1
|
Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol 2024:S0962-8924(24)00095-3. [PMID: 38866684 DOI: 10.1016/j.tcb.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
2
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Janssens GE, Molenaars M, Herzog K, Grevendonk L, Remie CME, Vervaart MAT, Elfrink HL, Wever EJM, Schomakers BV, Denis SW, Waterham HR, Pras-Raves ML, van Weeghel M, van Kampen AHC, Tammaro A, Butter LM, van der Rijt S, Florquin S, Jongejan A, Moerland PD, Hoeks J, Schrauwen P, Vaz FM, Houtkooper RH. A conserved complex lipid signature marks human muscle aging and responds to short-term exercise. NATURE AGING 2024; 4:681-693. [PMID: 38609524 DOI: 10.1038/s43587-024-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2024] [Indexed: 04/14/2024]
Abstract
Studies in preclinical models suggest that complex lipids, such as phospholipids, play a role in the regulation of longevity. However, identification of universally conserved complex lipid changes that occur during aging, and how these respond to interventions, is lacking. Here, to comprehensively map how complex lipids change during aging, we profiled ten tissues in young versus aged mice using a lipidomics platform. Strikingly, from >1,200 unique lipids, we found a tissue-wide accumulation of bis(monoacylglycero)phosphate (BMP) during mouse aging. To investigate translational value, we assessed muscle tissue of young and older people, and found a similar marked BMP accumulation in the human aging lipidome. Furthermore, we found that a healthy-aging intervention consisting of moderate-to-vigorous exercise was able to lower BMP levels in postmenopausal female research participants. Our work implicates complex lipid biology as central to aging, identifying a conserved aging lipid signature of BMP accumulation that is modifiable upon a short-term healthy-aging intervention.
Collapse
Affiliation(s)
- Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands.
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Katharina Herzog
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Lotte Grevendonk
- Department of Nutrition and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
- TI Food and Nutrition, Wageningen, the Netherlands
| | - Carlijn M E Remie
- Department of Nutrition and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Martin A T Vervaart
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyung L Elfrink
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Eric J M Wever
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Simone W Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Mia L Pras-Raves
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Methodology, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Alessandra Tammaro
- Pathology Department, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Loes M Butter
- Pathology Department, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Sanne van der Rijt
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
- Pathology Department, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
| | - Sandrine Florquin
- Pathology Department, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Methodology, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Perry D Moerland
- Epidemiology and Data Science, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Methodology, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
- TI Food and Nutrition, Wageningen, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
- TI Food and Nutrition, Wageningen, the Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands.
- Core Facility Metabolomics, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands.
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Gervasoni J, Primiano A, Cicchinelli M, Santucci L, Servidei S, Urbani A, Primiano G, Iavarone F. Mitochondrial Biomarkers in the Omics Era: A Clinical-Pathophysiological Perspective. Int J Mol Sci 2024; 25:4855. [PMID: 38732076 PMCID: PMC11084339 DOI: 10.3390/ijms25094855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Mitochondrial diseases (MDs) affect 4300 individuals, with different ages of presentation and manifestation in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. In recent years, several published research articles regarding the metabolic and protein profiles of these neurogenetic disorders have helped shed light on the pathogenetic mechanisms. By investigating different pathways in MDs, often with the aim of identifying disease biomarkers, it is possible to identify molecular processes underlying the disease. In this perspective, omics technologies such as proteomics and metabolomics considered in this review, can support unresolved mitochondrial questions, helping to improve outcomes for patients.
Collapse
Affiliation(s)
- Jacopo Gervasoni
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
| | - Aniello Primiano
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
| | - Michela Cicchinelli
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Lavinia Santucci
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
| | - Serenella Servidei
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Urbani
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Guido Primiano
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Iavarone
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| |
Collapse
|
5
|
Gélinas R, Lévesque C, Thompson Legault J, Rivard ME, Villeneuve L, Laprise C, Rioux JD. Human induced pluripotent stem cells (hiPSCs) derived cells reflect tissue specificity found in patients with Leigh syndrome French Canadian variant (LSFC). Front Genet 2024; 15:1375467. [PMID: 38706791 PMCID: PMC11066297 DOI: 10.3389/fgene.2024.1375467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Leigh syndrome French Canadian type (LSFC) is a recessive neurodegenerative disease characterized by tissue-specific deficiency in cytochrome c oxidase (COX), the fourth complex in the oxidative phosphorylation system. LSFC is caused by mutations in the leucine rich pentatricopeptide repeat containing gene (LRPPRC). Most LSFC patients in Quebec are homozygous for an A354V substitution that causes a decrease in the expression of the LRPPRC protein. While LRPPRC is ubiquitously expressed and is involved in multiple cellular functions, tissue-specific expression of LRPPRC and COX activity is correlated with clinical features. In this proof-of-principle study, we developed human induced pluripotent stem cell (hiPSC)-based models from fibroblasts taken from a patient with LSFC, homozygous for the LRPPRC*354V allele, and from a control, homozygous for the LRPPRC*A354 allele. Specifically, for both of these fibroblast lines we generated hiPSC, hiPSC-derived cardiomyocytes (hiPSC-CMs) and hepatocyte-like cell (hiPSC-HLCs) lines, as well as the three germ layers. We observed that LRPPRC protein expression is reduced in all cell lines/layers derived from LSFC patient compared to control cells, with a reduction ranging from ∼70% in hiPSC-CMs to undetectable levels in hiPSC-HLC, reflecting tissue heterogeneity observed in patient tissues. We next performed exploratory analyses of these cell lines and observed that COX protein expression was reduced in all cell lines derived from LSFC patient compared to control cells. We also observed that mutant LRPPRC was associated with altered expression of key markers of endoplasmic reticulum stress response in hiPSC-HLCs but not in other cell types that were tested. While this demonstrates feasibility of the approach to experimentally study genotype-based differences that have tissue-specific impacts, this study will need to be extended to a larger number of patients and controls to not only validate the current observations but also to delve more deeply in the pathogenic mechanisms of LSFC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John D. Rioux
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Burelle C, Clapatiuc V, Deschênes S, Cuillerier A, De Loof M, Higgins MÈ, Boël H, Daneault C, Chouinard B, Clavet MÉ, Tessier N, Croteau I, Chabot G, Martel C, Sirois MG, Lesage S, Burelle Y, Ruiz M. A genetic mouse model of lean-NAFLD unveils sexual dimorphism in the liver-heart axis. Commun Biol 2024; 7:356. [PMID: 38519536 PMCID: PMC10959946 DOI: 10.1038/s42003-024-06035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Lean patients with NAFLD may develop cardiac complications independently of pre-existent metabolic disruptions and comorbidities. To address the underlying mechanisms independent of the development of obesity, we used a murine model of hepatic mitochondrial deficiency. The liver-heart axis was studied as these mice develop microvesicular steatosis without obesity. Our results unveil a sex-dependent phenotypic remodeling beyond liver damage. Males, more than females, show fasting hypoglycemia and increased insulin sensitivity. They exhibit diastolic dysfunction, remodeling of the circulating lipoproteins and cardiac lipidome. Conversely, females do not manifest cardiac dysfunction but exhibit cardiometabolic impairments supported by impaired mitochondrial integrity and β-oxidation, remodeling of circulating lipoproteins and intracardiac accumulation of deleterious triglycerides. This study underscores metabolic defects in the liver resulting in significant sex-dependent cardiac abnormalities independent of obesity. This experimental model may prove useful to better understand the sex-related variability, notably in the heart, involved in the progression of lean-NAFLD.
Collapse
Affiliation(s)
- Charlotte Burelle
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Valentin Clapatiuc
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Sonia Deschênes
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Alexanne Cuillerier
- Faculty of Health Sciences and Medicine, University of Ottawa, Ottawa, OC, Canada
| | - Marine De Loof
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Hugues Boël
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | | | | | | | - Nolwenn Tessier
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Geneviève Chabot
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Catherine Martel
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Martin G Sirois
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Department of Physiology and Pharmacology, Université de Montréal, Montreal, QC, Canada
| | - Sylvie Lesage
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Yan Burelle
- Faculty of Health Sciences and Medicine, University of Ottawa, Ottawa, OC, Canada
| | - Matthieu Ruiz
- Research Center, Montreal Heart Institute, Montreal, QC, Canada.
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
7
|
Huang F, Cai F, Dahabieh MS, Gunawardena K, Talebi A, Dehairs J, El-Turk F, Park JY, Li M, Goncalves C, Gagnon N, Su J, LaPierre JH, Gaub P, Joyal JS, Mitchell JJ, Swinnen JV, Miller WH, del Rincón SV. Peroxisome disruption alters lipid metabolism and potentiates antitumor response with MAPK-targeted therapy in melanoma. J Clin Invest 2023; 133:e166644. [PMID: 37616051 PMCID: PMC10575734 DOI: 10.1172/jci166644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Melanomas reprogram their metabolism to rapidly adapt to therapy-induced stress conditions, allowing them to persist and ultimately develop resistance. We report that a subpopulation of melanoma cells tolerate MAPK pathway inhibitors (MAPKis) through a concerted metabolic reprogramming mediated by peroxisomes and UDP-glucose ceramide glycosyltransferase (UGCG). Compromising peroxisome biogenesis, by repressing PEX3 expression, potentiated the proapoptotic effects of MAPKis via an induction of ceramides, an effect limited by UGCG-mediated ceramide metabolism. Cotargeting PEX3 and UGCG selectively eliminated a subset of metabolically active, drug-tolerant CD36+ melanoma persister cells, thereby sensitizing melanoma to MAPKis and delaying resistance. Increased levels of peroxisomal genes and UGCG were found in patient-derived MAPKi-relapsed melanomas, and simultaneously inhibiting PEX3 and UGCG restored MAPKi sensitivity in multiple models of therapy resistance. Finally, combination therapy consisting of a newly identified inhibitor of the PEX3-PEX19 interaction, a UGCG inhibitor, and MAPKis demonstrated potent antitumor activity in preclinical melanoma models, thus representing a promising approach for melanoma treatment.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute
- Department of Experimental Medicine, and
| | - Feiyang Cai
- Lady Davis Institute
- Department of Experimental Medicine, and
| | | | | | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Farah El-Turk
- McGill University Health Centre, Montreal, Quebec, Canada
- Centre Hospitalier Universitaire Sainte Justine, Montreal, Quebec, Canada
| | - Jae Yeon Park
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Mengqi Li
- Lady Davis Institute
- Department of Experimental Medicine, and
| | | | | | | | | | - Perrine Gaub
- Centre de Recherche, CHU St. Justine, Montréal, Quebec, Canada
| | | | | | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Wilson H. Miller
- Lady Davis Institute
- Department of Experimental Medicine, and
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute
- Department of Experimental Medicine, and
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Geoerger B, Schiff M, Penard-Lacronique V, Darin N, Saad SM, Duchon C, Lamazière A, Desmons A, Pontoizeau C, Berlanga P, Ducassou S, Yen K, Su M, Schenkein D, Ottolenghi C, De Botton S. Enasidenib treatment in two individuals with D-2-hydroxyglutaric aciduria carrying a germline IDH2 mutation. Nat Med 2023:10.1038/s41591-023-02382-9. [PMID: 37248298 DOI: 10.1038/s41591-023-02382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
D-2-hydroxyglutaric aciduria type II (D2HGA2) is a severe inborn disorder of metabolism caused by heterozygous R140 mutations in the IDH2 (isocitrate dehydrogenase 2) gene. Here we report the results of treatment of two children with D2HGA2, one of whom exhibited severe dilated cardiomyopathy, with the selective mutant IDH2 enzyme inhibitor enasidenib. In both children, enasidenib treatment led to normalization of D-2-hydroxyglutarate (D-2-HG) concentrations in body fluids. At doses of 50 mg and 60 mg per day, no side effects were observed, except for asymptomatic hyperbilirubinemia. For the child with cardiomyopathy, chronic D-2-HG inhibition was associated with improved cardiac function, and for both children, therapy was associated with improved daily functioning, global motility and social interactions. Treatment of the child with cardiomyopathy led to therapy-coordinated changes in serum phospholipid levels, which were partly recapitulated in cultured fibroblasts, associated with complex effects on lipid and redox-related gene pathways. These findings indicate that targeted inhibition of a mutant enzyme can partly reverse the pathology of a chronic neurometabolic genetic disorder.
Collapse
Affiliation(s)
- Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
| | - Virginie Penard-Lacronique
- INSERM 1170, Université Paris-Saclay, Equipe Labellisée Ligue Nationale Contre le Cancer, member of OPALE Carnot Institute The Organization for Partnerships in Leukemia, Villejuif, France
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg and Queen Silvia Children's Hospital at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Selim-Maria Saad
- Department of Cardiology, Clinique du Diaconat, Mulhouse, France
| | - Clarisse Duchon
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, Paris, France
| | - Antonin Lamazière
- Clinical Metabolomic Department, Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, Paris, France
| | - Aurore Desmons
- Clinical Metabolomic Department, Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, Paris, France
| | - Clément Pontoizeau
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Metabolomics Unit of the Department of Biology, Physiology and Genetics, Necker University Hospital, APHP and University of Paris Cité, Paris, France
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Stéphane Ducassou
- Department of Pediatric Hemato-Oncology, CHU Bordeaux, Bordeaux, France
| | - Katharine Yen
- Agios Pharmaceuticals, Cambridge, MA, USA
- Auron Therapeutics, Cambridge, MA, USA
| | - Michael Su
- Agios Pharmaceuticals, Cambridge, MA, USA
- Auron Therapeutics, Cambridge, MA, USA
| | - David Schenkein
- Agios Pharmaceuticals, Cambridge, MA, USA
- GV, Cambridge, MA, USA
| | - Chris Ottolenghi
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Metabolomics Unit of the Department of Biology, Physiology and Genetics, Necker University Hospital, APHP and University of Paris Cité, Paris, France
| | - Stéphane De Botton
- INSERM 1170, Université Paris-Saclay, Equipe Labellisée Ligue Nationale Contre le Cancer, member of OPALE Carnot Institute The Organization for Partnerships in Leukemia, Villejuif, France
- Department of Hematology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
9
|
Blood biomarkers of mitochondrial disease-One for all or all for one? HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:251-257. [PMID: 36813317 DOI: 10.1016/b978-0-12-821751-1.00006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The mitochondrial disease group consists of different disorders with unprecedented variability of clinical manifestations and tissue-specific symptoms. Their tissue-specific stress responses vary depending on the patients' age and type of dysfunction. These responses include secretion of metabolically active signal molecules to systemic circulation. Such signals-metabolites or metabokines-can be also utilized as biomarkers. During the past 10 years, metabolite and metabokine biomarkers have been described for mitochondrial disease diagnosis and follow-up, to complement the conventional blood biomarkers lactate, pyruvate and alanine. These new tools include metabokines FGF21 and GDF15; cofactors (NAD-forms); sets of metabolites (multibiomarkers) and the full metabolome. FGF21 and GDF15 are messengers of mitochondrial integrated stress response that together outperform the conventional biomarkers in specificity and sensitivity for muscle-manifesting mitochondrial diseases. Metabolite or metabolomic imbalance (e.g., NAD+ deficiency) is a secondary consequence to the primary cause in some diseases, but relevant as a biomarker and a potential indicator of therapy targets. For therapy trials, the optimal biomarker set needs to be tailored to match the disease of interest. The new biomarkers have increased the value of blood samples in mitochondrial disease diagnosis and follow-up, enabling prioritization of patients to different diagnostic paths and having crucial roles in follow-up of therapy effect.
Collapse
|
10
|
Zandl-Lang M, Plecko B, Köfeler H. Lipidomics-Paving the Road towards Better Insight and Precision Medicine in Rare Metabolic Diseases. Int J Mol Sci 2023; 24:ijms24021709. [PMID: 36675224 PMCID: PMC9866746 DOI: 10.3390/ijms24021709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Even though the application of Next-Generation Sequencing (NGS) has significantly facilitated the identification of disease-associated mutations, the diagnostic rate of rare diseases is still below 50%. This causes a diagnostic odyssey and prevents specific treatment, as well as genetic counseling for further family planning. Increasing the diagnostic rate and reducing the time to diagnosis in children with unclear disease are crucial for a better patient outcome and improvement of quality of life. In many cases, NGS reveals variants of unknown significance (VUS) that need further investigations. The delineation of novel (lipid) biomarkers is not only crucial to prove the pathogenicity of VUS, but provides surrogate parameters for the monitoring of disease progression and therapeutic interventions. Lipids are essential organic compounds in living organisms, serving as building blocks for cellular membranes, energy storage and signaling molecules. Among other disorders, an imbalance in lipid homeostasis can lead to chronic inflammation, vascular dysfunction and neurodegenerative diseases. Therefore, analyzing lipids in biological samples provides great insight into the underlying functional role of lipids in healthy and disease statuses. The method of choice for lipid analysis and/or huge assemblies of lipids (=lipidome) is mass spectrometry due to its high sensitivity and specificity. Due to the inherent chemical complexity of the lipidome and the consequent challenges associated with analyzing it, progress in the field of lipidomics has lagged behind other omics disciplines. However, compared to the previous decade, the output of publications on lipidomics has increased more than 17-fold within the last decade and has, therefore, become one of the fastest-growing research fields. Combining multiple omics approaches will provide a unique and efficient tool for determining pathogenicity of VUS at the functional level, and thereby identifying rare, as well as novel, genetic disorders by molecular techniques and biochemical analyses.
Collapse
Affiliation(s)
- Martina Zandl-Lang
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Barbara Plecko
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Harald Köfeler
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
11
|
Sabharwal A, Wishman MD, Cervera RL, Serres MR, Anderson JL, Holmberg SR, Kar B, Treichel AJ, Ichino N, Liu W, Yang J, Ding Y, Deng Y, Lacey JM, Laxen WJ, Loken PR, Oglesbee D, Farber SA, Clark KJ, Xu X, Ekker SC. Genetic therapy in a mitochondrial disease model suggests a critical role for liver dysfunction in mortality. eLife 2022; 11:e65488. [PMID: 36408801 PMCID: PMC9859037 DOI: 10.7554/elife.65488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The clinical and largely unpredictable heterogeneity of phenotypes in patients with mitochondrial disorders demonstrates the ongoing challenges in the understanding of this semi-autonomous organelle in biology and disease. Previously, we used the gene-breaking transposon to create 1200 transgenic zebrafish strains tagging protein-coding genes (Ichino et al., 2020), including the lrpprc locus. Here, we present and characterize a new genetic revertible animal model that recapitulates components of Leigh Syndrome French Canadian Type (LSFC), a mitochondrial disorder that includes diagnostic liver dysfunction. LSFC is caused by allelic variations in the LRPPRC gene, involved in mitochondrial mRNA polyadenylation and translation. lrpprc zebrafish homozygous mutants displayed biochemical and mitochondrial phenotypes similar to clinical manifestations observed in patients, including dysfunction in lipid homeostasis. We were able to rescue these phenotypes in the disease model using a liver-specific genetic model therapy, functionally demonstrating a previously under-recognized critical role for the liver in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Mark D Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Roberto Lopez Cervera
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - MaKayla R Serres
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Shannon R Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Anthony J Treichel
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Weibin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Yun Deng
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Jean M Lacey
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - William J Laxen
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - Perry R Loken
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - Devin Oglesbee
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| |
Collapse
|
12
|
Hibino Y, Iguchi A, Zaitsu K. Preliminary study to classify mechanisms of mitochondrial toxicity by in vitro metabolomics and bioinformatics. Toxicol Appl Pharmacol 2022; 457:116316. [PMID: 36462684 DOI: 10.1016/j.taap.2022.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
AIM Mitochondrial toxicity is one of the causes for drug-induced liver injury, and the classification of phenotypes or mitochondrial toxicity are highly required though there are no molecular-profiling approaches for classifying mitochondrial toxicity. Therefore, the aim of this study was to classify the mechanisms of mitochondrial toxicity by metabolic profiling in vitro and bioinformatics. MAIN METHODS We applied an established gas chromatography tandem mass spectrometry-based metabolomics to human hepatoma grade 2 (HepG2) cells that were exposed to mitochondrial toxicants, whose mechanisms are different, such as rotenone (0.1 μM), carbonyl cyanide-3-chlorophenylhydrazone (CCCP, 0.5 μM), nefazodone (20 μM), perhexiline (6.25 μM), or digitonin (positive cytotoxic substance, 4 μM). These concentrations were determined by the Mitochondrial ToxGlo Assay. Galactose medium was used for suppressing the Warburg effect in HepG2 cells, and the metabolome analysis successfully identified 125 metabolites in HepG2 cells. Multivariate, metabolic pathway and network analyses were performed by the R software. KEY FINDINGS Metabolic profiling enabled the classifying the mitochondrial toxicity mechanisms of RCC inhibition and uncoupling. The metabolic profiles of respiratory chain complex (RCC) inhibitors (rotenone and nefazodone) and an uncoupler (CCCP) were fully differentiated from those of other compounds. The metabolic pathway analysis revealed that the RCC inhibitors and the uncoupler mainly disrupted TCA-cycle and related metabolic pathways. In addition, the correlation-based network analysis revealed that succinic acid, β-alanine, and glutamic acid were potential metabolic indicators for RCC inhibition and uncoupling. SIGNIFICANCE Our results provided new insights into classifying mechanisms of mitochondrial toxicity by in vitro metabolomics.
Collapse
Affiliation(s)
- Yui Hibino
- Safety Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan; Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-data Analytics Laboratory, Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama 649-6493, Japan; In Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
13
|
Kleiboeker B, Lodhi IJ. Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders. Mol Metab 2022; 65:101577. [PMID: 35988716 PMCID: PMC9442330 DOI: 10.1016/j.molmet.2022.101577] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Peroxisomes are single membrane-bound organelles named for their role in hydrogen peroxide production and catabolism. However, their cellular functions extend well beyond reactive oxygen species (ROS) metabolism and include fatty acid oxidation of unique substrates that cannot be catabolized in mitochondria, and synthesis of ether lipids and bile acids. Metabolic functions of peroxisomes involve crosstalk with other organelles, including mitochondria, endoplasmic reticulum, lipid droplets and lysosomes. Emerging studies suggest that peroxisomes are important regulators of energy homeostasis and that disruption of peroxisomal functions influences the risk for obesity and the associated metabolic disorders, including type 2 diabetes and hepatic steatosis. SCOPE OF REVIEW Here, we focus on the role of peroxisomes in ether lipid synthesis, β-oxidation and ROS metabolism, given that these functions have been most widely studied and have physiologically relevant implications in systemic metabolism and obesity. Efforts are made to mechanistically link these cellular and systemic processes. MAJOR CONCLUSIONS Circulating plasmalogens, a form of ether lipids, have been identified as inversely correlated biomarkers of obesity. Ether lipids influence metabolic homeostasis through multiple mechanisms, including regulation of mitochondrial morphology and respiration affecting brown fat-mediated thermogenesis, and through regulation of adipose tissue development. Peroxisomal β-oxidation also affects metabolic homeostasis through generation of signaling molecules, such as acetyl-CoA and ROS that inhibit hydrolysis of stored lipids, contributing to development of hepatic steatosis. Oxidative stress resulting from increased peroxisomal β-oxidation-generated ROS in the context of obesity mediates β-cell lipotoxicity. A better understanding of the roles peroxisomes play in regulating and responding to obesity and its complications will provide new opportunities for their treatment.
Collapse
Affiliation(s)
- Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA.
| |
Collapse
|
14
|
Wang X, Lan H, Sun T, Cong P, Xue C, Xu J. Serum metabolomics analysis reveals amelioration effects of sea cucumber ether phospholipids on oxidative stress and inflammation in high-fat diet-fed mice. Food Funct 2022; 13:10134-10146. [PMID: 36106708 DOI: 10.1039/d2fo00918h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Emerging evidence suggests that sea cucumber ether phospholipids (ether-PLs) can modulate high-fat diet (HFD)-induced metabolic disorders. However, whether this modulation is associated with metabolic pathways related to oxidative stress and inflammation remains unclear. This study aimed to investigate the antioxidative and anti-inflammatory effects on HFD-fed mice and the associated metabolism pathways in response to administration with sea cucumber ether-PLs using integrated biochemistry and a metabolomics approach. Biochemistry analysis and histological examinations showed that sea cucumber ether-PLs significantly decreased body weight gain and fat deposition in tissues. PE-P was superior to PC-O in alleviating reactive oxygen species (ROS), malondialdehyde (MDA) and inflammatory responses (IL-6, TNF-α and MCP-1) in the HFD-induced mouse model. Serum metabolomics analysis revealed that it upregulated four metabolites and downregulated twenty-four metabolites compared to those in HFD mice after ether-PL administration. Pathway analysis indicated that sea cucumber ether-PLs alleviate the HFD-induced inflammation and oxidative stress by three main metabolic pathways, namely fatty acid metabolism, branched-chain amino acid (BCAA) metabolism, and trichloroacetic acid (TCA) metabolism. Taken together, sea cucumber ether-PLs showed great potential to become a natural functional food against oxidative stress and inflammation caused by HFD.
Collapse
Affiliation(s)
- Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Haohui Lan
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Tong Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, China. .,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao, Shandong Province, 266237, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
15
|
Adipocyte lysoplasmalogenase TMEM86A regulates plasmalogen homeostasis and protein kinase A-dependent energy metabolism. Nat Commun 2022; 13:4084. [PMID: 35835749 PMCID: PMC9283435 DOI: 10.1038/s41467-022-31805-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of adipose tissue plasmalogen metabolism is associated with obesity-related metabolic diseases. We report that feeding mice a high-fat diet reduces adipose tissue lysoplasmalogen levels and increases transmembrane protein 86 A (TMEM86A), a putative lysoplasmalogenase. Untargeted lipidomic analysis demonstrates that adipocyte-specific TMEM86A-knockout (AKO) increases lysoplasmalogen content in adipose tissue, including plasmenyl lysophosphatidylethanolamine 18:0 (LPE P-18:0). Surprisingly, TMEM86A AKO increases protein kinase A signalling pathways owing to inhibition of phosphodiesterase 3B and elevation of cyclic adenosine monophosphate. TMEM86A AKO upregulates mitochondrial oxidative metabolism, elevates energy expenditure, and protects mice from metabolic dysfunction induced by high-fat feeding. Importantly, the effects of TMEM86A AKO are largely reproduced in vitro and in vivo by LPE P-18:0 supplementation. LPE P-18:0 levels are significantly lower in adipose tissue of human patients with obesity, suggesting that TMEM86A inhibition or lysoplasmalogen supplementation might be therapeutic approaches for preventing or treating obesity-related metabolic diseases.
Collapse
|
16
|
Bchetnia M, Tardif J, Morin C, Laprise C. Expression signature of the Leigh syndrome French-Canadian type. Mol Genet Metab Rep 2022; 30:100847. [PMID: 35242578 PMCID: PMC8856909 DOI: 10.1016/j.ymgmr.2022.100847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 10/28/2022] Open
|
17
|
Pike DP, McGuffee RM, Geerling E, Albert CJ, Hoft DF, Shashaty MGS, Meyer NJ, Pinto AK, Ford DA. Plasmalogen Loss in Sepsis and SARS-CoV-2 Infection. Front Cell Dev Biol 2022; 10:912880. [PMID: 35784479 PMCID: PMC9242022 DOI: 10.3389/fcell.2022.912880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmalogens are plasma-borne antioxidant phospholipid species that provide protection as cellular lipid components during cellular oxidative stress. In this study we investigated plasma plasmalogen levels in human sepsis as well as in rodent models of infection. In humans, levels of multiple plasmenylethanolamine molecular species were decreased in septic patient plasma compared to control subject plasma as well as an age-aligned control subject cohort. Additionally, lysoplasmenylcholine levels were significantly decreased in septic patients compared to the control cohorts. In contrast, plasma diacyl phosphatidylethanolamine and phosphatidylcholine levels were elevated in septic patients. Lipid changes were also determined in rats subjected to cecal slurry sepsis. Plasma plasmenylcholine, plasmenylethanolamine, and lysoplasmenylcholine levels were decreased while diacyl phosphatidylethanolamine levels were increased in septic rats compared to control treated rats. Kidney levels of lysoplasmenylcholine as well as plasmenylethanolamine molecular species were decreased in septic rats. Interestingly, liver plasmenylcholine and plasmenylethanolamine levels were increased in septic rats. Since COVID-19 is associated with sepsis-like acute respiratory distress syndrome and oxidative stress, plasmalogen levels were also determined in a mouse model of COVID-19 (intranasal inoculation of K18 mice with SARS-CoV-2). 3 days following infection, lung infection was confirmed as well as cytokine expression in the lung. Multiple molecular species of lung plasmenylcholine and plasmenylethanolamine were decreased in infected mice. In contrast, the predominant lung phospholipid, dipalmitoyl phosphatidylcholine, was not decreased following SARS-CoV-2 infection. Additionally total plasmenylcholine levels were decreased in the plasma of SARS-CoV-2 infected mice. Collectively, these data demonstrate the loss of plasmalogens during both sepsis and SARS-CoV-2 infection. This study also indicates plasma plasmalogens should be considered in future studies as biomarkers of infection and as prognostic indicators for sepsis and COVID-19 outcomes.
Collapse
Affiliation(s)
- Daniel P Pike
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Reagan M McGuffee
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Carolyn J Albert
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Daniel F Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States.,Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Michael G S Shashaty
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.,Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.,Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021; 62:187-204. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Although mitochondrial dysfunction is the known cause of primary mitochondrial disease, mitochondrial dysfunction is often difficult to measure and prove, especially when biopsies of affected tissue are not available. In order to identify blood biomarkers of mitochondrial dysfunction, we reviewed studies that measured blood biomarkers in genetically, clinically or biochemically confirmed primary mitochondrial disease patients. In this way, we were certain that there was an underlying mitochondrial dysfunction which could validate the biomarker. We found biomarkers of three classes: 1) functional markers measured in blood cells, 2) biochemical markers of serum/plasma and 3) DNA markers. While none of the reviewed single biomarkers may perfectly reveal all underlying mitochondrial dysfunction, combining biomarkers that cover different aspects of mitochondrial impairment probably is a good strategy. This biomarker panel may assist in the diagnosis of primary mitochondrial disease patients. As mitochondrial dysfunction may also play a significant role in the pathophysiology of multifactorial disorders such as Alzheimer's disease and glaucoma, the panel may serve to assess mitochondrial dysfunction in complex multifactorial diseases as well and enable selection of patients who could benefit from therapies targeting mitochondria.
Collapse
|
19
|
|
20
|
Adaptive optimization of the OXPHOS assembly line partially compensates lrpprc-dependent mitochondrial translation defects in mice. Commun Biol 2021; 4:989. [PMID: 34413467 PMCID: PMC8376967 DOI: 10.1038/s42003-021-02492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Mouse models of genetic mitochondrial disorders are generally used to understand specific molecular defects and their biochemical consequences, but rarely to map compensatory changes allowing survival. Here we took advantage of the extraordinary mitochondrial resilience of hepatic Lrpprc knockout mice to explore this question using native proteomics profiling and lipidomics. In these mice, low levels of the mtRNA binding protein LRPPRC induce a global mitochondrial translation defect and a severe reduction (>80%) in the assembly and activity of the electron transport chain (ETC) complex IV (CIV). Yet, animals show no signs of overt liver failure and capacity of the ETC is preserved. Beyond stimulation of mitochondrial biogenesis, results show that the abundance of mitoribosomes per unit of mitochondria is increased and proteostatic mechanisms are induced in presence of low LRPPRC levels to preserve a balance in the availability of mitochondrial- vs nuclear-encoded ETC subunits. At the level of individual organelles, a stabilization of residual CIV in supercomplexes (SCs) is observed, pointing to a role of these supramolecular arrangements in preserving ETC function. While the SC assembly factor COX7A2L could not contribute to the stabilization of CIV, important changes in membrane glycerophospholipid (GPL), most notably an increase in SC-stabilizing cardiolipins species (CLs), were observed along with an increased abundance of other supramolecular assemblies known to be stabilized by, and/or participate in CL metabolism. Together these data reveal a complex in vivo network of molecular adjustments involved in preserving mitochondrial integrity in energy consuming organs facing OXPHOS defects, which could be therapeutically exploited. Cuillerier et al. investigate compensatory mechanisms underlying survival of mice with a liver-specific knockout of the mitochondrial mRNA-binding protein Lrpprc. They propose various mechanisms operating along the OXPHOS assembly line, including mitochondrial biogenesis, mitochondrial ribosome upregulation and preferential supercomplex assembly, that could compensate lack of LRPPRC and allow survival of these mice.
Collapse
|
21
|
Mia S, Sonkar R, Williams L, Latimer MN, Frayne Robillard I, Diwan A, Frank SJ, Des Rosiers C, Young ME. Impact of obesity on day-night differences in cardiac metabolism. FASEB J 2021; 35:e21298. [PMID: 33660366 PMCID: PMC7942981 DOI: 10.1096/fj.202001706rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
An intrinsic property of the heart is an ability to rapidly and coordinately adjust flux through metabolic pathways in response to physiologic stimuli (termed metabolic flexibility). Cardiac metabolism also fluctuates across the 24‐hours day, in association with diurnal sleep‐wake and fasting‐feeding cycles. Although loss of metabolic flexibility has been proposed to play a causal role in the pathogenesis of cardiac disease, it is currently unknown whether day‐night variations in cardiac metabolism are altered during disease states. Here, we tested the hypothesis that diet‐induced obesity disrupts cardiac “diurnal metabolic flexibility”, which is normalized by time‐of‐day‐restricted feeding. Chronic high fat feeding (20‐wk)‐induced obesity in mice, abolished diurnal rhythms in whole body metabolic flexibility, and increased markers of adverse cardiac remodeling (hypertrophy, fibrosis, and steatosis). RNAseq analysis revealed that 24‐hours rhythms in the cardiac transcriptome were dramatically altered during obesity; only 22% of rhythmic transcripts in control hearts were unaffected by obesity. However, day‐night differences in cardiac substrate oxidation were essentially identical in control and high fat fed mice. In contrast, day‐night differences in both cardiac triglyceride synthesis and lipidome were abolished during obesity. Next, a subset of obese mice (induced by 18‐wks ad libitum high fat feeding) were allowed access to the high fat diet only during the 12‐hours dark (active) phase, for a 2‐wk period. Dark phase restricted feeding partially restored whole body metabolic flexibility, as well as day‐night differences in cardiac triglyceride synthesis and lipidome. Moreover, this intervention partially reversed adverse cardiac remodeling in obese mice. Collectively, these studies reveal diurnal metabolic inflexibility of the heart during obesity specifically for nonoxidative lipid metabolism (but not for substrate oxidation), and that restricting food intake to the active period partially reverses obesity‐induced cardiac lipid metabolism abnormalities and adverse remodeling of the heart.
Collapse
Affiliation(s)
- Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ravi Sonkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lamario Williams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Abhinav Diwan
- Departments of Medicine, Cell Biology and Physiology, Washington University School of Medicine and John Cochran VA Medical Center, St. Louis, MO, USA
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, AL, USA
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, QC, Canada
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
Li H, Uittenbogaard M, Hao L, Chiaramello A. Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites 2021; 11:233. [PMID: 33920115 PMCID: PMC8070181 DOI: 10.3390/metabo11040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and plasticity. Therefore, mitochondrial dysfunction is a prevalent pathological hallmark of many neurodevelopmental and neurodegenerative disorders resulting in altered neurometabolic coupling. With the advent of mass spectrometry (MS) technology, MS-based metabolomics provides an emerging mechanistic understanding of their global and dynamic metabolic signatures. In this review, we discuss the pathogenetic causes of mitochondrial metabolic disorders and the recent MS-based metabolomic advances on their metabolomic remodeling. We conclude by exploring the MS-based metabolomic functional insights into their biosignatures to improve diagnostic platforms, stratify patients, and design novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Martine Uittenbogaard
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| | - Ling Hao
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| |
Collapse
|
23
|
Identification of Circulating Endocan-1 and Ether Phospholipids as Biomarkers for Complications in Thalassemia Patients. Metabolites 2021; 11:metabo11020070. [PMID: 33530524 PMCID: PMC7912378 DOI: 10.3390/metabo11020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Despite advances in our knowledge and attempts to improve therapies, β-thalassemia remains a prevalent disorder with increased risk for the development of cardiomyopathy. Using an untargeted discovery-based lipidomic workflow, we uncovered that transfusion-dependent thalassemia (TDT) patients had a unique circulating lipidomic signature consisting of 387 lipid features, allowing their significant discrimination from healthy controls (Q-value < 0.01). In particular, TDT patients had elevated triacylglycerols and long-chain acylcarnitines, albeit lower ether phospholipids or plasmalogens, sphingomyelins, and cholesterol esters, reminiscent of that previously characterized in cardiometabolic diseases resulting from mitochondrial and peroxisomal dysfunction. Discriminating lipid (sub)classes correlated differentially with clinical parameters, reflecting blood (ether phospholipids) and iron (cholesterol ester) status or heart function (triacylglycerols). We also tested 15 potential serum biomarkers related to cardiometabolic disease and found that both lipocalin-2 and, for the first time, endocan-1 levels were significantly elevated in TDT patients and showed a strong correlation with blood parameters and three ether diacylglycerophosphatidylcholine species. In conclusion, this study identifies new characteristics of TDT patients which may have relevance in developing biomarkers and therapeutics.
Collapse
|
24
|
Fois A, Boucher-Lafleur AM, Thompson Legault J, Renaud C, Morin C, Des Rosiers C, Coderre L, Laprise C, Lesage S. Humoral responses to the measles, mumps and rubella vaccine are impaired in Leigh Syndrome French Canadian patients. PLoS One 2020; 15:e0239860. [PMID: 33085679 PMCID: PMC7577467 DOI: 10.1371/journal.pone.0239860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Leigh Syndrome French Canadian (LSFC) is a rare autosomal recessive metabolic disorder characterized by severe lactic acidosis crises and early mortality. LSFC patients carry mutations in the Leucine Rich Pentatricopeptide Repeat Containing (LRPPRC) gene, which lead to defects in the respiratory chain complexes and mitochondrial dysfunction. Mitochondrial respiration modulates cellular metabolic activity, which impacts many cell types including the differentiation and function of immune cells. Hence, we postulated that, in addition to neurological and metabolic disorders, LSFC patients may show impaired immune activity. To gain insight into the quality of the immune response in LSFC patients, we examined the response to the measles, mumps and rubella (MMR) vaccine by measuring antibody titers to MMR in the plasma. In a cohort of eight LSFC patients, the response to the MMR vaccine was variable, with some individuals showing antibodies to all three viruses, while others had antibodies to two or fewer viruses. These results suggest that the mutations in the LRPPRC gene present in LSFC patients may affect the immune response to vaccines. Monitoring vaccine response in this fragile population should be considered to ensure full protection against pathogens.
Collapse
Affiliation(s)
- Adrien Fois
- Immunology-oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Christian Renaud
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Lise Coderre
- Immunology-oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
| | - Catherine Laprise
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| | - Sylvie Lesage
- Immunology-oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| | | |
Collapse
|
25
|
Boycott KM, Campeau PM, Howley HE, Pavlidis P, Rogic S, Oriel C, Berman JN, Hamilton RM, Hicks GG, Lipshitz HD, Masson JY, Shoubridge EA, Junker A, Leroux MR, McMaster CR, Michaud JL, Turvey SE, Dyment D, Innes AM, van Karnebeek CD, Lehman A, Cohn RD, MacDonald IM, Rachubinski RA, Frosk P, Vandersteen A, Wozniak RW, Pena IA, Wen XY, Lacaze-Masmonteil T, Rankin C, Hieter P. The Canadian Rare Diseases Models and Mechanisms (RDMM) Network: Connecting Understudied Genes to Model Organisms. Am J Hum Genet 2020; 106:143-152. [PMID: 32032513 DOI: 10.1016/j.ajhg.2020.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023] Open
Abstract
Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing variants, and how therapy might be approached. To address this gap, the Canadian Rare Diseases Models and Mechanisms (RDMM) Network was established to connect clinicians discovering new disease genes with Canadian scientists able to study equivalent genes and pathways in model organisms (MOs). The Network is built around a registry of more than 500 Canadian MO scientists, representing expertise for over 7,500 human genes. RDMM uses a committee process to identify and evaluate clinician-MO scientist collaborations and approve 25,000 Canadian dollars in catalyst funding. To date, we have made 85 clinician-MO scientist connections and funded 105 projects. These collaborations help confirm variant pathogenicity and unravel the molecular mechanisms of RD, and also test novel therapies and lead to long-term collaborations. To expand the impact and reach of this model, we made the RDMM Registry open-source, portable, and customizable, and we freely share our committee structures and processes. We are currently working with emerging networks in Europe, Australia, and Japan to link international RDMM networks and registries and enable matches across borders. We will continue to create meaningful collaborations, generate knowledge, and advance RD research locally and globally for the benefit of patients and families living with RD.
Collapse
Affiliation(s)
- Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| | - Philippe M Campeau
- Centre de Recherche du CHU Ste-Justine, Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Heather E Howley
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sanja Rogic
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Christine Oriel
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, BC V5Z 4H4, Canada
| | - Jason N Berman
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Robert M Hamilton
- Labatt Family Heart Centre and Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Geoffrey G Hicks
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jean-Yves Masson
- Oncology Division, CHU de Québec-Université Laval, Laval University Cancer Research Center, Quebec City, QC, G1R 3S3, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Anne Junker
- Department of Pediatrics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | - Jaques L Michaud
- Centre de Recherche du CHU Ste-Justine, Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Stuart E Turvey
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - David Dyment
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - A Micheil Innes
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary, AB T2N 4N1, Canada
| | - Clara D van Karnebeek
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Pediatrics, Amsterdam University Medical Centres, Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Ronald D Cohn
- Genetics and Genome Biology Program, SickKids Research Institute, Department of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Richard A Rachubinski
- Genetics and Genome Biology Program, SickKids Research Institute, Department of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Patrick Frosk
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Anthony Vandersteen
- Department of Pediatrics, Maritime Medical Genetics Service, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Richard W Wozniak
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Izabella A Pena
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, St Michael's Hospital, Unity Health Toronto, Department of Medicine, University of Toronto, Toronto, ON M5B 1T8
| | - Thierry Lacaze-Masmonteil
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, BC V5Z 4H4, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Catharine Rankin
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|