1
|
Kamat PK, Khan MB, Siddiqui S, Hattaway TG, Anas A, Rudic RD, Baban B, Dhandapani KM, Hess DC. Time of day dependent reduction in stroke infarct volume by the Reverb agonist SR9009 in mice. Exp Neurol 2025; 384:115067. [PMID: 39557376 PMCID: PMC11645206 DOI: 10.1016/j.expneurol.2024.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Ischemic stroke leads to disability and death worldwide and evidence suggests that stroke severity is affected by the time dimension of the stroke. Rev-Erbα regulates the core circadian clock through repression of the positive clock element Bmal1. However, it remains unclear if a Rev-Erbα agonist (SR9009) alleviates stroke pathology in mice. We found that stroke reduces the level of Rev-Erbα and elevates neuroinflammation and stroke severity at zeitgeber time (ZT) ZT06. Therefore, we hypothesized that SR9009 treatment may reduce neuroinflammation and stroke severity in a mouse suture occlusion model. At 12 to 14 weeks, C57BL/6 J (Wild Type, n = 5-10 mice/group) mice were randomly assigned to undergo MCAO stroke for 60 min at either zeitgeber time ZT06 (MCAO-ZT06-sleep phase) or ZT18 (MCAO-ZT18-awake phase). Stroked mice were treated with SR9009 (100 mg/kg) or vehicle at 1 h and 24 h after MCAO. After forty-eight hours of stroke, TTC staining, Western blot, and qRT-PCR were performed. We found that SR9009 treatment alleviates neuroinflammation and infarct volume by Rev-Erb remodeling in ZT06 stroke mice but not in ZT18 stroke mice. Additionally, monocytic and neutrophilic NLRP3 as well as brain NLRP3 levels were reduced by SR9009 treatment in ZT06 stroke though no effects were observed at ZT18 stroke. SR9009 also reduced TNFα expression and increased IL-10 expression in blood and brain in ZT06 stroke mice and no differences were observed at ZT18. There were no significant effects of SR9009 on neurological deficit score and sensorimotor function at ZT06 or ZT18 at 48 h. Our study demonstrates that SR9009 treatment reduces stroke volume, circulating immune response, circadian expression, and that the protection was circadian- and treatment time-dependent.
Collapse
Affiliation(s)
- Pradip K Kamat
- Departments of Neurology, Medical College of Georgia, Augusta University, Augusta, USA.
| | | | - Shahneela Siddiqui
- Departments of Neurology, Medical College of Georgia, Augusta University, Augusta, USA
| | - Tyler Grace Hattaway
- Departments of Neurology, Medical College of Georgia, Augusta University, Augusta, USA
| | - Affan Anas
- Departments of Neurology, Medical College of Georgia, Augusta University, Augusta, USA
| | - R Daniel Rudic
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, USA
| | - Babak Baban
- Departments of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, USA
| | - David C Hess
- Departments of Neurology, Medical College of Georgia, Augusta University, Augusta, USA
| |
Collapse
|
2
|
Gubin D, Boldyreva J, Stefani O, Kolomeichuk S, Danilova L, Shigabaeva A, Cornelissen G, Weinert D. Higher vulnerability to poor circadian light hygiene in individuals with a history of COVID-19. Chronobiol Int 2025:1-14. [PMID: 39761104 DOI: 10.1080/07420528.2024.2449015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/13/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Seven-day actigraphy was performed within 1 month in 122 community-dwelling adults (mean age 24.40 y, 31 (25.4%) men) in the same city of Tyumen, Russia. Groups with different COVID-19 status (present, COVID-19(+), n = 79 vs absent, COVID-19(-), n = 43) did not differ in mean age, gender distribution, or body mass index. Vaccination status was equally represented in the COVID groups. We found that COVID-19 status, a history of SARS-CoV-2 infection, was differentially associated with daylight susceptibility. Daylight exposure was estimated using parametric and non-parametric indices: 24-h Amplitude, MESOR or M10 of white and blue light exposure (BLE) and compared between the groups. Distinctively in COVID-19(+) individuals, a smaller normalized 24-h amplitude of BLE (NAbl) was associated with lower circadian robustness, assessed by a smaller relative non-parametric amplitude (RA), a lower circadian function index (CFI), later bedtime, later onset of least active 5 h (L5), shorter total sleep duration, later phase and smaller circadian amplitude of physical motor activity. Such associations were absent in the overall COVID-19(-) population or in the vaccinated COVID(-) group. Considering COVID-status and light hygiene, defined as NAbl ≥ 1 versus NAbl < 1, only those with COVID(+) and NAbl < 1 (poorer light hygiene) had a statistically significantly delayed phase of activity and sleep, reduced circadian amplitude of physical activity, and lower circadian robustness. Accounting for gender and BMI, participants diagnosed with COVID-19 at an earlier date were older and had poorer circadian light hygiene. Altogether, our data suggest that those with COVID-19 were more vulnerable to circadian disruption due to poor circadian light hygiene, manifested as phase delay, small amplitude, a less robust circadian pattern of activity, and as delayed sleep. Our data suggest that the need for optimal circadian light hygiene is greater in individuals with a history of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Denis Gubin
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, Tyumen, Russia
- Department of Biology, Medical University, Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Boldyreva
- Department of Biochemistry, Medical University, Tyumen, Russia
| | - Oliver Stefani
- Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| | - Sergey Kolomeichuk
- Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
- Group of Somnology, Almazov National Research Medical Center, Saint Petersburg, Russia
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Tyumen State Medical University, Tyumen, Russia
| | - Liina Danilova
- Department of Biology, Medical University, Tyumen, Russia
| | - Aislu Shigabaeva
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, Tyumen, Russia
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, Halle-Wittenberg, Germany
| |
Collapse
|
3
|
Zou S, Chen Q, Shen Z, Qin B, Zhu X, Lan Y. Update on the roles of regular daily rhythms in combating brain tumors. Eur J Pharmacol 2025; 986:177144. [PMID: 39571672 DOI: 10.1016/j.ejphar.2024.177144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
An endogenous time-keeping system found in all kingdoms of life, the endogenous circadian clock, is the source of the essential cyclic change mechanism known as the circadian rhythm. The primary circadian clock that synchronizes peripheral circadian clocks to the proper phase is housed in the anterior hypothalamus's suprachiasmatic nuclei (SCN), which functions as a central pacemaker. According to many epidemiological studies, many cancer types, especially brain tumors, have shown evidence of dysregulated clock gene expression, and the connection between clock and brain tumors is highly specific. In some studies, it is reported that the treatment administered in the morning has been linked to prolonged survival for brain cancer patients, and drug sensitivity and gene expression in gliomas follow daily rhythms. These results suggest a relationship between the circadian rhythm and the onset and spread of brain tumors, while further accumulation of research evidence will be needed to establish definitely these positive outcomes as well as to determine the mechanism underlying them. Chronotherapy provides a means of harnessing current medicines to prolong patients' lifespans and improve their quality of life, indicating the significance of circadian rhythm in enhancing the design of future patient care and clinical trials. Moreover, it is implicated that chronobiological therapy target may provide a significant challenge that warrants extensive effort to achieve. This review examines evidence of the relationship of circadian rhythm with glioma molecular pathogenesis and summarizes the mechanisms and drugs implicated in this disease.
Collapse
Affiliation(s)
- Shuang Zou
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, China
| | - Zhiwei Shen
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Zhu
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yulong Lan
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Lee RU, Watson NL, Glickman GL, White L, Isidean SD, Porter CK, Hollis-Perry M, Walther SR, Maiolatesi S, Sedegah M, Ganeshan H, Huang J, Boulifard DA, Ewing D, Sundaram AK, Harrison EM, DeTizio K, Belmonte M, Belmonte A, Inoue S, Easterling A, Cooper ES, Danko J. A randomized clinical trial of the impact of melatonin on influenza vaccine: Outcomes from the melatonin and vaccine response immunity and chronobiology study (MAVRICS). Hum Vaccin Immunother 2024; 20:2419742. [PMID: 39539030 PMCID: PMC11572083 DOI: 10.1080/21645515.2024.2419742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Vaccine immunogenicity is affected by a variety of factors. Melatonin has been reported to affect immune responses to vaccines and infection. This was a randomized open-label trial - in which adults scheduled to receive the influenza vaccine were randomized to 5 mg melatonin or control to evaluate the effect of post-vaccination melatonin on humoral (hemagglutination-inhibition assays, HAI) and cellular (FluoroSpot) vaccine-specific cytokine responses 14-21 days post-vaccination. A total of 108 participants (melatonin treatment group: 53; control group: 55) completed the study. The groups were similar in baseline characteristics, including sleep as measured by the Pittsburgh Sleep Quality Index. Seroconversion rates or geometric mean fold rises (GMFR) in HAI titers did not vary by treatment group. There were also no statistically significant differences between pre- and post-vaccination levels of interferon gamma (IFN-γ) or granzyme B (GzB) by treatment; however, there was a significantly higher fold rise in the double secretor (IFN-γ + GzB) peripheral blood mononuclear cells for influenza vaccine in subjects taking daily melatonin (GMFR 1.7; 95% CI 1.3, 2.3) compared to those who did not (GMFR 0.9; 95% CI 0.7, 1.1) (p < .001). Daily melatonin for 14 days post-influenza vaccination significantly increased the cellular co-expression of IFN-γ + GzB; however, there were no other differences in the cellular or humoral responses. Future studies of the potential utility of melatonin for enhancing vaccine response with larger sample sizes may help elucidate candidate mechanisms for these limited effects, including any interactions with the circadian system.
Collapse
Affiliation(s)
- Rachel U. Lee
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nora L. Watson
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gena L. Glickman
- Department of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lindsey White
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Sandra D. Isidean
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Chad K. Porter
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Monique Hollis-Perry
- Department of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Samuel R. Walther
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Santina Maiolatesi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Martha Sedegah
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Harini Ganeshan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Jun Huang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - David A. Boulifard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Daniel Ewing
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Appavu K. Sundaram
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Elizabeth M. Harrison
- Department of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Katherine DeTizio
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Maria Belmonte
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Arnel Belmonte
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, Virginia, MD, USA
| | - Sandra Inoue
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, Virginia, MD, USA
| | - Alexandra Easterling
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Elizabeth S. Cooper
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Janine Danko
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| |
Collapse
|
5
|
Solovev IA, Golubev DA. Chronobiotics: classifications of existing circadian clock modulators, future perspectives. BIOMEDITSINSKAIA KHIMIIA 2024; 70:381-393. [PMID: 39718101 DOI: 10.18097/pbmc20247006381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The review summarizes recent achievements and future prospects in the use of chronobiotics for regulating circadian rhythms regulation. Special attention is paid to the mechanisms' action, their classification, and the impact of chemical interventions on the biological clock. Chronobiotics defined as a diverse group of compounds capable of restoring disrupted circadian functions, addressing challenges such as irregular work schedules, artificial light exposure or ageing. The review categorizes these compounds by their pharmacological effects, molecular targets, and chemical structures, underlining their ability to enhance or inhibit key circadian components like CLOCK, BMAL1, PER, and CRY. A particular focus is placed on the therapeutic applications of chronobiotics, including their potential for treating sleep disorders, metabolic issues, and age-related rhythm disturbances, underscoring their wide-ranging applicability in health care. Chronobiotic compounds have promising roles in maintaining physiological rhythms, supporting healthy aging, and enhancing personalised health care. Given their diverse therapeutic potential, chronobiotics are positioned as a significant avenue for further clinical application, marking them as a crucial area of ongoing research and innovation.
Collapse
Affiliation(s)
- I A Solovev
- Pitirim Sorokin Syktyvkar State University, Medical Institute, Laboratory of Translational bioinformatics and systems biology, Syktyvkar, Russia
| | - D A Golubev
- Pitirim Sorokin Syktyvkar State University, Medical Institute, Laboratory of Translational bioinformatics and systems biology, Syktyvkar, Russia
| |
Collapse
|
6
|
Mekschrat L, Göring M, Schmalbach B, Rohleder N, Petrowski K. The influence of light on Interleukin-10: A preliminary study. Brain Behav Immun Health 2024; 42:100887. [PMID: 39435315 PMCID: PMC11492459 DOI: 10.1016/j.bbih.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024] Open
Abstract
Light influences circadian rhythms, including that of the stress hormone cortisol. Cortisol, in turn, has been observed to promote expression of the anti-inflammatory cytokine IL-10. It is thus of interest whether the cytokine IL-10 is also influenced by light, perhaps in accord with the diurnal variations in cortisol. Hence, this highly standardized preliminary sleep laboratory study in healthy adult men investigated a potential influence of different light exposure on IL-10 and cortisol concentrations in blood. In a between-subject design, N = 42 participants were exposed to either bright, dim, blue or red light after wake-up. Two mixed-model analyses with the factors of light condition and time (across eight IL-10 and cortisol sampling points) were conducted. Additionally, area under the curve measurements (AUCg and AUCi) were calculated for both cortisol and IL-10. Across all conditions, IL-10 and cortisol concentrations significantly changed over time. However, none of the light conditions exerted a greater influence on IL-10 or cortisol levels than others. For cortisol, there was greater total output (AUCg) in the blue-light condition in particular. Further research is needed to gain insight into whether or not types of light or cortisol levels have a hand in influencing natural IL-10 concentrations.
Collapse
Affiliation(s)
- Liza Mekschrat
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Göring
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bjarne Schmalbach
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicolas Rohleder
- Chair of Health Psychology, Department of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Petrowski
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
7
|
Tomar MS, Mohit, Kumar A, Shrivastava A. Circadian immunometabolism: A future insight for targeted therapy in cancer. Sleep Med Rev 2024; 80:102031. [PMID: 39603026 DOI: 10.1016/j.smrv.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Circadian rhythms send messages to regulate the sleep-wake cycle in living beings, which, regulate various biological activities. It is well known that altered sleep-wake cycles affect host metabolism and significantly deregulate the host immunity. The dysregulation of circadian-related genes is critical for various malignancies. One of the hallmarks of cancer is altered metabolism, the effects of which spill into surrounding microenvironments. Here, we review the emerging literature linking the circadian immunometabolic axis to cancer. Small metabolites are the products of various metabolic pathways, that are usually perturbed in cancer. Genes that regulate circadian rhythms also regulate host metabolism and control metabolite content in the tumor microenvironment. Immune cell infiltration into the tumor site is critical to perform anticancer functions, and altered metabolite content affects their trafficking to the tumor site. A compromised immune response in the tumor microenvironment aids cancer cell proliferation and immune evasion, resulting in metastases. The role of circadian rhythms in these processes is largely overlooked and demands renewed attention in the search for targets against cancer growth and spread. The precision medicine approach requires targeting the circadian immune metabolism in cancer.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohit
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India; Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India.
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
8
|
Gao Y, Qiu Y, Lu S. Genetically Predicted Sleep Traits and Sensorineural Hearing Loss: A Mendelian Randomization Study. Laryngoscope 2024; 134:4723-4729. [PMID: 38818872 DOI: 10.1002/lary.31550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Observational studies suggest a potential association between sleep characteristics, sensorineural hearing loss (SNHL), and sudden SNHL (SSNHL), but causal evidence is scarce. We sought to clarify this issue using two-sample Mendelian randomization analysis. METHODS The inverse-variance weighted (IVW) method was performed as primary analysis to assess bidirectional causal associations between sleep traits (chronotype, sleep duration, insomnia, daytime sleepiness, and snoring) and SNHL/SSNHL using publicly available Genome-Wide Association Studies summary data from two large consortia (UK Biobank and FinnGen). Sensitivity analyses, including Mendelian randomization (MR)-Egger, Mendelian randomization pleiotropy residual sum and outlier, weight median, Cochran's Q test, leave-one-out analysis, and potential pleiotropy analysis, were conducted to ensure robustness. RESULTS IVW analysis found suggestive associations of morning chronotype (odds ratio [OR] = 1.08, 95% confidence interval [CI] = 1.01-1.16, p = 0.031) and daytime sleepiness (OR = 1.88, 95% CI = 1.24-2.87, p = 0.003) with SNHL onset. Additionally, morning chronotype was nominally associated with SSNHL onset using IVW method (OR = 1.37, 95% CI = 1.10-1.71, p = 0.006). However, there was no evidence for the causal effect of SNHL and SSNHL on different sleep traits (all p > 0.05). Sensitivity analysis showed that the results were stable. CONCLUSION Within the MR limitations, morning chronotype and daytime sleepiness were underlying causal contributors to the burden of SNHL, indicating that optimal sleep might facilitate the prevention and development of SNHL. LEVEL OF EVIDENCE 3 Laryngoscope, 134:4723-4729, 2024.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, People's Republic of China
| |
Collapse
|
9
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic tumor microenvironment. EMBO Rep 2024; 25:5080-5112. [PMID: 39415049 PMCID: PMC11549407 DOI: 10.1038/s44319-024-00288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are prime therapeutic targets due to their pro-tumorigenic functions, but varying efficacy of macrophage-targeting therapies highlights our incomplete understanding of how macrophages are regulated within the tumor microenvironment (TME). The circadian clock is a key regulator of macrophage function, but how circadian rhythms of macrophages are influenced by the TME remains unknown. Here, we show that conditions associated with the TME such as polarizing stimuli, acidic pH, and lactate can alter circadian rhythms in macrophages. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate pH-driven changes in circadian rhythms are not mediated solely by cAMP signaling. Remarkably, circadian disorder of TAMs was revealed by clock correlation distance analysis. Our data suggest that heterogeneity in circadian rhythms within the TAM population level may underlie this circadian disorder. Finally, we report that circadian regulation of macrophages suppresses tumor growth in a murine model of pancreatic cancer. Our work demonstrates a novel mechanism by which the TME influences macrophage biology through modulation of circadian rhythms.
Collapse
Affiliation(s)
- Amelia M Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Kristina Morris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Cameron Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
10
|
Guo DZ, Chen Y, Meng Y, Bian JJ, Wang Y, Wang JF. Bidirectional Interaction of Sepsis and Sleep Disorders: The Underlying Mechanisms and Clinical Implications. Nat Sci Sleep 2024; 16:1665-1678. [PMID: 39444661 PMCID: PMC11498039 DOI: 10.2147/nss.s485920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
Sepsis is defined as life-threatening organ injury induced by infection, with high incidence and mortality. Sleep disorder is prevalent in septic patients and approximately 50% of patients with sepsis may develop atypical sleep patterns, but many of them may have been underdiagnosed by physicians. Sleep disorders and sepsis exhibit a close bidirectional relationship, with each condition significantly influencing the other. Conversely, sleep deprivation, sleep dysrhythmia and sleep fragmentation have been shown to impact the outcome of sepsis. This review endeavors to offer a comprehensive understanding of the intricate mechanisms that underpin the interplay between sepsis and sleep disorders, in addition to exploring potential clinical intervention strategies that could enhance outcomes for patients suffering from sepsis.
Collapse
Affiliation(s)
- De-Zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Meng
- Department of Intensive Care, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin-Jun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
12
|
R R, Prüser T, Schulz NKE, Mayer PMF, Ogueta M, Stanewsky R, Kurtz J. Deciphering a Beetle Clock: Individual and Sex-Dependent Variation in Daily Activity Patterns. J Biol Rhythms 2024; 39:484-501. [PMID: 39082472 PMCID: PMC11416735 DOI: 10.1177/07487304241263619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Circadian clocks are inherent to most organisms, including cryptozoic animals that seldom encounter direct light, and regulate their daily activity cycles. A conserved suite of clock genes underpins these rhythms. In this study, we explore the circadian behaviors of the red flour beetle Tribolium castaneum, a significant pest impacting stored grain globally. We report on how daily light and temperature cues synchronize distinct activity patterns in these beetles, characterized by reduced morning activity and increased evening activity, anticipating the respective environmental transitions. Although less robust, rhythmicity in locomotor activity is maintained in constant dark and constant light conditions. Notably, we observed more robust rhythmic behaviors in males than females with individual variation exceeding those previously reported for other insect species. RNA interference targeting the Clock gene weakened locomotor activity rhythms. Our findings demonstrate the existence of a circadian clock and of clock-controlled behaviors in T. castaneum. Furthermore, they highlight substantial individual differences in circadian activity, laying the groundwork for future research on the relevance of individual variation in circadian rhythms in an ecological and evolutionary context.
Collapse
Affiliation(s)
- Reshma R
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Tobias Prüser
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Nora K. E. Schulz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Paula M. F. Mayer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Maite Ogueta
- Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| |
Collapse
|
13
|
Ni J, Zhou Q, Meng SY, Zhou TD, Tian T, Pan HF. Sleep patterns, physical activity, genetic susceptibility, and incident rheumatoid arthritis: a prospective cohort study. BMC Med 2024; 22:390. [PMID: 39272142 PMCID: PMC11401439 DOI: 10.1186/s12916-024-03615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Sleep and physical activity (PA) are thought to be interconnected with the development of rheumatoid arthritis (RA). However, the precise nature and extent of these relationships have yet to be fully quantified. This study aimed to quantify the longitudinal effects of sleep behaviors, PA, and genetic susceptibility on the incidence of RA and to estimate the combined effects and interactions among these exposures. METHODS A total of 363,211 adults were derived from a large European cohort. We incorporated five sleep behaviors (sleep duration, insomnia, snoring, chronotype, and daytime sleepiness) to generate sleep patterns, which were defined based on healthy sleep scores. Multivariate-adjusted Cox proportional hazard models were conducted to assess the individual and combined associations of sleep patterns, PA, and genetic susceptibility with the risk of RA occurrence. Multiplicative and additive interactions were estimated by Pinteraction and relative excess risk due to interaction (RERI) between each of the two exposures. RESULTS During a follow-up of 12.5 years, 4262 RA cases were ascertained. A healthy sleep pattern was associated with a decreased risk of RA in a dose-response manner, with an adjusted hazard ratio (HR) of 0.79 (95% confidence interval [CI] = 0.75-0.84), independent of traditional risk factors and genetic predisposition. Under the restricted cubic splines model, a non-linear association was detected for PA and RA risk. Participants in the intermediate quintile 3 showed the lowest risk for developing RA, with a HR 95% CI of 0.84 (0.76-0.92). Moreover, there was an additive interaction effect of intermediate sleep pattern and PA, with a 0.45 (95% CI = 0.02-0.87) RERI of developing RA. Additionally, individuals at high genetic risk had the greatest 10-year absolute risk reduction (10.58 per 1000 person-years) when adopting both favorable behaviors. CONCLUSIONS A healthy sleep pattern and moderate PA were associated with a reduced risk of developing RA, which can offset the deleterious effects of predisposing genetic components. Implementing these modifiable lifestyle factors into public health practices is beneficial for RA prevention.
Collapse
Affiliation(s)
- Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Qiang Zhou
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shi-Ying Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting-Dong Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
14
|
Sagtaganov Z, Bekaryssova D. Complex rehabilitation of patients with rheumatoid arthritis. Rheumatol Int 2024; 44:1789-1793. [PMID: 39095530 DOI: 10.1007/s00296-024-05669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease characterized by symmetrical polyarthritis, joint pain, and morning stiffness. It significantly impairs physical condition and increases the risk of functional disability. While conventional treatments include drug therapy, many patients continue to experience symptoms and seek alternative therapies to improve their condition. This article describes two clinical cases of RA patients treated with a comprehensive rehabilitation program, including moderate-intensity walking, yoga, and nutritional therapy. The study aimed to evaluate this approach's effectiveness in improving the patients' functional capacity and quality of life. The first patient (50 year-old female) noted a significant reduction in the number of painful joints (by 14) and swollen joints (by 12) after a three-month rehabilitation course. The visual analog scale (VAS) pain level decreased from 80 mm to 50 mm, and the duration of morning stiffness decreased from several hours to 80 min. The second patient (45 year-old female) also showed improvement: painful joints decreased from 13 to 2, and swollen joints from 7 to 1. VAS pain level decreased from 80 mm to 40 mm, and morning stiffness decreased by 50 min. Both patients reported an average reduction in excess weight by 1.65 kg/m², along with improvements in general well-being and mood. The results confirm that a comprehensive rehabilitation approach, including physical activity, yoga, and diet therapy, significantly improves the condition of RA patients. This approach helps reduce pain, decrease the number of inflamed joints, and improve overall functionality. Further studies with a larger sample are needed to determine the optimal rehabilitation strategies and the most impactful interventions.
Collapse
Affiliation(s)
- Zhaxybek Sagtaganov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Dana Bekaryssova
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.
| |
Collapse
|
15
|
Jiang J, Meng X, Wang Y, Zhuang Z, Du T, Yan J. Effect of aberrant fructose metabolism following SARS-CoV-2 infection on colorectal cancer patients' poor prognosis. PLoS Comput Biol 2024; 20:e1012412. [PMID: 39331675 PMCID: PMC11463760 DOI: 10.1371/journal.pcbi.1012412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024] Open
Abstract
Most COVID-19 patients have a positive prognosis, but patients with additional underlying diseases are more likely to have severe illness and increased fatality rates. Numerous studies indicate that cancer patients are more prone to contract SARS-CoV-2 and develop severe COVID-19 or even dying. In the recent transcriptome investigations, it is demonstrated that the fructose metabolism is altered in patients with SARS-CoV-2 infection. However, cancer cells can use fructose as an extra source of energy for growth and metastasis. Furthermore, enhanced living conditions have resulted in a notable rise in fructose consumption in individuals' daily dietary habits. We therefore hypothesize that the poor prognosis of cancer patients caused by SARS-CoV-2 may therefore be mediated through fructose metabolism. Using CRC cases from four distinct cohorts, we built and validated a predictive model based on SARS-CoV-2 producing fructose metabolic anomalies by coupling Cox univariate regression and lasso regression feature selection algorithms to identify hallmark genes in colorectal cancer. We also developed a composite prognostic nomogram to improve clinical practice by integrating the characteristics of aberrant fructose metabolism produced by this novel coronavirus with age and tumor stage. To obtain the genes with the greatest potential prognostic values, LASSO regression analysis was performed, In the TCGA training cohort, patients were randomly separated into training and validation sets in the ratio of 4: 1, and the best risk score value for each sample was acquired by lasso regression analysis for further analysis, and the fifteen genes CLEC4A, FDFT1, CTNNB1, GPI, PMM2, PTPRD, IL7, ALDH3B1, AASS, AOC3, SEPINE1, PFKFB1, FTCD, TIMP1 and GATM were finally selected. In order to validate the model's accuracy, ROC curve analysis was performed on an external dataset, and the results indicated that the model had a high predictive power for the prognosis prediction of patients. Our study provides a theoretical foundation for the future targeted regulation of fructose metabolism in colorectal cancer patients, while simultaneously optimizing dietary guidance and therapeutic care for colorectal cancer patients in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jiaxin Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Yibo Wang
- Department of Bioinformatics, China Medical University, Shenyang, China
| | - Ziqian Zhuang
- Department of Bioinformatics, China Medical University, Shenyang, China
| | - Ting Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic pH of the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580339. [PMID: 38405770 PMCID: PMC10888792 DOI: 10.1101/2024.02.14.580339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Macrophages are prime therapeutic targets due to their pro-tumorigenic and immunosuppressive functions in tumors, but the varying efficacy of therapeutic approaches targeting macrophages highlights our incomplete understanding of how the tumor microenvironment (TME) can influence regulation of macrophages. The circadian clock is a key internal regulator of macrophage function, but how circadian rhythms of macrophages may be influenced by the tumor microenvironment remains unknown. We found that conditions associated with the TME such as polarizing stimuli, acidic pH, and elevated lactate concentrations can each alter circadian rhythms in macrophages. Circadian rhythms were enhanced in pro-resolution macrophages but suppressed in pro-inflammatory macrophages, and acidic pH had divergent effects on circadian rhythms depending on macrophage phenotype. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate that pH-driven changes in circadian rhythms are not mediated solely by the cAMP signaling pathway. Remarkably, clock correlation distance analysis of tumor-associated macrophages (TAMs) revealed evidence of circadian disorder in TAMs. This is the first report providing evidence that circadian rhythms of macrophages are altered within the TME. Our data further suggest that heterogeneity in circadian rhythms at the population level may underlie this circadian disorder. Finally, we sought to determine how circadian regulation of macrophages impacts tumorigenesis, and found that tumor growth was suppressed when macrophages had a functional circadian clock. Our work demonstrates a novel mechanism by which the tumor microenvironment can influence macrophage biology through altering circadian rhythms, and the contribution of circadian rhythms in macrophages to suppressing tumor growth.
Collapse
|
17
|
Lanza G, Mogavero MP, Salemi M, Ferri R. The Triad of Sleep, Immunity, and Cancer: A Mediating Perspective. Cells 2024; 13:1246. [PMID: 39120277 PMCID: PMC11311741 DOI: 10.3390/cells13151246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The triadic interplay between sleep, immunity, and cancer represents a growing area of biomedical research with significant clinical implications. This review synthesizes the current knowledge on how sleep influences immune function, the immune system's role in cancer dynamics, and the direct connections between sleep patterns and cancer risk. After a comprehensive overview of the interrelationships among these three domains, the mechanisms of sleep in immune function are described, detailing how sleep regulates the immune system, the effects of sleep duration and quality on immune responses, and the underlying molecular and cellular mechanisms. Also, the complex relationship between immunity and cancer is explored, highlighting the immune system's role in cancer prevention and progression, immune surveillance, tumor microenvironment, and the implications of immunodeficiency and immune modulation on cancer risk. The direct connections between sleep and cancer are then described, presenting epidemiological evidence linking sleep patterns to cancer risk, biological mechanisms that influence cancer development, and the role of sleep disorders in cancer prognosis. The mediating role of sleep between immunity and cancer is highlighted, proposing hypothesized pathways, summarizing evidence from experimental and clinical studies, and evaluating the impact of sleep interventions on immune function and cancer outcomes. This review concludes by discussing the clinical implications and future directions, emphasizing the potential for sleep-based interventions in cancer prevention and treatment, the integration of sleep management in oncology and immunotherapy, and outlining a future research agenda. This agenda includes understanding the mechanisms of the sleep-immunity-cancer interplay, conducting epidemiological studies on sleep and cancer risk, assessing the impact of sleep management in cancer treatment protocols, exploring sleep and tumor microenvironment interactions, and considering policy and public health implications. Through a detailed examination of these interconnected pathways, this review underscores the critical importance of sleep in modulating immune function and cancer outcomes, advocating for interdisciplinary research and clinical strategies to harness this knowledge for improved health outcomes.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (G.L.); (M.S.)
- Department of Surgery and Medical–Surgical Specialties, University of Catania, 95100 Catania, Italy
| | - Maria P. Mogavero
- Vita-Salute San Raffaele University, 20132 Milan, Italy;
- Division of Neuroscience, Sleep Disorders Center, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Michele Salemi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (G.L.); (M.S.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (G.L.); (M.S.)
| |
Collapse
|
18
|
Nelson RJ, DeVries AC, Prendergast BJ. Researchers need to better address time-of-day as a critical biological variable. Proc Natl Acad Sci U S A 2024; 121:e2316959121. [PMID: 39018194 PMCID: PMC11287146 DOI: 10.1073/pnas.2316959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Affiliation(s)
- Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV26505
| | - A. Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV26505
- Department of Medicine, Cancer Institute, West Virginia University, Morgantown, WV26505
| | - Brian J. Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL60637
| |
Collapse
|
19
|
An R, Blackwell VK, Harandi B, Gibbons AC, Siu O, Irby I, Rees A, Cornejal N, Sattler KM, Sheng T, Syracuse NC, Loftus D, Santa Maria SR, Cekanaviciute E, Reinsch SS, Ray HE, Paul AM. Influence of the spaceflight environment on macrophage lineages. NPJ Microgravity 2024; 10:63. [PMID: 38862517 PMCID: PMC11166655 DOI: 10.1038/s41526-023-00293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2024] Open
Abstract
Spaceflight and terrestrial spaceflight analogs can alter immune phenotypes. Macrophages are important immune cells that bridge the innate and adaptive immune systems and participate in immunoregulatory processes of homeostasis. Furthermore, macrophages are critically involved in initiating immunity, defending against injury and infection, and are also involved in immune resolution and wound healing. Heterogeneous populations of macrophage-type cells reside in many tissues and cause a variety of tissue-specific effects through direct or indirect interactions with other physiological systems, including the nervous and endocrine systems. It is vital to understand how macrophages respond to the unique environment of space to safeguard crew members with appropriate countermeasures for future missions in low Earth orbit and beyond. This review highlights current literature on macrophage responses to spaceflight and spaceflight analogs.
Collapse
Affiliation(s)
- Rocky An
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Cornell University, Department of Biological and Environmental Engineering and Sibley School of Mechanical and Aerospace Engineering, Ithaca, NY, 14853, USA
| | - Virginia Katherine Blackwell
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, 02139, USA
| | - Bijan Harandi
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Tufts University, Department of Chemistry, Medford, MA, 02155, USA
| | - Alicia C Gibbons
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of California San Diego, Department of Cellular and Molecular Medicine, La Jolla, CA, 92093, USA
| | - Olivia Siu
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Iris Irby
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Amy Rees
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nadjet Cornejal
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Brooklyn College, Department of Natural and Behavioral Sciences, Brooklyn, NY, 11210, USA
| | - Kristina M Sattler
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Ohio State University, Department of Physiology and Cell Biology, Columbus, OH, 43210, USA
| | - Tao Sheng
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of Pittsburgh, Department of Computer Science, Pittsburgh, PA, 15260, USA
| | - Nicholas C Syracuse
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- North Carolina State University, Department of Molecular and Structural Biochemistry and Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - David Loftus
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sergio R Santa Maria
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Egle Cekanaviciute
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sigrid S Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Hami E Ray
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
- ASRC Federal, Inc, Beltsville, MD, 20705, USA
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA.
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA.
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA.
| |
Collapse
|
20
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Desai D, Momin A, Hirpara P, Jha H, Thaker R, Patel J. Exploring the Role of Circadian Rhythms in Sleep and Recovery: A Review Article. Cureus 2024; 16:e61568. [PMID: 38962617 PMCID: PMC11221196 DOI: 10.7759/cureus.61568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Sleep is essential for every living organism. Humans spend about one-third of their lives sleeping. Sleep has been studied extensively, and the role of sleep in psychological, mental, and physical well-being is established to be the best. The rhythm of the brain between wakefulness and sleep is called the circadian rhythm, which is mainly controlled by melatonin and the pineal gland. The imbalance of this rhythm can lead to devastating effects on health. Vigorous workouts close to bedtime can interfere with falling asleep. Meal timing and composition can significantly affect sleep quality. It is advised to avoid large meals, caffeine, and alcohol before bedtime. Heavy meals close to bedtime can lead to poor sleep and hormone disruption. By following these guidelines enumerated in the article, individuals can improve sleep quality and overall health. Sleep cycles, especially rapid eye movement sleep, have a profound influence on mental and physical health. Adhering to recommended sleep practices enhances bodily restoration, fortifies the immune system, and upholds metabolic equilibrium. Sleep hygiene aligned with circadian rhythms is crucial for disease prevention and well-being. Healthcare professionals should prioritize sleep optimization strategies for patient care and public health.
Collapse
Affiliation(s)
- Dev Desai
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Aryan Momin
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Priya Hirpara
- Internal Medicine, Gujarat Medical Education and Research Society Medical College, Vadnagar, IND
| | - Hemali Jha
- Internal Medicine, Integral Institute of Medical Sciences and Research Centre, Lucknow, IND
| | - Ravi Thaker
- Physiology, Dr. Narendra Dharmsinh Desai Faculty of Medical Science and Research, Dharmsinh Desai University, Nadiad, IND
| | - Jitendra Patel
- Physiology, Gujarat Medical Education and Research Society Medical College, Vadnagar, IND
| |
Collapse
|
22
|
Rani A. RAR-related orphan receptor alpha and the staggerer mice: a fine molecular story. Front Endocrinol (Lausanne) 2024; 14:1300729. [PMID: 38766309 PMCID: PMC11099308 DOI: 10.3389/fendo.2023.1300729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024] Open
Abstract
The retinoic acid-related orphan receptor alpha (RORα) protein first came into the limelight due to a set of staggerer mice, discovered at the Jackson Laboratories in the United States of America by Sidman, Lane, and Dickie (1962) and genetically deciphered by Hamilton et al. in 1996. These staggerer mice exhibited cerebellar defects, an ataxic gait, a stagger along with several other developmental abnormalities, compensatory mechanisms, and, most importantly, a deletion of 160 kilobases (kb), encompassing the RORα ligand binding domain (LBD). The discovery of the staggerer mice and the subsequent discovery of a loss of the LBD within the RORα gene of these mice at the genetic level clearly indicated that RORα's LBD played a crucial role in patterning during embryogenesis. Moreover, a chance study by Roffler-Tarlov and Sidman (1978) noted reduced concentrations of glutamic acid levels in the staggerer mice, indicating a possible role for the essence of a nutritionally balanced diet. The sequential organisation of the building blocks of intact genes, requires the nucleotide bases of deoxyribonucleic acid (DNA): purines and pyrimidines, both of which are synthesized, upon a constant supply of glutamine, an amino acid fortified in a balanced diet and a byproduct of the carbohydrate and lipid metabolic pathways. A nutritionally balanced diet, along with a metabolic "enzymatic machinery" devoid of mutations/aberrations, was essential in the uninterrupted transcription of RORα during embryogenesis. In addition to the above, following translation, a ligand-responsive RORα acts as a "molecular circadian regulator" during embryogenesis and not only is expressed selectively and differentially, but also promotes differential activity depending on the anatomical and pathological site of its expression. RORα is highly expressed in the central nervous system (CNS) and the endocrine organs. Additionally, RORα and the clock genes are core components of the circadian rhythmicity, with the expression of RORα fluctuating in a night-day-night sigmoidal pattern and undoubtedly serves as an endocrine-like, albeit "molecular-circadian regulator". Melatonin, a circadian hormone, along with tri-iodothyronine and some steroid hormones are known to regulate RORα-mediated molecular activity, with each of these hormones themselves being regulated rhythmically by the hypothalamic-pituitary axis (HPA). The HPA regulates the circadian rhythm and cyclical release of hormones, in a self-regulatory feedback loop. Irregular sleep-wake patterns affect circadian rhythmicity and the ability of the immune system to withstand infections. The staggerer mice with their thinner bones, an altered skeletal musculature, an aberrant metabolic profile, the ataxic gait and an underdeveloped cerebellar cortex; exhibited compensatory mechanisms, that not only allowed the survival of the staggerer mice, but also enhanced protection from microbial invasions and resistance to high-fat-diet induced obesity. This review has been compiled in its present form, more than 14 years later after a chromatin immunoprecipitation (ChIP) cloning and sequencing methodology helped me identify signal transducer and activator of transcription 5 (STAT5) target sequences, one of which was mapped to the first intron of the RORα gene. The 599-base-long sequence containing one consensus TTCNNNGAA (TTCN3GAA) gamma-activated sequence (GAS) and five other non-consensus TTN5AA sequences had been identified from the clones isolated from the STAT5 target sites (fragments) in human phytohemagglutinin-activated CD8+ T lymphocytes, during my doctoral studies between 2006 and 2009. Most importantly, preliminary studies noted a unique RORα expression profile, during a time-course study on the ribonucleic acid (RNA), extracted from human phytohemagglutinin (PHA) activated CD8+ T lymphocytes stimulated with interleukin-2 (IL-2). This review mainly focuses on the "staggerer mice" with one of its first roles materialising during embryogenesis, a molecular-endocrine mediated circadian-like regulatory process.
Collapse
Affiliation(s)
- Aradhana Rani
- Medical Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
- Human Resource Development and Management, Indian Institute of Technology (IIT) Kharagpur, West Bengal, India
- Immunology, King’s College London, London, United Kingdom
| |
Collapse
|
23
|
Lin J, Lin X, Zheng R, Lin K, Khan M, Huang X, Tian Y, Wang B, Xu B, Yuan Y, Huang Z. Impact of chrono-radiotherapy on the prognosis and treatment-related toxicity in patients with locally advanced nasopharyngeal carcinoma: A multicenter propensity-matched study. Chronobiol Int 2024; 41:587-597. [PMID: 38606920 DOI: 10.1080/07420528.2024.2337887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The timing of radiotherapy (RT) delivery has been reported to affect both cancer survival and treatment toxicity. However, the association among the timing of RT delivery, survival, and toxicity in locally advanced nasopharyngeal carcinoma (LA-NPC) has not been investigated. We retrospectively reviewed patients diagnosed with LA-NPC who received definitive RT at multiple institutions. The median RT delivery daytime was categorized as morning (DAY) and night (NIGHT). Seasonal variations were classified into the darker half of the year (WINTER) and brighter half (SUMMER) according to the sunshine duration. Cohorts were balanced according to baseline characteristics using propensity score matching (PSM). Survival and toxicity outcomes were evaluated using Cox regression models. A total of 355 patients were included, with 194/161 in DAY/NIGHT and 187/168 in WINTER/SUMMER groups. RT delivered during the daytime prolonged the 5-year overall survival (OS) (90.6% vs. 80.0%, p = 0.009). However, the significance of the trend was lost after PSM (p = 0.068). After PSM analysis, the DAY cohort derived a greater benefit in 5-year progression-free survival (PFS) (85.6% vs. 73.4%, p = 0.021) and distant metastasis-free survival (DMFS) (89.2% vs. 80.8%, p = 0.051) in comparison with the NIGHT subgroup. Moreover, multivariate analysis showed that daytime RT was an independent prognostic factor for OS, PFS, and DMFS. Furthermore, daytime RT delivery was associated with an increase in the incidence of leukopenia and radiation dermatitis. RT delivery in SUMMER influenced only the OS significantly (before PSM: p = 0.051; after PSM: p = 0.034). There was no association between toxicity and the timing of RT delivery by season. In LA-NPC, the daytime of radical RT served as an independent prognostic factor. Furthermore, RT administered in the morning resulted in more severe toxic side effects than that at night, which needs to be confirmed in a future study.
Collapse
Affiliation(s)
- Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiantao Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
- Department of Digestive, Hematological, and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou, Fujian, People's Republic of China
| | - Kehai Lin
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiuting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - BenHua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
- Department of Digestive, Hematological, and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou, Fujian, People's Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Ruiz-Torres DA, Naegele S, Podury A, Wirth L, Shalhout SZ, Faden DL. Immunotherapy time of infusion impacts survival in head and neck cancer: A propensity score matched analysis. Oral Oncol 2024; 151:106761. [PMID: 38507992 DOI: 10.1016/j.oraloncology.2024.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
The adaptive immune response is physiologically regulated by the circadian rhythm. Data in lung and melanoma malignancies suggests immunotherapy infusions earlier in the day may be associated with improved response; however, the optimal time of administration for patients with head and neck squamous cell carcinoma (HNSCC) is not known. We aimed to evaluate the association of immunotherapy infusion time with overall survival (OS) and progression free survival (PFS) in patients with HNSCC in an Institutional Review Board-approved, retrospective cohort study. 113 patients met study inclusion criteria and 98 patients were included in a propensity score-matched cohort. In the full unmatched cohort (N = 113), each additional 20 % of infusions received after 1500 h conferred an OS hazard ratio (HR) of 1.35 (95 % C.I.1.2-1.6; p-value = 0.0003) and a PFS HR of 1.34 (95 % C.I.1.2-1.6; p-value < 0.0001). A propensity score-matched analysis of patients who did or did not receive ≥20 % of infusions after 1500 h showed that those who were administered ≥20 % of infusions after 1500 h trended towards a shorter OS (HR = 1.35; p-value = 0.26) and a shorter PFS (HR = 1.57, 95 % C.I. 1.02-2.42, p-value = 0.04). Each additional 20 % of infusions received after 1500 h remained robust in the matched cohort multivariable analysis and was associated with shorter OS (adjusted HR = 1.4 (95 % C.I.1.2-1.8), p-value < 0.001). Patients with advanced HNSCC who received more of their infusions in the afternoon were associated with shorter OS and PFS and scheduling immunotherapy infusions earlier in the day may be warranted.
Collapse
Affiliation(s)
- Daniel A Ruiz-Torres
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Saskia Naegele
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Archana Podury
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Lori Wirth
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sophia Z Shalhout
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel L Faden
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
25
|
Wang X, Rao J, Zhang L, Liu X, Zhang Y. Identification of circadian rhythm-related gene classification patterns and immune infiltration analysis in heart failure based on machine learning. Heliyon 2024; 10:e27049. [PMID: 38509983 PMCID: PMC10950509 DOI: 10.1016/j.heliyon.2024.e27049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/17/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Background Circadian rhythms play a key role in the failing heart, but the exact molecular mechanisms linking changes in the expression of circadian rhythm-related genes to heart failure (HF) remain unclear. Methods By intersecting differentially expressed genes (DEGs) between normal and HF samples in the Gene Expression Omnibus (GEO) database with circadian rhythm-related genes (CRGs), differentially expressed circadian rhythm-related genes (DE-CRGs) were obtained. Machine learning algorithms were used to screen for feature genes, and diagnostic models were constructed based on these feature genes. Subsequently, consensus clustering algorithms and non-negative matrix factorization (NMF) algorithms were used for clustering analysis of HF samples. On this basis, immune infiltration analysis was used to score the immune infiltration status between HF and normal samples as well as among different subclusters. Gene Set Variation Analysis (GSVA) evaluated the biological functional differences among subclusters. Results 13 CRGs showed differential expression between HF patients and normal samples. Nine feature genes were obtained through cross-referencing results from four distinct machine learning algorithms. Multivariate LASSO regression and external dataset validation were performed to select five key genes with diagnostic value, including NAMPT, SERPINA3, MAPK10, NPPA, and SLC2A1. Moreover, consensus clustering analysis could divide HF patients into two distinct clusters, which exhibited different biological functions and immune characteristics. Additionally, two subgroups were distinguished using the NMF algorithm based on circadian rhythm associated differentially expressed genes. Studies on immune infiltration showed marked variances in levels of immune infiltration between these subgroups. Subgroup A had higher immune scores and more widespread immune infiltration. Finally, the Weighted Gene Co-expression Network Analysis (WGCNA) method was utilized to discern the modules that had the closest association with the two observed subgroups, and hub genes were pinpointed via protein-protein interaction (PPI) networks. GRIN2A, DLG1, ERBB4, LRRC7, and NRG1 were circadian rhythm-related hub genes closely associated with HF. Conclusion This study provides valuable references for further elucidating the pathogenesis of HF and offers beneficial insights for targeting circadian rhythm mechanisms to regulate immune responses and energy metabolism in HF treatment. Five genes identified by us as diagnostic features could be potential targets for therapy for HF.
Collapse
Affiliation(s)
- Xuefu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Rao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li Zhang
- Guangxi University, Nanning, China
| | | | - Yufeng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Patel JS, Woo Y, Draper A, Jansen CS, Carlisle JW, Innominato PF, Lévi FA, Dhabaan L, Master VA, Bilen MA, Khan MK, Lowe MC, Kissick H, Buchwald ZS, Qian DC. Impact of immunotherapy time-of-day infusion on survival and immunologic correlates in patients with metastatic renal cell carcinoma: a multicenter cohort analysis. J Immunother Cancer 2024; 12:e008011. [PMID: 38531662 PMCID: PMC10966813 DOI: 10.1136/jitc-2023-008011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Recent studies have demonstrated that earlier time-of-day infusion of immune checkpoint inhibitors (ICIs) is associated with longer progression-free survival (PFS) and overall survival (OS) among patients with metastatic melanoma and non-small cell lung cancer. These data are in line with growing preclinical evidence that the adaptive immune response may be more effectively stimulated earlier in the day. We sought to determine the impact of time-of-day ICI infusions on outcomes among patients with metastatic renal cell carcinoma (mRCC). METHODS The treatment records of all patients with stage IV RCC who began ICI therapy within a multicenter academic hospital system between 2015 and 2020 were reviewed. The associations between the proportion of ICI infusions administered prior to noon (denoting morning infusions) and PFS and OS were evaluated using univariate and multivariable Cox proportional hazards regression. RESULTS In this study, 201 patients with mRCC (28% women) received ICIs and were followed over a median of 18 months (IQR 5-30). The median age at the time of ICI initiation was 63 years (IQR 56-70). 101 patients (50%) received ≥20% of their ICI infusions prior to noon (Group A) and 100 patients (50%) received <20% of infusions prior to noon (Group B). Across the two comparison groups, initial ICI agents consisted of nivolumab (58%), nivolumab plus ipilimumab (34%), and pembrolizumab (8%). On univariate analysis, patients in Group A had longer PFS and OS compared with those in Group B (PFS HR 0.67, 95% CI 0.48 to 0.94, Punivar=0.020; OS HR 0.57, 95% CI 0.34 to 0.95, Punivar=0.033). These significant findings persisted following multivariable adjustment for age, sex, performance status, International Metastatic RCC Database Consortium risk score, pretreatment lactate dehydrogenase, histology, and presence of bone, brain, and liver metastases (PFS HR 0.70, 95% CI 0.50 to 0.98, Pmultivar=0.040; OS HR 0.57, 95% CI 0.33 to 0.98, Pmultivar=0.043). CONCLUSIONS Patients with mRCC may benefit from earlier time-of-day receipt of ICIs. Our findings are consistent with established mechanisms of chrono-immunology, as well as with preceding analogous studies in melanoma and lung cancer. Additional prospective randomized trials are warranted.
Collapse
Affiliation(s)
- Jimmy S Patel
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Yena Woo
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Amber Draper
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | | - Jennifer W Carlisle
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Pasquale F Innominato
- Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Francis A Lévi
- Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Viraj A Master
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehmet A Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Mohammad K Khan
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Michael C Lowe
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Haydn Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zachary S Buchwald
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - David C Qian
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
27
|
Camberos-Barraza J, Camacho-Zamora A, Bátiz-Beltrán JC, Osuna-Ramos JF, Rábago-Monzón ÁR, Valdez-Flores MA, Angulo-Rojo CE, Guadrón-Llanos AM, Picos-Cárdenas VJ, Calderón-Zamora L, Norzagaray-Valenzuela CD, Cárdenas-Torres FI, De la Herrán-Arita AK. Sleep, Glial Function, and the Endocannabinoid System: Implications for Neuroinflammation and Sleep Disorders. Int J Mol Sci 2024; 25:3160. [PMID: 38542134 PMCID: PMC10970053 DOI: 10.3390/ijms25063160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
The relationship between sleep, glial cells, and the endocannabinoid system represents a multifaceted regulatory network with profound implications for neuroinflammation and cognitive function. The molecular underpinnings of sleep modulation by the endocannabinoid system and its influence on glial cell activity are discussed, shedding light on the reciprocal relationships that govern these processes. Emphasis is placed on understanding the role of glial cells in mediating neuroinflammatory responses and their modulation by sleep patterns. Additionally, this review examines how the endocannabinoid system interfaces with glia-immune signaling to regulate inflammatory cascades within the central nervous system. Notably, the cognitive consequences of disrupted sleep, neuroinflammation, and glial dysfunction are addressed, encompassing implications for neurodegenerative disorders, mood disturbances, and cognitive decline. Insights into the bidirectional modulation of cognitive function by the endocannabinoid system in the context of sleep and glial activity are explored, providing a comprehensive perspective on the potential mechanisms underlying cognitive impairments associated with sleep disturbances. Furthermore, this review examines potential therapeutic avenues targeting the endocannabinoid system to mitigate neuroinflammation, restore glial homeostasis, and normalize sleep patterns. The identification of novel therapeutic targets within this intricate regulatory network holds promise for addressing conditions characterized by disrupted sleep, neuroinflammation, and cognitive dysfunction. This work aims to examine the complexities of neural regulation and identify potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Juan F. Osuna-Ramos
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Easton DF, Gupta CC, Vincent GE, Ferguson SA. Move the night way: how can physical activity facilitate adaptation to shift work? Commun Biol 2024; 7:259. [PMID: 38431743 PMCID: PMC10908783 DOI: 10.1038/s42003-024-05962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Shift work, involving night work, leads to impaired sleep, cognition, health and wellbeing, and an increased risk of occupational incidents. Current countermeasures include circadian adaptation to phase shift circadian biomarkers. However, evidence of real-world circadian adaptation is found primarily in occupations where light exposure is readily controlled. Despite this, non-photic adaptation to shift work remains under researched. Other markers of shift work adaptation exist (e.g., improvements in cognition and wellbeing outcomes) but are relatively unexplored. Timeframes for shift work adaptation involve changes which occur over a block of shifts, or over a shift working career. We propose an additional shift work adaptation timeframe exists which encompasses acute within shift changes in markers of adaptation. We also propose that physical activity might be an accessible and cost-effective countermeasure that could influence multiple markers of adaptation across three timeframes (Within Shift, Within Block, Within Work-span). Finally, practical considerations for shift workers, shift work industries and future research are identified.
Collapse
Affiliation(s)
- Dayna F Easton
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Wayville, SA, Australia.
| | - Charlotte C Gupta
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Wayville, SA, Australia
| | - Grace E Vincent
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Wayville, SA, Australia
| | - Sally A Ferguson
- Appleton Institute, Central Queensland University, Wayville, SA, Australia
| |
Collapse
|
29
|
Dong XX, Xie JY, Li DL, Dong Y, Zhang XF, Lanca C, Grzybowski A, Pan CW. Association of sleep traits with myopia in children and adolescents: A meta-analysis and Mendelian randomization study. Prev Med 2024; 180:107893. [PMID: 38342383 DOI: 10.1016/j.ypmed.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE The association between sleep and myopia in children and adolescents has been reported, yet it remains controversial and inconclusive. This study aimed to investigate the influence of different sleep traits on the risk of myopia using meta-analytical and Mendelian randomization (MR) techniques. METHODS The literature search was performed in August 31, 2023 based on PubMed, Embase, Web of Science, and Cochrane library. The meta-analysis of observational studies reporting the relationship between sleep and myopia was conducted. MR analyses were carried out to assess the causal impact of genetic pre-disposition for sleep traits on myopia. RESULTS The results of the meta-analysis indicated a significant association between the risk of myopia and both short sleep duration [odds ratio (OR) = 1.23, 95% confidence interval (CI) = 1.08-1.42, P = 0.003] and long sleep duration (OR = 0.75, 95% CI = 0.66-0.86, P < 0.001). MR analyses revealed no significant causal associations of genetically determined sleep traits with myopia, including chronotype, sleep duration, short sleep duration and long sleep duration (all P > 0.05). CONCLUSIONS No evidence was found to support a causal relationship between sleep traits and myopia. While sleep may not independently predict the risk of myopia, the potential impact of sleep on the occurrence and development of myopia cannot be disregarded.
Collapse
Affiliation(s)
- Xing-Xuan Dong
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jia-Yu Xie
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi Dong
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiao-Feng Zhang
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Carla Lanca
- Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
30
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
31
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
32
|
Morales-Ghinaglia N, He F, Calhoun SL, Vgontzas AN, Liao J, Liao D, Bixler EO, Fernandez-Mendoza J. Circadian misalignment impacts the association of visceral adiposity with metabolic syndrome in adolescents. Sleep 2024; 47:zsad262. [PMID: 37792965 PMCID: PMC10782492 DOI: 10.1093/sleep/zsad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
STUDY OBJECTIVES Although insufficient sleep is a risk factor for metabolic syndrome (MetS), the circadian timing of sleep (CTS) is also involved in cardiac and metabolic regulation. We examined whether delays and deviations in the sleep midpoint (SM), a measure of CTS, modify the association between visceral adipose tissue (VAT) and MetS in adolescents. METHODS We evaluated 277 adolescents (median 16 years) who had at least 5 nights of at-home actigraphy (ACT), in-lab polysomnography (PSG), dual-energy X-ray absorptiometry (DXA) scan, and MetS score data. Sleep midpoint (SM), sleep irregularity (SI), and social jetlag (SJL) were examined as effect modifiers of the association between VAT and MetS, including waist circumference, blood pressure, insulin resistance, triglycerides, and cholesterol. Linear regression models adjusted for demographics, ACT-sleep duration, ACT-sleep variability, and PSG-apnea-hypopnea index. RESULTS The association between VAT and MetS was significantly stronger (p-values for interactions < 0.001) among adolescents with a schooldays SM later than 4:00 (2.66 [0.30] points increase in MetS score), a SI higher than 1 hour (2.49 [0.30]) or a SJL greater than 1.5 hours (2.15 [0.36]), than in those with an earlier SM (<3:00; 1.76 [0.28]), lower SI (<30 minutes; 0.98 [0.70]), or optimal SJL (<30 minutes; 1.08 [0.45]). CONCLUSIONS A delayed sleep phase, an irregular sleep-wake cycle, and greater social jetlag on schooldays identified adolescents in whom VAT had a stronger association with MetS. Circadian misalignment is a risk factor that enhances the impact of visceral obesity on cardiometabolic morbidity and should be a target of preventative strategies in adolescents.
Collapse
Affiliation(s)
- Natasha Morales-Ghinaglia
- Sleep Research and Treatment Center, College of Medicine, Department of Psychiatry and Behavioral Health, Penn State University, Hershey, PA, USA
| | - Fan He
- Department of Public Health Sciences, College of Medicine, Penn State University, Hershey, PA, USA
| | - Susan L Calhoun
- Sleep Research and Treatment Center, College of Medicine, Department of Psychiatry and Behavioral Health, Penn State University, Hershey, PA, USA
| | - Alexandros N Vgontzas
- Sleep Research and Treatment Center, College of Medicine, Department of Psychiatry and Behavioral Health, Penn State University, Hershey, PA, USA
| | - Jason Liao
- Department of Public Health Sciences, College of Medicine, Penn State University, Hershey, PA, USA
| | - Duanping Liao
- Department of Public Health Sciences, College of Medicine, Penn State University, Hershey, PA, USA
| | - Edward O Bixler
- Sleep Research and Treatment Center, College of Medicine, Department of Psychiatry and Behavioral Health, Penn State University, Hershey, PA, USA
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, College of Medicine, Department of Psychiatry and Behavioral Health, Penn State University, Hershey, PA, USA
| |
Collapse
|
33
|
Turner L, Charrouf R, Martínez-Vizcaíno V, Hutchison A, Heilbronn LK, Fernández-Rodríguez R. The effects of time-restricted eating versus habitual diet on inflammatory cytokines and adipokines in the general adult population: a systematic review with meta-analysis. Am J Clin Nutr 2024; 119:206-220. [PMID: 37865184 DOI: 10.1016/j.ajcnut.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Time-restricted eating (TRE) may facilitate weight loss, but its impact on inflammation remains unclear. Chronic inflammation can detrimentally increase risk of obesity-associated comorbidities. OBJECTIVES The aim of this systematic review was to synthesize and determine the effects of TRE on cytokine and adipokines (C-reactive protein [CRP], TNF alpha [TNF-α], interleukin-6 [IL-6], leptin, and adiponectin) in adults. METHODS PubMed, Scopus, Cochrane CENTRAL, and Web of Science were systematically searched for randomized controlled trials (RCTs) and non-RCTs to determine the effects of TRE on cytokines and adipokines in adults up to 23 June, 2023. Risk of bias was assessed using risk of Bias 2 tool for RCTs and the ROBINS-I for non-RCTs. The standardized mean differences (SMDs) and their 95% confidence intervals (CIs) were estimated with the DerSimonian-Laird method through random-effect models. The PRISMA recommendations were followed. RESULTS A total of 25 studies (13 RCTs, 12 non-RCTs) involving 936 participants were included. The pooled SMD for the effect of TRE compared with the control group on cytokines and adipokines was -0.11 (95% CI: -0.33, 0.12; I2 = 19.7%; n = 10 comparisons) for CRP; -0.25 (95% CI: -0.47, -0.03; I2 = 0%; n = 11 comparisons) for TNF-α; -0.09 (95% CI: -0.39, 0.21; I2 = 16.4%; n = 8 comparisons) for IL-6; -0.81 (95% CI: -1.37, -0.24; I2 = 65.3%; n = 5 comparisons) for leptin; and 0.07 (95% CI: -0.40, 0.54; I2 = 56.9%; n = 6 comparisons) for adiponectin. CONCLUSIONS Time-restricted eating may be an effective approach to reduce TNF-α and leptin levels in the general adult population. This review was registered at PROSPERO as CRD42022358162.
Collapse
Affiliation(s)
- Laurent Turner
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Rasha Charrouf
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Vicente Martínez-Vizcaíno
- Universidad de Castilla La-Mancha, Health and Social Research Centre, Cuenca, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Amy Hutchison
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Rubén Fernández-Rodríguez
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Universidad de Castilla La-Mancha, Health and Social Research Centre, Cuenca, Spain
| |
Collapse
|
34
|
Sadeghniiat-Haghighi K, Najafi A, Eftekhari S, Behkar A, Tarkhan S. Characterization of risk factors for obstructive sleep apnea and its association with absenteeism among nurses. Nursing 2024; 54:49-54. [PMID: 38126988 DOI: 10.1097/01.nurse.0000995580.16617.2c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
PURPOSE To characterize risk factors associated with obstructive sleep apnea (OSA) and its relationship with nurses' absenteeism. METHODS A cross-sectional study was conducted from 2018 to 2020 at a 1,000-bed academic hospital complex and biomedical research facility in Tehran, Iran. Participants were selected through consecutive sampling after obtaining ethical approval and informed consent. Data on demographics, medical conditions, occupational characteristics, and absenteeism were collected through face-to-face interviews. The STOP-Bang questionnaire was utilized to assess the probability of OSA. Statistical tests included the Mann-Whitney U, t-test, Chi-square, and multivariable regression. RESULTS In this study involving 304 nurses, the majority were female (81.3%), with an average age of 35. About 27 participants (8.9%) had a high probability of OSA, with male sex, older age, higher body mass index, neck circumference, and diastolic BP identified as the main determinants of OSA. Additionally, shift work and night shifts were associated with increased absenteeism, while sex showed no significant association with absenteeism rates among nurses. CONCLUSION Male sex, neck circumference (obesity), night shifts, and diastolic BP can predict OSA risk. However, unauthorized absence from work is not associated with a high risk for OSA (STOP-BANG ≥3) or the individual risk factors of OSA.
Collapse
Affiliation(s)
- Khosro Sadeghniiat-Haghighi
- At Tehran University of Medical Sciences in Tehran, Iran, Khosro Sadeghniiat-Haghighi is a professor at the Sleep Breathing Disorders Research Center, Arezu Najafi is an associate professor at the Occupational Sleep Research Center, Sahar Eftekhari is an associate professor at the Center for Research on Occupational Diseases, Atefeh Behkar is a research assistant at the Occupational Sleep Research Center, and Samareh Tarkhan works at the Center for Research on Occupational Diseases
| | | | | | | | | |
Collapse
|
35
|
Hughes BR, Shanaz S, Ismail-Sutton S, Wreglesworth NI, Subbe CP, Innominato PF. Circadian lifestyle determinants of immune checkpoint inhibitor efficacy. Front Oncol 2023; 13:1284089. [PMID: 38111535 PMCID: PMC10727689 DOI: 10.3389/fonc.2023.1284089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Immune Checkpoint Inhibitors (ICI) have revolutionised cancer care in recent years. Despite a global improvement in the efficacy and tolerability of systemic anticancer treatments, a sizeable proportion of patients still do not benefit maximally from ICI. Extensive research has been undertaken to reveal the immune- and cancer-related mechanisms underlying resistance and response to ICI, yet more limited investigations have explored potentially modifiable lifestyle host factors and their impact on ICI efficacy and tolerability. Moreover, multiple trials have reported a marked and coherent effect of time-of-day ICI administration and patients' outcomes. The biological circadian clock indeed temporally controls multiple aspects of the immune system, both directly and through mediation of timing of lifestyle actions, including food intake, physical exercise, exposure to bright light and sleep. These factors potentially modulate the immune response also through the microbiome, emerging as an important mediator of a patient's immune system. Thus, this review will look at critically amalgamating the existing clinical and experimental evidence to postulate how modifiable lifestyle factors could be used to improve the outcomes of cancer patients on immunotherapy through appropriate and individualised entrainment of the circadian timing system and temporal orchestration of the immune system functions.
Collapse
Affiliation(s)
- Bethan R. Hughes
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Sadiq Shanaz
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Seline Ismail-Sutton
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Nicholas I. Wreglesworth
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Christian P. Subbe
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
- Department of Acute Medicine, Ysbyty Gwynedd, Bangor, United Kingdom
| | - Pasquale F. Innominato
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Cancer Chronotherapy Team, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Research Unit ‘Chronotherapy, Cancers and Transplantation’, Faculty of Medicine, Paris-Saclay University, Villejuif, France
| |
Collapse
|
36
|
Li N, Liu C, Qiu L, Shen C, Zhang F, Lu Z, Zhou M, Sheng D, Liu Z. Study on the correlation between lifestyle and negative conversion time in patients diagnosed with coronavirus disease (COVID-19): a retrospective cohort study. BMC Public Health 2023; 23:2410. [PMID: 38049851 PMCID: PMC10696701 DOI: 10.1186/s12889-023-17163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND As of early December 2022, China eased the coronavirus disease (COVID-19) restriction, affecting over 80% of the country's population and posing a severe threat to public health. Previous studies mostly focused factors on the severity/mortality rate of hospitalized COVID-19 patients, but limited studies explored factors associated with virus-negative conversion, particularly lifestyles. Therefore, the aim of our study was to analyze the correlation between lifestyle factors and the negative conversion time in COVID-19 patients. METHODS We recruited individuals aged 18 years or older who had a clear time record for both the diagnosis and negative conversion of COVID-19 and completed the electronic questionnaire with no missing data. Dietary data collected from the questionnaire was analyzed using exploratory factor analysis to establish dietary patterns. Age segmentation was performed using restricted cubic spline (RCS) plots. The association between lifestyle factors and the time to negative conversion in different age groups, was assessed using Kaplan-Meier plots and Cox regression analysis. RESULT Out of 514 participants, all achieved viral negative conversion within a median time of 11 days. Based on nutrient intake, we identified four dietary patterns. The relationship between age and negative conversion rate, as depicted by RCS plots, exhibited an inverted "U" shape. We categorized age into three segments: <35 years, 35-45 years, and ≥ 45 years. For individuals under 35, our study indicated that a higher protein intake was linked to a faster recovery among COVID-19 patients, while medical staff or those receiving prescription treatments exhibited a slower recovery rate (P < 0.05). The 35 ~ 45 age group showed that adequate sleep and physical exercise were associated with a shorter time to negative conversion, whereas southern regions and a higher intake of carbohydrates were related with a longer conversion time (P < 0.05). Among individuals aged ≥ 45 years, the negative conversion time was primarily associated with physical exercise and being a medical staff member(P < 0.05). CONCLUSION Our research suggests that adequate sleep, physical exercise and a higher protein intake can help alleviate COVID-19 symptoms, while a higher level of carbohydrates intake may hinder recovery from COVID-19.
Collapse
Affiliation(s)
- Nan Li
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Shangcheng District, China
| | - Chenbing Liu
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Shangcheng District, China
| | - Lihong Qiu
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Shangcheng District, China
| | - Chao Shen
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Shangcheng District, China
| | - Feng Zhang
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Shangcheng District, China
| | - Zhangfan Lu
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Shangcheng District, China
| | - Menghao Zhou
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Shangcheng District, China
| | - Di Sheng
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Shangcheng District, China
| | - Zhong Liu
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Shangcheng District, China.
| |
Collapse
|
37
|
Castillejos-López M, Romero Y, Varela-Ordoñez A, Flores-Soto E, Romero-Martinez BS, Velázquez-Cruz R, Vázquez-Pérez JA, Ruiz V, Gomez-Verjan JC, Rivero-Segura NA, Camarena Á, Torres-Soria AK, Gonzalez-Avila G, Sommer B, Solís-Chagoyán H, Jaimez R, Torres-Espíndola LM, Aquino-Gálvez A. Hypoxia Induces Alterations in the Circadian Rhythm in Patients with Chronic Respiratory Diseases. Cells 2023; 12:2724. [PMID: 38067152 PMCID: PMC10706372 DOI: 10.3390/cells12232724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The function of the circadian cycle is to determine the natural 24 h biological rhythm, which includes physiological, metabolic, and hormonal changes that occur daily in the body. This cycle is controlled by an internal biological clock that is present in the body's tissues and helps regulate various processes such as sleeping, eating, and others. Interestingly, animal models have provided enough evidence to assume that the alteration in the circadian system leads to the appearance of numerous diseases. Alterations in breathing patterns in lung diseases can modify oxygenation and the circadian cycles; however, the response mechanisms to hypoxia and their relationship with the clock genes are not fully understood. Hypoxia is a condition in which the lack of adequate oxygenation promotes adaptation mechanisms and is related to several genes that regulate the circadian cycles, the latter because hypoxia alters the production of melatonin and brain physiology. Additionally, the lack of oxygen alters the expression of clock genes, leading to an alteration in the regularity and precision of the circadian cycle. In this sense, hypoxia is a hallmark of a wide variety of lung diseases. In the present work, we intended to review the functional repercussions of hypoxia in the presence of asthma, chronic obstructive sleep apnea, lung cancer, idiopathic pulmonary fibrosis, obstructive sleep apnea, influenza, and COVID-19 and its repercussions on the circadian cycles.
Collapse
Affiliation(s)
- Manuel Castillejos-López
- Departamento de Epidemiología e Infectología Hospitalaria, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Angelica Varela-Ordoñez
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.V.-O.); (A.K.T.-S.)
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | - Bianca S. Romero-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Joel Armando Vázquez-Pérez
- Laboratorio de Biología Molecular de Enfermedades Emergentes y EPOC, Instituto Nacional de Enferdades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (INP), Mexico City 11340, Mexico
| | - Juan C. Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico; (J.C.G.-V.); (N.A.R.-S.)
| | - Nadia A. Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico; (J.C.G.-V.); (N.A.R.-S.)
| | - Ángel Camarena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.V.-O.); (A.K.T.-S.)
| | - Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurobiología Cognitiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | | | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
38
|
Balachandran DD, Bashoura L, Sheshadri A, Manzullo E, Faiz SA. The Impact of Immunotherapy on Sleep and Circadian Rhythms in Patients with Cancer. Front Oncol 2023; 13:1295267. [PMID: 38090501 PMCID: PMC10711041 DOI: 10.3389/fonc.2023.1295267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024] Open
Abstract
Immunotherapy has revolutionized treatments for both early and advanced cancers, and as their role evolves, their impact on sleep and circadian rhythms continues to unfold. The recognition, evaluation, and treatment of sleep and circadian rhythm disturbance leads to improved symptom management, quality of life and treatment outcomes. An intricate complex relationship exists in the microenvironment with immunity, sleep and the tumor, and these may further vary based on the cancer, addition of standard chemotherapy, and pre-existing patient factors. Sleep and circadian rhythms may offer tools to better utilize immunotherapy in the care of cancer patients, leading to better treatment outcome, reduced symptom burden, and increased quality of life.
Collapse
Affiliation(s)
- Diwakar D. Balachandran
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lara Bashoura
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ellen Manzullo
- Department of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Saadia A. Faiz
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
39
|
Sundar IK, Duraisamy SK, Choudhary I, Saini Y, Silveyra P. Acute and Repeated Ozone Exposures Differentially Affect Circadian Clock Gene Expression in Mice. Adv Biol (Weinh) 2023; 7:e2300045. [PMID: 37204107 PMCID: PMC10657336 DOI: 10.1002/adbi.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Indexed: 05/20/2023]
Abstract
Circadian rhythms have an established role in regulating physiological processes, such as inflammation, immunity, and metabolism. Ozone, a common environmental pollutant with strong oxidative potential, is implicated in lung inflammation/injury in asthmatics. However, whether O3 exposure affects the expression of circadian clock genes in the lungs is not known. In this study, changes in the expression of core clock genes are analyzed in the lungs of adult female and male mice exposed to filtered air (FA) or O3 using qRT-PCR. The findings are confirmed using an existing RNA-sequencing dataset from repeated FA- and O3 -exposed mouse lungs and validated by qRT-PCR. Acute O3 exposure significantly alters the expression of clock genes in the lungs of females (Per1, Cry1, and Rora) and males (Per1). RNA-seq data revealing sex-based differences in clock gene expression in the airway of males (decreased Nr1d1/Rev-erbα) and females (increased Skp1), parenchyma of females and males (decreased Nr1d1 and Fbxl3 and increased Bhlhe40 and Skp1), and alveolar macrophages of males (decreased Arntl/Bmal1, Per1, Per2, Prkab1, and Prkab2) and females (increased Cry2, Per1, Per2, Csnk1d, Csnk1e, Prkab2, and Fbxl3). These findings suggest that lung inflammation caused by O3 exposure affects clock genes which may regulate key signaling pathways.
Collapse
Affiliation(s)
- Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Santhosh Kumar Duraisamy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University, School of Public Health, Bloomington, IN, USA
| |
Collapse
|
40
|
Yalçin M, Relógio A. Sex and age-dependent characterization of the circadian clock as a potential biomarker for physical performance: A prospective study protocol. PLoS One 2023; 18:e0293226. [PMID: 37874792 PMCID: PMC10597486 DOI: 10.1371/journal.pone.0293226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION Circadian rhythms (CR) regulate daily cycles in behavior, physiology and molecular processes. CRs are endogenous and vary across individuals. Seasonal changes can influence CR. Accordingly, rhythms with different characteristics (amplitude, phase) are depicted during the summer months, as compared to winter. Increasing evidence points to an influence of circadian regulation on physical performance. Here, we aim to obtain a comprehensive circadian gene expression profile for physically active individuals, which can potentially be used for the identification of optimal time intervals for physical exercise. METHODS AND ANALYSIS To explore these different aspects, we propose a study where we will carry out a molecular analysis of CR by measuring the expression of specific clock and clock-controlled genes, based on a non-invasive approach using RNA extracted from saliva in physically active, healthy participants. We will collect data across two seasons and use computational algorithms to integrate the molecular data with hormonal data (cortisol and melatonin), and generate a profile of CR in healthy individuals of different sex and age groups. Finally, we will use computational tools to predict optimal time intervals for physical performance based on the above-described data, thereby retrieving valuable data on the circadian clock as a key factor for health maintenance and optimization.
Collapse
Affiliation(s)
- Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
41
|
Lim DC, Najafi A, Afifi L, Bassetti CLA, Buysse DJ, Han F, Högl B, Melaku YA, Morin CM, Pack AI, Poyares D, Somers VK, Eastwood PR, Zee PC, Jackson CL. The need to promote sleep health in public health agendas across the globe. Lancet Public Health 2023; 8:e820-e826. [PMID: 37777291 PMCID: PMC10664020 DOI: 10.1016/s2468-2667(23)00182-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 10/02/2023]
Abstract
Healthy sleep is essential for physical and mental health, and social wellbeing; however, across the globe, and particularly in developing countries, national public health agendas rarely consider sleep health. Sleep should be promoted as an essential pillar of health, equivalent to nutrition and physical activity. To improve sleep health across the globe, a focus on education and awareness, research, and targeted public health policies are needed. We recommend developing sleep health educational programmes and awareness campaigns; increasing, standardising, and centralising data on sleep quantity and quality in every country across the globe; and developing and implementing sleep health policies across sectors of society. Efforts are needed to ensure equity and inclusivity for all people, particularly those who are most socially and economically vulnerable, and historically excluded.
Collapse
Affiliation(s)
- Diane C Lim
- Miami Veterans Affairs Healthcare System, Miami, FL, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami, Miami, FL, USA
| | - Arezu Najafi
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran; Sleep Breathing Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lamia Afifi
- Clinical Neurophysiology Unit, School of Medicine, Cairo University Hospitals, Cairo, Egypt
| | | | - Daniel J Buysse
- Center for Sleep and Circadian Science, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Han
- Department of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yohannes Adama Melaku
- Flinders Health and Medical Research Institute: Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Charles M Morin
- Department of Psychology, and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada
| | - Allan I Pack
- Sleep Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dalva Poyares
- Psychobiology Department, Sleep Medicine Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Peter R Eastwood
- Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Phyllis C Zee
- Division of Sleep Medicine, Center for Circadian and Sleep Medicine, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chandra L Jackson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC, USA; Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA.
| |
Collapse
|
42
|
Castillo PR. Clinical Neurobiology of Sleep and Wakefulness. Continuum (Minneap Minn) 2023; 29:1016-1030. [PMID: 37590820 DOI: 10.1212/con.0000000000001260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE This article focuses on novel neuronal mechanisms of sleep and wakefulness and relates basic science developments with potential translational implications in circadian neurobiology, pharmacology, behavioral factors, and the recently integrated potential pathways of sleep-related motor inhibition. LATEST DEVELOPMENTS During the past decade, remarkable advances in the molecular biology of sleep and wakefulness have taken place, opening a promising path for the understanding of clinical sleep disorders. Newly gained insights include the role of astrocytes in sleep brain homeostasis through the glymphatic system, the promotion of memory consolidation during states of reduced cholinergic activity during slow wave sleep, and the differential functions of melatonin receptors involving regulation of both circadian rhythm and sleep initiation. Ongoing investigations exploring sleep and circadian rhythm disruptions are beginning to unlock pathophysiologic aspects of neurologic, psychiatric, and medical disorders. ESSENTIAL POINTS An understanding of sleep and circadian neurobiology provides coherent and biologically credible approaches to treatments, including the identification of potential targets for neuromodulation.
Collapse
|
43
|
Knauert MP, Ayas NT, Bosma KJ, Drouot X, Heavner MS, Owens RL, Watson PL, Wilcox ME, Anderson BJ, Cordoza ML, Devlin JW, Elliott R, Gehlbach BK, Girard TD, Kamdar BB, Korwin AS, Lusczek ER, Parthasarathy S, Spies C, Sunderram J, Telias I, Weinhouse GL, Zee PC. Causes, Consequences, and Treatments of Sleep and Circadian Disruption in the ICU: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2023; 207:e49-e68. [PMID: 36999950 PMCID: PMC10111990 DOI: 10.1164/rccm.202301-0184st] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Background: Sleep and circadian disruption (SCD) is common and severe in the ICU. On the basis of rigorous evidence in non-ICU populations and emerging evidence in ICU populations, SCD is likely to have a profound negative impact on patient outcomes. Thus, it is urgent that we establish research priorities to advance understanding of ICU SCD. Methods: We convened a multidisciplinary group with relevant expertise to participate in an American Thoracic Society Workshop. Workshop objectives included identifying ICU SCD subtopics of interest, key knowledge gaps, and research priorities. Members attended remote sessions from March to November 2021. Recorded presentations were prepared and viewed by members before Workshop sessions. Workshop discussion focused on key gaps and related research priorities. The priorities listed herein were selected on the basis of rank as established by a series of anonymous surveys. Results: We identified the following research priorities: establish an ICU SCD definition, further develop rigorous and feasible ICU SCD measures, test associations between ICU SCD domains and outcomes, promote the inclusion of mechanistic and patient-centered outcomes within large clinical studies, leverage implementation science strategies to maximize intervention fidelity and sustainability, and collaborate among investigators to harmonize methods and promote multisite investigation. Conclusions: ICU SCD is a complex and compelling potential target for improving ICU outcomes. Given the influence on all other research priorities, further development of rigorous, feasible ICU SCD measurement is a key next step in advancing the field.
Collapse
|
44
|
Waddell H, Stevenson TJ, Mole DJ. The role of the circadian rhythms in critical illness with a focus on acute pancreatitis. Heliyon 2023; 9:e15335. [PMID: 37089281 PMCID: PMC10119767 DOI: 10.1016/j.heliyon.2023.e15335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Circadian rhythms are responsible for governing various physiological processes, including hormone secretion, immune responses, metabolism, and the sleep/wake cycle. In critical illnesses such as acute pancreatitis (AP), circadian rhythms can become dysregulated due to disease. Evidence suggests that time of onset of disease, coupled with peripheral inflammation brought about by AP will impact on the circadian rhythms generated in the central pacemaker and peripheral tissues. Cells of the innate and adaptive immune system are governed by circadian rhythms and the diurnal pattern of expression can be disrupted during disease. Peak circadian immune cell release and gene expression can coincide with AP onset, that may increase pancreatic injury, tissue damage and the potential for systemic inflammation and multiple organ failure to develop. Here, we provide an overview of the role of circadian rhythms in AP and the underpinning inflammatory mechanisms to contextualise ongoing research into the chronobiology and chronotherapeutics of AP.
Collapse
Affiliation(s)
- Heather Waddell
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Tyler J. Stevenson
- Institute of Biodiversity and Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Damian J. Mole
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Clinical Surgery, School of Clinical Sciences and Community Health, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
45
|
Martin JA, Hart NH, Bradford N, Naumann F, Pinkham MB, Pinkham EP, Holland JJ. Prevalence and management of sleep disturbance in adults with primary brain tumours and their caregivers: a systematic review. J Neurooncol 2023; 162:25-44. [PMID: 36864318 PMCID: PMC10049936 DOI: 10.1007/s11060-023-04270-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE The aims of this systematic review were to (1) examine the prevalence, severity, manifestations, and clinical associations/risk factors of sleep disturbance in primary brain tumour (PBT) survivors and their caregivers; and (2) determine whether there are any sleep-focused interventons reported in the literature pertaining to people affected by PBT. METHODS This systematic review was registered with the international register for systematic reviews (PROSPERO: CRD42022299332). PubMed, EMBASE, Scopus, PsychINFO, and CINAHL were electronically searched for relevant articles reporting sleep disturbance and/or interventions for managing sleep disturbance published between September 2015 and May 2022. The search strategy included terms focusing on sleep disturbance, primary brain tumours, caregivers of PBT survivors, and interventions. Two reviewers conducted the quality appraisal (JBI Critical Appraisal Tools) independently, with results compared upon completion. RESULTS 34 manuscripts were eligible for inclusion. Sleep disturbance was highly prevalent in PBT survivors with associations between sleep disturbance and some treatments (e.g., surgical resection, radiotherapy, corticosteroid use), as well as other prevalent symptoms (e.g., fatigue, drowsiness, stress, pain). While the current review was unable to find any sleep-targeted interventions, preliminary evidence suggests physical activity may elicit beneficial change on subjectively reported sleep disturbance in PBT survivors. Only one manuscript that discussed caregivers sleep disturbance was identified. CONCLUSIONS Sleep disturbance is a prevalent symptom experienced by PBT survivors, yet there is a distinct lack of sleep-focused interventions in this population. This includes a need for future research to include caregivers, with only one study identified. Future research exploring interventions directly focused on the management of sleep disturbance in the context of PBT is warranted.
Collapse
Affiliation(s)
- Jason A Martin
- Faculty of Health, School of Exercise and Nutrition Science, Queensland University of Technology, Brisbane, Australia.
| | - Nicolas H Hart
- Faculty of Health, School of Sport, Exercise and Rehabilitation, University of Technology Sydney (UTS), Sydney, Australia
- Faculty of Health, Cancer and Palliative Care Outcomes Centre, Queensland University of Technology, Brisbane, Australia
- School of Medical and Health Sciences, Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, Australia
- Institute for Health Research, The University of Notre Dame Australia, Perth, Australia
- Faculty of Health, Southern Cross University, Gold Coast, Australia
| | - Natalie Bradford
- Faculty of Health, Cancer and Palliative Care Outcomes Centre, Queensland University of Technology, Brisbane, Australia
| | - Fiona Naumann
- Faculty of Health, Southern Cross University, Gold Coast, Australia
| | - Mark B Pinkham
- Radiation Oncology, Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth P Pinkham
- Physiotherapy, Clinical Support Services, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Health, School of Nursing, Queensland University of Technology, Brisbane, Australia
| | - Justin J Holland
- Faculty of Health, School of Exercise and Nutrition Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
46
|
NLRP3 upregulation related to sleep deprivation-induced memory and emotional behavior changes in TRPV1 -/- mice. Behav Brain Res 2023; 440:114255. [PMID: 36563905 DOI: 10.1016/j.bbr.2022.114255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022]
Abstract
Sleep deprivation, which is a common problem in modern society, impairs memory function and emotional behavior. TRPV1, a subfamily of transient receptor potential cation channels, is abundantly expressed in the central nervous system and is associated with animal behavior. In this article, we report that TRPV1 deficiency in mice alleviates sleep deprivation-induced abnormal behaviors. We found that in the sleep-deprived mice, TRPV1 knockout increased the duration and visits in the central area in the open field task and increased visits to the open arms in the elevated plus maze. The TRPV1-/- mice performed better during the test stage in the Morris water maze phase after sleep deprivation. In the mPFC and hippocampus regions, western blotting results showed that TRPV1-/- attenuated sleep deprivation-induced increases in GFAP, NLRP3, and ASC and increased the expression of the mitochondrial marker Tom20. Immunofluorescence results showed that the action of TRPV1 knockout on NLRP3 was negatively correlated with Tom20 after sleep deprivation. Our results confirm that TRPV1 knockout attenuates sleep deprivation-induced behavioral disorders. The effect of TRPV1 on the behavior of sleep-deprived mice may be related to the neuroinflammation associated with mitochondria in the mPFC and hippocampus.
Collapse
|
47
|
Cunningham PS, Kitchen GB, Jackson C, Papachristos S, Springthorpe T, van Dellen D, Gibbs J, Felton TW, Wilson AJ, Bannard-Smith J, Rutter MK, House T, Dark P, Augustine T, Akman OE, Hazel AL, Blaikley JF. ClinCirc identifies alterations of the circadian peripheral oscillator in critical care patients. J Clin Invest 2023; 133:e162775. [PMID: 36538377 PMCID: PMC9927929 DOI: 10.1172/jci162775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundAssessing circadian rhythmicity from infrequently sampled data is challenging; however, these types of data are often encountered when measuring circadian transcripts in hospitalized patients.MethodsWe present ClinCirc. This method combines 2 existing mathematical methods (Lomb-Scargle periodogram and cosinor) sequentially and is designed to measure circadian oscillations from infrequently sampled clinical data. The accuracy of this method was compared against 9 other methods using simulated and frequently sampled biological data. ClinCirc was then evaluated in 13 intensive care unit (ICU) patients as well as in a separate cohort of 29 kidney-transplant recipients. Finally, the consequences of circadian alterations were investigated in a retrospective cohort of 726 kidney-transplant recipients.ResultsClinCirc had comparable performance to existing methods for analyzing simulated data or clock transcript expression of healthy volunteers. It had improved accuracy compared with the cosinor method in evaluating circadian parameters in PER2:luc cell lines. In ICU patients, it was the only method investigated to suggest that loss of circadian oscillations in the peripheral oscillator was associated with inflammation, a feature widely reported in animal models. Additionally, ClinCirc was able to detect other circadian alterations, including a phase shift following kidney transplantation that was associated with the administration of glucocorticoids. This phase shift could explain why a significant complication of kidney transplantation (delayed graft dysfunction) oscillates according to the time of day kidney transplantation is performed.ConclusionClinCirc analysis of the peripheral oscillator reveals important clinical associations in hospitalized patients.FundingUK Research and Innovation (UKRI), National Institute of Health Research (NIHR), Engineering and Physical Sciences Research Council (EPSRC), National Institute on Academic Anaesthesia (NIAA), Asthma+Lung UK, Kidneys for Life.
Collapse
Affiliation(s)
- Peter S. Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Gareth B. Kitchen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Callum Jackson
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Stavros Papachristos
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Thomas Springthorpe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David van Dellen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Julie Gibbs
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Timothy W. Felton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Wythenshawe Hospital, MFT, Manchester, United Kingdom
| | - Anthony J. Wilson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Jonathan Bannard-Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Martin K. Rutter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Thomas House
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Paul Dark
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Northern Care Alliance NHS Foundation Trust (Salford Care Organisation), Salford, United Kingdom
| | - Titus Augustine
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Ozgur E. Akman
- School of Mathematics, University of Exeter, Exeter, United Kingdom
| | - Andrew L. Hazel
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - John F. Blaikley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Wythenshawe Hospital, MFT, Manchester, United Kingdom
| |
Collapse
|
48
|
Xia Y, Ding X, Wang S, Ren W. Circadian orchestration of host and gut microbiota in infection. Biol Rev Camb Philos Soc 2023; 98:115-131. [PMID: 36106627 DOI: 10.1111/brv.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
Circadian rhythms are present in almost every organism and regulate multiple aspects of biological and physiological processes (e.g. metabolism, immune responses, and microbial exposure). There exists a bidirectional circadian interaction between the host and its gut microbiota, and potential circadian orchestration of both host and gut microbiota in response to invading pathogens. In this review, we summarize what is known about these intestinal microbial oscillations and the relationships between host circadian clocks and various infectious agents (bacteria, fungi, parasites, and viruses), and discuss how host circadian clocks prime the immune system to fight pathogen infections as well as the direct effects of circadian clocks on viral activity (e.g. SARS-CoV-2 entry and replication). Finally, we consider strategies employed to realign normal circadian rhythmicity for host health, such as chronotherapy, dietary intervention, good sleep hygiene, and gut microbiota-targeted therapy. We propose that targeting circadian rhythmicity may provide therapeutic opportunities for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
49
|
Adami LNG, Fernandes GL, Carvalho RCD, Okada FK, Tufik S, Andersen ML, Bertolla RP. Effect of chronic sleep deprivation on acrosomal integrity and functional parameters of murine sperm. F&S SCIENCE 2023; 4:11-20. [PMID: 36565949 DOI: 10.1016/j.xfss.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the effect of chronic sleep deprivation on sperm function quality in mice. DESIGN Experimental study. SETTING Not applicable. ANIMALS Spermatozoa from twenty-four 10-week-old C57BL/6J male mice. INTERVENTION(S) The sleep deprivation group underwent gentle handling for 6 hours for 5 consecutive days. The mice in the sleep recovery group were allowed to sleep during the 24-hour period after the sleep deprivation protocol. MAIN OUTCOME MEASURE(S) After euthanasia, the spermatozoa were collected for analysis. Sperm motility was evaluated using computer-assisted sperm analyzer. Intracellular superoxide anion (O2-) activity, acrosome integrity, mitochondrial activity, and DNA fragmentation assays were conducted afterward. RESULT(S) Sleep deprivation and sleep recovery groups presented a lower percentage of spermatozoa with an intact acrosome, compared with the respective control groups. Regarding DNA fragmentation, a decreased proportion of spermatozoa with Comet I class intact DNA was observed in the sleep recovery group, compared with the recovery control group. Beat cross frequency was increased in the sleep recovery group. CONCLUSION(S) Sleep deprivation can reduce sperm quality, impairing acrosome integrity. Sleep recovery decreased DNA integrity and increased beat cross frequency.
Collapse
Affiliation(s)
- Luana Nayara Gallego Adami
- Disciplina de Urologia, Setor de Reprodução Humana, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Renata Cristina de Carvalho
- Disciplina de Urologia, Setor de Reprodução Humana, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fatima Kazue Okada
- Disciplina de Urologia, Setor de Reprodução Humana, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil; Laboratório de Biologia do Desenvolvimento, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Disciplina de Urologia, Setor de Reprodução Humana, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Abstract
Driven by autonomous molecular clocks that are synchronized by a master pacemaker in the suprachiasmatic nucleus, cardiac physiology fluctuates in diurnal rhythms that can be partly or entirely circadian. Cardiac contractility, metabolism, and electrophysiology, all have diurnal rhythms, as does the neurohumoral control of cardiac and kidney function. In this review, we discuss the evidence that circadian biology regulates cardiac function, how molecular clocks may relate to the pathogenesis of heart failure, and how chronotherapeutics might be applied in heart failure. Disrupting molecular clocks can lead to heart failure in animal models, and the myocardial response to injury seems to be conditioned by the time of day. Human studies are consistent with these findings, and they implicate the clock and circadian rhythms in the pathogenesis of heart failure. Certain circadian rhythms are maintained in patients with heart failure, a factor that can guide optimal timing of therapy. Pharmacologic and nonpharmacologic manipulation of circadian rhythms and molecular clocks show promise in the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Nadim El Jamal
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah L. Teegarden
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Translational Pharmacology, Bielefeld University, Bielefeld, Germany
| | - Garret FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|