1
|
Uchendu AP, Omogbai EK, Obarisiagbon PA, Omogiade UG, Bafor EE. Chlorophyll Derivatives Exert Greater Potency Over Progesterone in the Prevention of Infection-Induced Preterm Birth in Murine Models. Am J Reprod Immunol 2024; 92:e70000. [PMID: 39422053 DOI: 10.1111/aji.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
PROBLEM Preterm birth (PTB) is a significant cause of maternal and neonatal morbidity and mortality worldwide. However, the effectiveness of progesterone (P4) which is clinically used for PTB management remains controversial and necessitates research into new therapeutic options METHOD OF STUDY: In the current study, we investigated the effectiveness of two chlorophyll derivatives, pheophorbide a (PBa) and pheophytin a (PTa), in counteracting PTB. Timed-pregnant mice (gestation day 17 ± 0.5) received lipopolysaccharide (LPS) (25 µg/mouse) or phosphate-buffered saline (PBS) intraperitoneally, with PBa, PTa, progesterone (P4), and co-administration of P4 and ibuprofen (IBP), administered orally 2 h prior. RESULTS The LPS group experienced PTB and 100% fetal mortality, whereas the PBa and PTa groups showed a delayed onset of LPS-induced PTB, with significantly decreased PTB rate and fetal mortality. In addition, PBa and PTa suppressed LPS-induced pro-inflammatory cytokines and NF-κB transcription factor while increasing anti-inflammatory cytokines in the placenta and uterus. CONCLUSIONS Our findings indicate that the chlorophyll derivatives, PBa and PTa increase fetal survival in infection-induced PTB and demonstrate greater efficacy than P4 in preventing PTB.
Collapse
Affiliation(s)
- Adaeze P Uchendu
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Edo State, Nigeria
| | - Eric K Omogbai
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Edo State, Nigeria
| | - Philip A Obarisiagbon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Edo State, Nigeria
| | - Uyi G Omogiade
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Edo State, Nigeria
| | - Enitome E Bafor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Edo State, Nigeria
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, USA
| |
Collapse
|
2
|
Doom JR, Deer LK, Dabelea D, LeBourgeois MK, Lumeng JC, Martin CK, Hankin BL, Davis EP. Biological and behavioral pathways from prenatal depression to offspring cardiometabolic risk: Testing the developmental origins of health and disease hypothesis. Dev Psychol 2024; 60:1620-1638. [PMID: 38358670 PMCID: PMC11324863 DOI: 10.1037/dev0001704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Given prior literature focused on the Developmental Origins of Health and Disease framework, there is strong rationale to hypothesize that reducing depression in the prenatal period will cause improvements in offspring cardiometabolic health. The current review outlines evidence that prenatal depression is associated with offspring cardiometabolic risk and health behaviors. We review evidence of these associations in humans and in nonhuman animals at multiple developmental periods, from the prenatal period (maternal preeclampsia, gestational diabetes), neonatal period (preterm birth, small size at birth), infancy (rapid weight gain), childhood and adolescence (high blood pressure, impaired glucose-insulin homeostasis, unfavorable lipid profiles, abdominal obesity), and into adulthood (diabetes, cardiovascular disease). In addition to these cardiometabolic outcomes, we focus on health behaviors associated with cardiometabolic risk, such as child eating behaviors, diet, physical activity, and sleep health. Our review focuses on child behaviors (e.g., emotional eating, preference for highly palatable foods, short sleep duration) and parenting behaviors (e.g., pressuring child to eat, modeling of health behaviors). These changes in health behaviors may be detected before changes to cardiometabolic outcomes, which may allow for early identification of and prevention for children at risk for poor adult cardiometabolic outcomes. We also discuss the methods of the ongoing Care Project, which is a randomized clinical trial to test whether reducing prenatal maternal depression improves offspring's cardiometabolic health and health behaviors in preschool. The goal of this review and the Care Project are to inform future research, interventions, and policies that support prenatal mental health and offspring cardiometabolic health. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center; Department of Epidemiology, Colorado School of Public Health; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Julie C. Lumeng
- Department of Nutritional Sciences, School of Public Health; Department of Pediatrics, Medical School, University of Michigan, Ann Arbor, MI
| | | | - Benjamin L. Hankin
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana-Champaign, IL
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO
- Department of Pediatrics, University of California, Irvine
| |
Collapse
|
3
|
Chen C, Zhu S, Fu T, Chen Y, Chen D. The protective effects of Ferrostatin-1 against inflammation-induced preterm birth and fetal brain injury. J Reprod Immunol 2024; 164:104260. [PMID: 38761507 DOI: 10.1016/j.jri.2024.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Recent studies have suggested the involvement of ferroptosis in preterm birth. Despite compelling evidence, the underlying mechanism remains unknown. This investigation aimed to determine the therapeutic effects of Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, in preterm birth and fetal brain injury. METHODS Human placenta samples and clinical data of participants were collected to ascertain whether placental ferroptosis was associated with preterm birth. Lipopolysaccharide (LPS)-induced preterm birth mouse model was used to examine the protective effects of Fer-1 on preterm birth. Fetal brain tissues and offspring mice at 5 and 8 weeks were studied to determine the effects of Fer-1 on the cognitive function of offspring. RESULTS We examined the mechanism of spontaneous preterm birth and discovered that placental ferroptosis was associated with preterm birth. Fer-1 inhibited preterm birth by ameliorating placental ferroptosis and maternal inflammation, thus improving LPS-induced intrauterine inflammation to maintain pregnancy. Antenatal administration of Fer-1 prevented LPS-induced fetal brain damage in the acute phase and improved long-term neurodevelopmental impairments by improving placental neuroendocrine signaling and maintaining placental function. CONCLUSION Fer-1 inhibited preterm birth and fetal brain injury by inhibiting maternal inflammation and improving placental function. Our findings provide a novel therapeutic strategy for preterm birth.
Collapse
Affiliation(s)
- Chaolu Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Shuaiying Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Tiantian Fu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Yanmin Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Danqing Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China.
| |
Collapse
|
4
|
Garcia-Flores V, Romero R, Tarca AL, Peyvandipour A, Xu Y, Galaz J, Miller D, Chaiworapongsa T, Chaemsaithong P, Berry SM, Awonuga AO, Bryant DR, Pique-Regi R, Gomez-Lopez N. Deciphering maternal-fetal cross-talk in the human placenta during parturition using single-cell RNA sequencing. Sci Transl Med 2024; 16:eadh8335. [PMID: 38198568 PMCID: PMC11238316 DOI: 10.1126/scitranslmed.adh8335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Labor is a complex physiological process requiring a well-orchestrated dialogue between the mother and fetus. However, the cellular contributions and communications that facilitate maternal-fetal cross-talk in labor have not been fully elucidated. Here, single-cell RNA sequencing (scRNA-seq) was applied to decipher maternal-fetal signaling in the human placenta during term labor. First, a single-cell atlas of the human placenta was established, demonstrating that maternal and fetal cell types underwent changes in transcriptomic activity during labor. Cell types most affected by labor were fetal stromal and maternal decidual cells in the chorioamniotic membranes (CAMs) and maternal and fetal myeloid cells in the placenta. Cell-cell interaction analyses showed that CAM and placental cell types participated in labor-driven maternal and fetal signaling, including the collagen, C-X-C motif ligand (CXCL), tumor necrosis factor (TNF), galectin, and interleukin-6 (IL-6) pathways. Integration of scRNA-seq data with publicly available bulk transcriptomic data showed that placenta-derived scRNA-seq signatures could be monitored in the maternal circulation throughout gestation and in labor. Moreover, comparative analysis revealed that placenta-derived signatures in term labor were mirrored by those in spontaneous preterm labor and birth. Furthermore, we demonstrated that early in gestation, labor-specific, placenta-derived signatures could be detected in the circulation of women destined to undergo spontaneous preterm birth, with either intact or prelabor ruptured membranes. Collectively, our findings provide insight into the maternal-fetal cross-talk of human parturition and suggest that placenta-derived single-cell signatures can aid in the development of noninvasive biomarkers for the prediction of preterm birth.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48201, USA
| | - Azam Peyvandipour
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Stanley M Berry
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Wayland JL, Stemen EL, Doll JR, Divanovic S. Protocol for cytokine and uterine immune cell characterization in a mouse model of LPS-induced preterm birth. STAR Protoc 2023; 4:102643. [PMID: 37858473 PMCID: PMC10594632 DOI: 10.1016/j.xpro.2023.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Inflammation-driven preterm birth (PTB) is modeled in mice using lipopolysaccharide (LPS) challenge. Here, we present a protocol for cytokine and uterine immune cell characterization in a mouse model of LPS-induced PTB. We describe steps for LPS challenge, in vivo cytokine capture assay, and isolation of uterine immune cells for flow cytometry. These techniques allow examination of systemic inflammation in vivo and immune cell characterization at the maternal-fetal interface, facilitating exploration of inflammatory dynamics in mouse models of PTB susceptibility. For complete details on the use and execution of this protocol, please refer to Doll et al.1.
Collapse
Affiliation(s)
- Jennifer L Wayland
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.
| | - Emma L Stemen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jessica R Doll
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Liu M, Ji M, Cheng J, Li Y, Tian Y, Zhao H, Wang Y, Zhu S, Zhang L, Xu X, Feng GS, Liang X, Bao H, Tang Y, Kong S, Lu J, Wang H, Lu Z, Deng W. Deciphering a critical role of uterine epithelial SHP2 in parturition initiation at single cell resolution. Nat Commun 2023; 14:7356. [PMID: 37963860 PMCID: PMC10646072 DOI: 10.1038/s41467-023-43102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
The timely onset of female parturition is a critical determinant for pregnancy success. The highly heterogenous maternal decidua has been increasingly recognized as a vital factor in setting the timing of labor. Despite the cell type specific roles in parturition, the role of the uterine epithelium in the decidua remains poorly understood. This study uncovers the critical role of epithelial SHP2 in parturition initiation via COX1 and COX2 derived PGF2α leveraging epithelial specific Shp2 knockout mice, whose disruption contributes to delayed parturition initiation, dystocia and fetal deaths. Additionally, we also show that there are distinct types of epithelium in the decidua approaching parturition at single cell resolution accompanied with profound epithelium reformation via proliferation. Meanwhile, the epithelium maintains the microenvironment by communicating with stromal cells and macrophages. The epithelial microenvironment is maintained by a close interaction among epithelial, stromal and macrophage cells of uterine stromal cells. In brief, this study provides a previously unappreciated role of the epithelium in parturition preparation and sheds lights on the prevention of preterm birth.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengjun Ji
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jianghong Cheng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingzhe Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingpu Tian
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Zhao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sijing Zhu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Leilei Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xinmei Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Gen-Sheng Feng
- Department of Pathology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yedong Tang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Zhongxian Lu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Zhao H, Wang Y, Xu H, Liu M, Xu X, Zhu S, Liu Z, Cai H, Wang Y, Lu J, Yang X, Kong S, Bao H, Wang H, Deng W. Stromal cells-specific retinoic acid determines parturition timing at single-cell and spatial-temporal resolution. iScience 2023; 26:107796. [PMID: 37720083 PMCID: PMC10502414 DOI: 10.1016/j.isci.2023.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
The underlying mechanisms governing parturition remain largely elusive due to limited knowledge of parturition preparation and initiation. Accumulated evidences indicate that maternal decidua plays a critical role in parturition initiation. To comprehensively decrypt the cell heterogeneity in decidua approaching parturition, we investigate the roles of various cell types in mouse decidua process and reveal previously unappreciated insights in parturition initiation utilizing single-cell RNA sequencing (scRNA-seq). We enumerate the cell types in decidua and identity five different stromal cells populations and one decidualized stromal cells. Furthermore, our study unravels that stromal cells prepare for parturition by regulating local retinol acid (RA) synthesis. RA supplement decreases expression of extracellular matrix-related genes in vitro and accelerates the timing of parturition in vivo. Collectively, the discovery of contribution of stromal cells in parturition expands current knowledge about parturition and opens up avenues for the intervention of preterm birth (PTB).
Collapse
Affiliation(s)
- Hui Zhao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xinmei Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sijing Zhu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhao Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Nantong University, Xisi Road, Nantong, Jiangsu, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
8
|
Chen Z, Li J, Xu W, Wu X, Xiang F, Li X, Zhang M, Zheng J, Kang X, Wu R. Elevated expression of Toll-like receptor 4 and cytokines in both serum and myometrium at term may serve as promising biomarkers for uterine activation preceding labor. Front Endocrinol (Lausanne) 2023; 14:1255925. [PMID: 37867523 PMCID: PMC10585141 DOI: 10.3389/fendo.2023.1255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Objective Increased inflammation and cytokine levels are considered risk factors and promoters of preterm birth (PTB). However, the regulatory mechanism of pregnancy-related inflammation remains unclear. Toll-like receptor 4 (TLR4) plays a critical role in inflammatory responses in various diseases. Therefore, our study aimed to investigate whether TLR4 is involved in the inflammatory responses during uterine activation for labor, with the goal of identifying potential biomarkers for uterine activation at term. Materials and methods We used flow cytometry to detect TLR4 expression on CD14+ maternal blood monocytes in the first, second, and third trimesters. ELISA was employed to measure TLR4 and cytokines levels in the maternal serum of term non-labor (TNL), term labor (TL) women and LPS induced preterm labor and PBS injected controls. TLR4siRNA was transfected into the human myometrial smooth muscle cells (HMSMCs), which were subsequently treated with IL-1β. The mRNA and protein levels of TLR4, uterine contraction-related protein connexin 43 (CX43), oxytocin receptor (OTR), MAPK/NF-κB signaling pathway, and cytokines were analyzed using qRT-PCR, western blotting, and immunohistochemistry. Results The study revealed TLR4 expression on CD14+ maternal blood monocytes was higher in the third trimester group compared to the first and second trimester groups (p<0.001). Maternal serum concentrations of TLR4 and cytokines were significantly higher in the TL group than the TNL group (p<0.001). TLR4, OTR, CX43, activated MAPK/NF-κB expression, and cytokines levels were upregulated in TL group, and similarly significantly higher in the LPS-induced preterm group than in the control group. Using the HMSMCs we demonstrated that TLR4siRNA transfection suppressed contractility. Interfering with TLR4 expression reduced the expression of OTR, CX43, cytokines, and MAPK/NF-κB activation. There was a significant positive relationship between TLR4 expression and the inflammatory status in the myometrium. ROC analysis indicated that TLR4 and cytokines may serve as potential biomarkers for predicting uterine activation for labor. Conclusion Our data suggest that TLR4 and cytokines can act as stimulators of uterine activation for labor at term. Furthermore, the MAPK/NF-κB pathway appears to be one of the potential signaling pathways mediating TLR4's regulation of parturition initiation.
Collapse
Affiliation(s)
- Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjuan Xu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomei Wu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zheng
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Galaz J, Motomura K, Romero R, Liu Z, Garcia-Flores V, Tao L, Xu Y, Done B, Arenas-Hernandez M, Kanninen T, Farias-Jofre M, Miller D, Tarca AL, Gomez-Lopez N. A key role for NLRP3 signaling in preterm labor and birth driven by the alarmin S100B. Transl Res 2023; 259:46-61. [PMID: 37121539 PMCID: PMC10524625 DOI: 10.1016/j.trsl.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Preterm birth remains the leading cause of neonatal morbidity and mortality worldwide. A substantial number of spontaneous preterm births occur in the context of sterile intra-amniotic inflammation, a condition that has been mechanistically proven to be triggered by alarmins. However, sterile intra-amniotic inflammation still lacks treatment. The NLRP3 inflammasome has been implicated in sterile intra-amniotic inflammation; yet, its underlying mechanisms, as well as the maternal and fetal contributions to this signaling pathway, are unclear. Herein, by utilizing a translational and clinically relevant model of alarmin-induced preterm labor and birth in Nlrp3-/- mice, we investigated the role of NLRP3 signaling by using imaging and molecular biology approaches. Nlrp3 deficiency abrogated preterm birth and the resulting neonatal mortality induced by the alarmin S100B by impeding the premature activation of the common pathway of labor as well as by dampening intra-amniotic and fetal inflammation. Moreover, Nlrp3 deficiency altered leukocyte infiltration and functionality in the uterus and decidua. Last, embryo transfer revealed that maternal and fetal Nlrp3 signaling contribute to alarmin-induced preterm birth and neonatal mortality, further strengthening the concept that both individuals participate in the complex process of preterm parturition. These findings provide novel insights into sterile intra-amniotic inflammation, a common etiology of preterm labor and birth, suggesting that the adverse perinatal outcomes resulting from prematurity can be prevented by targeting NLRP3 signaling.
Collapse
Affiliation(s)
- Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Bogdan Done
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
10
|
Huang G, Yao D, Yan X, Zheng M, Yan P, Chen X, Wang D. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review. Arch Gynecol Obstet 2023; 308:319-339. [PMID: 35916961 DOI: 10.1007/s00404-022-06701-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Despite intensive research, preterm birth (PTB) rates have not decreased significantly in recent years due to a lack of understanding of the underlying causes and insufficient treatment options for PTB. We are committed to finding promising biomarkers for the treatment of PTB. METHODS An extensive search of the literature was conducted with MEDLINE/PubMed, and in total, 151 studies were included and summarized in the present review. RESULTS Substantial evidence supports that the infection and/or inflammatory cascade associated with infection is an early event in PTB. Toll-like receptor (TLR) is a prominent pattern recognition receptor (PRR) found on both immune and non-immune cells, including fetal membrane cells. The activation of TLR downstream molecules, followed by TLR binding to its ligand, is critical for infection and inflammation, leading to the involvement of the TLR signaling pathway in PTB. TLR ligands are derived from microbial components and molecules released by damaged and dead cells. Particularly, TLR4 is an essential TLR because of its ability to recognize lipopolysaccharide (LPS). In this comprehensive overview, we discuss the role of TLR signaling in PTB, focus on numerous host-derived genetic and epigenetic regulators of the TLR signaling pathway, and cover ongoing research and prospective therapeutic options for treating PTB by inhibiting TLR signaling. CONCLUSION This is a critical topic because TLR-related molecules and mechanisms may enable obstetricians to better understand the physiological changes in PTB and develop new treatment and prevention strategies.
Collapse
Affiliation(s)
- Ge Huang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Yao
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoli Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingyu Zheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxia Chen
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Wang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
11
|
Doll JR, Moreno-Fernandez ME, Stankiewicz TE, Wayland JL, Wilburn A, Weinhaus B, Chougnet CA, Giordano D, Cappelletti M, Presicce P, Kallapur SG, Salomonis N, Tilburgs T, Divanovic S. BAFF and APRIL counterregulate susceptibility to inflammation-induced preterm birth. Cell Rep 2023; 42:112352. [PMID: 37027297 PMCID: PMC10551044 DOI: 10.1016/j.celrep.2023.112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.
Collapse
Affiliation(s)
- Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer L Wayland
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Adrienne Wilburn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Benjamin Weinhaus
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Claire A Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | - Monica Cappelletti
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pietro Presicce
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Suhas G Kallapur
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tamara Tilburgs
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
12
|
Giles ML, Sing Way S, Marchant A, Aghaepour N, James T, Schaltz-Buchholzer F, Zazara D, Arck P, Kollmann TR. Maternal vaccination to prevent adverse pregnancy outcomes: An underutilized molecular immunological intervention? J Mol Biol 2023; 435:168097. [PMID: 37080422 DOI: 10.1016/j.jmb.2023.168097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Adverse pregnancy outcomes including maternal mortality, stillbirth, preterm birth, intrauterine growth restriction cause millions of deaths each year. More effective interventions are urgently needed. Maternal immunization could be one such intervention protecting the mother and newborn from infection through its pathogen-specific effects. However, many adverse pregnancy outcomes are not directly linked to the infectious pathogens targeted by existing maternal vaccines but rather are linked to pathological inflammation unfolding during pregnancy. The underlying pathogenesis driving such unfavourable outcomes have only partially been elucidated but appear to relate to altered immune regulation by innate as well as adaptive immune responses, ultimately leading to aberrant maternal immune activation. Maternal immunization, like all immunization, impacts the immune system beyond pathogen-specific immunity. This raises the possibility that maternal vaccination could potentially be utilised as a pathogen-agnostic immune modulatory intervention to redirect abnormal immune trajectories towards a more favourable phenotype providing pregnancy protection. In this review we describe the epidemiological evidence surrounding this hypothesis, along with the mechanistic plausibility and present a possible path forward to accelerate addressing the urgent need of adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | - Sing Sing Way
- Center for Inflammation and Tolerance; Cincinnati Children's Hospital, Cincinnati USA
| | | | - Nima Aghaepour
- Stanford University School of Medicine, Stanford, CA, USA
| | - Tomin James
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Dimitra Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Petra Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | | |
Collapse
|
13
|
Shan Y, Shen S, Long J, Tang Z, Wu C, Ni X. Term and Preterm Birth Initiation Is Associated with the Macrophages Shifting to M1 Polarization in Gestational Tissues in Mice. BIOLOGY 2022; 11:biology11121759. [PMID: 36552269 PMCID: PMC9775566 DOI: 10.3390/biology11121759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Inflammation in gestational tissues plays critical role in parturition initiation. We sought to investigate the leukocyte infiltration and cytokine profile in uterine tissues to understand the inflammation during term and preterm labor in the mouse model. Preterm birth was induced by the administration of lipopolysaccharide (LPS) or RU38486. The populations of leukocytes were determined by flow cytometry. Macrophages were the largest population in the myometrium and decidua in late gestation. The macrophage population was significantly changed in the myometrium and decidua from late pregnancy to term labor and significantly changed at LPS- and RU386-induced preterm labor. Neutrophils, T cells, and NKT cells were increased in LPS- and RU38486-induced preterm labor. The above changes were accompanied by the increased expression of cytokines and chemokines. In late gestation, M2 macrophages were the predominant phenotype in gestational tissues. M1 macrophages significantly increased in these tissues at term and preterm labor. IL-6 and NLRP3 expression was significantly increased in macrophages at labor, supporting that macrophages exhibit proinflammatory phenotypes. NLRP3 inflammasome inhibitor MCC950 mainly suppressed macrophage infiltration in the myometrium at term labor and preterm labor. Our data suggest that the M1 polarization of macrophages contributes to inflammation linked to term and preterm labor initiation in gestational tissues.
Collapse
Affiliation(s)
- Yali Shan
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Shiping Shen
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Jing Long
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Zhengshan Tang
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Cichun Wu
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Xin Ni
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
14
|
Motomura K, Romero R, Galaz J, Tao L, Garcia-Flores V, Xu Y, Done B, Arenas-Hernandez M, Miller D, Gutierrez-Contreras P, Farias-Jofre M, Aras S, Grossman LI, Tarca AL, Gomez-Lopez N. Fetal and maternal NLRP3 signaling is required for preterm labor and birth. JCI Insight 2022; 7:158238. [PMID: 35993366 PMCID: PMC9462488 DOI: 10.1172/jci.insight.158238] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pedro Gutierrez-Contreras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Siddhesh Aras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Lawrence I. Grossman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
15
|
Diao M, Zhou J, Tao Y, Hu Z, Lin X. Rac1 is involved in uterine myometrium contraction in the inflammation associated preterm birth. Reproduction 2022; 164:169-181. [PMID: 36018772 PMCID: PMC9513643 DOI: 10.1530/rep-21-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Preterm birth (PTB) is a public health issue. The WHO has recommended the use of tocolytic treatment to inhibit preterm labour and improve pregnancy outcomes. Intrauterine inflammation is associated with preterm birth. Rac1 can modulate inflammation in different experimental settings. In the current study, we explored whether Rac1 can modulate spontaneous uterine myometrium contraction in a mouse model of lipopolysaccharide (LPS)-induced intrauterine inflammation. Subsequently, we recorded uterine myometrium contraction and examined uterine Rac1 expression in a mouse model of preterm birth and case in pregnant women by western blotting analysis. We also measured progesterone levels in the blood serum from mice. Murine myometrium was obtained 12 h post LPS treatment. Human myometrium was obtained at the time of caesarean section. We found that in the LPS-treated group of mice, uterine myometrium contraction was enhanced, protein levels and activation of Rac1 were increased and serum progesterone levels were decreased. The protein levels of Rac1 were also increased in preterm birth or case in pregnant women. NSC23766, a Rac1 inhibitor, attenuated uterine myometrium contraction and diminished Rac1 activation and COX-2 expression. Furthermore, silencing of Rac1 suppressed cell contraction and COX-2 expression in vitro. In conclusion, our results suggested that Rac1 may play an important role in modulating uterine myometrium contraction. Consequently, intervening with Rac1 represents a novel strategy for the treatment of preterm birth.
Collapse
Affiliation(s)
- Min Diao
- M Diao, Department of Anesthesiology,, Sichuan University West China Second University Hospital, Chengdu, China
| | - Jin Zhou
- J Zhou, Department of Anesthesiology, Sichuan University West China Second University Hospital, Chengdu, China
| | - Yunkai Tao
- Y Tao, Department of Anesthesiology, Sichuan University West China Second University Hospital, Chengdu, China
| | - Zhaoyang Hu
- Z Hu, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan University West China Hospital, Chengdu, China
| | - Xuemei Lin
- X Lin, Department of Anesthesiology,, Sichuan University West China Second University Hospital, Chengdu, China
| |
Collapse
|
16
|
Sharma AM, Birkett R, Lin ET, Ernst LM, Grobman WA, Swaminathan S, Abdala-Valencia H, Misharin AV, Bartom ET, Mestan KK. Placental dysfunction influences fetal monocyte subpopulation gene expression in preterm birth. JCI Insight 2022; 7:155482. [PMID: 35471950 PMCID: PMC9220934 DOI: 10.1172/jci.insight.155482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/22/2022] [Indexed: 02/03/2023] Open
Abstract
The placenta is the primary organ for immune regulation, nutrient delivery, gas exchange, protection against environmental toxins, and physiologic perturbations during pregnancy. Placental inflammation and vascular dysfunction during pregnancy are associated with a growing list of prematurity-related complications. The goal of this study was to identify differences in gene expression profiles in fetal monocytes - cells that persist and differentiate postnatally - according to distinct placental histologic domains. Here, by using bulk RNA-Seq, we report that placental lesions are associated with gene expression changes in fetal monocyte subsets. Specifically, we found that fetal monocytes exposed to acute placental inflammation upregulate biological processes related to monocyte activation, monocyte chemotaxis, and platelet function, while monocytes exposed to maternal vascular malperfusion lesions downregulate these processes. Additionally, we show that intermediate monocytes might be a source of mitogens, such as HBEGF, NRG1, and VEGFA, implicated in different outcomes related to prematurity. This is the first study to our knowledge to show that placental lesions are associated with unique changes in fetal monocytes and monocyte subsets. As fetal monocytes persist and differentiate into various phagocytic cells following birth, our study may provide insight into morbidity related to prematurity and ultimately potential therapeutic targets.
Collapse
Affiliation(s)
- Abhineet M. Sharma
- Department of Pediatrics/Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert Birkett
- Department of Pediatrics/Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erika T. Lin
- Department of Pediatrics/Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Pediatrics, UCSD, La Jolla, California, USA
| | - Linda M. Ernst
- Department of Pathology & Laboratory Medicine, NorthShore University HealthSystem, Chicago, Illinois, USA
| | - William A. Grobman
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine
| | | | | | | | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karen K. Mestan
- Department of Pediatrics/Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Pediatrics, UCSD, La Jolla, California, USA
| |
Collapse
|
17
|
Honda A, Hoeksema MA, Sakai M, Lund SJ, Lakhdari O, Butcher LD, Rambaldo TC, Sekiya NM, Nasamran CA, Fisch KM, Sajti E, Glass CK, Prince LS. The Lung Microenvironment Instructs Gene Transcription in Neonatal and Adult Alveolar Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1947-1959. [PMID: 35354612 PMCID: PMC9012679 DOI: 10.4049/jimmunol.2101192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Immaturity of alveolar macrophages (AMs) around birth contributes to the susceptibility of newborns to lung disease. However, the molecular features differentiating neonatal and mature, adult AMs are poorly understood. In this study, we identify the unique transcriptomes and enhancer landscapes of neonatal and adult AMs in mice. Although the core AM signature was similar, murine adult AMs expressed higher levels of genes involved in lipid metabolism, whereas neonatal AMs expressed a largely proinflammatory gene profile. Open enhancer regions identified by an assay for transposase-accessible chromatin followed by high-throughput sequencing (ATAC-seq) contained motifs for nuclear receptors, MITF, and STAT in adult AMs and AP-1 and NF-κB in neonatal AMs. Intranasal LPS activated a similar innate immune response in both neonatal and adult mice, with higher basal expression of inflammatory genes in neonates. The lung microenvironment drove many of the distinguishing gene expression and open chromatin characteristics of neonatal and adult AMs. Neonatal mouse AMs retained high expression of some proinflammatory genes, suggesting that the differences in neonatal AMs result from both inherent cell properties and environmental influences.
Collapse
Affiliation(s)
- Asami Honda
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Marten A Hoeksema
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Sean J Lund
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Omar Lakhdari
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Lindsay D Butcher
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | | | | | - Chanond A Nasamran
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA; and
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lawrence S Prince
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA;
| |
Collapse
|
18
|
Ni M, Zhang Q, Zhao J, Yao D, Wang T, Shen Q, Li W, Li B, Ding X, Liu Z. Prenatal inflammation causes obesity and abnormal lipid metabolism via impaired energy expenditure in male offspring. Nutr Metab (Lond) 2022; 19:8. [PMID: 35135573 PMCID: PMC8822840 DOI: 10.1186/s12986-022-00642-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/08/2022] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Obesity has becoming a global health issue. Fetus exposed to adversity in the uterine are susceptible to unhealth stimulus in adulthood. Prenatal inflammation is related to poor neonatal outcomes like neurodevelopmental impairments and respiratory complications. Recent studies suggested prenatal lipopolysaccharide (LPS) exposure could result in metabolic disorders. Thus, we hypothesized that offspring exposed to prenatal inflammation could develop into metabolic disorder. METHODS The pregnant C57BL/6J mice were intraperitoneally injected with 50 μg/kg LPS or saline only once at GD15. The male offspring were weighted weekly until sacrificed. Indirect calorimetry and body composition were both performed at 9 and 18 weeks old. At 20 weeks old, mice were fasted overnight before collecting blood samples and liver for metabolomics analysis and RNA sequencing, respectively. Differentially expressed genes were further verified by RT-qPCR and western blotting. RESULTS Prenatal inflammation resulted in obesity with increased fat percentage and decreased energy expenditure in middle-age male offspring. Abnormal lipid accumulation, changes of gene expression profile and upregulation of multi-component mechanistic target of rapamycin complex 1 (mTOR)/Peroxisome proliferator-activated receptor-γ pathway was observed in liver, accompanied with decreased bile acids level, unsaturated fatty acids androgens and prostaglandins in serum. Indirect calorimetry showed increased respiratory exchange rate and deceased spontaneous activity at 9 weeks in LPS group. Impaired energy expenditure was also observed at 18 weeks in LPS group. CONCLUSION Prenatal LPS exposure led to obesity and abnormal lipid metabolism through impaired energy expenditure.
Collapse
Affiliation(s)
- Meng Ni
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qianqian Zhang
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jiuru Zhao
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Dongting Yao
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Tao Wang
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qianwen Shen
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Wei Li
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Baihe Li
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiya Ding
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Zhiwei Liu
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China.
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
19
|
Gomez-Lopez N, Garcia-Flores V, Chin PY, Groome HM, Bijland MT, Diener KR, Romero R, Robertson SA. Macrophages exert homeostatic actions in pregnancy to protect against preterm birth and fetal inflammatory injury. JCI Insight 2021; 6:146089. [PMID: 34622802 PMCID: PMC8525593 DOI: 10.1172/jci.insight.146089] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Macrophages are commonly thought to contribute to the pathophysiology of preterm labor by amplifying inflammation — but a protective role has not previously been considered to our knowledge. We hypothesized that given their antiinflammatory capability in early pregnancy, macrophages exert essential roles in maintenance of late gestation and that insufficient macrophages may predispose individuals to spontaneous preterm labor and adverse neonatal outcomes. Here, we showed that women with spontaneous preterm birth had reduced CD209+CD206+ expression in alternatively activated CD45+CD14+ICAM3– macrophages and increased TNF expression in proinflammatory CD45+CD14+CD80+HLA-DR+ macrophages in the uterine decidua at the materno-fetal interface. In Cd11bDTR/DTR mice, depletion of maternal CD11b+ myeloid cells caused preterm birth, neonatal death, and postnatal growth impairment, accompanied by uterine cytokine and leukocyte changes indicative of a proinflammatory response, while adoptive transfer of WT macrophages prevented preterm birth and partially rescued neonatal loss. In a model of intra-amniotic inflammation–induced preterm birth, macrophages polarized in vitro to an M2 phenotype showed superior capacity over nonpolarized macrophages to reduce uterine and fetal inflammation, prevent preterm birth, and improve neonatal survival. We conclude that macrophages exert a critical homeostatic regulatory role in late gestation and are implicated as a determinant of susceptibility to spontaneous preterm birth and fetal inflammatory injury.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, US Department of Health and Human Services; Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, US Department of Health and Human Services; Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Peck Yin Chin
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Holly M Groome
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Melanie T Bijland
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kerrilyn R Diener
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, US Department of Health and Human Services; Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Detroit Medical Center, Detroit, Michigan, USA
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Oh KY, Lee S, Lee MS, Lee MJ, Shim E, Hwang YH, Ha JG, Yang YS, Hwang IT, Park JS. Composition of Vaginal Microbiota in Pregnant Women With Aerobic Vaginitis. Front Cell Infect Microbiol 2021; 11:677648. [PMID: 34568084 PMCID: PMC8458944 DOI: 10.3389/fcimb.2021.677648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/18/2021] [Indexed: 01/20/2023] Open
Abstract
Vaginal dysbiosis, such as bacterial vaginosis (BV) and aerobic vaginitis (AV), is an important cause of premature birth in pregnant women. However, there is very little research on vaginal microbial distribution in AV compared to that in BV. This study aimed to analyze the composition of the vaginal microbiota of pregnant women with AV using microbial community analysis and identify the causative organism using each criterion of the AV scoring system. Also, we compared the quantification of aerobic bacteria using quantitative polymerase chain reaction (qPCR) and their relative abundances (RA) using metagenomics. This prospective case–control study included 228 pregnant Korean women from our previous study. A wet mount test was conducted on 159 women to diagnose AV using the AV scoring system. Vaginal samples were analyzed using metagenomics, Gram staining for Nugent score determination, conventional culture, and qPCR for Staphylococcus spp., Streptococcus spp., and Enterobacteriaceae. The relative abundances (RAs) of eleven species showed significant differences among the three groups (Normal flora (NF), mild AV, and moderate AV). Three species including Lactobacillus crispatus were significantly lower in the AV groups than in the NF group, while eight species were higher in the AV groups, particularly moderate AV. The decrease in the RA of L. crispatus was common in three criteria of the AV scoring system (Lactobacillary, WBC, and background flora grades), while it did not show a significant difference among the three grade groups of the toxic leukocyte criterion. Also, the RAs of anaerobes, such as Gardnerella and Megasphaera, were higher in the AV groups, particularly moderate AV, while the RAs of aerobes were very low (RA < 0.01). Therefore, qPCR was performed for aerobes (Staphylococcus spp., Streptococcus spp., and Enterobacteriaceae); however, their quantification did not show a higher level in the AV groups when compared to that in the NF group. Therefore, AV might be affected by the RA of Lactobacillus spp. and the main anaerobes, such as Gardnerella spp. Activation of leukocytes under specific conditions might convert them to toxic leukocytes, despite high levels of L. crispatus. Thus, the pathogenesis of AV can be evaluated under such conditions.
Collapse
Affiliation(s)
- Kwan Young Oh
- Department of Obstetrics and Gynecology, Eulji University School of Medicine, Daejeon, South Korea
| | - Sunghee Lee
- Research Laboratories, Ildong Pharmaceutical Co., Ltd, Hwaseong, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Eunjung Shim
- Department of Obstetrics and Gynecology, Eulji University School of Medicine, Daejeon, South Korea
| | - Yun Ha Hwang
- Department of Obstetrics and Gynecology, Eulji University School of Medicine, Daejeon, South Korea
| | - Joong Gyu Ha
- Department of Obstetrics and Gynecology, Eulji University School of Medicine, Daejeon, South Korea
| | - Yun Seok Yang
- Department of Obstetrics and Gynecology, Eulji University School of Medicine, Daejeon, South Korea
| | - In Taek Hwang
- Department of Obstetrics and Gynecology, Eulji University School of Medicine, Daejeon, South Korea
| | - Jun Sook Park
- Department of Obstetrics and Gynecology, Eulji University School of Medicine, Daejeon, South Korea
| |
Collapse
|
21
|
Cappelletti M, Presicce P, Feiyang M, Senthamaraikannan P, Miller LA, Pellegrini M, Sim MS, Jobe AH, Divanovic S, Way SS, Chougnet CA, Kallapur SG. The induction of preterm labor in rhesus macaques is determined by the strength of immune response to intrauterine infection. PLoS Biol 2021; 19:e3001385. [PMID: 34495952 PMCID: PMC8452070 DOI: 10.1371/journal.pbio.3001385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/20/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
Intrauterine infection/inflammation (IUI) is a major contributor to preterm labor (PTL). However, IUI does not invariably cause PTL. We hypothesized that quantitative and qualitative differences in immune response exist in subjects with or without PTL. To define the triggers for PTL, we developed rhesus macaque models of IUI driven by lipopolysaccharide (LPS) or live Escherichia coli. PTL did not occur in LPS challenged rhesus macaques, while E. coli–infected animals frequently delivered preterm. Although LPS and live E. coli both caused immune cell infiltration, E. coli–infected animals showed higher levels of inflammatory mediators, particularly interleukin 6 (IL-6) and prostaglandins, in the chorioamnion-decidua and amniotic fluid (AF). Neutrophil infiltration in the chorio-decidua was a common feature to both LPS and E. coli. However, neutrophilic infiltration and IL6 and PTGS2 expression in the amnion was specifically induced by live E. coli. RNA sequencing (RNA-seq) analysis of fetal membranes revealed that specific pathways involved in augmentation of inflammation including type I interferon (IFN) response, chemotaxis, sumoylation, and iron homeostasis were up-regulated in the E. coli group compared to the LPS group. Our data suggest that the intensity of the host immune response to IUI may determine susceptibility to PTL.
Collapse
Affiliation(s)
- Monica Cappelletti
- Divisions of Neonatology and Developmental Biology, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ma Feiyang
- Department of Molecular, Cell and Developmental Biology Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences–Collaboratory, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Paranthaman Senthamaraikannan
- Division of Neonatology and Pulmonary Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Lisa A. Miller
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences–Collaboratory, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Myung S. Sim
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Alan H. Jobe
- Division of Neonatology and Pulmonary Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Sing Sing Way
- Infectious Diseases, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Suhas G. Kallapur
- Divisions of Neonatology and Developmental Biology, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Gregory EJ, Liu J, Miller-Handley H, Kinder JM, Way SS. Epidemiology of Pregnancy Complications Through the Lens of Immunological Memory. Front Immunol 2021; 12:693189. [PMID: 34248991 PMCID: PMC8267465 DOI: 10.3389/fimmu.2021.693189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
In the fifteen minutes it takes to read this short commentary, more than 400 babies will have been born too early, another 300 expecting mothers will develop preeclampsia, and 75 unborn third trimester fetuses will have died in utero (stillbirth). Given the lack of meaningful progress in understanding the physiological changes that occur to allow a healthy, full term pregnancy, it is perhaps not surprising that effective therapies against these great obstetrical syndromes that include prematurity, preeclampsia, and stillbirth remain elusive. Meanwhile, pregnancy complications remain the leading cause of infant and childhood mortality under age five. Does it have to be this way? What more can we collectively, as a biomedical community, or individually, as clinicians who care for women and newborn babies at high risk for pregnancy complications, do to protect individuals in these extremely vulnerable developmental windows? The problem of pregnancy complications and neonatal mortality is extraordinarily complex, with multiple unique, but complementary perspectives from scientific, epidemiological and public health viewpoints. Herein, we discuss the epidemiology of pregnancy complications, focusing on how the outcome of prior pregnancy impacts the risk of complication in the next pregnancy — and how the fundamental immunological principle of memory may promote this adaptive response.
Collapse
Affiliation(s)
- Emily J Gregory
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - James Liu
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hilary Miller-Handley
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jeremy M Kinder
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|