1
|
Wang X, Liang X, Huang S, Wei M, Xu Y, Chen X, Miao Y, Zong R, Lin X, Li S, Liu Z, Chen Q. Metformin inhibits pathological retinal neovascularization but promotes retinal fibrosis in experimental neovascular age-related macular degeneration. Front Pharmacol 2025; 16:1547492. [PMID: 40183100 PMCID: PMC11966061 DOI: 10.3389/fphar.2025.1547492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Purpose This study aims to investigate the effects and mechanism of action of metformin on retinal neovascularization and fibrosis in a mouse model of neovascular age-related macular degeneration (nAMD). Methods Very low-density lipoprotein receptor knockout (Vldlr -/-) mice, a mouse model of nAMD, were used in this study. Vldlr -/- mice were administered metformin on postnatal day (P) 20 for 20 days (early stage of pathological change) or at 5.5 months of age for 45 days (late stage of pathological change). Retinal leakage was examined by fundus fluorescein angiography (FFA). Retinal neovascularization was assessed by lectin staining. Retinal fibrosis was assessed by Western blotting, immunofluorescence staining, and Masson's trichrome staining. Results Retinal vascular leakage and neovascularization were significantly reduced in Vldlr -/- mice treated with metformin compared to those treated with the vehicle at P40. The protein levels of inflammatory factors and phospho(p)-STAT3 were decreased, and P38 and ERK signaling were suppressed in the retinas of metformin-treated Vldlr -/- mice relative to those in the control group at P40. Fibrotic markers were upregulated in the retinas of Vldlr -/- mice treated with metformin compared to those treated with the vehicle at 7 months. Levels of the inflammatory factors and p-STAT3 were increased, and PI3K/AKT, P38, and ERK signaling were upregulated in the retinas of metformin-treated Vldlr -/- mice compared to those in the control group at 7 months. Conclusion Metformin inhibits pathological retinal neovascularization but promotes fibrosis in experimental nAMD. These results provide evidence and highlight important considerations for the clinical use of metformin in different stages of nAMD.
Collapse
Affiliation(s)
- Xin Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Suining Central Hospital, Suining, Sichuan, China
| | - Xu Liang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shiya Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mingyan Wei
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuan Xu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaodong Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yanliang Miao
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongrong Zong
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Sadeghi E, Rahmanipour E, Valsecchi N, Kapoor S, Cicinelli MV, Chhablani J. An update on ocular effects of antidiabetic medications. Surv Ophthalmol 2025:S0039-6257(25)00019-0. [PMID: 39855606 DOI: 10.1016/j.survophthal.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The global increase in the prevalence of type 2 diabetes has led to the development and implementation of new classes of antidiabetic medications, introducing advanced therapeutic options for the management of the disease. These new medications, though primarily designed to regulate blood glucose levels, also have applications in weight management, potentially transforming the current approaches to diabetes treatment. Newer medications, however, have ophthalmic side effects with controversies in trials and real-life data. We comprehensively assessed the ocular benefits and adverse effects of traditional and newer-generation anti-diabetic drugs. Our primary focus is on how these newer medications affect the stage of diabetic retinopathy. Additionally, we explore the associations between these medications and other ocular conditions, including age-related macular degeneration, glaucoma, orbital conditions, and diseases impacting the ocular surface. Furthermore, we provide contextual background by discussing the ocular effects of traditional anti-diabetic drugs.
Collapse
Affiliation(s)
- Elham Sadeghi
- University of Pittsburgh, School of Medicine, PA, USA.
| | - Elham Rahmanipour
- Immunology Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| | - Nicola Valsecchi
- University of Pittsburgh, School of Medicine, PA, USA; Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Saloni Kapoor
- University of Pittsburgh, School of Medicine, PA, USA.
| | | | - Jay Chhablani
- University of Pittsburgh, School of Medicine, PA, USA.
| |
Collapse
|
3
|
Xiao JF, Luo W, Mani A, Barba H, Solanki A, Droho S, Lavine JA, Skondra D. Intravitreal Metformin Protects Against Choroidal Neovascularization and Light-Induced Retinal Degeneration. Int J Mol Sci 2024; 25:11357. [PMID: 39518910 PMCID: PMC11545389 DOI: 10.3390/ijms252111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Neovascular age-related macular degeneration (nAMD), a leading cause of blindness in older adults, presents a challenging pathophysiology involving choroidal neovascularization (CNV) and retinal degeneration. Current treatments relying on intravitreal (IVT) administration of anti-angiogenic agents are costly and of moderate effectiveness. Metformin, the common anti-diabetic drug, has been associated with decreased odds of developing AMD. Studies have shown that metformin can mitigate cellular aging, neoangiogenesis, and inflammation across multiple diseases. This preclinical study assessed metformin's impact on vessel growth using choroidal explants before exploring IVT metformin's effects on laser-induced CNV and light-induced retinal degeneration in C57BL/6J and BALB/cJ mice, respectively. Metformin reduced new vessel growth in choroidal explants in a dose-dependent relationship. Following laser induction, IVT metformin suppressed CNV and decreased peripheral infiltration of IBA1+ macrophages/microglia. Furthermore, IVT metformin protected against retinal thinning in response to light-induced degeneration. IVT metformin downregulated genes in the choroid and retinal pigment epithelium which are associated with angiogenesis and inflammation, two key processes that drive nAMD progression. These findings underscore metformin's capacity as an anti-angiogenic and neuroprotective agent, demonstrating this drug's potential as an accessible option to help manage nAMD.
Collapse
Affiliation(s)
- Jason F. Xiao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Wendy Luo
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Amir Mani
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Hugo Barba
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | | | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (S.D.); (J.A.L.)
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (S.D.); (J.A.L.)
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| |
Collapse
|
4
|
Sheemar A, Goel P, Thakur PS, Takkar B, Kaur I, Rani PK, Tyagi M, Basu S, Venkatesh P. Diabetes, Diabetic Retinopathy, and Inflammatory Disorders. Ocul Immunol Inflamm 2024; 32:1155-1168. [PMID: 37159104 DOI: 10.1080/09273948.2023.2203742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
This review summarizes the impact of systemic and ocular inflammatory disorders on diabetes mellitus (DM) and diabetic retinopathy (DR). Local inflammation is a key pathology in diabetic retinopathy (DR) and is also an evolving target for clinical therapy. The legacy effects of local inflammation at the intracellular level make DR a persistent self-driven vicious process. Ocular inflammation is accompanied as well as incited by systemic inflammation due to diabetes mellitus (DM) itself. Over the years, a multitude of studies have evaluated the impact of systemic inflammatory disorders (SIDs, like rheumatoid arthritis, lupus, psoriasis, etc.) and anti-inflammatory drugs prescribed for managing them on manifestations of DM. Recent studies have indicated increased insulin resistance to be a result of chronic inflammation, and the anti-inflammatory drugs to have a protective effect towards DM. Very few studies have evaluated the impact of SIDs on DR. Furthermore, the evidence from these studies is conflicting, and while local anti-inflammatory therapy has shown a lot of clinical potential for use in DR, the results of systemic anti-inflammatory therapies have been inconsistent. The impact of local ocular inflammation due to uveitis on DR is a crucial aspect that has not been evaluated well at present. Initial pre-clinical studies and small-sized clinical reports have shown a strong and positive relationship between the presence of uveitis and the severity of DR as well as its progression, while larger cross-sectional patient surveys have refuted the same. The long term impact of ocular inflammation due to uveitis on DR needs to be studied while adjusting for confounders.
Collapse
Affiliation(s)
- Abhishek Sheemar
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Pallavi Goel
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | | | - Brijesh Takkar
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Hyderabad, India
- Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Padmaja K Rani
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Mudit Tyagi
- Uveitis Services, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Soumyava Basu
- Uveitis Services, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Pradeep Venkatesh
- Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Regu VR, Gohel V, Gaur M, Swain RP, Das J, Subudhi BB. Tamarind seed polysaccharide-metformin insert: Higher ocular retention, slow-release, and efficacy against corneal burn. Int J Pharm 2024; 659:124265. [PMID: 38795935 DOI: 10.1016/j.ijpharm.2024.124265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Metformin (MET) can be an alternative therapeutic strategy for managing ocular burn primarily because of its pleiotropic mechanism. Longer retention on the ocular surface and sustained release are necessary to ensure the efficacy of MET for ocular application. Although the high aqueous solubility of MET is good for formulation and biocompatibility, it makes MET prone to high nasolacrimal drainage. This limits ocular residence and may be a challenge in its application. To address this, polymers approved for ophthalmic application with natural origin were analyzed through in silico methods to determine their ability to bind to mucin and interact with MET. An ocular insert of MET (3 mg/6 mm) was developed using a scalable solvent casting method without using preservatives. The relative composition of the insert was 58 ± 2.06 %w/w MET with approximately 14 %w/w tamarind seed polysaccharide (TSP), and 28 %w/w propylene glycol (PG). Its stability was demonstrated as per the ICH Q1A (R2) guidelines. Compatibility, ocular retention, drug release, and other functional parameters were evaluated. In rabbits, efficacy was demonstrated in the 'corneal alkali burn preclinical model'. TSP showed potential for mucoadhesion and interaction with MET. With adequate stability and sterility, the insert contributed to adequate retention of MET (10-12 h) in vivo and slow release (30 h) in vitro. This resulted in significant efficacy in vivo.
Collapse
Affiliation(s)
- Varaprasad R Regu
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India
| | - Vinit Gohel
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India
| | - Ranjit P Swain
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India; GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Jayakrushna Das
- College of Veterinary Science and Animal Husbandry, Bhubaneswar 751003, Odisha, India
| | - Bharat B Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
6
|
Plowman TJ, Christensen H, Aiges M, Fernandez E, Shah MH, Ramana KV. Anti-Inflammatory Potential of the Anti-Diabetic Drug Metformin in the Prevention of Inflammatory Complications and Infectious Diseases Including COVID-19: A Narrative Review. Int J Mol Sci 2024; 25:5190. [PMID: 38791227 PMCID: PMC11121530 DOI: 10.3390/ijms25105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Metformin, a widely used first-line anti-diabetic therapy for the treatment of type-2 diabetes, has been shown to lower hyperglycemia levels in the blood by enhancing insulin actions. For several decades this drug has been used globally to successfully control hyperglycemia. Lactic acidosis has been shown to be a major adverse effect of metformin in some type-2 diabetic patients, but several studies suggest that it is a typically well-tolerated and safe drug in most patients. Further, recent studies also indicate its potential to reduce the symptoms associated with various inflammatory complications and infectious diseases including coronavirus disease 2019 (COVID-19). These studies suggest that besides diabetes, metformin could be used as an adjuvant drug to control inflammatory and infectious diseases. In this article, we discuss the current understanding of the role of the anti-diabetic drug metformin in the prevention of various inflammatory complications and infectious diseases in both diabetics and non-diabetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
7
|
Aleshin VA, Kaehne T, Maslova MV, Graf AV, Bunik VI. Posttranslational Acylations of the Rat Brain Transketolase Discriminate the Enzyme Responses to Inhibitors of ThDP-Dependent Enzymes or Thiamine Transport. Int J Mol Sci 2024; 25:917. [PMID: 38255994 PMCID: PMC10815635 DOI: 10.3390/ijms25020917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Transketolase (TKT) is an essential thiamine diphosphate (ThDP)-dependent enzyme of the non-oxidative branch of the pentose phosphate pathway, with the glucose-6P flux through the pathway regulated in various medically important conditions. Here, we characterize the brain TKT regulation by acylation in rats with perturbed thiamine-dependent metabolism, known to occur in neurodegenerative diseases. The perturbations are modeled by the administration of oxythiamine inhibiting ThDP-dependent enzymes in vivo or by reduced thiamine availability in the presence of metformin and amprolium, inhibiting intracellular thiamine transporters. Compared to control rats, chronic administration of oxythiamine does not significantly change the modification level of the two detected TKT acetylation sites (K6 and K102) but doubles malonylation of TKT K499, concomitantly decreasing 1.7-fold the level of demalonylase sirtuin 5. The inhibitors of thiamine transporters do not change average levels of TKT acylation or sirtuin 5. TKT structures indicate that the acylated residues are distant from the active sites. The acylations-perturbed electrostatic interactions may be involved in conformational shifts and/or the formation of TKT complexes with other proteins or nucleic acids. Acetylation of K102 may affect the active site entrance/exit and subunit interactions. Correlation analysis reveals that the action of oxythiamine is characterized by significant negative correlations of K499 malonylation or K6 acetylation with TKT activity, not observed upon the action of the inhibitors of thiamine transport. However, the transport inhibitors induce significant negative correlations between the TKT activity and K102 acetylation or TKT expression, absent in the oxythiamine group. Thus, perturbations in the ThDP-dependent catalysis or thiamine transport manifest in the insult-specific patterns of the brain TKT malonylation and acetylations.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.A.A.); (A.V.G.)
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39106 Magdeburg, Germany;
| | - Maria V. Maslova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Anastasia V. Graf
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.A.A.); (A.V.G.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Victoria I. Bunik
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.A.A.); (A.V.G.)
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
8
|
Arıkan S, Guven S, Sehitoglu MH, Elmas S. The possible effect of topically applied azithromycin and moxifloxacin on the alleviation of uveitis. Int Ophthalmol 2023; 43:4451-4460. [PMID: 37642800 DOI: 10.1007/s10792-023-02845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To investigate the inhibitory effect of topically administered azithromycin (AZM), and moxifloxacin (MXF) against tumor necrosis factor-α (TNF-α) production in a rat model of endotoxin-induced uveitis (EIU). METHODS Thirty-six Wistar albino rats were divided into 6 equal groups. Groups 1, 2 and 3 were determined as sham, control group for topical AZM application and control group for topical MXF application, respectively. Sterile saline, topical AZM 1.5%, and topical MXF 0.5% were instilled 5 times daily for totally 6 days on both eyes of the rats in Group 4, Group 5, and Group 6, before and after inducing EIU by intravitreal injections of lipopolysaccharide, respectively. At 24 h after intravitreal injections, aqueous humor was collected from both eyes of each rat for the assessment of TNF-α concentration. Also, density of nuclear factor kappa B (NF-κB) in ciliary body, and the number of cells infiltrating the posterior segment of EIU rat eyes was assessed in one eye of each rat. RESULTS There was a significant reduction in mean aqueous humor concentration of TNF-α in EIU rats pretreated with topical AZM in comparison with those pretreated with sterile saline (139 ± 38.6 in Group 4 vs. 72 ± 12.6 in Group 5, p = 0.006). There was also a marked decrease in mean aqueous humor concentration of TNF-α in EIU rats pretreated with topical MXF (139 ± 38.6 in Group 4 vs.86.1 ± 35.5 in Group 6, p = 0.025). Also, evident suppressions were determined in mean density of NF-κB, and in mean number of cells in EIU rats pretreated either with topical AZM, or topical MXF. CONCLUSIONS Topically applied AZM or MXF may be beneficial in the suppression of TNF-α production in aqueous humor.
Collapse
Affiliation(s)
- Sedat Arıkan
- Department of Ophthalmology, Kayseri City Training and Research Hospital, Muhsin Yazıcıoglu Aveniu, Seker Street, No:77, Kocasinan, 38038, Kayseri, Turkey.
| | - Soner Guven
- Department of Ophthalmology, Kayseri City Training and Research Hospital, Muhsin Yazıcıoglu Aveniu, Seker Street, No:77, Kocasinan, 38038, Kayseri, Turkey
| | - Muserref Hilal Sehitoglu
- Department of Medical Biochemistry, Canakkale Onsekiz Mart University School of Medicine, Canakkale, Turkey
| | - Sait Elmas
- Experimental Research Application and Research Center, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
9
|
Hsia NY, Hsu AY, Wang YH, Li JX, Chen HS, Wei JCC, Lin CJ, Tsai YY. The risk assessment of uveitis after COVID-19 diagnosis: A multicenter population-based study. J Med Virol 2023; 95:e29188. [PMID: 37881132 DOI: 10.1002/jmv.29188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Reports on uveitis after COVID-19 have been limited. Our objective was to examine the risk of uveitis among COVID-19 patients. This was a retrospective cohort study based on the TriNetX platform. The exposure group was patients with positive laboratory test result for SARS-CoV-2 and the comparison group was those tested negative for COVID-19 throughout the study period. The endpoint is the new diagnoses of uveitis. This study composed of 2 105 424 patients diagnosed with COVID-19 (55.4% female; 62.5% white; mean age at index 40.7 years) and 2 105 424 patients (55.4% female; 62.4% white; mean age at index 40.7 years) who never had COVID-19. There was significantly increased risk of new diagnosis of uveitis since the first month after diagnosis of COVID-19 compared with matched controls (HR: 1.18, 95% CI: 1.03-1.34) up to 24 months (HR: 1.16, 95% CI: 1.09-1.22). Our findings strengthen those previously raised by case series with a larger and multicenter study. We found that uveitis was significantly associated with COVID-19 infection. Our findings reiterate the need for careful investigation as well as increased awareness from ophthalmologists in considering the possibility of COVID-19 in vulnerable patients with new presentation of uveitis.
Collapse
Affiliation(s)
- Ning-Yi Hsia
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Alan Y Hsu
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of General Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jing-Xing Li
- Department of General Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Huan-Sheng Chen
- An-Shin Dialysis Center, NephroCare Ltd., Fresenius Medical Care, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Yi-Yu Tsai
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Baradaran Rahimi V, Heidari R, Askari VR. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother 2023; 165:115263. [PMID: 37541178 DOI: 10.1016/j.biopha.2023.115263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
In addition to the anti-diabetic effect of metformin, a growing number of studies have shown that metformin has some exciting properties, such as anti-oxidative capabilities, anticancer, genomic stability, anti-inflammation, and anti-fibrosis, which have potent, that can treat other disorders other than diabetes mellitus. We aimed to describe and review the protective and antidotal efficacy of metformin against biologicals, chemicals, natural, medications, pesticides, and radiation-induced toxicities. A comprehensive search has been performed from Scopus, Web of Science, PubMed, and Google Scholar databases from inception to March 8, 2023. All in vitro, in vivo, and clinical studies were considered. Many studies suggest that metformin affects diseases other than diabetes. It is a radioprotective and chemoprotective drug that also affects viral and bacterial diseases. It can be used against inflammation-related and apoptosis-related abnormalities and against toxins to lower their effects. Besides lowering blood sugar, metformin can attenuate the effects of toxins on body weight, inflammation, apoptosis, necrosis, caspase-3 activation, cell viability and survival rate, reactive oxygen species (ROS), NF-κB, TNF-α, many interleukins, lipid profile, and many enzymes activity such as catalase and superoxide dismutase. It also can reduce the histopathological damages induced by many toxins on the kidneys, liver, and colon. However, clinical trials and human studies are needed before using metformin as a therapeutic agent against other diseases.
Collapse
Affiliation(s)
- Amirhossein Malaekeh-Nikouei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Shokri-Naei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobhan Karbasforoushan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Otaka Y, Kanai K, Mori A, Okada D, Nagai N, Yamashita Y, Ichikawa Y, Tajima K. 5-ALA/SFC Ameliorates Endotoxin-Induced Ocular Inflammation in Rats by Inhibiting the NF-κB Signaling Pathway and Activating the HO-1/Nrf2 Signaling Pathway. Int J Mol Sci 2023; 24:ijms24108653. [PMID: 37239995 DOI: 10.3390/ijms24108653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sodium ferrous citrate (SFC) is involved in the metabolism of 5-aminolevulinic acid (5-ALA) and enhances its anti-inflammatory effects. The effects of 5-ALA/SFC on inflammation in rats with endotoxin-induced uveitis (EIU) have yet to be elucidated. In this study, during lipopolysaccharide injection, 5-ALA/SFC (10 mg/kg 5-ALA plus 15.7 mg/kg SFC) or 5-ALA (10 or 100 mg/kg) was administered via gastric gavage, wherein we saw that 5-ALA/SFC ameliorated ocular inflammation in EIU rats by suppressing clinical scores; by infiltrating cell counts, aqueous humor protein, and inflammatory cytokine levels; and by improving histopathological scores to the same extent as 100 mg/kg 5-ALA. Immunohistochemistry showed that 5-ALA/SFC suppressed iNOS and COX-2 expression, NF-κB activation, IκB-α degradation, and p-IKKα/β expression, and activated HO-1 and Nrf2 expression. Therefore, this study has investigated how 5-ALA/SFC reduces inflammation and revealed the pathways involved in EIU rats. 5-ALA/SFC is shown to inhibit ocular inflammation in EIU rats by inhibiting NF-κB and activating the HO-1/Nrf2 pathways.
Collapse
Affiliation(s)
- Yuya Otaka
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Kazutaka Kanai
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Arisa Mori
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Daiki Okada
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yohei Yamashita
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Yoichiro Ichikawa
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Kazuki Tajima
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| |
Collapse
|
12
|
Ponticelli M, Lela L, Moles M, Mangieri C, Bisaccia D, Faraone I, Falabella R, Milella L. The healing bitterness of Gentiana lutea L., phytochemistry and biological activities: A systematic review. PHYTOCHEMISTRY 2023; 206:113518. [PMID: 36423749 DOI: 10.1016/j.phytochem.2022.113518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Over many years, natural products have been a source of healing agents and have exhibited beneficial uses for treating human diseases. The Gentiana genus is the biggest genus in the Gentianaceae, with over 400 species distributed mainly in alpine zones of temperate countries around the world. Plants in the Gentiana genus have historically been used to treat a wide range of diseases. Still, only in the last years has particular attention been paid to the biological activities of Gentiana lutea Linn., also known as yellow Gentian or bitterwort. Several in vitro/vivo investigations and human interventional trials have demonstrated the promising activity of G. lutea extracts against oxidative stress, microbial infections, inflammation, obesity, atherosclerosis, etc.. A systematic approach was performed using Pubmed and Scopus databases to update G. lutea chemistry and activity. Specifically, this systematic review synthesized the major specialized bitter metabolites and the biological activity data obtained from different cell lines, animal models, and human interventional trials. This review aims to the exaltation of G. lutea as a source of bioactive compounds that can prevent and treat several human illnesses.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Ludovica Lela
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Mariapia Moles
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Claudia Mangieri
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Bisaccia
- Italian National Research Council-Water Research Institute, Viale F. De Blasio 5, 70123, Bari, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy; Spinoff Bioactiplant Srl Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Roberto Falabella
- Urology Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
13
|
Metformin Attenuates Inflammation and Fibrosis in Thyroid-Associated Ophthalmopathy. Int J Mol Sci 2022; 23:ijms232415508. [PMID: 36555150 PMCID: PMC9778898 DOI: 10.3390/ijms232415508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of thyroid-associated ophthalmopathy (TAO) is still unclear, and therapeutic drugs have great limitations. As metformin has multiple therapeutic effects in many autoimmune diseases, we explored the effects of metformin on TAO in an in vitro fibroblast model. We used orbital connective tissues and fibroblasts that were obtained from TAO patients and normal controls. The activity of adenosine monophosphate-activated protein kinase (AMPK) and the levels of inflammatory or fibrotic factors were examined by immunofluorescence (IF) and immunohistochemistry (IHC). Quantitative real-time polymerase chain reaction (qPCR), cytokine quantification by enzyme-linked immunosorbent sssay (ELISA), IF, and western blotting (WB) were used to measure the expression of factors related to inflammation, fibrosis, and autophagy. To determine the anti-inflammatory and antifibrotic mechanisms of metformin, we pretreated cells with metformin, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, an AMPK activator) or compound C (CC, an AMPK inhibitor) for 24 h and used WB to verify the changes in protein levels in the AMPK/mammalian target of rapamycin (mTOR) pathway. We determined that the low activity of AMPK in the periorbital tissue of TAO patients may be closely related to the occurrence and development of inflammation and fibrosis, and metformin exerts multiple effects by activating AMPK in TAO. Furthermore, we suggest that AMPK may be a potential target of TAO therapy.
Collapse
|
14
|
Metformin use and the risk of total knee replacement among diabetic patients: a propensity-score-matched retrospective cohort study. Sci Rep 2022; 12:11571. [PMID: 35798867 PMCID: PMC9262887 DOI: 10.1038/s41598-022-15871-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Metformin has been shown to modulate meta-inflammation, an important pathogenesis in knee osteoarthritis (OA). The study aimed to test the association between regular metformin use with total knee replacement (TKR) in patients with diabetes. This is a retrospective study with electronic records retrieved in Hong Kong public primary care. Patients with diabetes aged ≥ 45 who visited during 2007 to 2010, were followed up for a four-year period from 2011 to 2014 to determine the incidence of TKR. Propensity score matching based on age, sex, co-medications and chronic conditions was conducted to adjust for confounding. Cox regression was implemented to examine the association between metformin use and TKR. In total, 196,930 patients were eligible and 93,330 regular metformin users (defined as ≥ 4 prescriptions over the previous year) and non-users were matched. Among 46,665 regular users, 184 TKRs were conducted, 17.1% fewer than that among non-users. Cox regression showed that regular metformin users had a 19%-lower hazard of TKR [hazard ratio (HR) = 0.81, 95% confidence interval: 0.67 to 0.98, P = 0.033], with a dose–response relationship. Findings suggest a potential protective effect of metformin on knee OA progression and later TKR incidence among diabetic patients.
Collapse
|
15
|
Wu H, Huang D, Zhou H, Sima X, Wu Z, Sun Y, Wang L, Ruan Y, Wu Q, Wu F, She T, Chu Y, Huang Q, Ning Z, Zhang H. Metformin: A promising drug for human cancers. Oncol Lett 2022; 24:204. [PMID: 35720480 PMCID: PMC9178677 DOI: 10.3892/ol.2022.13325] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Small-molecule chemical drugs are of great significance for tumor-targeted and individualized therapies. However, the development of new small-molecule drugs, from basic experimental research and clinical trials to final application in clinical practice, is a long process that has a high cost. It takes at least 5 years for most drugs to be developed in the laboratory to prove their effectiveness and safety. Compared with the development of new drugs, repurposing traditional non-tumor drugs can be a shortcut. Metformin is a good model for a new use of an old drug. In recent years, the antitumor efficacy of metformin has attracted much attention. Epidemiological data and in vivo, and in vitro experiments have shown that metformin can reduce the incidence of cancer in patients with diabetes and has a strong antagonistic effect on metabolism-related tumors. Recent studies have shown that metformin can induce autophagy in esophageal cancer cells, mainly by inhibiting inflammatory signaling pathways. In recent years, studies have shown that the antitumor functions and mechanisms of metformin are multifaceted. The present study aims to review the application of metformin in tumor prevention and treatment.
Collapse
Affiliation(s)
- Hongnian Wu
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Huang
- Department of Burn and Plastic Surgery, Enshi State Central Hospital, Enshi, Hubei 445099, P.R. China
| | - Hong Zhou
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xueqin Sima
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Long Wang
- Department of Microbiology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Ruan
- Department of Dermatology, Clinical Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Qian Wu
- Nursing School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Feng Wu
- Stomatology and Optometry School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Tonghui She
- Department of Pathology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Chu
- Department of Burn and Plastic Surgery, Enshi State Central Hospital, Enshi, Hubei 445099, P.R. China
| | - Qizhi Huang
- Department of Clinical Lab, Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Department of Pathology, Jinan University Medical College, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
16
|
Hu DN, Zhang R, Iacob CE, Yao S, Yang SF, Chan CC, Rosen RB. Toll-like receptor 2 and 6 agonist fibroblast-stimulating lipopeptide increases expression and secretion of CXCL1 and CXCL2 by uveal melanocytes. Exp Eye Res 2022; 216:108943. [DOI: 10.1016/j.exer.2022.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 01/09/2022] [Indexed: 11/24/2022]
|
17
|
Amin SV, Khanna S, Parvar SP, Shaw LT, Dao D, Hariprasad SM, Skondra D. Metformin and retinal diseases in preclinical and clinical studies: Insights and review of literature. Exp Biol Med (Maywood) 2022; 247:317-329. [PMID: 35068220 PMCID: PMC8899338 DOI: 10.1177/15353702211069986] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metformin is one of the most prescribed drugs in the world giving potential health benefits beyond that of type 2 diabetes (T2DM). Emerging evidence suggests that it may have protective effects for retinal/posterior segment diseases including diabetic retinopathy (DR), age-related macular degeneration (AMD), inherited retinal degeneration such as retinitis pigmentosa (RP), primary open angle glaucoma (POAG), retinal vein occlusion (RVO), and uveitis. Metformin exerts potent anti-inflammatory, antiangiogenic, and antioxidative effects on the retina in response to pathologic stressors. In this review, we highlight the broad mechanism of action of metformin through key preclinical studies on animal models and cell lines used to simulate human retinal disease. We then explore the sparse but promising retrospective clinical data on metformin's potential protective role in DR, AMD, POAG, and uveitis. Prospective clinical data is needed to clarify metformin's role in management of posterior segment disorders. However, given metformin's proven broad biochemical effects, favorable safety profile, relatively low cost, and promising data to date, it may represent a new therapeutic preventive and strategy for retinal diseases.
Collapse
Affiliation(s)
- Shivam V Amin
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khanna
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Seyedeh P Parvar
- Islamic Azad University Tehran Faculty of Medicine, Tehran QCGM+X9, Tehran Province, Iran
| | - Lincoln T Shaw
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - David Dao
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Seenu M Hariprasad
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Liu HL, Hu FY, Xu P, Wu JH. Regulation of mitophagy by metformin improves the structure and function of retinal ganglion cells following excitotoxicity-induced retinal injury. Exp Eye Res 2022; 217:108979. [DOI: 10.1016/j.exer.2022.108979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
|
19
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
20
|
Hu DN, Zhang R, Yao S, Iacob CE, Yang WE, Rosen R, Yang SF. Cultured Human Uveal Melanocytes Express/secrete CXCL1 and CXCL2 Constitutively and Increased by Lipopolysaccharide via Activation of Toll-like Receptor 4. Curr Eye Res 2021; 46:1681-1694. [PMID: 33979551 DOI: 10.1080/02713683.2021.1929326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
Purpose: Lipopolysaccharide (LPS) can activate Toll-like receptor 4 (TLR4) and increase the expression of CXCL1 and CXCL2, the potent neutrophils chemoattractants, in various cell types. These effects have not been previously reported in the uveal melanocytes. This study was designed to investigate the effects of LPS on the activation of TLR4 and expression of CXCL1/CXCL2 in cultured human uveal melanocytes and the relevant signal pathways.Methods: Effects of LPS on the expression of TLR4 were tested using real-time PCR, flow cytometry and fluorescence immunostaining. Effects of LPS-induced expression/secretion of CXCL1/CXCL2 were studied using real-time PCR in cell lysates and ELISA in conditioned media of cultured uveal melanocytes. Activated NF-κB and phosphorylated MAPK signals were tested in cells with and without LPS treatment using flow cytometry. Effects of various signal inhibitors on p38, ERK1/2, JNK1/2 and NF-κB on the secretion of CXCL1/CXCL2 were tested by ELISA. The effects of neutralized antibodies of CXCL1/CXCL2 on the severity of LPS-induced uveitis were tested in a mouse model.Results: LPS stimulation increased the expression of TLR4 mRNA and protein in culture uveal melanocytes. Constitutive secretion of CXCL1/CXCL2 was detected in uveal melanocytes and was significantly increased dose- and time-dependently by LPS stimulation. LPS mainly increased the activated NF-κB and phosphorylated JNK1/2. LPS-induced expression of CXCL1/CXCL2 was blocked by NF-κB and JNK1/2 inhibitors. The severity of LPS-induced uveitis was significantly inhibited by neutralizing antibody to CXCL1/CXCL2Conclusions: This is the first report on the LPS-induced expression of CXCL1 and CXCL2 by uveal melanocytes via the activation of TLR4. These results suggest that uveal melanocytes may play a role in the immune reaction that eliminates the invading pathogens. Conversely, an excessive LPS-induced inflammatory reaction may also lead to the development of inflammatory ocular disorders, such as non-infectious uveitis.
Collapse
Affiliation(s)
- Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, USA
- Departments of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ruihua Zhang
- Departments of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Shen Yao
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Codrin E Iacob
- Departments of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai, New York, USA
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Richard Rosen
- Departments of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Ophthalmology, New York Eye and Ear Infirmay of Mount Sinai, New York, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
21
|
Postler TS, Peng V, Bhatt DM, Ghosh S. Metformin selectively dampens the acute inflammatory response through an AMPK-dependent mechanism. Sci Rep 2021; 11:18721. [PMID: 34548527 PMCID: PMC8455559 DOI: 10.1038/s41598-021-97441-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
Metformin is a first-line drug in the treatment of type-2 diabetes mellitus (T2DM). In addition to its antigluconeogenic and insulin-sensitizing properties, metformin has emerged as a potent inhibitor of the chronic inflammatory response of macrophages. In particular, metformin treatment has been shown to reduce expression of interleukin (IL-) 1β during long-term exposure to the pro-inflammatory stimulus lipopolysaccharide (LPS) through a reduction in reactive oxygen species (ROS), which decreases the levels of the hypoxia-inducible factor (HIF) 1-α, and through enhanced expression of IL-10. However, the effect of metformin on the acute inflammatory response, before significant levels of ROS accumulate in the cell, has not been explored. Here, we show that metformin alters the acute inflammatory response through its activation of AMP-activated protein kinase (AMPK), but independently of HIF1-α and IL-10, in primary macrophages and two macrophage-like cell lines. Thus, metformin changes the acute and the chronic inflammatory response through fundamentally distinct mechanisms. Furthermore, RNA-seq analysis reveals that metformin pretreatment affects the levels of a large yet selective subset of inflammatory genes, dampening the response to short-term LPS exposure and affecting a wide range of pathways and biological functions. Taken together, these findings reveal an unexpected complexity in the anti-inflammatory properties of this widely used drug.
Collapse
Affiliation(s)
- Thomas S Postler
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Vincent Peng
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dev M Bhatt
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Amgen Research Oncology and Inflammation, South San Francisco, CA, 94080, USA
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
22
|
Dang KR, Wu T, Hui YN, Du HJ. Newly-found functions of metformin for the prevention and treatment of age-related macular degeneration. Int J Ophthalmol 2021; 14:1274-1280. [PMID: 34414094 PMCID: PMC8342286 DOI: 10.18240/ijo.2021.08.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Metformin (MET), a first-line oral agent used to treat diabetes, exerts its function mainly by activating adenosine monophosphate-activated protein. The accumulation of oxidized phospholipids in the outer layer of the retina plays a key role in retinal pigment epithelium (RPE) cells death and the formation of choroidal neovascularization (CNV), which mean the development of age-related macular degeneration (AMD). Recent studies have shown that MET can regulate lipid metabolism, inhibit inflammation, and prohibit retinal cell death and CNV formation due to various pathological factors. Here, newly discovered functions of MET that may be used for the prevention and treatment of AMD were reviewed.
Collapse
Affiliation(s)
- Kuan-Rong Dang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Tong Wu
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yan-Nian Hui
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hong-Jun Du
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
23
|
Balbaba M, Dal A, Çolakoğlu N, Bulmuş Ö, Ulaş F, Yıldırım H, Aydemir O, Eröksüz Y. Anti-inflammatory effect of cortistatin in rat endotoxin-induced uveitis model. Indian J Ophthalmol 2021; 68:1920-1924. [PMID: 32823415 PMCID: PMC7690532 DOI: 10.4103/ijo.ijo_290_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose To evaluate the anti-inflammatory effect of cortistatin (CST) in endotoxin-induced uveitis (EIU) model and to compare the results with corticosteroid treatment. Methods A total of 35 healthy Wistar albino rats were randomly divided into five groups. EIU was induced by a single subcutaneous injection of lipopolysaccharide (LPS). Group I received intraperitoneal (ip) normal saline (NS), Group II received ip 150 μg LPS plus NS, Group III received ip 150 μg LPS plus 250 μg/kg CST, Group IV received ip 150 μg LPS plus 1mg/kg dexamethasone, and Group V received ip 250 μg/kg CST only. The aqueous humor was collected 24 h after injection and the infiltrating cells were determined. Moreover, histopathological and immunohistochemical examinations were also performed. Results The clinical score and infiltrated cell count were reduced in Groups III and IV compared with Group II (P < 0.001). The pathological findings of Groups III and IV were significantly reduced compared with Group II (P < 0.001). These findings were similar between Groups III and IV (P = 1.000). Tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL-1β) immunoreactivity in the ciliary body of Group III and Group IV were significantly reduced compared with Group II (P < 0.001). TNF-α and IL-1β immunoreactivity in the ciliary body of Group III and Group IV were similar compared with Group I and Group V (range of P values was 0.539-0.958). Conclusion CST administration as a therapeutic agent might ameliorate the severity of intraocular inflammation in uveitis patients. In conclusion, effect of CST and dexamethasone in EIU model was comparable.
Collapse
Affiliation(s)
- Mehmet Balbaba
- Department of Ophthalmology; Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Ali Dal
- Department of Ophthalmology; Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Neriman Çolakoğlu
- Faculty of Medicine; Histology-Embryology, Fırat University, Elazığ, Turkey
| | - Özgür Bulmuş
- Physiology; Health Sciences, Fırat University, Elazığ, Turkey
| | - Fatih Ulaş
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Hakan Yıldırım
- Department of Ophthalmology; Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Orhan Aydemir
- Department of Ophthalmology; Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Yesari Eröksüz
- Faculty of Medicine; Veterinary Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
24
|
Nahar N, Mohamed S, Mustapha NM, Lau S, Ishak NIM, Umran NS. Metformin attenuated histopathological ocular deteriorations in a streptozotocin-induced hyperglycemic rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:457-467. [PMID: 33047165 DOI: 10.1007/s00210-020-01989-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) often causes ocular disorders leading to vision loss. Metformin is commonly prescribed for type 2 diabetes. This study assessed the effect of metformin on hyperglycemic histopathological eye abnormalities and some possible pathways involved. Male rats were divided into 3 groups (N = 6), namely, healthy control, hyperglycemic non-treated control, and hyperglycemic rats treated with 200 mg/kg metformin. Two weeks after diabetes induction by an intraperitoneal streptozotocin (60 mg streptozotocin (STZ)/kg) injection, the rats develop ocular abnormalities, and metformin (200 mg/kg) treatment was administered daily. Rats underwent dilated retinal digital ophthalmoscope examination and graded for diabetic retinopathy. Rats were sacrificed at 12 weeks, and the cornea, lens, sclera, ciliary body, iris, conjunctiva, retinal, and optic nerve were examined histologically. Rats' fasting blood glucose and body weight were monitored. Serum tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), claudin-1, and glutathione/malondialdehyde ratios were analyzed. Metformin significantly attenuated diabetes-related histopathological ocular deteriorations in the cornea, lens, sclera, ciliary body, iris, conjunctiva, retina, and optic nerve partly by restoring serum TNF-α, VEGF, claudin-1, and glutathione/malondialdehyde ratios without significantly affecting the fasting blood glucose levels or body weight in these hyperglycemic rats. Metformin attenuated hyperglycemia-associated histopathological eye deteriorations, possibly partly by ameliorating vascular leakage, oxidative stress, inflammation, and neovascularization, without affecting the fasting blood glucose levels or body weights in these STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Nazmun Nahar
- UPM-MAKNA Laboratory of Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Suhaila Mohamed
- UPM-MAKNA Laboratory of Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | | | - SengFong Lau
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nur Iliyani Mohd Ishak
- UPM-MAKNA Laboratory of Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norshahira Solehah Umran
- UPM-MAKNA Laboratory of Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
25
|
Xiao T, Chen Y, Song C, Xu S, Lin S, Li M, Chen X, Gu H. Possible treatment for UVB-induced skin injury: Anti-inflammatory and cytoprotective role of metformin in UVB-irradiated keratinocytes. J Dermatol Sci 2021; 102:25-35. [PMID: 33642112 DOI: 10.1016/j.jdermsci.2021.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/23/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Excessive inflammation and cell death induced by ultraviolet (UV) cause skin photodamage. Metformin possesses anti-inflammatory and cytoprotective effects. However, whether metformin inhibits inflammation and cell death in UVB-induced acute skin damage is unclear. OBJECTIVE To evaluate the anti-inflammatory and cytoprotective effects of metformin in vitro and in vivo. Furthermore, its potential mechanism has been explored. METHODS Transcriptome sequencing and multiplex cytokines analysis were used to evaluate the validity of in vitro UVB-induced acute damage keratinocyte model and anti-inflammatory effects of metformin. We also determined the expression and nuclear translocation of CCAAT/enhancer-binding protein beta (C/EBPβ), an important transcriptional factor of Interleukin-1beta (IL-1β). Cell viability and cell death of keratinocytes were evaluated upon UVB irradiation in the presence or absence of metformin. 0.6% metformin cream was applied on UVB-irradiated mice to explore its pharmacological effects in vivo. RESULTS Transcriptional landscape of 50 mJ/cm2 UVB-irradiated HaCaT cells is typical of UVB-induced acute damage keratinocyte model in vitro. Metformin alleviated transcription and secretion of IL-1β, Tumor Necrosis Factor-alpha, and Fibroblast Growth Factor 2, expression and nuclear translocation of C/EBPβ in this model. Metformin also protected keratinocytes from cell death caused by UVB-induced cellular secretions, which contributed to its cytoprotective effects. Topical administration of 0.6% metformin cream alleviated UVB-induced skin damage in mice. CONCLUSION We proved the protective roles of metformin in UVB-challenged keratinocytes and UVB-irradiated mice, which indicated the potential value of metformin in topical therapy against skin photodamage.
Collapse
Affiliation(s)
- Ta Xiao
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yujie Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Changjun Song
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Song Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Shangqing Lin
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
26
|
Zhang J, Huang L, Shi X, Yang L, Hua F, Ma J, Zhu W, Liu X, Xuan R, Shen Y, Liu J, Lai X, Yu P. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging (Albany NY) 2020; 12:24270-24287. [PMID: 33232283 PMCID: PMC7762510 DOI: 10.18632/aging.202143] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023]
Abstract
Ischemia/reperfusion (I/R) injury is a life-threatening vascular emergency following myocardial infarction. Our previous study showed cardioprotective effects of metformin against myocardial I/R injury. In this study, we further examined the involvement of AMPK mediated activation of NLRP3 inflammasome in this cardioprotective effect of metformin. Myocardial I/R injury was simulated in a rat heart Langendorff model and neonatal rat ventricle myocytes (NRVMs) were subjected to hypoxi/reoxygenation (H/R) to establish an in vitro model. Outcome measures included myocardial infarct size, hemodynamic monitoring, myocardial tissue injury, myocardial apoptotic index and the inflammatory response. myocardial infarct size and cardiac enzyme activities. First, we found that metformin postconditioning can not only significantly alleviated myocardial infarct size, attenuated cell apoptosis, and inhibited myocardial fibrosis. Furthermore, metformin activated phosphorylated AMPK, decreased pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β, and decreased NLRP3 inflammasome activation. In isolated NRVMs metformin increased cellular viability, decreased LDH activity and inhibited cellular apoptosis and inflammation. Importantly, inhibition of AMPK phosphorylation by Compound C (CC) resulted in decreased survival of cardiomyocytes mainly by inducing the release of inflammatory cytokines and increasing NLRP3 inflammasome activation. Finally, in vitro studies revealed that the NLRP3 activator nigericin abolished the anti-inflammatory effects of metformin in NRVMs, but it had little effect on AMPK phosphorylation. Collectively, our study confirmed that metformin exerts cardioprotective effects by regulating myocardial I/R injury-induced inflammatory response, which was largely dependent on the enhancement of the AMPK pathway, thereby suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi 3300063, Nanchang, China
| | - Lelin Huang
- Department of Anesthesiology, Lushan Rehabilitation and Recuperation Center, PLA Joint Service Forces, Jiujiang 3320000, China
| | - Xing Shi
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Liu Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi 3300063, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Rui Xuan
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Xiaoyang Lai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| |
Collapse
|
27
|
Role of metformin in various pathologies: state-of-the-art microcapsules for improving its pharmacokinetics. Ther Deliv 2020; 11:733-753. [PMID: 32967584 DOI: 10.4155/tde-2020-0102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metformin was originally derived from a botanical ancestry and became the most prescribed, first-line therapy for Type 2 diabetes in most countries. In the last century, metformin was discovered twice for its antiglycemic properties in addition to its antimalarial and anti-influenza effects. Metformin exhibits flip-flop pharmacokinetics with limited oral bioavailability. This review outlines metformin pharmacokinetics, pharmacodynamics and recent advances in polymeric particulate delivery systems as a potential tool to target metformin delivery to specific tissues/organs. This interesting biguanide is being rediscovered this century for multiple clinical indications as anticancer, anti-aging, anti-inflammatory, anti-Alzheimer's and much more. Microparticulate delivery systems of metformin may improve its oral bioavailability and optimize the therapeutic goals expected.
Collapse
|
28
|
Kim YK, Chae SC, Yang HJ, An DE, Lee S, Yeo MG, Lee KJ. Cereblon Deletion Ameliorates Lipopolysaccharide-induced Proinflammatory Cytokines through 5'-Adenosine Monophosphate-Activated Protein Kinase/Heme Oxygenase-1 Activation in ARPE-19 Cells. Immune Netw 2020; 20:e26. [PMID: 32655974 PMCID: PMC7327155 DOI: 10.4110/in.2020.20.e26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cereblon (CRBN), a negative modulator of AMP-activated protein kinase (AMPK), is highly expressed in the retina. We confirmed the expression of CRBN in ARPE-19 human retinal cells by Western blotting. We also demonstrated that CRBN knock-down (KD) could effectively downregulate IL-6 and MCP-1 protein and gene expression in LPS-stimulated ARPE-19 cells. Additionally, CRBN KD increased the phosphorylation of AMPK/acetyl-coenzyme A carboxylase (ACC) and the expression of heme oxygenase-1 (HO-1) in ARPE-19 cells. Furthermore, CRBN KD significantly reduced LPS-induced nuclear translocation of NF-κB p65 and activation of NF-κB promoter activity. However, these processes could be inactivated by compound C (inhibitor of AMPK) and zinc protoporphyrin-1 (ZnPP-1; inhibitor of HO-1). In conclusion, compound C and ZnPP-1 can rescue LPS-induced levels of proinflammatory cytokines (IL-6 and MCP-1) in CRBN KD ARPE-19 cells. Our data demonstrate that CRBN deficiency negatively regulates proinflammatory cytokines via the activation of AMPK/HO-1 in the retina.
Collapse
Affiliation(s)
- Yun Kyu Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Soo Chul Chae
- Department of Integrative Medical Sciences, Nambu University, Gwangju 62271, Korea.,Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Hun Ji Yang
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Da Eun An
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Sion Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Myeong Gu Yeo
- Department of Integrative Medical Sciences, Nambu University, Gwangju 62271, Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.,Department of Life Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
29
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
30
|
Han Y, Yuan F, Deng C, He F, Zhang Y, Shen H, Chen Z, Qian L. Metformin decreases LPS-induced inflammatory response in rabbit annulus fibrosus stem/progenitor cells by blocking HMGB1 release. Aging (Albany NY) 2019; 11:10252-10265. [PMID: 31772144 PMCID: PMC6914423 DOI: 10.18632/aging.102453] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
The present study aimed to investigate the mechanism of intervertebral disc degeneration (IVDD) and identify an efficient treatment for low back pain. Rabbit annulus fibrosus stem cells (AFSCs) were treated with metformin and lipopolysaccharide (LPS). The results indicated that LPS induced HMGB1 release from the nuclei of AFSCs and caused cell senescence in a concentration-dependent manner. The production of PGE2 and HMGB1 was increased in the medium of the LPS-treated AFSCs. Certain inflammation-associated genes (IL-β1, IL-6, COX-2 and TNF-α) and proteins (IL-β1, COX-2 and TNF-α) and specific catabolic genes (MMP-3 and MMP-13) exhibited increased expression in LPS-treated AFSCs. However, the expression levels of other anabolic genes, such as collagen I and collagen II were decreased in LPS-treated AFSCs. Following addition of metformin to LPS-containing medium, HMGB1 was retained in the nuclei of AFSCs and the production of PGE2 and HMGB1 was reduced. The expression levels of the catabolic genes and proteins were decreased and those of the anabolic genes were increased. The findings indicated that metformin exerted an anti-inflammatory effect by blocking the HMGB1 translocation and by inhibiting catabolic production and cell senescence in AFSCs. Therefore, metformin may be used as an efficient treatment for the disc degenerative disease.
Collapse
Affiliation(s)
- Yingchao Han
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Yuan
- Department of Sports Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Chao Deng
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan He
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Yan Zhang
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lie Qian
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
31
|
Potunuru UR, Priya KV, Varsha MS, Mehta N, Chandel S, Manoj N, Raman T, Ramar M, Gromiha MM, Dixit M. Amarogentin, a secoiridoid glycoside, activates AMP- activated protein kinase (AMPK) to exert beneficial vasculo-metabolic effects. Biochim Biophys Acta Gen Subj 2019; 1863:1270-1282. [DOI: 10.1016/j.bbagen.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
|
32
|
Wu K, Tian R, Huang J, Yang Y, Dai J, Jiang R, Zhang L. Metformin alleviated endotoxemia-induced acute lung injury via restoring AMPK-dependent suppression of mTOR. Chem Biol Interact 2018; 291:1-6. [DOI: 10.1016/j.cbi.2018.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/23/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
|
33
|
Watanabe T, Keino H, Nakayama K, Taki W, Echizen N, Okada AA. Clinical features of patients with diabetic anterior uveitis. Br J Ophthalmol 2018; 103:78-82. [PMID: 29563110 DOI: 10.1136/bjophthalmol-2017-311453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 01/20/2023]
Abstract
AIM To describe clinical features and outcomes of new-onset anterior uveitis associated with poorly controlled or undiagnosed diabetes mellitus. METHODS Retrospective analysis of 25 eyes of 18 patients (14 men, 4 women; mean age 44 years) who presented between December 2001 and October 2016 to the Kyorin Eye Center. RESULTS Ocular findings at presentation included posterior synechiae (15 eyes, 60%), anterior chamber fibrin (13 eyes, 52%), keratic precipitates (10 eyes, 40%), Descemet membrane folds (7 eyes, 28%) and hypopyon (3 eyes, 12%). Seven cases were bilateral. Intraocular pressure >21 mm Hg (7 eyes, 28%) and diabetic retinopathy (7 eyes, 28%, all non-proliferative) were also noted. The mean random blood glucose was 332 mg/dL (range 135-604 mg/dL) and the mean haemoglobin A1c was 12.6% (range 9.7%-16.7%). Seven patients (39%) were unaware of their hyperglycaemic state, and the remainder had either poor glucose control or had discontinued their diabetes treatment. Systemic examination and ancillary testing ruled out other possible causes of the uveitis. The ocular inflammation was managed in all cases using local corticosteroid therapy (drops and subconjunctival injections) in addition to internal medicine intervention for the diabetes. The best-corrected visual acuity (BCVA) was improved or maintained in all eyes at 3 months. The BCVA was ≤0.5 in two eyes due to both cataract and diabetic macular oedema. CONCLUSIONS We characterised new-onset anterior uveitis in 18 patients in association with poorly controlled or undiagnosed diabetes mellitus. The uveitis was managed in all cases with local corticosteroid therapy in addition to proper diabetes systemic treatment.
Collapse
Affiliation(s)
- Takayo Watanabe
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| | - Kyoko Nakayama
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| | - Wakako Taki
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| | - Nariaki Echizen
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, St Luke's International Hospital, Tokyo, Japan
| | - Annabelle A Okada
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Chang KC, Petrash JM. Aldo-Keto Reductases: Multifunctional Proteins as Therapeutic Targets in Diabetes and Inflammatory Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:173-202. [PMID: 30362099 DOI: 10.1007/978-3-319-98788-0_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase that has been shown to be involved in the pathogenesis of several blinding diseases such as uveitis, diabetic retinopathy (DR) and cataract. However, possible mechanisms linking the action of AR to these diseases are not well understood. As DR and cataract are among the leading causes of blindness in the world, there is an urgent need to explore therapeutic strategies to prevent or delay their onset. Studies with AR inhibitors and gene-targeted mice have demonstrated that the action of AR is also linked to cancer onset and progression. In this review we examine possible mechanisms that relate AR to molecular signaling cascades and thus explain why AR inhibition is an effective strategy against colon cancer as well as diseases of the eye such as uveitis, cataract, and retinopathy.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA. .,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
35
|
Wang JH, Bose S, Shin NR, Chin YW, Choi YH, Kim H. Pharmaceutical Impact of Houttuynia Cordata and Metformin Combination on High-Fat-Diet-Induced Metabolic Disorders: Link to Intestinal Microbiota and Metabolic Endotoxemia. Front Endocrinol (Lausanne) 2018; 9:620. [PMID: 30405531 PMCID: PMC6208002 DOI: 10.3389/fendo.2018.00620] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/27/2018] [Indexed: 01/12/2023] Open
Abstract
Purpose: Metformin and Houttuynia cordata are representative anti-diabetic therapeutic agents in western and oriental medicinal fields, respectively. The present study examined the therapeutic effects of houttuynia cordata extract (HCE) and metformin in combination in a dysmetabolic mouse model. Methods: Metabolic disorders were induced in C57BL/6J mice by high fat diet (HFD) for 14 weeks. Results: Combination of metformin and HCE significantly lowered body weight, abdominal fat, perirenal fat, liver and kidney weights, but did not change epididymal fat in HFD-fed animals. Metformin + HCE treatment markedly attenuated the elevated serum levels of TG, TC, AST, ALT, and endotoxin and restored the depleted HDL level. Both HCE and metformin + HCE treatment ameliorated glucose tolerance and high level of fasting blood glucose in association with AMPK activation. Moreover, treatment with HCE + metformin dramatically suppressed inflammation in HFD-fed animals via inhibition of proinflammatory cytokines (MCP-1 and IL-6) and LPS receptor (TLR4). Histopathological findings showed that exposure of HFD-treated animals to metformin + HCE ameliorated fatty liver, shrinkage of intestinal villi and adipocytes enlargement. Furthermore, HCE and metformin + HCE treatments markedly modulated the abundance of gut Gram-negative bacteria, including Escherichia coli and Bacteriodetes fragilis, but not universal Gram-positive bacteria. Conclusions: Overall, HCE and metformin cooperatively exert their therapeutic effects via modulation of gut microbiota, especially reduction of Gram-negative bacteria, resulting in alleviation of endotoxemia.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Department of Oriental Rehabilitation Medicine, Dongguk University, Goyang, South Korea
| | | | - Na Rae Shin
- Department of Oriental Rehabilitation Medicine, Dongguk University, Goyang, South Korea
| | - Young-Won Chin
- College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Seoul, South Korea
| | - Hojun Kim
- Department of Oriental Rehabilitation Medicine, Dongguk University, Goyang, South Korea
- *Correspondence: Hojun Kim
| |
Collapse
|
36
|
Houttuynia cordata Facilitates Metformin on Ameliorating Insulin Resistance Associated with Gut Microbiota Alteration in OLETF Rats. Genes (Basel) 2017; 8:genes8100239. [PMID: 28937612 PMCID: PMC5664089 DOI: 10.3390/genes8100239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Metformin and Houttuynia cordata are representative anti-diabetic therapeutics in western and oriental medicine, respectively. The current study examined the synergistic anti-diabetic effect of Houttuynia cordata extraction (HCE) and metformin combination in Otsuka Long–Evans Tokushima Fatty (OLETF) rats. Fecal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE) and real-time PCR. Combining HCE + metformin resulted in significantly ameliorated glucose tolerance (oral glucose tolerance test (OGTT))—the same as metformin alone. Particularly, results of the insulin tolerance test (ITT) showed that combining HCE + metformin dramatically improved insulin sensitivity as compared to metformin treatment alone. Both fecal and serum endotoxin, as well as cytokines (tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6)) were significantly ameliorated by HCE + metformin compared to metformin alone. Meanwhile, the activation of AMPK (adenosine monophosphate-activated protein kinase) by metformin was distinctly enhanced by HCE. Both of HCE and metformin evidently changed the gut microbiota composition, causing the alteration of bacterial metabolite, like short-chain fatty acids. H. cordata, together with metformin, exerts intensive sensibilization to insulin; the corresponding mechanisms are associated with alleviation of endotoxemia via regulation of gut microbiota, particularly Roseburia, Akkermansia, and Gram-negative bacterium.
Collapse
|
37
|
Athanasiou D, Aguila M, Opefi CA, South K, Bellingham J, Bevilacqua D, Munro PM, Kanuga N, Mackenzie FE, Dubis AM, Georgiadis A, Graca AB, Pearson RA, Ali RR, Sakami S, Palczewski K, Sherman MY, Reeves PJ, Cheetham ME. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum Mol Genet 2017; 26:305-319. [PMID: 28065882 PMCID: PMC5351934 DOI: 10.1093/hmg/ddw387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/29/2023] Open
Abstract
Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic 'gain of function', such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Chikwado A. Opefi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | - Kieron South
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | | | | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Naheed Kanuga
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Adam M. Dubis
- Moorfields Eye Hospital NHS Trust, 162 City Road, London, UK
| | | | - Anna B. Graca
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Robin R. Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Sanae Sakami
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts, MA, USA
| | - Philip J. Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | |
Collapse
|
38
|
Christensen M, Jensen JB, Jakobsen S, Jessen N, Frøkiær J, Kemp BE, Marciszyn AL, Li H, Pastor-Soler NM, Hallows KR, Nørregaard R. Renoprotective Effects of Metformin are Independent of Organic Cation Transporters 1 &2 and AMP-activated Protein Kinase in the Kidney. Sci Rep 2016; 6:35952. [PMID: 27782167 PMCID: PMC5080611 DOI: 10.1038/srep35952] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/07/2016] [Indexed: 01/11/2023] Open
Abstract
The type-2 diabetes drug metformin has proven to have protective effects in several renal disease models. Here, we investigated the protective effects in a 3-day unilateral ureteral obstruction (3dUUO) mouse model. Compared with controls, ureteral obstructed animals displayed increased tubular damage and inflammation. Metformin treatment attenuated inflammation, increased the anti-oxidative response and decreased tubular damage. Hepatic metformin uptake depends on the expression of organic cation transporters (OCTs). To test whether the effects of metformin in the kidney are dependent on these transporters, we tested metformin treatment in OCT1/2-/- mice. Even though exposure of metformin in the kidney was severely decreased in OCT1/2-/- mice when evaluated with [11C]-Metformin and PET/MRI, we found that the protective effects of metformin were OCT1/2 independent when tested in this model. AMP-activated protein kinase (AMPK) has been suggested as a key mediator of the effects of metformin. When using an AMPK-β1 KO mouse model, the protective effects of metformin still occurred in the 3dUUO model. In conclusion, these results show that metformin has a beneficial effect in early stages of renal disease induced by 3dUUO. Furthermore, these effects appear to be independent of the expression of OCT1/2 and AMPK-β1, the most abundant AMPK-β isoform in the kidney.
Collapse
Affiliation(s)
| | - Jonas B. Jensen
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| | - Niels Jessen
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| | - Bruce E. Kemp
- St. Vincent’s Institute of Medical Research, University of Melbourne, Mary MacKillop Institute for Health Research Australian Catholic University, Victoria Parade, Fitzroy VIC 3065, Australia
| | - Allison L. Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hui Li
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Núria M. Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Kenneth R. Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
39
|
Cho JG, Song JJ, Choi J, Im GJ, Jung HH, Chae SW. The suppressive effects of metformin on inflammatory response of otitis media model in human middle ear epithelial cells. Int J Pediatr Otorhinolaryngol 2016; 89:28-32. [PMID: 27619024 DOI: 10.1016/j.ijporl.2016.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Metformin is a well-known anti-diabetic agent, but its mechanism is unclear. Recently, many reports have described the anti-inflammatory effects of metformin on various cell types, including human vascular smooth muscle cells and endothelial cells. This study was designed to investigate the anti-inflammatory effect of metformin on lipopolysaccharide (LPS) induced inflammation in human middle ear epithelial cell lines (HMEECs). METHODS The effect of pretreatment by metformin (0, 1, 2, 4 mM) was evaluated by the inflammatory response in the HMEECs exposed to LPS (10 ng/ml). For verifying the suppression effect of metformin on the inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) was evaluated by real-time polymerase chain reaction, and COX-2 protein was assessed by western blotting. Intracellular reactive oxygen species (ROS) was measured using 2', 7'-dichlorofluorescein diacetate (DCFHDA) fluorocytometer. RESULTS Stimulation by LPS 10 ng/ml concentration showed 12.4 folds increase the expression of TNF-α mRNA compared to control on HMEECs. Pretreatment of metformin dose dependently suppressed the expression of TNF-α mRNA induced by LPS (2 mM, p = 0.03). The amount of COX-2 protein production was significantly decreased by metformin pretreatment (4 mM, p = 0.01). The production of ROS was decreased significantly by pretreatment of metformin (p = 0.03). CONCLUSIONS These findings suggest that the inflammatory response and oxidative stress induced by LPS could be suppressed by metformin in HMEECs. Therefore, metformin may have a therapeutic potential for the treatment of the otitis media.
Collapse
Affiliation(s)
- Jae Gu Cho
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Jae Jun Song
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - June Choi
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Gi Jung Im
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Hak Hyun Jung
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Sung Won Chae
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
40
|
Quan H, Hur YH, Xin C, Kim JM, Choi JI, Kim MY, Bae HB. Stearoyl lysophosphatidylcholine enhances the phagocytic ability of macrophages through the AMP-activated protein kinase/p38 mitogen activated protein kinase pathway. Int Immunopharmacol 2016; 39:328-334. [DOI: 10.1016/j.intimp.2016.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 11/26/2022]
|
41
|
Pandey A, Kumar VL. Protective Effect of Metformin against Acute Inflammation and Oxidative Stress in Rat. Drug Dev Res 2016; 77:278-84. [DOI: 10.1002/ddr.21322] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Abhimanu Pandey
- Department of Pharmacology; All India Institute of Medical Sciences; Ansari Nagar New Delhi 110 029 India
| | - Vijay L. Kumar
- Department of Pharmacology; All India Institute of Medical Sciences; Ansari Nagar New Delhi 110 029 India
| |
Collapse
|
42
|
Pepple KL, Rotkis L, Van Grol J, Wilson L, Sandt A, Lam DL, Carlson E, Van Gelder RN. Primed Mycobacterial Uveitis (PMU): Histologic and Cytokine Characterization of a Model of Uveitis in Rats. Invest Ophthalmol Vis Sci 2016; 56:8438-48. [PMID: 26747775 DOI: 10.1167/iovs.15-17523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study was to compare the histologic features and cytokine profiles of experimental autoimmune uveitis (EAU) and a primed mycobacterial uveitis (PMU) model in rats. METHODS In Lewis rats, EAU was induced by immunization with interphotoreceptor binding protein peptide, and PMU was induced by immunization with a killed mycobacterial extract followed by intravitreal injection of the same extract. Clinical course, histology, and the cytokine profiles of the aqueous and vitreous were compared using multiplex bead fluorescence immunoassays. RESULTS Primed mycobacterial uveitis generates inflammation 2 days after intravitreal injection and resolves spontaneously 14 days later. CD68+ lymphocytes are the predominant infiltrating cells and are found in the anterior chamber, surrounding the ciliary body and in the vitreous. In contrast to EAU, no choroidal infiltration or retinal destruction is noted. At the day of peak inflammation, C-X-C motif ligand 10 (CXCL10), IL-1β, IL-18, and leptin were induced in the aqueous of both models. Interleukin-6 was induced 2-fold in the aqueous of PMU but not EAU. Cytokines elevated in the aqueous of EAU exclusively include regulated on activation, normal T cell expressed and secreted (RANTES), lipopolysaccharide-induced CXC chemokine (LIX), growth-related oncogene/keratinocyte chemokine (GRO/KC), VEGF, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), and IL-17A. In the vitreous, CXCL10, GRO/KC, RANTES, and MIP-1α were elevated in both models. Interleukin-17A and IL-18 were elevated exclusively in EAU. CONCLUSIONS Primed mycobacterial uveitis generates an acute anterior and intermediate uveitis without retinal involvement. Primed mycobacterial uveitis has a distinct proinflammatory cytokine profile compared with EAU, suggesting PMU is a good complementary model for study of immune-mediated uveitis. CXCL10, a proinflammatory cytokine, was increased in the aqueous and vitreous of both models and may be a viable therapeutic target.
Collapse
Affiliation(s)
- Kathryn L Pepple
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Lauren Rotkis
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | | | - Leslie Wilson
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Angela Sandt
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Deborah L Lam
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Eric Carlson
- Alcon Research Laboratories, Fort Worth, Texas, United States
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States 3Department of Biological Structure, University of Washington, Seattle, Washington, United States 4Department of Pathology, University of Washington, Seattle, Washin
| |
Collapse
|
43
|
Wang H, Li T, Chen S, Gu Y, Ye S. Neutrophil Extracellular Trap Mitochondrial DNA and Its Autoantibody in Systemic Lupus Erythematosus and a Proof-of-Concept Trial of Metformin. Arthritis Rheumatol 2016; 67:3190-200. [PMID: 26245802 DOI: 10.1002/art.39296] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 07/16/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Neutrophil extracellular traps (NETs) have been shown to play an important role in systemic lupus erythematosus (SLE) pathogenesis by activating plasmacytoid dendritic cells (PDCs) and the type I interferon (IFN) pathway. NETs composed of self-DNA are considered to be of nuclear origin and are a major source of anti-DNA autoantibody generation. This study was undertaken to evaluate whether mitochondrial DNA (mtDNA) resides in NETs, to evaluate whether mtDNA and anti-mtDNA antibodies cause dysregulation of the PDC-IFNα pathway, and to investigate the clinical implication in SLE. METHODS Patients with SLE (n = 102), patients with rheumatoid arthritis (n = 30), and healthy donors (n = 40) were enrolled in in vitro studies. NETs were generated from phorbol 12-myristate 13-acetate (PMA)-stimulated peripheral neutrophils. Immunofluorescence staining was used to detect NET formation ex vivo and in lupus nephritis renal biopsy samples. The mtDNA levels and type I IFN-inducible gene scores were measured by quantitative polymerase chain reaction. Anti-mtDNA antibodies, anti-double-stranded DNA (anti-dsDNA) antibodies, and IFNα were detected by enzyme-linked immunosorbent assay. Purified PDCs were stimulated by isolated NETs, mtDNA, or dsDNA, combined with anti-mtDNA or dsDNA IgG, or other culture conditions. Additional patients with SLE (n = 113) were enrolled in a proof-of-concept trial. We evaluated the efficacy and safety of metformin on a background of corticosteroids and conventional immunosuppressive agents in patients with mild or moderate lupus. The primary end point was the efficacy of metformin for reducing disease flare. RESULTS We detected mtDNA in NETs, and anti-mtDNA antibody levels were elevated in SLE patients compared with controls and significantly correlated with IFN scores and the disease activity index. The presence of anti-mtDNA antibodies was disproportionately associated with lupus nephritis, and correlated better than anti-dsDNA antibody levels with the lupus nephritis activity index. Mitochondrial DNA was deposited in NETs in lupus nephritis renal biopsy specimens. In addition, mtDNA/anti-mtDNA were greater inducers of PDC IFNα production via Toll-like receptor engagement than dsDNA/anti-dsDNA. We assessed the effect of metformin on down-regulating the NET mtDNA-PDC-IFNα pathway. Metformin decreased PMA-induced NET formation and CpG-stimulated PDC IFNα generation. A proof-of-concept trial of metformin add-on treatment of mild or moderate SLE resulted in decreases in clinical flares, prednisone exposure, and body weight. CONCLUSION Our findings establish a link between mtDNA in NETs, anti-mtDNA antibodies, and PDC IFNα pathogenesis in SLE, and highlight that specific strategies to down-regulate this pathway, such as treatment with metformin, may be new approaches to treat SLE.
Collapse
Affiliation(s)
- Haiting Wang
- Renji Hospital South Campus and Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ting Li
- Renji Hospital South Campus and Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Renji Hospital South Campus and Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yueying Gu
- Renji Hospital South Campus and Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shuang Ye
- Renji Hospital South Campus and Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Kelleni MT, Amin EF, Abdelrahman AM. Effect of Metformin and Sitagliptin on Doxorubicin-Induced Cardiotoxicity in Rats: Impact of Oxidative Stress, Inflammation, and Apoptosis. J Toxicol 2015; 2015:424813. [PMID: 26880912 PMCID: PMC4736207 DOI: 10.1155/2015/424813] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
Doxorubicin (DOX) is a widely used antineoplastic drug whose efficacy is limited by its cardiotoxicity. The aim of this study was to investigate the possible protective role of the antidiabetic drugs metformin (250 mg/kg dissolved in DW p.o. for seven days) and sitagliptin (10 mg/kg dissolved in DW p.o. for seven days) in a model of DOX-induced (single dose 15 mg/kg i.p. at the fifth day) cardiotoxicity in rats. Results of our study revealed that pretreatment with metformin or sitagliptin produced significant (P < 0.05) cardiac protection manifested by a significant decrease in serum levels of LDH and CK-MB enzymes and cardiac MDA and total nitrites and nitrates levels, a significant increase in cardiac SOD activity, and remarkable improvement in the histopathological features as well as a significant reduction in the immunohistochemical expression of COX-2, iNOS, and caspase-3 enzymes as compared to DOX group. These results may suggest using metformin and/or sitagliptin as preferable drugs for diabetic patients suffering from cancer and receiving DOX in their chemotherapy regimen.
Collapse
Affiliation(s)
- Mina Thabet Kelleni
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | | |
Collapse
|
45
|
Salazar-Méndez R, Yilmaz T, Cordero-Coma M. Moving forward in uveitis therapy: preclinical to phase II clinical trial drug development. Expert Opin Investig Drugs 2015; 25:195-214. [DOI: 10.1517/13543784.2016.1128893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Mucke HA. Drug Repurposing Patent Applications April–June 2015. Assay Drug Dev Technol 2015; 13:654-60. [DOI: 10.1089/adt.2015.29030.pq2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Elbay AE, Topalkara A, Elbay A, Erdoğan H, Vural A, Bahadır Çetin A. Evaluation of Serum Homocysteine and Leptin Levels in Patients with Uveitis. Turk J Ophthalmol 2015; 45:146-151. [PMID: 27800222 PMCID: PMC5082272 DOI: 10.4274/tjo.26539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/02/2014] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES To evaluate the serum homocysteine (Hcy) and leptin levels in patients with uveitis. MATERIALS AND METHODS The 70 cases included in the study comprised 3 groups: patients with Behçet's uveitis (BU), patients with non-Behçet's uveitis (NBU) and healthy controls. Body mass index was calculated for each subject. Serum Hcy and leptin levels were measured. Furthermore, acute-phase reactants including erythrocyte sedimentation rate (ESR), C-reactive protein and neutrophil count were measured. RESULTS Serum Hcy levels were 15.04±4.59 µmol/L in the BU group, 15.4±6.87 µmol/L in the NBU group and 13.64±4.72 µmol/L in the control group (p>0.05). The serum leptin levels of male patients in the BU group, NBU group and control group were 4.76±3.54 ng/ml, 6.33±3.74 ng/ml and 5.47±6.33 ng/ml, respectively (p>0.05). When we compared serum leptin levels in female patients and controls, the mean serum leptin concentrations were significantly higher in female BU and NBU patients (24.83±17.62 ng/ml and 28.46±13.90 ng/ml, respectively) than in healthy control volunteers (9.62±6.36 ng/ml, p<0.05). In addition, the ESR value differences between groups were statistically significant (p<0.05). CONCLUSION A larger case series is necessary to investigate serum Hcy and leptin concentrations in uveitis patients.
Collapse
Affiliation(s)
- Arif Emre Elbay
- Gazi State Hospital, Clinic of Ophthalmology, Samsun, Turkey
| | - Ayşen Topalkara
- Cumhuriyet University Faculty of Medicine, Department of Ophthalmology, Sivas, Turkey
| | - Ahmet Elbay
- Pendik State Hospital, Clinic of Ophthalmology, İstanbul, Turkey
| | - Haydar Erdoğan
- Cumhuriyet University Faculty of Medicine, Department of Ophthalmology, Sivas, Turkey
| | - Ayşe Vural
- Cumhuriyet University Faculty of Medicine, Department of Ophthalmology, Sivas, Turkey
| | | |
Collapse
|
48
|
Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages. Biochem Biophys Res Commun 2015; 461:435-40. [PMID: 25899745 DOI: 10.1016/j.bbrc.2015.04.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 12/20/2022]
Abstract
The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5-10 mM). Low doses of metformin (1-3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5'-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis.
Collapse
|
49
|
Cheng G, Zielonka J, McAllister D, Tsai S, Dwinell MB, Kalyanaraman B. Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation. Br J Cancer 2014; 111:85-93. [PMID: 24867695 PMCID: PMC4090735 DOI: 10.1038/bjc.2014.272] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/21/2014] [Accepted: 04/24/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Targeting both mitochondrial bioenergetics and glycolysis pathway is an effective way to inhibit proliferation of tumour cells, including those that are resistant to conventional chemotherapeutics. METHODS In this study, using the Seahorse 96-well Extracellular Flux Analyzer, we mapped the two intrinsic cellular bioenergetic parameters, oxygen consumption rate and proton production rate in six different pancreatic cancer cell lines and determined their differential sensitivity to mitochondrial and glycolytic inhibitors. RESULTS There exists a very close relationship among intracellular bioenergetic parameters, depletion of ATP and anti-proliferative effects (inhibition of colony-forming ability) in pancreatic cancer cells derived from different genetic backgrounds treated with the glycolytic inhibitor, 2-deoxyglucose (2-DG). The most glycolytic pancreatic cancer cell line was exquisitely sensitive to 2-DG, whereas the least glycolytic pancreatic cancer cell was resistant to 2-DG. However, when combined with metformin, inhibitor of mitochondrial respiration and activator of AMP-activated protein kinase, 2-DG synergistically enhanced ATP depletion and inhibited cell proliferation even in poorly glycolytic, 2-DG-resistant pancreatic cancer cell line. Furthermore, treatment with conventional chemotherapeutic drugs (e.g., gemcitabine and doxorubicin) or COX-2 inhibitor, celecoxib, sensitised the cells to 2-DG treatment. CONCLUSIONS Detailed profiling of cellular bioenergetics can provide new insight into the design of therapeutic strategies for inhibiting pancreatic cancer cell metabolism and proliferation.
Collapse
Affiliation(s)
- G Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - J Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - D McAllister
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - S Tsai
- Department of Surgery/Surgical Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - M B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - B Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
50
|
Abstract
Obesity, metabolic syndrome, and type 2 diabetes (T2D) are related disorders with widespread deleterious effects throughout the body. One important target of damage is the brain. Persons with metabolic disorders are at significantly increased risk for cognitive decline and the development of vascular dementia and Alzheimer's disease. Our review of available evidence from epidemiologic, clinical, and basic research suggests that neural dysfunction from T2D-related disease results from several underlying mechanisms, including metabolic, inflammatory, vascular, and oxidative changes. The relationships between T2D and neural dysfunction are regulated by several modifiers. We emphasize 2 such modifiers, the genetic risk factor apolipoprotein E and an age-related endocrine change, low testosterone. Both factors are independent risk factors for Alzheimer's disease that may also cooperatively regulate pathologic interactions between T2D and dementia. Continued elucidation of the links between metabolic disorders and neural dysfunction promises to foster the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Anusha Jayaraman
- 3715 McClintock Avenue, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191 USA, , (213) 740-8244
| | - Christian J. Pike
- 3715 McClintock Avenue, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191 USA, , (213) 740-4205
| |
Collapse
|