional image processing has facilitated a deeper understanding of the structural characteristics in the healthy and diseased retinal circulation. Furthermore, breakthroughs in high-resolution retinal imaging have facilitated clinical translation of histologic knowledge to detect and monitor progression of microcirculatory disturbances with greater precision. Isolated perfusion techniques have been applied to human donor eyes to further our understanding of the cytoarchitectural characteristics of the normal human retinal circulation as well as provide novel insights into the pathophysiology of DR. Histology has been used to validate emerging in vivo retinal imaging techniques such as optical coherence tomography angiography. This report provides an overview of our research on the human retinal microcirculation in the context of the current ophthalmic literature. We commence by proposing a standardised histologic lexicon for characterising the human retinal microcirculation and subsequently discuss the pathophysiologic mechanisms underlying key manifestations of DR, with a focus on microaneurysms and retinal ischaemia. The advantages and limitations of current retinal imaging modalities as determined using histologic validation are also presented. We conclude with an overview of the implications of our research and provide a perspective on future directions in DR research.
Collapse
Affiliation(s)
- Chandrakumar Balaratnasingam
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia; Department of Ophthalmology, Sir Charles Gairdner Hospital, Western Australia, Australia.
| | - Dong An
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Martin Hein
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Paula Yu
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Dao-Yi Yu
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| |
Collapse
|
20
|
Shamsi F, Liu R, Kwon M. Foveal crowding appears to be robust to normal aging and glaucoma unlike parafoveal and peripheral crowding. J Vis 2022; 22:10. [PMID: 35848904 PMCID: PMC9308014 DOI: 10.1167/jov.22.8.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Visual crowding is the inability to recognize a target object in clutter. Previous studies have shown an increase in crowding in both parafoveal and peripheral vision in normal aging and glaucoma. Here, we ask whether there is any increase in foveal crowding in both normal aging and glaucomatous vision. Twenty-four patients with glaucoma and 24 age-matched normally sighted controls (mean age = 65 ± 7 vs. 60 ± 8 years old) participated in this study. For each subject, we measured the extent of foveal crowding using Pelli's foveal crowding paradigm (2016). We found that the average crowding zone was 0.061 degrees for glaucoma and 0.056 degrees for age-matched normal vision, respectively. These values fall into the range of foveal crowding zones (0.0125 degrees to 0.1 degrees) observed in young normal vision. We, however, did not find any evidence supporting increased foveal crowding in glaucoma (p = 0.375), at least in the early to moderate stages of glaucoma. In the light of previous studies on foveal crowding in normal young vision, we did not find any evidence supporting age-related changes in foveal crowding. Even if there is any, the effect appears to be rather inconsequential. Taken together, our findings suggest unlike parafoveal or peripheral crowding (2 degrees, 4 degrees, 8 degrees, and 10 degrees eccentricities), foveal crowding (<0.25 degrees eccentricity) appears to be less vulnerable to normal aging or moderate glaucomatous damage.
Collapse
Affiliation(s)
- Foroogh Shamsi
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Rong Liu
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - MiYoung Kwon
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Bartlett RL, Frost BE, Mortlock KE, Fergusson JR, White N, Morgan JE, North RV, Albon J. Quantifying biomarkers of axonal degeneration in early glaucoma to find the disc at risk. Sci Rep 2022; 12:9366. [PMID: 35672326 PMCID: PMC9174204 DOI: 10.1038/s41598-022-12036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
To evaluate regional axonal-related parameters as a function of disease stage in primary open angle glaucoma (POAG) and visual field (VF) sensitivity. Spectral domain optical coherence tomography was used to acquire 20° scans of POAG (n = 117) or healthy control (n = 52) human optic nerve heads (ONHs). Region specific and mean nerve fibre layer (NFL) thicknesses, border NFL and peripapillary NFL, minimum rim width (MRW)/ area (MRA) and prelamina thickness; and volume were compared across POAG disease stages and with visual field sensitivity. Differences identified between early glaucoma (EG), preperimetric glaucoma (PG) and control (C) ONHs included thinner PG prelamina regions than in controls (p < 0.05). Mean border NFL was thinner in EG (p < 0.001) and PG (p = 0.049) compared to control eyes; and EG mean, and inferior and ST, border NFL was thinner than in PG (p < 0.01). Mean, superior and inferior PG peripapillary NFL were thinner than in controls (p < 0.05), and EG ST peripapillary NFL was thinner than in PG (p = 0.023). MRW differences included: PG SN and inferior less than in controls (p < 0.05); thinner EG mean regional, inferior, nasal, and ST MRW versus PG MRW (p < 0.05). Regional border NFL, peripapillary NFL, MRW, MRA, prelamina thickness (except centre, p = 0.127) and prelamina volume (p < 0.05) were significantly associated with VF mean deviation (MD). Novel axon-derived indices hold potential as biomarkers to detect early glaucoma and identify ONHs at risk.
Collapse
Affiliation(s)
- R L Bartlett
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK
- Vivat Scientia Bioimaging Laboratories, Cardiff University, Cardiff, UK
| | - B E Frost
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - K E Mortlock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK
- Vivat Scientia Bioimaging Laboratories, Cardiff University, Cardiff, UK
| | - J R Fergusson
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK
- Vivat Scientia Bioimaging Laboratories, Cardiff University, Cardiff, UK
| | - N White
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK
- Vivat Scientia Bioimaging Laboratories, Cardiff University, Cardiff, UK
| | - J E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - R V North
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- Vivat Scientia Bioimaging Laboratories, Cardiff University, Cardiff, UK
| | - J Albon
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK.
- Vivat Scientia Bioimaging Laboratories, Cardiff University, Cardiff, UK.
| |
Collapse
|
22
|
Uchiyama H, Ohno H, Kawasaki T, Owatari Y, Narimatsu T, Miyanagi Y, Maeda T. Attentional signals projecting centrifugally to the avian retina: A dual contribution to visual search. Vision Res 2022; 195:108016. [DOI: 10.1016/j.visres.2022.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022]
|
23
|
Choi S, Hill D, Guo L, Nicholas R, Papadopoulos D, Cordeiro MF. Automated characterisation of microglia in ageing mice using image processing and supervised machine learning algorithms. Sci Rep 2022; 12:1806. [PMID: 35110632 PMCID: PMC8810899 DOI: 10.1038/s41598-022-05815-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/07/2022] [Indexed: 01/12/2023] Open
Abstract
The resident macrophages of the central nervous system, microglia, are becoming increasingly implicated as active participants in neuropathology and ageing. Their diverse and changeable morphology is tightly linked with functions they perform, enabling assessment of their activity through image analysis. To better understand the contributions of microglia in health, senescence, and disease, it is necessary to measure morphology with both speed and reliability. A machine learning approach was developed to facilitate automatic classification of images of retinal microglial cells as one of five morphotypes, using a support vector machine (SVM). The area under the receiver operating characteristic curve for this SVM was between 0.99 and 1, indicating strong performance. The densities of the different microglial morphologies were automatically assessed (using the SVM) within wholemount retinal images. Retinas used in the study were sourced from 28 healthy C57/BL6 mice split over three age points (2, 6, and 28-months). The prevalence of 'activated' microglial morphology was significantly higher at 6- and 28-months compared to 2-months (p < .05 and p < .01 respectively), and 'rod' significantly higher at 6-months than 28-months (p < 0.01). The results of the present study propose a robust cell classification SVM, and further evidence of the dynamic role microglia play in ageing.
Collapse
Affiliation(s)
- Soyoung Choi
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Li Guo
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Richard Nicholas
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
- Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
- Population Data Science, Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Dimitrios Papadopoulos
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521, Athens, Greece
- School of Medicine, European University Cyprus, 2414, Nicosia, Cyprus
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.
- Imperial College Ophthalmology Research Group, Imperial College London, London, UK.
| |
Collapse
|
24
|
Lu SY, Zhang XJ, Wang YM, Yuan N, Kam KW, Chan PP, Tam PO, Yip WW, Young AL, Tham CC, Pang CP, Yam JC, Chen LJ. Association of SIX1-SIX6 polymorphisms with peripapillary retinal nerve fibre layer thickness in children. Br J Ophthalmol 2022:bjophthalmol-2021-319756. [PMID: 35017159 DOI: 10.1136/bjophthalmol-2021-319756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
PURPOSE Association of SIX1-SIX6 variants with peripapillary retinal nerve fibre layer (p-RNFL) thickness had been reported in adults. This study aimed to investigate these associations in children, with further explorations by spatial, age and sex stratifications. METHODS 2878 school children aged between 6 and 9 years were enrolled from the Hong Kong Children Eye Study. Three single-nucleotide polymorphisms (SNPs) at the SIX1-SIX6 locus were genotyped. The association of each SNP with p-RNFL thickness (including global and sectoral thickness) were evaluated using multiple linear regression. RESULTS SNPs rs33912345 (p=7.7×10-4) and rs10483727 (p=0.0013) showed significant associations with temporal-inferior p-RNFL thickness. The C allele of rs33912345 was associated with a thinner temporal-inferior p-RNFL by an average of 2.44 µm, while rs10483727-T was associated with a thinner temporal-inferior p-RNFL by 2.32 µm. The association with temporal-inferior p-RNFL was the strongest in the 8-9 year-old group for rs33912345 (p=5.2×10-4) and rs10483727 (p=3.3×10-4). Both SNPs were significantly associated with temporal-inferior p-RNFL thickness in boys (p<0.0017), but not in girls (p>0.05). In contrast, rs12436579-C (β=1.66; p=0.0059), but not rs33912345-C (β=1.31; p=0.052) or rs10483727-T (β=1.19; p=0.078), was nominally associated with a thicker nasal-inferior p-RNFL. CONCLUSIONS Both rs33912345 and rs10483727 at SIX1-SIX6 were associated with p-RNFL thickness in children, especially at the temporal-inferior sector, with age-dependent and sex-specific effects. SNP rs12436579 was associated with nasal-inferior p-RNFL thickness. Our findings suggested a role of SIX1-SIX6 in RNFL variation during neural retina development in childhood.
Collapse
Affiliation(s)
- Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Meng Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Nan Yuan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Poemen P Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China
| | - Pancy Os Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wilson Wk Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Hong Kong Eye Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Effects of menopause on the retinal nerve fiber layer and ganglion cell complex and on intraocular pressure. Menopause 2022; 29:460-464. [DOI: 10.1097/gme.0000000000001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022]
|
26
|
Zhuang X, Tran T, Jin D, Philip R, Wu C. Aging effects on contrast sensitivity in visual pathways: A pilot study on flicker adaptation. PLoS One 2021; 16:e0261927. [PMID: 34972163 PMCID: PMC8719693 DOI: 10.1371/journal.pone.0261927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Contrast sensitivity is reduced in older adults and is often measured at an overall perceptual level. Recent human psychophysical studies have provided paradigms to measure contrast sensitivity independently in the magnocellular (MC) and parvocellular (PC) visual pathways and have reported desensitization in the MC pathway after flicker adaptation. The current study investigates the influence of aging on contrast sensitivity and on the desensitization effect in the two visual pathways. The steady- and pulsed-pedestal paradigms were used to measure contrast sensitivity under two adaptation conditions in 45 observers. In the non-flicker adaptation condition, observers adapted to a pedestal array of four 1°×1° squares presented with a steady luminance; in the flicker adaptation condition, observers adapted to a square-wave modulated luminance flicker of 7.5 Hz and 50% contrast. Results showed significant age-related contrast sensitivity reductions in the MC and PC pathways, with a significantly larger decrease of contrast sensitivity for individuals older than 50 years of age in the MC pathway but not in the PC pathway. These results are consistent with the hypothesis that sensitivity reduction observed at the overall perceptual level likely comes from both the MC and PC visual pathways, with a more dramatic reduction resulting from the MC pathway for adults >50 years of age. In addition, a similar desensitization effect from flicker adaptation was observed in the MC pathway for all ages, which suggests that aging may not affect the process of visual adaptation to rapid luminance flicker.
Collapse
Affiliation(s)
- Xiaohua Zhuang
- Illinois College of Optometry, Chicago, IL, United States of America
| | - Tam Tran
- Illinois College of Optometry, Chicago, IL, United States of America
| | - Doris Jin
- Illinois College of Optometry, Chicago, IL, United States of America
| | - Riya Philip
- Illinois College of Optometry, Chicago, IL, United States of America
| | - Chaorong Wu
- Study Design & Biostatistics Center, Division of Epidemiology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
27
|
Di Pierdomenico J, Henderson DCM, Giammaria S, Smith VL, Jamet AJ, Smith CA, Hooper ML, Chauhan BC. Age and intraocular pressure in murine experimental glaucoma. Prog Retin Eye Res 2021; 88:101021. [PMID: 34801667 DOI: 10.1016/j.preteyeres.2021.101021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
Age and intraocular pressure (IOP) are the two most important risk factors for the development and progression of open-angle glaucoma. While IOP is commonly considered in models of experimental glaucoma (EG), most studies use juvenile or adult animals and seldom older animals which are representative of the human disease. This paper provides a concise review of how retinal ganglion cell (RGC) loss, the hallmark of glaucoma, can be evaluated in EG with a special emphasis on serial in vivo imaging, a parallel approach used in clinical practice. It appraises the suitability of EG models for the purpose of in vivo imaging and argues for the use of models that provide a sustained elevation of IOP, without compromise of the ocular media. In a study with parallel cohorts of adult (3-month-old, equivalent to 20 human years) and old (2-year-old, equivalent to 70 human years) mice, we compare the effects of elevated IOP on serial ganglion cell complex thickness and individual RGC dendritic morphology changes obtained in vivo. We also evaluate how age modulates the impact of elevated IOP on RGC somal and axonal density in histological analysis as well the density of melanopsin RGCs. We discuss the challenges of using old animals and emphasize the potential of single RGC imaging for understanding the pathobiology of RGC loss and evaluating new therapeutic avenues.
Collapse
Affiliation(s)
- Johnny Di Pierdomenico
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Delaney C M Henderson
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sara Giammaria
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Victoria L Smith
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aliénor J Jamet
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Corey A Smith
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michele L Hooper
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Balwantray C Chauhan
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
28
|
Iwase A, Fujii M, Murata H, Ohno Y, Araie M. Effects of Physiologic Myopia and Aging on Visual Fields in Normal Eyes. Am J Ophthalmol 2021; 230:224-233. [PMID: 33965415 DOI: 10.1016/j.ajo.2021.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate how mild-to-moderate myopia and aging affect visual field sensitivity (VF-S) in normal eyes, correcting for effects of each. DESIGN Combined cross-sectional and cohort study. METHODS Two normal groups, a cross-sectional group (n = 703; 1,051 eyes; mean age, 52.6 years) and a longitudinal group (n = 44; 83 eyes; mean age, 52.3 years; follow-up, 4.2 years; VF tests, 12) were included. In the cross-sectional group, the mean VF-S of the entire field and 3 disc portion-oriented subfields of the Humphrey Field Analyzer 24-2 program were correlated with subjects' age, axial length (AL), disc, rim and β-peripapillary area, and disc ovality and torsion, using linear mixed-regression models. Their time changes in the longitudinal group were correlated with time, subjects' ages, and AL using linear mixed-regression models. RESULTS In the cross-sectional group, the VF-S correlated negatively with age (-0.081 decibel [dB]/year; P < .001), which was more negative (P = .020) in the midperipheral than the central subfield, and with AL (P = .049) without intersubfield differences. In the longitudinal group, no changes in the ocular media were significant, and the VF-S declined by 0.074 dB/year (P = .007), which accelerated with higher age (P < .002) and baseline VF-S (P < .001) without intersubfield differences. The AL showed little effects on the VF-S longitudinal changes. CONCLUSIONS In normal eyes with mild-to-moderate myopia, the VF-S was lower subfield-independently with longer AL, whereas the AL had little effect on the aging-associated VF-S reduction. The VF-S decreased with aging with intersubfield differences. The aging-associated VF-S reduction accelerated with higher age, to which the ocular media changes were unrelated.
Collapse
|
29
|
Arthur E, Alber J, Thompson LI, Sinoff S, Snyder PJ. OCTA reveals remodeling of the peripheral capillary free zones in normal aging. Sci Rep 2021; 11:15593. [PMID: 34341456 PMCID: PMC8329222 DOI: 10.1038/s41598-021-95230-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
The retinal neurovascular unit consists of blood vessel endothelial cells, pericytes, neurons, astrocytes, and Müller cells that form the inner retinal blood barrier. A peripheral capillary free zone (pCFZ) represents the distance that oxygen and nutrients must diffuse to reach the neural retina, and serves as a metric of retinal tissue oxygenation. The pCFZs are formed based on oxygen saturation in the retinal arterioles and venules. Because retinal arterioles contain a larger concentration of oxygenated blood than venules, there is a reduced need for capillaries to exist closely to arterioles compared to venules. Therefore, in a healthy individual, larger periarteriole CFZs are expected compared to perivenule CFZs. With normal aging, there is atrophy of the inner retinal neurons, and consequently reduced extraction of oxygen and nutrients from the retinal vessels (i.e., increased oxygen saturation). Therefore, we hypothesized that the peripheral CFZ will remodel with normal aging. Using Optical Coherence Tomography Angiography, we showed that the pCFZs do remodel in normal aging with large (perivenule: η2p = 0.56) and moderate (periarteriole: η2p = 0.12) effect sizes, opening the possibility that such changes may be further increased by neurodegenerative diseases that adversely impact the health of the retinal neural cell layers.
Collapse
Affiliation(s)
- Edmund Arthur
- grid.20431.340000 0004 0416 2242Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI USA ,grid.20431.340000 0004 0416 2242George and Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI 02881 USA ,grid.273271.20000 0000 8593 9332Butler Hospital Memory and Aging Program, Providence, RI USA
| | - Jessica Alber
- grid.20431.340000 0004 0416 2242Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI USA ,grid.20431.340000 0004 0416 2242George and Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI 02881 USA ,grid.273271.20000 0000 8593 9332Butler Hospital Memory and Aging Program, Providence, RI USA
| | - Louisa I. Thompson
- grid.273271.20000 0000 8593 9332Butler Hospital Memory and Aging Program, Providence, RI USA ,grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Stuart Sinoff
- grid.432466.10000 0004 0382 745XBayCare Health, Clearwater, FL USA
| | - Peter J. Snyder
- grid.20431.340000 0004 0416 2242Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI USA ,grid.20431.340000 0004 0416 2242George and Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI 02881 USA
| |
Collapse
|
30
|
Simultaneous changes in visual acuity, cortical population receptive field size, visual field map size, and retinal thickness in healthy human aging. Brain Struct Funct 2021; 226:2839-2853. [PMID: 34245381 PMCID: PMC8541970 DOI: 10.1007/s00429-021-02338-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/02/2021] [Indexed: 10/25/2022]
Abstract
Healthy human aging is associated with a deterioration of visual acuity, retinal thinning, visual field map shrinkage and increasing population receptive field sizes. Here we ask how these changes are related to each other in a cross-sectional sample of fifty healthy adults aged 20-80 years. We hypothesized that age-related loss of macular retinal ganglion cells may lead to decreased visual field map sizes, and both may lead to increased pRF sizes in the cortical central visual field representation. We measured our participants' perceptual corrected visual acuity using standard ophthalmological letter charts. We then measured their early visual field map (V1, V2 and V3) functional population receptive field (pRF) sizes and structural surface areas using fMRI, and their retinal structure using high-definition optical coherence tomography. With increasing age visual acuity decreased, pRF sizes increased, visual field maps surface areas (but not whole-brain surface areas) decreased, and retinal thickness decreased. Among these measures, only functional pRF sizes predicted perceptual visual acuity, and Bayesian statistics support a null relationship between visual acuity and cortical or retinal structure. However, pRF sizes were in turn predicted by cortical structure only (visual field map surface areas), which were only predicted by retinal structure (thickness). These results suggest that simultaneous disruptions of neural structure and function throughout the early visual system may underlie the deterioration of perceptual visual acuity in healthy aging.
Collapse
|
31
|
Davinelli S, Ali S, Scapagnini G, Costagliola C. Effects of Flavonoid Supplementation on Common Eye Disorders: A Systematic Review and Meta-Analysis of Clinical Trials. Front Nutr 2021; 8:651441. [PMID: 34124119 PMCID: PMC8189261 DOI: 10.3389/fnut.2021.651441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Emerging studies show that certain plant compounds may reduce the severity of most prevalent ocular abnormalities. The aim of this systematic review and meta-analysis was to assess the effect of dietary flavonoids on major eye disorders. Methods: Eligible studies were identified by searching PubMed, Web of Science, Scopus, and Cochrane Library databases for all articles published up to April 2021. The literature search yielded 1,134 articles, and a total of 16 studies were included in the systematic review. A meta-analysis of 11 intervention trials involving a total of 724 participants was performed. Results: Using a random-effects model, the pooled results revealed an overall significant effect of flavonoids on common ophthalmic disorders (standard mean difference = −0.39; 95% CI: −0.56, −0.21, p < 0.01). Of the subclasses of flavonoids, flavan-3-ols (standard mean difference = −0.62; 95% CI: −1.03, −0.22, p < 0.01), and anthocyanins (standard mean difference = −0.42; 95% CI: −0.63, −0.21, p < 0.01) were the only effective intervention for improving the outcomes of ocular conditions. For several of the other flavonoid subclasses, evidence on efficacy was insufficient. Conclusion: Our findings indicate that flavonoids may improve the clinical manifestations associated with ocular disorders. However, further well-constructed clinical trials are required to confirm these results and examine the effect of flavonoids on eye disorders other than those identified in this review. Systematic Review Registration: PROSPERO, identifier CRD42021247332.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
32
|
Pang JJ, Wu SM. Ocular Pressure-Volume Relationship and Ganglion Cell Death in Glaucoma. OBM NEUROBIOLOGY 2021; 5:10.21926/obm.neurobiol.2102098. [PMID: 34308265 PMCID: PMC8297795 DOI: 10.21926/obm.neurobiol.2102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied how GC death in glaucoma related to the intraocular pressure (IOP), eyeball volume (VS) and elasticity (volumetric KS and tensile ES), and eyeball volume-pressure relation. Glaucomatous GC loss was studied in DBA/2J (D2) mice with wild-type mice as controls. GCs were retrogradely identified and observed with a confocal microscope. The elasticity calculation was also done on published data from patients treated by a gas bubble injection in the vitreous cavity. The GC population in D2 mice (1.5- to 14-month-old) was negatively correlated with following factors: VS (p = 0.0003), age (p = 0.0026) and IOP (but p = 0.0966). As indicated by average values, adult D2 mice (≥6 months) suffered significant GC loss, low KS and ES, and universal expansion of VS with normal IOP. KS and ES in the patients were also lower upon prolonged eyeball expansion compared to acute expansion. Based on the results and presumptions of a closed and continuous eyeball space (thereby ΔVS ≈ ΔVW, ΔVW-the change in the aqueous humor amount), we deduced equations on the ocular volume-pressure relationship: ΔIOP = KS*ΔVW/VS or ΔIOP = (2/3)*[1/(1-ν)]*(H/R)*ES*ΔVW/VS (ν, Poisson's ratio taken as 0.5; R, the curvature radius; and H, the shell thickness). Under normal atmospheric pressure, IOP of 10~50 mmHg contributed only 1.2~6.6% of the pressure opposing the retina and eyeball shell. We conclude: 1) A disturbance of ocular volume-pressure homeostasis, mediated primarily by low KS and ES, expanded VS, and large ΔVW, is correlated with GC death in glaucoma and 2) D2 mice with GC loss and normal IOP may serve as animal models for human normal-tension glaucoma.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, One Baylor
Plaza, NC 205, Houston, Texas
| | - Samuel M. Wu
- Department of Ophthalmology, Baylor College of Medicine, One Baylor
Plaza, NC 205, Houston, Texas
| |
Collapse
|
33
|
Bilbao-Malavé V, González-Zamora J, Saenz de Viteri M, de la Puente M, Gándara E, Casablanca-Piñera A, Boquera-Ventosa C, Zarranz-Ventura J, Landecho MF, García-Layana A. Persistent Retinal Microvascular Impairment in COVID-19 Bilateral Pneumonia at 6-Months Follow-Up Assessed by Optical Coherence Tomography Angiography. Biomedicines 2021; 9:502. [PMID: 34063291 PMCID: PMC8147391 DOI: 10.3390/biomedicines9050502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to evaluate the long-term evolution of retinal changes in COVID-19 patients with bilateral pneumonia. A total of 17 COVID-19 patients underwent retinal imaging 6 months after hospital discharge with structural optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). The parafoveal retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) were significantly thinner in COVID-19 patients at 6 months compared to 0 months (p = <0.001 in both cases). In the optic nerve analysis, a significantly thinner RNFL was observed (p = 0.006) but persisted significantly thickened, compared to controls (p = 0.02). The vascular density (VD) at 6 months persisted significantly decreased when compared to the control group, and no significant differences were found with the 0 months evaluation; in addition, when analyzed separately, women showed a worsening in the VD. Moreover, a significantly greater foveal area zone (FAZ) (p = 0.003) was observed in COVID-19 patients at 6 months, compared to 0 months. The cotton wool spots (CWSs) observed at baseline were no longer present at 6 months, except for one patient that developed new ones. This study demonstrates that some of the previously known microvascular alterations resulting from COVID-19, persist over time and are still evident 6 months after hospital discharge in patients who have suffered from bilateral pneumonia.
Collapse
Affiliation(s)
- Valentina Bilbao-Malavé
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (E.G.); (A.G.-L.)
| | - Jorge González-Zamora
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (E.G.); (A.G.-L.)
| | - Manuel Saenz de Viteri
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (E.G.); (A.G.-L.)
| | - Miriam de la Puente
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (E.G.); (A.G.-L.)
| | - Elsa Gándara
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (E.G.); (A.G.-L.)
| | - Anna Casablanca-Piñera
- Institut Clínic de Oftalmología (ICOF), Hospital Clínic de Barcelona, 08028 Barcelona, Spain; (A.C.-P.); (C.B.-V.); (J.Z.-V.)
| | - Claudia Boquera-Ventosa
- Institut Clínic de Oftalmología (ICOF), Hospital Clínic de Barcelona, 08028 Barcelona, Spain; (A.C.-P.); (C.B.-V.); (J.Z.-V.)
| | - Javier Zarranz-Ventura
- Institut Clínic de Oftalmología (ICOF), Hospital Clínic de Barcelona, 08028 Barcelona, Spain; (A.C.-P.); (C.B.-V.); (J.Z.-V.)
- Institut de Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Manuel F. Landecho
- COVID-19 Unit, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Internal Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alfredo García-Layana
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (E.G.); (A.G.-L.)
| |
Collapse
|
34
|
Hsu S, Ko M, Linn G, Chang M, Sheu M, Tsai R. Effects of age and disc area on optical coherence tomography measurements and analysis of correlations between optic nerve head and retinal nerve fibre layer. Clin Exp Optom 2021; 95:427-31. [DOI: 10.1111/j.1444-0938.2012.00765.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Sheng‐yao Hsu
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan and Institute of Medicine and Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan,
| | - Mei‐lan Ko
- Department of Ophthalmology, National Taiwan University Hospital and Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsin Chu City, Taiwan,
| | - George Linn
- Department of Medicine, College of Medicine, Tzu Chi University and Director, Clinical Trial Center, Tzu Chi General Hospital, Hualien, Taiwan,
| | - Ming‐shien Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan,
| | - Min‐muh Sheu
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital and Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan,
| | - Rong‐kung Tsai
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital and Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan,
| |
Collapse
|
35
|
Hsu S, Chang M, Ko M, Harnod T. Retinal nerve fibre layer thickness and optic nerve head size measured in high myopes by optical coherence tomography. Clin Exp Optom 2021; 96:373-8. [DOI: 10.1111/cxo.12052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 08/25/2012] [Accepted: 09/05/2012] [Indexed: 01/31/2023] Open
Affiliation(s)
- Sheng‐yao Hsu
- Department of Ophthalmology, Tainan Municipal An‐Nan Hospital‐China Medical University, Tainan, Taiwan,
- Institute of Medicine and the Institute of Medical Sciences, College of Medicine, zu Chi University, Hualien, Taiwan,
| | - Ming‐shien Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan,
| | - Mei‐lan Ko
- Department of Ophthalmology, National Taiwan University Hospital, Hsin Chu Branch and Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsin Chu City, Taiwan,
| | - Tomor Harnod
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital and Department of Nursing and Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan,
| |
Collapse
|
36
|
Jiao Y, O'Day RFJ, O'Day J, Mack HG. Late progression of visual loss from ocular quinine toxicity. Can J Ophthalmol 2021; 56:e116-e119. [PMID: 33745877 DOI: 10.1016/j.jcjo.2021.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/15/2022]
Affiliation(s)
| | - Roderick F J O'Day
- University Hospital Geelong, Geelong, Australia; University of Melbourne, East Melbourne, Australia; Victoria Parade Eye Consultants, Fitzroy, Australia
| | - Justin O'Day
- Victoria Parade Eye Consultants, Fitzroy, Australia
| | - Heather G Mack
- University of Melbourne, East Melbourne, Australia; Eye Surgery Associates, East Melbourne, Australia
| |
Collapse
|
37
|
Grudzińska EM, Zaborski D, Modrzejewska M. Correlation between retrobulbar blood flow parameters and retinal nerve fiber, ganglion cell and inner plexus layer thickness in myopia. Eur J Ophthalmol 2021; 32:643-650. [PMID: 33530716 DOI: 10.1177/1120672121992007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To assess the thickness of the retinal nerve fiber layer (RNFL), ganglion cell and inner plexus layer (GCIPL) and blood flow parameters in retrobulbar vessels, and to analyze correlations between these parameters in myopes. METHODS The study included forty myopic and 20 healthy eyes. Standard eye examination was supplemented with OCT of the optic nerve and macula (GCIPL, RNFL, RNFL in each quadrant and rim area of the optic nerve) and color Doppler imaging of retrobulbar arteries [peak systolic and end-diastolic velocities, pulsatile index and resistance index (RI) in the ophthalmic (OA), central retinal (CRA), nasal posterior ciliary and temporal posterior ciliary arteries]. RESULTS Significant correlations were found between blood flow parameters in the CRA, RNFL and GCIPL thickness, and axial length (AL) and spherical equivalent (SE). There were significant positive correlations between RNFL with PSV and EDV in the CRA and negative correlations between RNFL and RI in the CRA. GCIPL was positively correlated with PSV and EDV in the CRA. The decrease in RA was associated with reduced blood flow velocities in the CRA, TPCA and NPCA. CONCLUSION The reduced retrobulbar blood flow in healthy young myopes is correlated with increasing AL and refractive value, and thinning of the RNFL and GCIPL. Reduction of the rim-area of the optic disc is associated with vascular and retinal circulatory disorders. These phenomena indicate the vascular basis of the described changes. To the best of our knowledge, this is the first study which correlates ocular circulation with retinal structure.
Collapse
Affiliation(s)
- Ewa M Grudzińska
- Second Department of Ophthalmology, Pomeranian Medical University, Szczecin, Zachodniopomorskie, Poland
| | - Daniel Zaborski
- Laboratory of Biostatistics, West Pomeranian University of Technology, Szczecin, Poland
| | - Monika Modrzejewska
- Second Department of Ophthalmology, Pomeranian Medical University, Szczecin, Zachodniopomorskie, Poland
| |
Collapse
|
38
|
Mohammadzadeh V, Fatehi N, Yarmohammadi A, Lee JW, Sharifipour F, Daneshvar R, Caprioli J, Nouri-Mahdavi K. Macular imaging with optical coherence tomography in glaucoma. Surv Ophthalmol 2020; 65:597-638. [PMID: 32199939 PMCID: PMC7423773 DOI: 10.1016/j.survophthal.2020.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
With the advent of spectral-domain optical coherence tomography, imaging of the posterior segment of the eye can be carried out rapidly at multiple anatomical locations, including the optic nerve head, circumpapillary retinal nerve fiber layer, and macula. There is now ample evidence to support the role of spectral-domain optical coherence tomography imaging of the macula for detection of early glaucoma. Macular spectral-domain optical coherence tomography measurements demonstrate high reproducibility, and evidence on its utility for detection of glaucoma progression is accumulating. We present a comprehensive review of macular spectral-domain optical coherence tomography imaging emerging as an essential diagnostic tool in glaucoma.
Collapse
Affiliation(s)
- Vahid Mohammadzadeh
- Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Nima Fatehi
- Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA; Saint Mary Medical Center - Dignity Health, Long Beach, California, USA
| | - Adeleh Yarmohammadi
- Shiley Eye Institute, University of California, San Diego, La Jolla, California, United States
| | - Ji Woong Lee
- Department of Ophthalmology, Pusan National University College of Medicine, Busan, Korea
| | - Farideh Sharifipour
- Department of Ophthalmology, Shahid Beheshti university of Medical Sciences, Tehran, Iran
| | - Ramin Daneshvar
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Joseph Caprioli
- Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Kouros Nouri-Mahdavi
- Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
39
|
Liu R, Kwon M. Increased Equivalent Input Noise in Glaucomatous Central Vision: Is it Due to Undersampling of Retinal Ganglion Cells? Invest Ophthalmol Vis Sci 2020; 61:10. [PMID: 32645132 PMCID: PMC7425734 DOI: 10.1167/iovs.61.8.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Recent evidence shows that macular damage is common even in early stages of glaucoma. Here we investigated whether contrast sensitivity loss in the central vision of glaucoma patients is due to an increase in equivalent input noise (Neq), a decrease in calculation efficiency, or both. We also examined how retinal undersampling resulting from loss of retinal ganglion cells (RGCs) may affect Neq and calculation efficiency. Methods This study included 21 glaucoma patients and 23 age-matched normally sighted individuals. Threshold contrast for orientation discrimination was measured with a sinewave grating embedded in varying levels of external noise. Data were fitted to the linear amplifier model (LAM) to factor contrast sensitivity into Neq and calculation efficiency. We also correlated macular RGC counts estimated from structural (spectral-domain optical coherence tomography) and functional (standard automated perimetry Swedish interactive thresholding algorithm 10-2) data with either Neq or efficiency. Furthermore, using analytical and computer simulation approach, the relative effect of retinal undersampling on Neq and efficiency was evaluated by adding the RGC sampling module into the LAM. Results Compared with normal controls, glaucoma patients exhibited a significantly larger Neq without significant difference in efficiency. Neq was significantly correlated with Pelli-Robson contrast sensitivity and macular RGC counts. The results from analytical derivation and model simulation further demonstrated that Neq can be expressed as a function of internal noise and retinal sampling. Conclusions Our results showed that equivalent input noise is significantly elevated in glaucomatous vision, thereby impairing foveal contrast sensitivity. Our findings further elucidated how undersampling at the retinal level may increase equivalent input noise.
Collapse
Affiliation(s)
- Rong Liu
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - MiYoung Kwon
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
40
|
Schuman JS, Kostanyan T, Bussel I. Review of Longitudinal Glaucoma Progression: 5 Years after the Shaffer Lecture. Ophthalmol Glaucoma 2020; 3:158-166. [PMID: 32373782 DOI: 10.1016/j.ogla.2019.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In 2013, the senior author delivered the American Academy of Ophthalmology Robert N. Shaffer Lecture entitled "Glaucoma Changes-Reality Bites." This talk focused on describing the longitudinal structure-function relationships in glaucoma progression. The study was based on a 10-year longitudinal dataset created by calibrated measurements across multiple OCT generations with corresponding visual fields (VFs). The prior held observation was that functional damage follows structural damage. The lecture posited that structure and function change at similar times, but that current measurement technology limits our ability to detect functional abnormalities and change early in glaucoma, as well as to measure structural change late in the disease. The Shaffer lecture provided evidence that structure and function change concordantly and that any apparent discordance in the relationship was due to technologic limitations to measure glaucomatous change. Furthermore, we observed 5 longitudinal relationships of concordance and discordance that can exist with structure-function interactions. Concordance: (1) structure-structure progression, (2) structure-function tipping point, (3) structural floor tipping point. Discordance: (4) functional progression in a "stable" VF with structure-function correlation, (5) functional progression with "normal" structure. In this review article, we will review longitudinal glaucoma progression studies with long-term follow-up and discuss the clinical relevance of relationships of concordance and discordance that can exist with structure-function interactions.
Collapse
Affiliation(s)
- Joel S Schuman
- NYU Langone School of Medicine, NYU Ophthalmology Associates, New York, New York
| | - Tigran Kostanyan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Igor Bussel
- Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, California
| |
Collapse
|
41
|
Midgett DE, Jefferys JL, Quigley HA, Nguyen TD. The inflation response of the human lamina cribrosa and sclera: Analysis of deformation and interaction. Acta Biomater 2020; 106:225-241. [PMID: 32044458 PMCID: PMC8340454 DOI: 10.1016/j.actbio.2020.01.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022]
Abstract
This study investigated the inflation response of the lamina cribrosa (LC) and adjacent peripapillary sclera (PPS) in post-mortem human eyes with no history of glaucoma. The posterior sclera of 13 human eyes from 7 donors was subjected to controlled pressurization between 5-45 mmHg. A laser-scanning microscope (LSM) was used to image the second harmonic generation (SHG) response of collagen and the two-photon fluorescent (TPF) response of elastin within the volume of the LC and PPS at each pressure. Image volumes were analyzed using digital volume correlation (DVC) to calculate the three-dimensional (3D) deformation field between pressures. The LC exhibited larger radial strain, Err, and maximum principal strain, Emax, (p < 0.0001) and greater posterior displacement (p=0.0007) compared to the PPS between 5-45 mmHg, but had similar average circumferential strain, Eθθ, and maximum shear strain, Γmax. The Emax and Γmax were highest near the LC-PPS interface and lowest in the nasal quadrant of both tissues. Larger LC area was associated with smaller Emax in the peripheral LC and larger Emax in the central LC (p ≤ 0.01). The Emax, Γmax, and Eθθ in the inner PPS increased with increasing strain in adjacent LC regions (p ≤ 0.001). Smaller strains in the PPS were associated with a larger difference in the posterior displacement between the PPS and central LC (p < 0.0001 for Emax and Err), indicating that a stiffer pressure-strain response of the PPS is associated with greater posterior bowing of the LC. STATEMENT OF SIGNIFICANCE: Glaucoma causes vision loss through progressive damage of the retinal ganglion axons at the lamina cribrosa (LC), a connective tissue structure that supports the axons as they pass through the eye wall. It is hypothesized that strains caused by intraocular pressure may initiate this damage and that these strains are modulated by the combined deformation of the LC and adjacent peripapillary sclera (PPS). In this study we present a method to measure the pressure-induced 3D displacement and strain field in the LC and PPS simultaneously. Regional strain variation in the LC and PPS was investigated and compared and strains were analyzed for associations with age, LC area, LC strain magnitude, and LC posterior motion relative to the PPS.
Collapse
Affiliation(s)
- Dan E Midgett
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Joan L Jefferys
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
42
|
Nagai N, Asato T, Minami S, Suzuki M, Shinoda H, Kurihara T, Sonobe H, Watanabe K, Uchida A, Ban N, Tsubota K, Ozawa Y. Correlation between Macular Pigment Optical Density and Neural Thickness and Volume of the Retina. Nutrients 2020; 12:nu12040888. [PMID: 32218119 PMCID: PMC7230595 DOI: 10.3390/nu12040888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/28/2023] Open
Abstract
Macular pigment (MP), which is composed of lutein/zeaxanthin/mezo-zeaxanthin, is concentrated in the central part of the retina, the macula. It protects the macula by absorbing short-wavelength light and suppressing oxidative stress. To evaluate whether MP levels are related to retinal neural protection and resulting health, we analyzed the association between the MP optical density (MPOD), and the macular thickness and volumes. Forty-three eyes of 43 healthy adult volunteers (21 men and 22 women; age: 22–48 (average 31.4 ± 1.1) years) were analyzed. Highly myopic eyes (<-6 diopters) were excluded. MPOD was measured using MPS2®, and the neural retinal thickness and volume were measured using optical coherence tomography. The mean MPOD was 0.589 ± 0.024, and it positively correlated with the central retinal thickness (P = 0.017, R = 0.360) and retinal volume of the fovea (1-mm diameter around the fovea; P = 0.029, R = 0.332), parafovea (1–3-mm diameter; P = 0.002, R = 0.458), and macula (6-mm diameter; P = 0.003, R = 0.447). In the macular area (diameter: 6 mm), MPOD was correlated with the retinal neural volume of the ganglion cell layer (P = 0.037, R = 0.320), inner plexiform layer (P = 0.029, R = 0.333), and outer nuclear layer (P = 0.020, R = 0.353). Thus, MPOD may help in estimating neural health. Further studies should determine the impact of MP levels on neuroprotection.
Collapse
Affiliation(s)
- Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.S.)
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Teru Asato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Sakiko Minami
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Misa Suzuki
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.S.)
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Hajime Shinoda
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Hideki Sonobe
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Kazuhiro Watanabe
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Atsuro Uchida
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Norimitsu Ban
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.S.)
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.A.); (S.M.); (H.S.); (T.K.); (H.S.); (K.W.); (A.U.); (N.B.); (K.T.)
- Department of Ophthalmology, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
- Correspondence: or ; Tel.: +81-3-3353-1211
| |
Collapse
|
43
|
The Emerging Role of Senescence in Ocular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2583601. [PMID: 32215170 PMCID: PMC7085400 DOI: 10.1155/2020/2583601] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest in response to an array of cellular stresses. An important role for senescence has been shown for a number of pathophysiological conditions that include cardiovascular disease, pulmonary fibrosis, and diseases of the skin. However, whether senescence contributes to the progression of age-related macular degeneration (AMD) has not been studied in detail so far and the present review describes the recent research on this topic. We present an overview of the types of senescence, pathways of senescence, senescence-associated secretory phenotype (SASP), the role of mitochondria, and their functional implications along with antisenescent therapies. As a central mechanism, senescent cells can impact the surrounding tissue microenvironment via the secretion of a pool of bioactive molecules, termed the SASP. An updated summary of a number of new members of the ever-growing SASP family is presented. Further, we introduce the significance of mechanisms by which mitochondria may participate in the development of cellular senescence. Emerging evidence shows that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Based on recent studies, there is reasonable evidence that senescence could be a modifiable factor, and hence, it may be possible to delay age-related diseases by modulating basic aging mechanisms using SASP inhibitors/senolytic drugs. Thus, antisenescent therapies in aging and age-related diseases appear to have a promising potential.
Collapse
|
44
|
Mursch-Edlmayr AS, Waser K, Podkowinski D, Bolz M. Differences in swept-source OCT angiography of the macular capillary network in high tension and normal tension glaucoma. Curr Eye Res 2020; 45:1168-1172. [PMID: 32011184 DOI: 10.1080/02713683.2020.1722178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM OF THE STUDY The purpose of the present study was to determine if swept-source optical coherence tomography angiography (OCTA) of the superficial plexus in the macular region can detect differences between high-tension open-angle glaucoma (HTG) and normal-tension glaucoma (NTG). MATERIALS AND METHODS In this prospective study 60 eyes from 60 patients (40 HTG; 20 NTG) underwent fovea centred 3 × 3 mm cube macula OCTA imaging by a swept-source OCTA device (Plex Elite, Zeiss, Jena, Germany). Quantitative analysis of the vasculature at the superficial plexus was performed by assessing the Perfusion Density (PD), defined as the total area of perfused vasculature per unit area in a region of measurement, for each group, respectively. Besides, macular ganglion cell layer thickness and mean deviation from visual field testing was assessed and correlated with PD. RESULTS Average superficial PD of the measured 3 × 3 mm field was comparable between HTG and NTG (P = .567). In both groups a significant relation of PD and age (HTG: r = -0.48, p = .002; NTG: r = -0.615; p = .004) was shown, indicating reduced PD with increasing age. For both groups a positive correlation between PD and mean deviation (MD) (HTG: r = 0.492, p = .003; NTG: r = 0.530, p = .029) as well as PD and GCL thickness was shown (r = 0.486, p = .002 vs. r = 0.389; p = .09). However, the latter did not reach statistical significance in the NTG group. CONCLUSION PD at the central 3 mm around the fovea is comparable between HTG and NTG. Significant correlation with age and MD was shown in both groups.
Collapse
Affiliation(s)
- Anna Sophie Mursch-Edlmayr
- Department of Ophthalmology, Johannes Kepler University Linz, Kepler University Hospital GmBh , Linz, Austria
| | - Klemens Waser
- Department of Ophthalmology, Johannes Kepler University Linz, Kepler University Hospital GmBh , Linz, Austria
| | - Dominika Podkowinski
- Department of Ophthalmology, Johannes Kepler University Linz, Kepler University Hospital GmBh , Linz, Austria
| | - Matthias Bolz
- Department of Ophthalmology, Johannes Kepler University Linz, Kepler University Hospital GmBh , Linz, Austria
| |
Collapse
|
45
|
Qu M, Kwapong WR, Peng C, Cao Y, Lu F, Shen M, Han Z. Retinal sublayer defect is independently associated with the severity of hypertensive white matter hyperintensity. Brain Behav 2020; 10:e01521. [PMID: 31875660 PMCID: PMC7010590 DOI: 10.1002/brb3.1521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/31/2019] [Accepted: 12/02/2019] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To investigate the association of specific retinal sublayer thicknesses on optical coherence tomography (OCT) imaging with brain magnetic resonance imaging (MRI) markers using the Fazekas scale in hypertensive white matter hyperintensity (WMH) subjects. METHODS Eighty-eight participants (32 healthy controls and 56 hypertensive white matter hyperintensity subjects) underwent retinal imaging using the OCT and MRI. A custom-built algorithm was used to measure the thicknesses of the retinal nerve fiber layer (RNFL) and ganglion cell layer and inner plexiform layer (GCIP). Focal markers for white matter hyperintensities were assessed on MRI and graded using the Fazekas visual rating. RESULTS Hypertensive WMH showed significantly reduced (p < .05) RNFL and GCIP layers when compared to healthy controls, respectively. A significant correlation was found between the RNFL (ρ = -.246, p < .001) and GCIP (ρ = -.338, p < .001) of the total participants and the Fazekas score, respectively. Statistical differences were still significant (p < .05) when correlations were adjusted for intereye correlation, age, hypertension, smoking, body mass index, and diabetes. Among the cases of hypertensive WMH, higher Fazekas scores were significantly associated (p < .05) with the thinning of both the RNFL and GCIP layers after adjustment of age and other risk factors. CONCLUSIONS Retinal degeneration in the RNFL and GCIP was independently associated with focal lesions in the white matter of the brain and deteriorates with the severity of the lesions. We suggest that imaging and measurement of the retinal sublayers using the OCT may provide evidence on neurodegeneration in WMH.
Collapse
Affiliation(s)
- Man Qu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | | | - Chenlei Peng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Zhao Han
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Scuderi G, Fragiotta S, Scuderi L, Iodice CM, Perdicchi A. Ganglion Cell Complex Analysis in Glaucoma Patients: What Can It Tell Us? Eye Brain 2020; 12:33-44. [PMID: 32099501 PMCID: PMC6999543 DOI: 10.2147/eb.s226319] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterized by a progressive degeneration of retina ganglion cells (RGCs) and their axons that precedes functional changes detected on the visual field. The macular ganglion cell complex (GCC), available in commercial Fourier-domain optical coherence tomography, allows the quantification of the innermost retinal layers that are potentially involved in the glaucomatous damage, including the retinal nerve fiber (RNFL), ganglion cell and inner plexiform layers. The average GCC thickness and its related parameters represent a reliable biomarker in detecting preperimetric glaucomatous damage. The most accurate GCC parameters are represented by average and inferior GCC thicknesses, and they can be associated with progressive visual field loss. Although the diagnostic accuracy increases with more severe glaucomatous damage and higher signal strength values, it is not affected by increasing axial length, resulting in a more accurate discrimination of glaucomatous damage in myopic eyes with respect to the traditional RNFL thickness. The analysis of the structure-function relationship revealed a good agreement between the loss in retinal sensitivity and GCC thickness. The use of a 10-2° visual field grid, adjusted for the anatomical RGCs displacement, describes more accurately the relationship between RGCs thickness and visual field sensitivity loss.
Collapse
Affiliation(s)
- Gianluca Scuderi
- NESMOS Department, Ophthalmology Unit, S. Andrea Hospital, University of Rome "La Sapienza", Rome, Italy
| | - Serena Fragiotta
- NESMOS Department, Ophthalmology Unit, S. Andrea Hospital, University of Rome "La Sapienza", Rome, Italy
| | - Luca Scuderi
- Ophthalmology Unit, Department of Sense Organs, Azienda Policlinico Umberto I, University of Rome "La Sapienza", Rome, Italy
| | | | - Andrea Perdicchi
- NESMOS Department, Ophthalmology Unit, S. Andrea Hospital, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
47
|
Age-Related Physiologic Thinning Rate of the Retinal Nerve Fiber Layer in Different Levels of Myopia. J Ophthalmol 2020; 2020:1873581. [PMID: 32051762 PMCID: PMC6995484 DOI: 10.1155/2020/1873581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose To investigate the effect of refractive error on the physiologic thinning rate of the retinal nerve fiber layer (RNFL) in healthy eyes. Materials and Methods. This study analyzed 223 eyes of 141 healthy subjects followed for more than 5 years and underwent at least five serial spectral domain optical coherence tomography (SD-OCT) examinations. Longitudinal RNFL measurements were analyzed by linear mixed models incorporating follow-up duration, baseline RNFL thickness, spherical equivalent (SE), age, intraocular pressure, and visual field mean deviation. Thinning rates were classified according to SE into three groups: nonmyopic (NM; >0 D), mild-to-moderately myopic (MM; >–6 D and ≤0 D), and highly myopic (HM; ≤–6 D). Results The overall slopes of change in RNFL thickness over time in the NM, MM, and HM groups were −0.305 ± 0.128, −0.294 ± 0.068, and −0.208 ± 0.097 μm/yr, respectively. Slopes of RNFL thickness changes in these groups were −0.514 ± 0.248, −0.520 ± 0.133, and −0.528 ± 0.188 μm/yr, respectively. Slopes of RNFL thickness changes in these groups were −0.514 ± 0.248, −0.520 ± 0.133, and −0.528 ± 0.188 μm/yr, respectively. Slopes of RNFL thickness changes in these groups were −0.514 ± 0.248, −0.520 ± 0.133, and −0.528 ± 0.188 μm/yr, respectively. Slopes of RNFL thickness changes in these groups were −0.514 ± 0.248, −0.520 ± 0.133, and −0.528 ± 0.188 μm/yr, respectively. Slopes of RNFL thickness changes in these groups were −0.514 ± 0.248, −0.520 ± 0.133, and −0.528 ± 0.188 Conclusions Refractive error did not affect the physiologic thinning rate of RNFL when assessed by SD OCT.
Collapse
|
48
|
Jo YH, Sung KR, Shin JW. Effects of Age on Peripapillary and Macular Vessel Density Determined Using Optical Coherence Tomography Angiography in Healthy Eyes. Invest Ophthalmol Vis Sci 2019; 60:3492-3498. [PMID: 31408111 DOI: 10.1167/iovs.19-26848] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the effect of age on global and sectoral vascular parameters of the peripapillary area and macula in healthy eyes by using optical coherence tomography angiography (OCT-A). Methods This retrospective cross-sectional study included 239 eyes of 172 healthy subjects. Subjects were scanned using the high-definition disc angio scan (4.5 × 4.5 mm), retina angio scan (6 × 6 mm), and optic nerve head/ganglion cell complex (GCC) modes of OCT-A. Global and sectoral circumpapillary vessel density (VD), parafoveal VD, retinal nerve fiber layer (RNFL), and GCC thickness parameters were modeled in terms of age by using linear mixed-effect models incorporating covariates. Normalized slopes were calculated by dividing the absolute slopes by the mean value of the OCT-A parameters. Results All global and sectoral circumpapillary VDs decreased significantly with increasing age, except for those in the temporal superior sector. The steepest slopes in the circumpapillary region were observed in nasal superior (-0.098%/y) and nasal inferior (-0.096%/y) sectors. The global, temporal, and superior macular VDs also decreased with increasing age, while the foveal, nasal, and inferior parameters did not. The temporal quadrant showed the steepest slope among the macular parameters (-0.068%/y). The RNFL and GCC thickness results showed similar trends. Conclusions Age substantially affected VD in most of the peripapillary and macular areas; however, the papillomacular bundle area did not show significant age-related vascular changes. These age-related global and sectoral differences in circumpapillary and macular VDs should be considered when assessing pathologic VD changes over time.
Collapse
Affiliation(s)
- Youn Hye Jo
- Department of Ophthalmology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - Kyung Rim Sung
- Department of Ophthalmology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - Joong Won Shin
- Department of Ophthalmology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
49
|
Minami S, Nagai N, Suzuki M, Kurihara T, Sonobe H, Watanabe K, Shinoda H, Takagi H, Tsubota K, Ozawa Y. Spatial-sweep steady-state pattern electroretinography can detect subtle differences in visual function among healthy adults. Sci Rep 2019; 9:18119. [PMID: 31792280 PMCID: PMC6889279 DOI: 10.1038/s41598-019-54606-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
We aimed to establish a highly sensitive method for measuring visual function using spatial-sweep steady-state pattern electroretinography (swpPERG). Overall, 35 eyes of 35 healthy adults (18 men; mean age, 32.3 years) were examined using swpPERG, and the data were recorded using spatial-patterned and contrast-reversed stimuli of size 1 (thickest) to 6. Data were converted into frequency-domain using a Fourier transform and expressed by signal-to-noise ratio (SNR). The number of participants who showed SNR ≥ 1 was significantly lesser at stimulus sizes 5 and 6 compared with those at greater stimulus sizes. Among the data with SNR ≥ 1, SNRs were negatively correlated with age at stimulus size 5 (r = −0.500, P = 0.029), and positively correlated with macular volume evaluated by optical coherence tomography (OCT) within a 6-mm circle diameter from the fovea of the retinal nerve fibre layer at size 4 (r = 0.409, P = 0.025) and of the ganglion cell layer at size 5 (r = 0.567, P = 0.011). We found that SNRs of swpPERG, recorded using the EvokeDx system, were correlated with age and macular morphology in participants without diagnosed eye diseases. The system detected subtle differences in retinal function, which may help in early disease diagnosis and visual evaluation in neuroprotective interventions in the future.
Collapse
Affiliation(s)
- Sakiko Minami
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Inagi Municipal Hospital, Tokyo, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Norihiro Nagai
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Misa Suzuki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Yokohama City University, Yokohama, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Sonobe
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Watanabe
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Shinoda
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hitoshi Takagi
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan. .,Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan.
| |
Collapse
|
50
|
Asefa NG, Neustaeter A, Jansonius NM, Snieder H. Heritability of glaucoma and glaucoma-related endophenotypes: Systematic review and meta-analysis. Surv Ophthalmol 2019; 64:835-851. [DOI: 10.1016/j.survophthal.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 02/09/2023]
|