1
|
Colov Tauby EP, Bojesen RD, Grube C, Miedzianogora REG, Buzquurz F, Fransgaard T, Knop FK, Gögenur I. Perioperative Metformin Treatment to Reduce Postoperative Hyperglycemia After Colon Cancer Surgery: A Randomized Clinical Trial. Dis Colon Rectum 2024; 67:1403-1412. [PMID: 39437217 DOI: 10.1097/dcr.0000000000003426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Surgery induces a stress response, causing insulin resistance that may result in postoperative hyperglycemia, which is associated with increased incidence of complications, longer hospitalization, and greater mortality. OBJECTIVE This study examined the effect of metformin treatment on the percentage of patients experiencing postoperative hyperglycemia after elective colon cancer surgery. DESIGN This was a randomized, double-blind, placebo-controlled trial. SETTINGS The study was conducted at Slagelse Hospital in Slagelse, Denmark. PATIENTS Patients without diabetes planned for elective surgery for colon cancer were included. INTERVENTIONS Patients received metformin (500 mg 3× per day) or placebo for 20 days before and 10 days after surgery. MAIN OUTCOME MEASURES Blood glucose levels were measured several times daily until the end of postoperative day 2. The main outcome measures were the percentage of patients who experienced at least 1 blood glucose measurement >7.7 and 10 mmol/L, respectively. Rates of complications within 30 days of surgery and Quality of Recovery-15 scores were also recorded. RESULTS Of the 48 included patients, 21 patients (84.0%) in the placebo group and 18 patients (78.3%) in the metformin group had at least 1 blood glucose measurement >7.7 mmol/L ( p = 0.72), and 13 patients (52.0%) in the placebo group had a measurement >10.0 mmol/L versus 5 patients (21.7%) in the metformin group ( p = 0.04). No differences in complication rates or Quality of Recovery-15 scores were seen. LIMITATIONS The number of patients in the study was too low to detect a possible difference in postoperative complications. Blood glucose was measured as spot measurements instead of continuous surveillance. CONCLUSIONS In patients without diabetes, metformin significantly reduced the percentage of patients experiencing postoperative hyperglycemia, as defined as spot blood glucose measurements >10 mmol/L after elective colon cancer surgery. See Video Abstract . TRATAMIENTO PERIOPERATORIO CON METFORMINA PARA REDUCIR LA HIPERGLUCEMIA POSOPERATORIA DESPUS DE LA CIRUGA DE CNCER DE COLON ENSAYO CLNICO ALEATORIZADO ANTECEDENTES:La cirugía induce una respuesta de estrés que causa resistencia a la insulina que puede resultar en hiperglucemia posoperatoria. La hiperglucemia posoperatoria se asocia con una mayor incidencia de complicaciones, una hospitalización más prolongada y una mayor mortalidad.OBJETIVO:Este estudio examinó el efecto del tratamiento con metformina en el porcentaje de pacientes que experimentaron hiperglucemia posoperatoria después de una cirugía electiva de cáncer de colon.DISEÑO:Este fue un ensayo aleatorio, doble ciego y controlado con placebo.AJUSTES:El estudio se realizó en el Hospital Slagelse, Slagelse, Dinamarca.PACIENTES:Se incluyeron pacientes sin diabetes planificados para cirugía electiva por cáncer de colon.INTERVENCIONES:Los pacientes recibieron 500 mg de metformina tres veces al día o placebo durante 20 días antes y 10 días después de la cirugía.PRINCIPALES MEDIDAS DE RESULTADO:Los niveles de glucosa en sangre se midieron varias veces al día hasta el final del segundo día postoperatorio. Las principales medidas de resultado fueron el porcentaje de pacientes que experimentaron al menos una medición de glucosa en sangre por encima de 7,7 y 10 mmol/l, respectivamente. También se registraron las tasas de complicaciones dentro de los 30 días posteriores a la cirugía y las puntuaciones de Calidad de recuperación-15.RESULTADOS:De los 48 pacientes incluidos, 21 (84,0%) en el grupo placebo y 18 (78,3%) en el grupo metformina tuvieron al menos una medición de glucosa en sangre superior a 7,7 mmol/l (p = 0,72), y 13 (52,0%) los pacientes del grupo de placebo tuvieron una medición superior a 10,0 mmol/l frente a 5 (21,7%) en el grupo de metformina (p = 0,04). No se observaron diferencias en las tasas de complicaciones ni en las puntuaciones de Calidad de recuperación-15.LIMITACIONES:El número de pacientes en el estudio fue demasiado bajo para detectar una posible diferencia en las complicaciones posoperatorias. La glucosa en sangre se midió mediante mediciones puntuales en lugar de vigilancia continua.CONCLUSIONES:En pacientes sin diabetes, la metformina redujo significativamente el porcentaje de pacientes que experimentaron hiperglucemia postoperatoria, definida como mediciones puntuales de glucosa en sangre por encima de 10 mmol/l después de una cirugía electiva de cáncer de colon . (Traducción-Dr Yolanda Colorado ).
Collapse
Affiliation(s)
- Emilie Palmgren Colov Tauby
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Rasmus D Bojesen
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Camilla Grube
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Rebecca E G Miedzianogora
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Fatima Buzquurz
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Tina Fransgaard
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Ismail Gögenur
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Department of Surgery, Zealand University Hospital, Køge, Denmark
| |
Collapse
|
2
|
Kim K. Rethinking about Metformin: Promising Potentials. Korean J Fam Med 2024; 45:258-267. [PMID: 39182908 PMCID: PMC11427230 DOI: 10.4082/kjfm.24.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Metformin is widely used drugs in the treatment of type 2 diabetes mellitus. However, the mechanisms of action are complex and are still not fully understood yet. Metformin has a dose-dependent blood sugar-lowering effect. The most common adverse reactions of metformin are gastrointestinal symptoms, and women tend to be more experienced than men. A positive correlation between the administration of duration and the daily dose of metformin and the risk of vitamin B12 deficiency is confirmed. Novel glucose-lowering mechanism through the activation of AMP-activated protein kinase and alteration of gut microbiota composition is identified. In addition, metformin has immunomodulatory properties in various mechanisms, including anti-inflammatory actions, and so forth. Metformin improves insulin sensitivity, which may reduce the risk of tumor growth in certain cancers. The antiviral effects of metformin may occur through several mechanisms, including blocking angiotensin converting enzyme 2 receptor, and so forth. These potential mechanisms of metformin are promising in various clinical settings, such as inflammatory diseases, autoimmune diseases, cancer, and coronavirus disease 2019.
Collapse
Affiliation(s)
- Kyunam Kim
- Department of Family Medicine, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
3
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Gallwitz B. [Drug therapy of type-2-diabetes-is metformin dispensable now?]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024:10.1007/s00108-024-01755-7. [PMID: 39167190 DOI: 10.1007/s00108-024-01755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/23/2024]
Abstract
Metformin has been recommended as first-line pharmacological therapy in type‑2 diabetes (T2D) since 1998. It was the first medication that demonstrated cardiovascular benefits in obese subjects with T2D. Efficacy and safety of metformin have since been demonstrated in further studies and in real-world data on its use in practice. The recommendation of metformin as baseline therapy has reached wide acceptance internationally. During the period 2015-2021, large cardiovascular safety trials showed superiority for cardiovascular morbidity and partly also mortality outcomes for most substances of the novel antidiabetic substance classes of GLP‑1 receptor agonists and SGLT‑2 inhibitors in people with T2D and very high cardiovascular risk or preexisting cardiovascular disease. The evidence for these two substance classes is now broader than for metformin. Therefore, the question arises as to whether it is still justified to recommend metformin generally as first-line therapy in T2D. This article provides an overview of the study data as well as an overview of the evidence-based guidelines. The status and position of metformin in the treatment of T2D are discussed.
Collapse
Affiliation(s)
- Baptist Gallwitz
- Deutsche Diabetes Gesellschaft (DDG), Albrechtstr. 9, 10117, Berlin, Deutschland.
| |
Collapse
|
5
|
Attaye I, Witjes JJ, Koopen AM, van der Vossen EW, Zwirs D, Wortelboer K, Collard D, Kemper EM, Winkelmeijer M, Holst JJ, Hazen SL, Kuipers F, Stroes ES, Groen AK, de Vos WM, Nieuwdorp M, Herrema H. Oral Anaerobutyricum soehngenii augments glycemic control in type 2 diabetes. iScience 2024; 27:110455. [PMID: 39139405 PMCID: PMC11321313 DOI: 10.1016/j.isci.2024.110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
This randomized, double-blind, placebo-controlled trial investigated the impact of 14-day Anaerobutyricum soehngenii L2-7 supplementation on postprandial glucose levels in 25 White Dutch males with type 2 diabetes (T2D) on stable metformin therapy. The primary endpoint was the effect of A. soehngenii versus placebo on glucose excursions and variability as determined by continuous glucose monitoring. Secondary endpoints were changes in ambulatory 24-h blood pressure, incretins, circulating metabolites and excursions of plasma short-chain fatty acids (SCFAs) and bile acids upon a standardized meal. Results showed that A. soehngenii supplementation for 14 days significantly improved glycemic variability and mean arterial blood pressure, without notable changes in SCFAs, bile acids, incretin levels, or anthropometric parameters as compared to placebo-treated controls. Although well-tolerated and effective in improving glycemic control in the intervention group, further research in larger and more diverse populations is needed to generalize these findings.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Julia J. Witjes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Annefleur M. Koopen
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | | | - Diona Zwirs
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Koen Wortelboer
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Didier Collard
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Elles Marleen Kemper
- Department of Pharmacy and Clinical Pharmacology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Maaike Winkelmeijer
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jens J. Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Folkert Kuipers
- Department of Pediatrics and European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Albert K. Groen
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Willem M. de Vos
- Wageningen University, Wageningen, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Hansen LS, Gasbjerg LS, Brønden A, Dalsgaard NB, Bahne E, Stensen S, Hellmann PH, Rehfeld JF, Hartmann B, Wewer Albrechtsen NJ, Holst JJ, Vilsbøll T, Knop FK. The role of glucagon-like peptide 1 in the postprandial effects of metformin in type 2 diabetes: a randomized crossover trial. Eur J Endocrinol 2024; 191:192-203. [PMID: 39049802 DOI: 10.1093/ejendo/lvae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
AIMS Although metformin is widely used for treatment of type 2 diabetes (T2D), its glucose-lowering mechanism remains unclear. Using the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) antagonist exendin(9-39)NH2, we tested the hypothesis that postprandial GLP-1-mediated effects contribute to the glucose-lowering potential of metformin in T2D. METHODS In a randomized, placebo-controlled, double-blind, crossover study, 15 individuals with T2D (median HbA1c 50 mmol/mol [6.7%], body mass index 30.1 kg/m2, age 71 years) underwent, in randomized order, 14 days of metformin and placebo treatment, respectively. Each treatment period was preceded by 14 days without any glucose-lowering medicine and concluded by two 4 h mixed meal tests performed in randomized order and separated by >24 h with either continuous intravenous exendin(9-39)NH2 or saline infusion. RESULTS Compared to placebo, metformin treatment lowered fasting plasma glucose (mean of differences [MD] 1.4 mmol/L × min [95% CI 0.8-2.0]) as well as postprandial plasma glucose excursions during both saline infusion (MD 186 mmol/L × min [95% CI 64-307]) and exendin(9-39)NH2 infusion (MD 268 mmol/L × min [95% CI 108-427]). The metformin-induced improvement in postprandial glucose tolerance was unaffected by GLP-1R antagonization (MD 82 mmol/L × min [95% CI -6564-170]). Metformin treatment increased fasting plasma GLP-1 (MD 1.7 pmol/L × min [95% CI 0.39-2.9]) but did not affect postprandial GLP-1 responses (MD 820 pmol/L × min [95% CI -1750-111]). CONCLUSIONS Using GLP-1R antagonization, we could not detect GLP-1-mediated postprandial glucose-lowering effect of metformin in individuals with T2D. We show that 2 weeks of metformin treatment increases fasting plasma GLP-1, which may contribute to metformin's beneficial effect on fasting plasma glucose in T2D. Trial registration: Clinicaltrials.gov NCT03246451.
Collapse
Affiliation(s)
- Laura S Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen NV, Denmark
| | - Niels B Dalsgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Emilie Bahne
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Pernille H Hellmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Bailey CJ. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes Metab 2024; 26 Suppl 3:3-19. [PMID: 38784991 DOI: 10.1111/dom.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Metformin (dimethyl-biguanide) can claim its origins in the use of Galega officinalis as a plant treatment for symptoms ascribed to diabetes. Since the first clinical use of metformin as a glucose-lowering agent in 1957, this medicine has emerged as a first-line pharmacological option to support lifestyle interventions in the management of type 2 diabetes (T2D). It acts through multiple cellular pathways, principally in the gut, liver and muscle, to counter insulin resistance and lower blood glucose without weight gain or risk of overt hypoglycaemia. Other effects include improvements in lipid metabolism, decreased inflammation and lower long-term cardiovascular risk. Metformin is conveniently combined with other diabetes medications, can be prescribed in prediabetes to reduce the risk of progression to T2D, and is used in some regions to assist glycaemic control in pregnancy. Consistent with its diversity of actions, established safety profile and cost-effectiveness, metformin is being assessed for further possible clinical applications. The use of metformin requires adequate renal function for drug elimination, and may cause initial gastrointestinal side effects, which can be moderated by taking with meals or using an extended-release formulation. Thus, metformin serves as a valuable therapeutic resource for use throughout the natural history of T2D.
Collapse
|
8
|
Nemeth DV, Iannelli L, Gangitano E, D’Andrea V, Bellini MI. Energy Metabolism and Metformin: Effects on Ischemia-Reperfusion Injury in Kidney Transplantation. Biomedicines 2024; 12:1534. [PMID: 39062107 PMCID: PMC11275143 DOI: 10.3390/biomedicines12071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Metformin (MTF) is the only biguanide included in the World Health Organization's list of essential medicines; representing a widespread drug in the management of diabetes mellitus. With its accessibility and affordability being one of its biggest assets, it has become the target of interest for many trying to find alternative treatments for varied pathologies. Over time, an increasing body of evidence has shown additional roles of MTF, with unexpected interactions of benefit in other diseases. Metformin (MTF) holds significant promise in mitigating ischemia-reperfusion injury (IRI), particularly in the realm of organ transplantation. As acceptance criteria for organ transplants expand, IRI during the preservation phase remain a major concern within the transplant community, prompting a keen interest in MTF's effects. Emerging evidence suggests that administering MTF during reperfusion may activate the reperfusion injury salvage kinase (RISK) pathway. This pathway is pivotal in alleviating IRI in transplant recipients, potentially leading to improved outcomes such as reduced rates of organ rejection. This review aims to contextualize MTF historically, explore its current uses, pharmacokinetics, and pharmacodynamics, and link these aspects to the pathophysiology of IRI to illuminate its potential future role in transplantation. A comprehensive survey of the current literature highlights MTF's potential to recondition and protect against IRI by attenuating free radical damage, activating AMP-activated protein kinase to preserve cellular energy and promote repair, as well as directly reducing inflammation and enhancing microcirculation.
Collapse
Affiliation(s)
- Denise V. Nemeth
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78235, USA
| | - Leonardo Iannelli
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | | |
Collapse
|
9
|
Xie C, Iroga P, Bound MJ, Grivell J, Huang W, Jones KL, Horowitz M, Rayner CK, Wu T. Impact of the timing of metformin administration on glycaemic and glucagon-like peptide-1 responses to intraduodenal glucose infusion in type 2 diabetes: a double-blind, randomised, placebo-controlled, crossover study. Diabetologia 2024; 67:1260-1270. [PMID: 38561463 PMCID: PMC11153273 DOI: 10.1007/s00125-024-06131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
AIMS/HYPOTHESIS Metformin lowers postprandial glycaemic excursions in individuals with type 2 diabetes by modulating gastrointestinal function, including the stimulation of glucagon-like peptide-1 (GLP-1). The impact of varying the timing of metformin administration on postprandial glucose metabolism is poorly defined. We evaluated the effects of metformin, administered at different intervals before an intraduodenal glucose infusion, on the subsequent glycaemic, insulinaemic and GLP-1 responses in metformin-treated type 2 diabetes. METHODS Sixteen participants with type 2 diabetes that was relatively well-controlled by metformin monotherapy were studied on four separate days in a crossover design. On each day, participants were randomised to receive a bolus infusion of metformin (1000 mg in 50 ml 0.9% saline) via a nasoduodenal catheter at t = -60, -30 or 0 min (and saline at the other timepoints) or saline at all timepoints (control), followed by an intraduodenal glucose infusion of 12.56 kJ/min (3 kcal/min) at t = 0-60 min. The treatments were blinded to both participants and investigators involved in the study procedures. Plasma glucose, insulin and total GLP-1 levels were measured every 30 min between t = -60 min and t = 120 min. RESULTS There was a treatment-by-time interaction for metformin in reducing plasma glucose levels and increasing plasma GLP-1 and insulin levels (p<0.05 for each). The reduction in plasma glucose levels was greater when metformin was administered at t = -60 or -30 min vs t = 0 min (p<0.05 for each), and the increases in plasma GLP-1 levels were evident only when metformin was administered at t = -60 or -30 min (p<0.05 for each). Although metformin did not influence insulin sensitivity, it enhanced glucose-induced insulin secretion (p<0.05), and the increases in plasma insulin levels were comparable on the 3 days when metformin was given. CONCLUSIONS/INTERPRETATION In well-controlled metformin-treated type 2 diabetes, glucose-lowering by metformin is greater when it is given before, rather than with, enteral glucose, and this is associated with a greater GLP-1 response. These observations suggest that administration of metformin before meals may optimise its effect in improving postprandial glycaemic control. TRIAL REGISTRATION www.anzctr.org.au ACTRN12621000878875 FUNDING: The study was not funded by a specific research grant.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Peter Iroga
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michelle J Bound
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Jacqueline Grivell
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Weikun Huang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia.
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
10
|
Mima A, Nakamoto T, Saito Y, Matsumoto K, Lee S. Efficacy and Safety of Vildagliptin for Type 2 Diabetes in Patients With Diabetic Kidney Disease. In Vivo 2024; 38:1829-1833. [PMID: 38936943 PMCID: PMC11215575 DOI: 10.21873/invivo.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Vildagliptin is one of the dipeptidyl peptidase-4 (DPP-4) inhibitors that have been shown to improve hyperglycemia in clinical trials among patients with type 2 diabetes. However, few studies have examined the efficacy of vildagliptin in patients with diabetic kidney disease (DKD). PATIENTS AND METHODS Eight patients with DKD received oral vildagliptin 50-100 mg/day. The duration of diabetes was 6.7±5.9 years and observation period was 23.6±9.8 months. Changes in fasting blood glucose, and hemoglobin A1c (HbA1c), estimated glomerular filtration rate (eGFR), and urine protein-to-creatinine ratio (UPCR) were studied before and after the administration of vildagliptin. RESULTS Vildagliptin treatment significantly decreased fasting blood glucose and HbA1c, compared to baseline (132±56 mg/dl, p=0.036, 6.0±0.3, p=0.041, respectively). UPCR tended to be decreased, albeit without statistical significance. However, eGFR was decreased after the administration of vildagliptin. No significant adverse effects were observed in all patients during the study. CONCLUSION Although the sample size was limited and the observation period was brief, vildagliptin was found to be an effective and reasonably well-tolerated treatment for patients with DKD.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takahiro Nakamoto
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yuta Saito
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Keishi Matsumoto
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shinji Lee
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
11
|
Barroso E, Jurado-Aguilar J, Wahli W, Palomer X, Vázquez-Carrera M. Increased hepatic gluconeogenesis and type 2 diabetes mellitus. Trends Endocrinol Metab 2024:S1043-2760(24)00124-3. [PMID: 38816269 DOI: 10.1016/j.tem.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Abnormally increased hepatic gluconeogenesis is a significant contributor to hyperglycemia in the fasting state in patients with type 2 diabetes mellitus (T2DM) due to insulin resistance. Metformin, the most prescribed drug for the treatment of T2DM, is believed to exert its effect mainly by reducing hepatic gluconeogenesis. Here, we discuss how increased hepatic gluconeogenesis contributes to T2DM and we review newly revealed mechanisms underlying the attenuation of gluconeogenesis by metformin. In addition, we analyze the recent findings on new determinants involved in the regulation of gluconeogenesis, which might ultimately lead to the identification of novel and targeted treatment strategies for T2DM.
Collapse
Affiliation(s)
- Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, F-31300 Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
12
|
Froldi G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals (Basel) 2024; 17:478. [PMID: 38675438 PMCID: PMC11054066 DOI: 10.3390/ph17040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a synthetic biguanide used as an antidiabetic drug in type 2 diabetes mellitus, achieved by studying the bioactive metabolites of Galega officinalis L. It is also used off-label for various other diseases, such as subclinical diabetes, obesity, polycystic ovary syndrome, etc. In addition, metformin is proposed as an add-on therapy for several conditions, including autoimmune diseases, neurodegenerative diseases, and cancer. Although metformin has been used for many decades, it is still the subject of many pharmacodynamic and pharmacokinetic studies in light of its extensive use. Metformin acts at the mitochondrial level by inhibiting the respiratory chain, thus increasing the AMP/ATP ratio and, subsequently, activating the AMP-activated protein kinase. However, several other mechanisms have been proposed, including binding to presenilin enhancer 2, increasing GLP1 release, and modification of microRNA expression. Regarding its pharmacokinetics, after oral administration, metformin is absorbed, distributed, and eliminated, mainly through the renal route, using transporters for cationic solutes, since it exists as an ionic molecule at physiological pH. In this review, particular consideration has been paid to literature data from the last 10 years, deepening the study of clinical trials inherent to new uses of metformin, the differences in effectiveness and safety observed between the sexes, and the unwanted side effects. For this last objective, metformin safety was also evaluated using both VigiBase and EudraVigilance, respectively, the WHO and European databases of the reported adverse drug reactions, to assess the extent of metformin side effects in real-life use.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
13
|
Nerild HH, Brønden A, Haddouchi AE, Ellegaard AM, Hartmann B, Rehfeld JF, Holst JJ, Sonne DP, Vilsbøll T, Knop FK. Elucidating the glucose-lowering effect of the bile acid sequestrant sevelamer. Diabetes Obes Metab 2024; 26:1252-1263. [PMID: 38151760 DOI: 10.1111/dom.15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
AIM Bile acid sequestrants are cholesterol-lowering drugs, which also improve glycaemic control in people with type 2 diabetes. The mechanism behind the glucose-lowering effect is unknown but has been proposed to be mediated by increased glucagon-like peptide-1 (GLP-1) secretion. Here, we investigated the glucose-lowering effects of sevelamer including any contribution from GLP-1 in people with type 2 diabetes. MATERIALS AND METHODS In a randomized, double-blind, placebo-controlled, crossover study, 15 people with type 2 diabetes on metformin monotherapy underwent two 17-day treatment periods with the bile acid sequestrant sevelamer and placebo, respectively, in a randomized order and with an interposed wash-out period of minimum 6 weeks. On days 15 and 17 of each treatment period, participants underwent experimental days with 4-h liquid meal tests and application of concomitant infusion of exendin(9-39)NH2 or saline. RESULTS Compared with placebo, sevelamer improved insulin sensitivity (assessed by homeostatic model assessment of insulin resistance) and beta-cell sensitivity to glucose and lowered fasting and postprandial plasma glucose concentrations. In both treatment periods, exendin(9-39)NH2 increased postprandial glucose excursions compared with saline but without absolute or relative difference between the two treatment periods. In contrast, exendin(9-39)NH2 abolished the sevelamer-induced improvement in beta-cell glucose sensitivity. CONCLUSIONS The bile acid sequestrant sevelamer improved insulin sensitivity and beta-cell sensitivity to glucose, but using the GLP-1 receptor antagonist exendin(9-39)NH2 we were not able to detect a GLP-1-mediated glucose-lowering effect of sevelamer in individuals with type 2 diabetes. Nevertheless, the sevelamer-induced improvement of beta-cell sensitivity to glucose was shown to be GLP-1-dependent.
Collapse
Affiliation(s)
- Henriette H Nerild
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Abdullah E Haddouchi
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - David P Sonne
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
14
|
Gether IM, Bahne E, Nerild HH, Rehfeld JF, Hartmann B, Holst JJ, Vilsbøll T, Sonne DP, Knop FK. Colesevelam has no acute effect on postprandial GLP-1 levels but abolishes gallbladder refilling. Eur J Endocrinol 2024; 190:314-326. [PMID: 38551029 DOI: 10.1093/ejendo/lvae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE Colesevelam, a bile acid sequestrant approved for the treatment of hypercholesterolaemia, improves glycaemic control in type 2 diabetes. We hypothesised that single-dose colesevelam increases postprandial GLP-1 secretion, thus, reducing postprandial glucose excursions in individuals with type 2 diabetes. Further, we explored the effects of single-dose colesevelam on ultrasonography-assessed postprandial gallbladder motility, paracetamol absorption (proxy for gastric emptying), and circulating factors known to affect gallbladder motility. METHODS In a randomised, double-blind, placebo-controlled crossover study, 12 individuals with type 2 diabetes (mean ± SD: age 61 ± 8.8 years; body mass index 29.8 ± 3.0 kg/m2) were subjected to 4 mixed meal tests on separate days; 2 with orally administered colesevelam (3.75 g) and 2 with placebo, with intravenous infusion of the GLP-1 receptor antagonist exendin(9-39)NH2 or saline. RESULTS Single-dose colesevelam had no effect on postprandial concentrations of glucose (P = .786), C-peptide (P = .440), or GLP-1 (P = .729), and exendin(9-39)NH2 administration revealed no GLP-1-mediated effects of colesevelam. Colesevelam did not affect gallbladder emptying but abolished gallbladder refilling (P = .001), increased postprandial cholecystokinin (CCK) secretion (P = .010), and decreased postprandial serum concentrations of fibroblast growth factor 19 (FGF19) (P = .035) and bile acids (P = .043). CONCLUSION Single-dose colesevelam had no effect on postprandial GLP-1 responses or glucose tolerance but disrupted postprandial gallbladder refilling by increasing CCK secretion and reducing circulating concentrations of FGF19 and bile acids. These findings leave the antidiabetic actions of colesevelam unresolved but provide mechanistic insights into its effect on gallbladder motility.
Collapse
Affiliation(s)
- Ida M Gether
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Emilie Bahne
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Henriette H Nerild
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| | - David P Sonne
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
15
|
Cheng M, Ren L, Jia X, Wang J, Cong B. Understanding the action mechanisms of metformin in the gastrointestinal tract. Front Pharmacol 2024; 15:1347047. [PMID: 38617792 PMCID: PMC11010946 DOI: 10.3389/fphar.2024.1347047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Metformin is the initial medication recommended for the treatment of type 2 diabetes mellitus (T2DM). In addition to diabetes treatment, the function of metformin also can be anti-aging, antiviral, and anti-inflammatory. Nevertheless, further exploration is required to fully understand its mode of operation. Historically, the liver has been acknowledged as the main location where metformin reduces glucose levels, however, there is increasing evidence suggesting that the gastrointestinal tract also plays a significant role in its action. In the gastrointestinal tract, metformin effects glucose uptake and absorption, increases glucagon-like peptide-1 (GLP-1) secretion, alters the composition and structure of the gut microbiota, and modulates the immune response. However, the side effects of it cannot be ignored such as gastrointestinal distress in patients. This review outlines the impact of metformin on the digestive system and explores potential explanations for variations in metformin effectiveness and adverse effects like gastrointestinal discomfort.
Collapse
Affiliation(s)
- Meihui Cheng
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pathogen Biology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianwei Wang
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Huber H, Schieren A, Holst JJ, Simon MC. Dietary impact on fasting and stimulated GLP-1 secretion in different metabolic conditions - a narrative review. Am J Clin Nutr 2024; 119:599-627. [PMID: 38218319 PMCID: PMC10972717 DOI: 10.1016/j.ajcnut.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1), a gastrointestinal peptide and central mediator of glucose metabolism, is secreted by L cells in the intestine in response to food intake. Postprandial secretion of GLP-1 is triggered by nutrient-sensing via transporters and G-protein-coupled receptors (GPCRs). GLP-1 secretion may be lower in adults with obesity/overweight (OW) or type 2 diabetes mellitus (T2DM) than in those with normal glucose tolerance (NGT), but these findings are inconsistent. Because of the actions of GLP-1 on stimulating insulin secretion and promoting weight loss, GLP-1 and its analogs are used in pharmacologic preparations for the treatment of T2DM. However, physiologically stimulated GLP-1 secretion through the diet might be a preventive or synergistic method for improving glucose metabolism in individuals who are OW, or have impaired glucose tolerance (IGT) or T2DM. This narrative review focuses on fasting and postprandial GLP-1 secretion in individuals with different metabolic conditions and degrees of glucose intolerance. Further, the influence of relevant diet-related factors (e.g., specific diets, meal composition, and size, phytochemical content, and gut microbiome) that could affect fasting and postprandial GLP-1 secretion are discussed. Some studies showed diminished glucose- or meal-stimulated GLP-1 response in participants with T2DM, IGT, or OW compared with those with NGT, whereas other studies have reported an elevated or unchanged GLP-1 response in T2DM or IGT. Meal composition, especially the relationship between macronutrients and interventions targeting the microbiome can impact postprandial GLP-1 secretion, although it is not clear which macronutrients are strong stimulants of GLP-1. Moreover, glucose tolerance, antidiabetic treatment, grade of overweight/obesity, and sex were important factors influencing GLP-1 secretion. The results presented in this review highlight the potential of nutritional and physiologic stimulation of GLP-1 secretion. Further research on fasting and postprandial GLP-1 concentrations and the resulting metabolic consequences under different metabolic conditions is needed.
Collapse
Affiliation(s)
- Hanna Huber
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Mölndal, Sweden; Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Alina Schieren
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Marie-Christine Simon
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany.
| |
Collapse
|
17
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Adamska A. Examining the clinical relevance of metformin as an antioxidant intervention. Front Pharmacol 2024; 15:1330797. [PMID: 38362157 PMCID: PMC10867198 DOI: 10.3389/fphar.2024.1330797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
In physiological concentrations, reactive oxygen species play a vital role in regulating cell signaling and gene expression. Nevertheless, oxidative stress is implicated in the pathogenesis of numerous diseases and can inflict damage on diverse cell types and tissues. Thus, understanding the factors that mitigate the deleterious effects of oxidative stress is imperative for identifying new therapeutic targets. In light of the absence of direct treatment recommendations for reducing oxidative stress, there is a continuing need for fundamental research that utilizes innovative therapeutic approaches. Metformin, known for its multifaceted beneficial properties, is acknowledged for its ability to counteract the adverse effects of increased oxidative stress at both molecular and cellular levels. In this review, we delve into recent insights regarding metformin's antioxidant attributes, aiming to expand its clinical applicability. Our review proposes that metformin holds promise as a potential adjunctive therapy for various diseases, given its modulation of oxidative stress characteristics and regulation of diverse metabolic pathways. These pathways include lipid metabolism, hormone synthesis, and immunological responses, all of which may experience dysregulation in disease states, contributing to increased oxidative stress. Furthermore, our review introduces potential novel metformin-based interventions that may merit consideration in future research. Nevertheless, the necessity for clinical trials involving this drug remains imperative, as they are essential for establishing therapeutic dosages and addressing challenges associated with dose-dependent effects.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Support Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
18
|
Mashayekhi M, Nian H, Mayfield D, Devin JK, Gamboa JL, Yu C, Silver HJ, Niswender K, Luther JM, Brown NJ. Weight Loss-Independent Effect of Liraglutide on Insulin Sensitivity in Individuals With Obesity and Prediabetes. Diabetes 2024; 73:38-50. [PMID: 37874653 PMCID: PMC10784656 DOI: 10.2337/db23-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Metabolic effects of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and not fully recapitulated by increasing endogenous GLP-1. We tested the hypothesis that GLP-1 receptor (GLP-1R) agonists exert weight loss-independent, GLP-1R-dependent effects that differ from effects of increasing endogenous GLP-1. Individuals with obesity and prediabetes were randomized to receive for 14 weeks the GLP-1R agonist liraglutide, a hypocaloric diet, or the dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin. The GLP-1R antagonist exendin(9-39) and placebo were administered in a two-by-two crossover study during mixed-meal tests. Liraglutide and diet, but not sitagliptin, caused weight loss. Liraglutide improved insulin sensitivity measured by HOMA for insulin resistance (HOMA-IR), the updated HOMA model (HOMA2), and the Matsuda index after 2 weeks, prior to weight loss. Liraglutide decreased fasting and postprandial glucose levels, and decreased insulin, C-peptide, and fasting glucagon levels. In contrast, diet-induced weight loss improved insulin sensitivity by HOMA-IR and HOMA2, but not the Matsuda index, and did not decrease glucose levels. Sitagliptin increased endogenous GLP-1 and GIP values without altering insulin sensitivity or fasting glucose levels, but decreased postprandial glucose and glucagon levels. Notably, sitagliptin increased GIP without altering weight. Acute GLP-1R antagonism increased glucose levels in all groups, increased the Matsuda index and fasting glucagon level during liraglutide treatment, and increased endogenous GLP-1 values during liraglutide and sitagliptin treatments. Thus, liraglutide exerts rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity that are not achieved by increasing endogenous GLP-1. ARTICLE HIGHLIGHTS Metabolic benefits of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and are not fully achieved by increasing endogenous GLP-1 through dipeptidyl peptidase 4 (DPP-4) inhibition. We investigated weight loss-independent, GLP-1 receptor (GLP-1R)-dependent metabolic effects of liraglutide versus a hypocaloric diet or the DPP-4 inhibitor sitagliptin. GLP-1R antagonism with exendin(9-39) was used to assess GLP-1R-dependent effects during mixed meals. Liraglutide improved insulin sensitivity and decreased fasting and postprandial glucose prior to weight loss, and these benefits were reversed by exendin(9-39). GLP-1R agonists exert rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity not achieved by increasing endogenous GLP-1.
Collapse
Affiliation(s)
- Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Dustin Mayfield
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jessica K. Devin
- UCHealth Endocrinology, Yampa Valley Medical Center, Steamboat Springs, CO
| | - Jorge L. Gamboa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Chang Yu
- Department of Population Health, NYU Grossman School of Medicine, New York, NY
| | - Heidi J. Silver
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Kevin Niswender
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - James M. Luther
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J. Brown
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
19
|
Jones LA, Sun EW, Lumsden AL, Thorpe DW, Peterson RA, De Fontgalland D, Sposato L, Rabbitt P, Hollington P, Wattchow DA, Keating DJ. Alterations in GLP-1 and PYY release with aging and body mass in the human gut. Mol Cell Endocrinol 2023; 578:112072. [PMID: 37739120 DOI: 10.1016/j.mce.2023.112072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The lining of our intestinal surface contains an array of hormone-producing cells that are collectively our bodies' largest endocrine cell reservoir. These "enteroendocrine" (EE) cells reside amongst the billions of absorptive epithelial and other cell types that line our gastrointestinal tract and can sense and respond to the ever-changing internal environment in our gut. EE cells release an array of important signalling molecules that can act as hormones, including glucagon-like peptide (GLP-1) and peptide YY (PYY) which are co-secreted from L cells. While much is known about the effects of these hormones on metabolism, insulin secretion and food intake, less is understood about their secretion from human intestinal tissue. In this study we assess whether GLP-1 and PYY release differs across human small and large intestinal tissue locations within the gastrointestinal tract, and/or by sex, body weight and the age of an individual. We identify that the release of both hormones is greater in more distal regions of the human colon, but is not different between sexes. We observe a negative correlation of GLP-1 and BMI in the small, but not large, intestine. Increased aging correlates with declining secretion of both GLP-1 and PYY in human large, but not small, intestine. When the data for large intestine is isolated by region, this relationship with age remains significant for GLP-1 in the ascending and descending colon and in the descending colon for PYY. This is the first demonstration that site-specific differences in GLP-1 and PYY release occur in human gut, as do site-specific relationships of L cell secretion with aging and body mass.
Collapse
Affiliation(s)
- Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Amanda L Lumsden
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, and South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Daniel W Thorpe
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Rochelle A Peterson
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Dayan De Fontgalland
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Luigi Sposato
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
20
|
Hou Y, Zhai X, Wang X, Wu Y, Wang H, Qin Y, Han J, Meng Y. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:235. [PMID: 37978556 PMCID: PMC10656899 DOI: 10.1186/s13098-023-01207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile, they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insulin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examining the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic strategies and identify areas for future research. Additionally, this review critically assesses current research limitations to contribute to the effective management of T2DM.
Collapse
Affiliation(s)
- Yisen Hou
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China
| | - Xinzhe Zhai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Xiaotao Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yi Wu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Heyue Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yaxin Qin
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Jianli Han
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China.
| | - Yong Meng
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China.
| |
Collapse
|
21
|
Greco M, Munir A, Musarò D, Coppola C, Maffia M. Restoring autophagic function: a case for type 2 diabetes mellitus drug repurposing in Parkinson's disease. Front Neurosci 2023; 17:1244022. [PMID: 38027497 PMCID: PMC10654753 DOI: 10.3389/fnins.2023.1244022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Parkinson's disease (PD) is a predominantly idiopathic pathological condition characterized by protein aggregation phenomena, whose main component is alpha-synuclein. Although the main risk factor is ageing, numerous evidence points to the role of type 2 diabetes mellitus (T2DM) as an etiological factor. Systemic alterations classically associated with T2DM like insulin resistance and hyperglycemia modify biological processes such as autophagy and mitochondrial homeostasis. High glucose levels also compromise protein stability through the formation of advanced glycation end products, promoting protein aggregation processes. The ability of antidiabetic drugs to act on pathways impaired in both T2DM and PD suggests that they may represent a useful tool to counteract the neurodegeneration process. Several clinical studies now in advanced stages are looking for confirmation in this regard.
Collapse
Affiliation(s)
- Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Anas Munir
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Chiara Coppola
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| |
Collapse
|
22
|
Smits MM, Holst JJ. Endogenous glucagon-like peptide (GLP)-1 as alternative for GLP-1 receptor agonists: Could this work and how? Diabetes Metab Res Rev 2023; 39:e3699. [PMID: 37485788 DOI: 10.1002/dmrr.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 06/18/2023] [Indexed: 07/25/2023]
Abstract
In recent years, we have witnessed the many beneficial effects of glucagon-like peptide (GLP)-1 receptor agonists, including the reduction in cardiovascular risk in patients with type 2 diabetes, and the reduction of body weight in those with obesity. Increasing evidence suggests that these agents differ considerably from endogenous GLP-1 when it comes to their routes of action, although their clinical effects appear to be the same. Given the limitations of the GLP-1 receptor agonists, could it be useful to develop agents which stimulate GLP-1 release? Here we will discuss the differences and similarities between GLP-1 receptor agonists and endogenous GLP-1, and will detail how endogenous GLP-1-when stimulated appropriately-could have clinically relevant effects.
Collapse
Affiliation(s)
- Mark M Smits
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Isherwood CM, Robertson MD, Skene DJ, Johnston JD. Daily rhythms of diabetogenic factors in men: role of type 2 diabetes and body weight. Endocr Connect 2023; 12:e230064. [PMID: 37855336 PMCID: PMC10620456 DOI: 10.1530/ec-23-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Obesity is a major cause of type 2 diabetes. Transition from obesity to type 2 diabetes manifests in the dysregulation of hormones controlling glucose homeostasis and inflammation. As metabolism is a dynamic process that changes across 24 h, we assessed diurnal rhythmicity in a panel of 10 diabetes-related hormones. Plasma hormones were analysed every 2 h over 24 h in a controlled laboratory study with hourly isocaloric drinks during wake. To separate effects of body mass from type 2 diabetes, we recruited three groups of middle-aged men: an overweight (OW) group with type 2 diabetes and two control groups (lean and OW). Average daily concentrations of glucose, triacylglycerol and all the hormones except visfatin were significantly higher in the OW group compared to the lean group (P < 0.001). In type 2 diabetes, glucose, insulin, C-peptide, glucose-dependent insulinotropic peptide and glucagon-like peptide-1 increased further (P < 0.05), whereas triacylglycerol, ghrelin and plasminogen activator inhibitor-1 concentrations were significantly lower compared to the OW group (P < 0.001). Insulin, C-peptide, glucose-dependent insulinotropic peptide and leptin exhibited significant diurnal rhythms in all study groups (P < 0.05). Other hormones were only rhythmic in 1 or 2 groups. In every group, hormones associated with glucose regulation (insulin, C-peptide, glucose-dependent insulinotropic peptide, ghrelin and plasminogen activator inhibitor-1), triacylglycerol and glucose peaked in the afternoon, whereas glucagon and hormones associated with appetite and inflammation peaked at night. Thus being OW with or without type 2 diabetes significantly affected hormone concentrations but did not affect the timing of the hormonal rhythms.
Collapse
Affiliation(s)
- Cheryl M Isherwood
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - M Denise Robertson
- Section of Metabolic Medicine, Food and Macronutrients, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Debra J Skene
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jonathan D Johnston
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
24
|
Morrice N, Vainio S, Mikkola K, van Aalten L, Gallagher JR, Ashford MLJ, McNeilly AD, McCrimmon RJ, Grosfeld A, Serradas P, Koffert J, Pearson ER, Nuutila P, Sutherland C. Metformin increases the uptake of glucose into the gut from the circulation in high-fat diet-fed male mice, which is enhanced by a reduction in whole-body Slc2a2 expression. Mol Metab 2023; 77:101807. [PMID: 37717665 PMCID: PMC10550722 DOI: 10.1016/j.molmet.2023.101807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
OBJECTIVES Metformin is the first line therapy recommended for type 2 diabetes. However, the precise mechanism of action remains unclear and up to a quarter of patients show some degree of intolerance to the drug, with a similar number showing poor response to treatment, limiting its effectiveness. A better understanding of the mechanism of action of metformin may improve its clinical use. SLC2A2 (GLUT2) is a transmembrane facilitated glucose transporter, with important roles in the liver, gut and pancreas. Our group previously identified single nucleotide polymorphisms in the human SLC2A2 gene, which were associated with reduced transporter expression and an improved response to metformin treatment. The aims of this study were to model Slc2a2 deficiency and measure the impact on glucose homoeostasis and metformin response in mice. METHODS We performed extensive metabolic phenotyping and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography (PET) analysis of gut glucose uptake in high-fat diet-fed (HFD) mice with whole-body reduced Slc2a2 (Slc2a2+/-) and intestinal Slc2a2 KO, to assess the impact of metformin treatment. RESULTS Slc2a2 partial deficiency had no major impact on body weight and insulin sensitivity, however mice with whole-body reduced Slc2a2 expression (Slc2a2+/-) developed an age-related decline in glucose homoeostasis (as measured by glucose tolerance test) compared to wild-type (Slc2a2+/+) littermates. Glucose uptake into the gut from the circulation was enhanced by metformin exposure in Slc2a2+/+ animals fed HFD and this action of the drug was significantly higher in Slc2a2+/- animals. However, there was no effect of specifically knocking-out Slc2a2 in the mouse intestinal epithelial cells. CONCLUSIONS Overall, this work identifies a differential metformin response, dependent on expression of the SLC2A2 glucose transporter, and also adds to the growing evidence that metformin efficacy includes modifying glucose transport in the gut. We also describe a novel and important role for this transporter in maintaining efficient glucose homoeostasis during ageing.
Collapse
Affiliation(s)
- Nicola Morrice
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Susanne Vainio
- Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Lidy van Aalten
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Jennifer R Gallagher
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Michael L J Ashford
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Alison D McNeilly
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Alexandra Grosfeld
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Patricia Serradas
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic approaches, NutriOmics, Research group, F-75013, Paris, France
| | - Jukka Koffert
- Turku PET Centre, University of Turku, Turku, Finland; Department of Gastroenterology, Turku University Hospital, Turku, Finland
| | - Ewan R Pearson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Calum Sutherland
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK.
| |
Collapse
|
25
|
Ye J, Hu Y, Wang C, Lian H, Dong Z. Cellular mechanism of diabetes remission by bariatric surgery. Trends Endocrinol Metab 2023; 34:590-600. [PMID: 37574405 DOI: 10.1016/j.tem.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Bariatric surgery is a powerful therapy for type 2 diabetes in patients with obesity. The mechanism of insulin sensitization by surgery has been extensively investigated in weight loss-dependent and weight loss-independent conditions. However, a consensus remains to be established regarding the underlying mechanisms. Energy deficit induced by calorie restriction (CR), that occurs both before and after surgery, represents a unique physiological basis for insulin sensitization regardless of weight loss. In support, we integrate evidence in the literature to provide an energy-based view of insulin sensitization as follows: surgery improves insulin sensitivity through the energy deficit induced by CR, leading to correction of mitochondrial overload in multiple cell types; this then triggers functional reprogramming of relevant tissues leading to diabetes remission.
Collapse
Affiliation(s)
- Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China; Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450052, China; Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Yangxi Hu
- Department of Metabolic Surgery, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Chengming Wang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Hongkai Lian
- Trauma Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Zigang Dong
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
26
|
Brīvība M, Silamiķele L, Kalniņa I, Silamiķelis I, Birzniece L, Ansone L, Jagare L, Elbere I, Kloviņš J. Metformin targets intestinal immune system signaling pathways in a high-fat diet-induced mouse model of obesity and insulin resistance. Front Endocrinol (Lausanne) 2023; 14:1232143. [PMID: 37795356 PMCID: PMC10546317 DOI: 10.3389/fendo.2023.1232143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Research findings of the past decade have highlighted the gut as the main site of action of the oral antihyperglycemic agent metformin despite its pharmacological role in the liver. Extensive evidence supports metformin's modulatory effect on the composition and function of gut microbiota, nevertheless, the underlying mechanisms of the host responses remain elusive. Our study aimed to evaluate metformin-induced alterations in the intestinal transcriptome profiles at different metabolic states. Methods The high-fat diet-induced mouse model of obesity and insulin resistance of both sexes was developed in a randomized block experiment and bulk RNA-Seq of the ileum tissue was the method of choice for comparative transcriptional profiling after metformin intervention for ten weeks. Results We found a prominent transcriptional effect of the diet itself with comparatively fewer genes responding to metformin intervention. The overrepresentation of immune-related genes was observed, including pronounced metformin-induced upregulation of immunoglobulin heavy-chain variable region coding Ighv1-7 gene in both high-fat diet and control diet-fed animals. Moreover, we provide evidence of the downregulation NF-kappa B signaling pathway in the small intestine of both obese and insulin-resistant animals as well as control animals after metformin treatment. Finally, our data pinpoint the gut microbiota as a crucial component in the metformin-mediated downregulation of NF-kappa B signaling evidenced by a positive correlation between the Rel and Rela gene expression levels and abundances of Parabacteroides distasonis, Bacteroides spp., and Lactobacillus spp. in the gut microbiota of the same animals. Discussion Our study supports the immunomodulatory effect of metformin in the ileum of obese and insulin-resistant C57BL/6N mice contributed by intestinal immunoglobulin responses, with a prominent emphasis on the downregulation of NF-kappa B signaling pathway, associated with alterations in the composition of the gut microbiome.
Collapse
Affiliation(s)
- Monta Brīvība
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tocci V, Mirabelli M, Salatino A, Sicilia L, Giuliano S, Brunetti FS, Chiefari E, De Sarro G, Foti DP, Brunetti A. Metformin in Gestational Diabetes Mellitus: To Use or Not to Use, That Is the Question. Pharmaceuticals (Basel) 2023; 16:1318. [PMID: 37765126 PMCID: PMC10537239 DOI: 10.3390/ph16091318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, there has been a dramatic increase in the number of pregnancies complicated by gestational diabetes mellitus (GDM). GDM occurs when maternal insulin resistance develops and/or progresses during gestation, and it is not compensated by a rise in maternal insulin secretion. If not properly managed, this condition can cause serious short-term and long-term problems for both mother and child. Lifestyle changes are the first line of treatment for GDM, but if ineffective, insulin injections are the recommended pharmacological treatment choice. Some guidance authorities and scientific societies have proposed the use of metformin as an alternative pharmacological option for treating GDM, but there is not yet a unanimous consensus on this. Although the use of metformin appears to be safe for the mother, concerns remain about its long-term metabolic effects on the child that is exposed in utero to the drug, given that metformin, contrary to insulin, crosses the placenta. This review article describes the existing lines of evidence about the use of metformin in pregnancies complicated by GDM, in order to clarify its potential benefits and limits, and to help clinicians make decisions about who could benefit most from this drug treatment.
Collapse
Affiliation(s)
- Vera Tocci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Luciana Sicilia
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Stefania Giuliano
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Daniela P. Foti
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
28
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
29
|
Giordo R, Posadino AM, Mangoni AA, Pintus G. Metformin-mediated epigenetic modifications in diabetes and associated conditions: Biological and clinical relevance. Biochem Pharmacol 2023; 215:115732. [PMID: 37541452 DOI: 10.1016/j.bcp.2023.115732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
An intricate interplay between genetic and environmental factors contributes to the development of type 2 diabetes (T2D) and its complications. Therefore, it is not surprising that the epigenome also plays a crucial role in the pathogenesis of T2D. Hyperglycemia can indeed trigger epigenetic modifications, thereby regulating different gene expression patterns. Such epigenetic changes can persist after normalizing serum glucose concentrations, suggesting the presence of a 'metabolic memory' of previous hyperglycemia which may also be epigenetically regulated. Metformin, a derivative of biguanide known to reduce serum glucose concentrations in patients with T2D, appears to exert additional pleiotropic effects that are mediated by multiple epigenetic modifications. Such modifications have been reported in various organs, tissues, and cellular compartments and appear to account for the effects of metformin on glycemic control as well as local and systemic inflammation, oxidant stress, and fibrosis. This review discusses the emerging evidence regarding the reported metformin-mediated epigenetic modifications, particularly on short and long non-coding RNAs, DNA methylation, and histone proteins post-translational modifications, their biological and clinical significance, potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Arduino Aleksander Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
30
|
Barroso E, Montori-Grau M, Wahli W, Palomer X, Vázquez-Carrera M. Striking a gut-liver balance for the antidiabetic effects of metformin. Trends Pharmacol Sci 2023; 44:457-473. [PMID: 37188578 DOI: 10.1016/j.tips.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Metformin is the most prescribed drug for the treatment of type 2 diabetes mellitus (T2DM), but its mechanism of action has not yet been completely elucidated. Classically, the liver has been considered the major site of action of metformin. However, over the past few years, advances have unveiled the gut as an additional important target of metformin, which contributes to its glucose-lowering effect through new mechanisms of action. A better understanding of the mechanistic details of metformin action in the gut and the liver and its relevance in patients remains the challenge of present and future research and may impact drug development for the treatment of T2DM. Here, we offer a critical analysis of the current status of metformin-driven multiorgan glucose-lowering effects.
Collapse
Affiliation(s)
- Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
31
|
Yao Y, Li X, Yang X, Mou H, Wei L. Dihydromyricetin promotes GLP-1 release and glucose uptake by STC-1 cells and enhances the effects of metformin upon STC-1 cells and diabetic mouse model. Tissue Cell 2023; 82:102108. [PMID: 37229936 DOI: 10.1016/j.tice.2023.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is an intestinally produced hormone released by the L-cells to stimulate glucose-dependent insulin release. Vine tea, a traditional Chinese medicine made from the delicate stem and leaves of Ampelopsis grossedentata, has been reported to exert antidiabetic effects; however, the role and mechanism of dihydromyricetin, the main active ingredient of vine tea, remain unclear. METHODS AND RESULTS MTT assay was applied to detect cell viability. GLP-1 levels in the culture medium using a mouse GLP-1 ELISA kit. The level of GLP-1 in cells was examined using IF staining. NBDG assay was performed to evaluate the glucose uptake by STC-1 cells. The in vivo roles of dihydromyricetin in the diabetes mellitus mouse model were investigated. In this study, 25 μM dihydromyricetin, was found to cause no significant suppression of STC-1 cell viability. Dihydromyricetin markedly elevated GLP-1 secretion and glucose uptake by STC-1 cells. Although metformin increased GLP-1 release and glucose uptake by STC-1 cells more, dihydromyricetin further enhanced the effects of metformin. Moreover, dihydromyricetin or metformin alone significantly promoted the phosphorylation of AMPK, increased GLUT4 levels, inhibited ERK1/2 and IRS-1 phosphorylation, and decreased NF-κB levels, and dihydromyricetin also enhanced the effects of metformin on these factors. The in vivo results further confirmed the antidiabetic function of dihydromyricetin. CONCLUSION Dihydromyricetin promotes GLP-1 release and glucose uptake by STC-1 cells and enhances the effects of metformin upon STC-1 cells and diabetic mice, which might ameliorate diabetes through improving L cell functions. The Erk1/2 and AMPK signaling pathways might be involved.
Collapse
Affiliation(s)
- Yuanzhi Yao
- College of Biology and Food Engineering, Huaihua University. Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, China
| | - Xiaoying Li
- College of Biology and Food Engineering, Huaihua University. Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, China
| | - Xiaoqin Yang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Mou
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lin Wei
- College of Biology and Food Engineering, Huaihua University. Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, China; College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
32
|
Legaard GE, Lyngbæk MPP, Almdal TP, Karstoft K, Bennetsen SL, Feineis CS, Nielsen NS, Durrer CG, Liebetrau B, Nystrup U, Østergaard M, Thomsen K, Trinh B, Solomon TPJ, Van Hall G, Brønd JC, Holst JJ, Hartmann B, Christensen R, Pedersen BK, Ried-Larsen M. Effects of different doses of exercise and diet-induced weight loss on beta-cell function in type 2 diabetes (DOSE-EX): a randomized clinical trial. Nat Metab 2023; 5:880-895. [PMID: 37127822 PMCID: PMC10229430 DOI: 10.1038/s42255-023-00799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Diet-induced weight loss is associated with improved beta-cell function in people with type 2 diabetes (T2D) with remaining secretory capacity. It is unknown if adding exercise to diet-induced weight loss improves beta-cell function and if exercise volume is important for improving beta-cell function in this context. Here, we carried out a four-armed randomized trial with a total of 82 persons (35% females, mean age (s.d.) of 58.2 years (9.8)) with newly diagnosed T2D (<7 years). Participants were randomly allocated to standard care (n = 20), calorie restriction (25% energy reduction; n = 21), calorie restriction and exercise three times per week (n = 20), or calorie restriction and exercise six times per week (n = 21) for 16 weeks. The primary outcome was beta-cell function as indicated by the late-phase disposition index (insulin secretion multiplied by insulin sensitivity) at steady-state hyperglycemia during a hyperglycemic clamp. Secondary outcomes included glucose-stimulated insulin secretion and sensitivity as well as the disposition, insulin sensitivity, and secretion indices derived from a liquid mixed meal tolerance test. We show that the late-phase disposition index during the clamp increases more in all three intervention groups than in standard care (diet control group, 58%; 95% confidence interval (CI), 16 to 116; moderate exercise dose group, 105%; 95% CI, 49 to 182; high exercise dose group, 137%; 95% CI, 73 to 225) and follows a linear dose-response relationship (P > 0.001 for trend). We report three serious adverse events (two in the control group and one in the diet control group), as well as adverse events in two participants in the diet control group, and five participants each in the moderate and high exercise dose groups. Overall, adding an exercise intervention to diet-induced weight loss improves glucose-stimulated beta-cell function in people with newly diagnosed T2D in an exercise dose-dependent manner (NCT03769883).
Collapse
Affiliation(s)
- Grit E Legaard
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mark P P Lyngbæk
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Thomas P Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Camilla S Feineis
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Nina S Nielsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | | | - Ulrikke Nystrup
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Martin Østergaard
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Katja Thomsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Beckey Trinh
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | | | - Gerrit Van Hall
- Biomedical Sciences, Faculty of Health & Medical Science, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jan Christian Brønd
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente K Pedersen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark.
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
33
|
Sato M, Fujita H, Yokoyama H, Mikada A, Horikawa Y, Takahashi Y, Yamada Y, Waki H, Narita T. Relationships among Postprandial Plasma Active GLP-1 and GIP Excursions, Skeletal Muscle Mass, and Body Fat Mass in Patients with Type 2 Diabetes Treated with Either Miglitol, Sitagliptin, or Their Combination: A Secondary Analysis of the MASTER Study. J Clin Med 2023; 12:jcm12093104. [PMID: 37176545 PMCID: PMC10178987 DOI: 10.3390/jcm12093104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND We previously conducted a pilot randomized controlled trial "the MASTER study" and demonstrated that alpha-glucosidase inhibitor miglitol and a dipeptidyl peptidase-4 inhibitor sitagliptin modified postprandial plasma excursions of active glucagon-like peptide-1 (aGLP-1) and active gastric inhibitory polypeptide (aGIP), and miglitol treatment decreased body fat mass in patients with type 2 diabetes (T2D). However, the details regarding the relationships among postprandial plasma aGLP-1 and aGIP excursions, skeletal muscle mass, and body fat mass are unclear. METHODS We conducted a secondary analysis of the relationships among skeletal muscle mass index (SMI), total body fat mass index (TBFMI), and the incremental area under the curves (iAUC) of plasma aGLP-1 and aGIP excursions following mixed meal ingestion at baseline and after 24-week add-on treatment with either miglitol alone, sitagliptin alone, or their combination in T2D patients. RESULTS SMI was not changed after the 24-week treatment with miglitol and/or sitagliptin. TBFMI was reduced and the rates of aGIP-iAUC change were lowered in the two groups treated with miglitol, although their correlations did not reach statistical significance. We observed a positive correlation between the rates of aGIP-iAUC and TBFMI changes and a negative correlation between the rates of TBFMI and SMI changes in T2D patients treated with sitagliptin alone whose rates of aGIP-iAUC change were elevated. CONCLUSIONS Collectively, although T2D patients treated with miglitol and/or sitagliptin did not show altered SMI after 24-week treatment, the current study suggests that there are possible interrelationships among postprandial plasma aGIP excursion modified by sitagliptin, skeletal muscle mass, and body fat mass.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hiroki Fujita
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | | | - Atsushi Mikada
- Gastroenterology and Diabetes Unit, Hiraka General Hospital, Yokote 013-8610, Japan
| | - Yohei Horikawa
- Gastroenterology and Diabetes Unit, Hiraka General Hospital, Yokote 013-8610, Japan
| | - Yuya Takahashi
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yuichiro Yamada
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka 553-0003, Japan
| | - Hironori Waki
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takuma Narita
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Akita Higashi Medical Clinic, Akita 010-0041, Japan
| |
Collapse
|
34
|
Zubiaga L, Briand O, Auger F, Touche V, Hubert T, Thevenet J, Marciniak C, Quenon A, Bonner C, Peschard S, Raverdy V, Daoudi M, Kerr-Conte J, Pasquetti G, Koepsell H, Zdzieblo D, Mühlemann M, Thorens B, Delzenne ND, Bindels LB, Deprez B, Vantyghem MC, Laferrère B, Staels B, Huglo D, Lestavel S, Pattou F. Oral metformin transiently lowers post-prandial glucose response by reducing the apical expression of sodium-glucose co-transporter 1 in enterocytes. iScience 2023; 26:106057. [PMID: 36942050 PMCID: PMC10024157 DOI: 10.1016/j.isci.2023.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Metformin (MET) is the most prescribed antidiabetic drug, but its mechanisms of action remain elusive. Recent data point to the gut as MET's primary target. Here, we explored the effect of MET on the gut glucose transport machinery. Using human enterocytes (Caco-2/TC7 cells) in vitro, we showed that MET transiently reduced the apical density of sodium-glucose transporter 1 (SGLT1) and decreased the absorption of glucose, without changes in the mRNA levels of the transporter. Administered 1 h before a glucose challenge in rats (Wistar, GK), C57BL6 mice and mice pigs, oral MET reduced the post-prandial glucose response (PGR). This effect was abrogated in SGLT1-KO mice. MET also reduced the luminal clearance of 2-(18F)-fluoro-2-deoxy-D-glucose after oral administration in rats. In conclusion, oral metformin transiently lowers post-prandial glucose response by reducing the apical expression of SGLT1 in enterocytes, which may contribute to the clinical effects of the drug.
Collapse
Affiliation(s)
- Lorea Zubiaga
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Olivier Briand
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Florent Auger
- University of Lille, Preclinical Imaging Core Facility, 59000 Lille, France
| | - Veronique Touche
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Thomas Hubert
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Julien Thevenet
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Camille Marciniak
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Audrey Quenon
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Caroline Bonner
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
- Institut Pasteur de Lille, 59000 Lille, France
| | - Simon Peschard
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Violeta Raverdy
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Mehdi Daoudi
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Gianni Pasquetti
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Daniela Zdzieblo
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Markus Mühlemann
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Bernard Thorens
- University of Lausanne, Center for Integrative Genomics, Lausanne, Switzerland
| | - Nathalie D. Delzenne
- Université catholique de Louvain, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium
| | - Laure B. Bindels
- Université catholique de Louvain, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium
| | - Benoit Deprez
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1177, 59000 Lille, France
| | - Marie C. Vantyghem
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Blandine Laferrère
- Department of Medicine, New York Nutrition Obesity Research Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Bart Staels
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Damien Huglo
- University of Lille, Preclinical Imaging Core Facility, 59000 Lille, France
| | - Sophie Lestavel
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - François Pattou
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
- Corresponding author
| |
Collapse
|
35
|
Yingyue Q, Sugawara K, Takahashi H, Yokoi N, Ohbayashi K, Iwasaki Y, Seino S, Ogawa W. Stimulatory effect of imeglimin on incretin secretion. J Diabetes Investig 2023; 14:746-755. [PMID: 36977210 DOI: 10.1111/jdi.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
AIMS/INTRODUCTION Imeglimin is a new antidiabetic drug structurally related to metformin. Despite this structural similarity, only imeglimin augments glucose-stimulated insulin secretion (GSIS), with the mechanism underlying this effect remaining unclear. Given that glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) also enhance GSIS, we examined whether these incretin hormones might contribute to the pharmacological actions of imeglimin. MATERIALS AND METHODS Blood glucose and plasma insulin, GIP, and GLP-1 concentrations were measured during an oral glucose tolerance test (OGTT) performed in C57BL/6JJcl (C57BL/6) or KK-Ay/TaJcl (KK-Ay) mice after administration of a single dose of imeglimin with or without the dipeptidyl peptidase-4 inhibitor sitagliptin or the GLP-1 receptor antagonist exendin-9. The effects of imeglimin, with or without GIP or GLP-1, on GSIS were examined in C57BL/6 mouse islets. RESULTS Imeglimin lowered blood glucose and increased plasma insulin levels during an OGTT in both C57BL/6 and KK-Ay mice, whereas it also increased the plasma levels of GIP and GLP-1 in KK-Ay mice and the GLP-1 levels in C57BL/6 mice. The combination of imeglimin and sitagliptin increased plasma insulin and GLP-1 levels during the OGTT in KK-Ay mice to a markedly greater extent than did either drug alone. Imeglimin enhanced GSIS in an additive manner with GLP-1, but not with GIP, in mouse islets. Exendin-9 had only a minor inhibitory effect on the glucose-lowering action of imeglimin during the OGTT in KK-Ay mice. CONCLUSIONS Our data suggest that the imeglimin-induced increase in plasma GLP-1 levels likely contributes at least in part to its stimulatory effect on insulin secretion.
Collapse
Affiliation(s)
- Quan Yingyue
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sugawara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
36
|
Akrab SNA, Al Gawhary NE, Shafik AN, Morcos GNB, Wissa MY. The role of mosapride and levosulpiride in gut function and glycemic control in diabetic rats. Arab J Gastroenterol 2023:S1687-1979(23)00009-6. [PMID: 36878815 DOI: 10.1016/j.ajg.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND STUDY AIMS Gastroparesis is a well-known consequence of long-standing diabetes that presents with gastric dysmotility in the absence of gastric outlet obstruction. This study aimed to evaluate the therapeutic effects of mosapride and levosulpiride on improving gastric emptying in type 2 diabetes mellitus (T2DM) while regulating glycemic levels. MATERIAL AND METHODS Rats were divided into the normal control, untreated diabetic, metformin-treated (100 mg/kg/day), mosapride-treated (3 mg/kg/day), levosulpiride-treated (5 mg/kg/day), metformin (100 mg/kg/day) + mosapride (3 mg/kg/day)-treated, and metformin (100 mg/kg/day) + levosulpiride (5 mg/kg/day)-treated diabetic groups. T2DM was induced by a streptozotocin-nicotinamide model. Fourweeks from diabetes onset, the treatment was started orally daily for 2 weeks. Serum glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels were measured. Gastric motility study was performed using isolated rat fundus and pylorus strip preparations. Moreover, the intestinal transit rate was measured. RESULTS Mosapride and levosulpiride administration showed a significant decrease in serum glucose levels with improvement of gastric motility and intestinal transit rate. Mosapride showed a significant increase in serum insulin and GLP-1 levels. Metformin with mosapride and levosulpiride co-administration showed better glycemic control and gastric emptying than either drug administered alone. CONCLUSION Mosapride and levosulpiride showed comparable prokinetic effects. Metformin administration with mosapride and levosulpiride showed better glycemic control and prokinetic effects. Mosapride provided better glycemic control than levosulpiride. Metformin + mosapride combination provided superior glycemic control and prokinetic effects.
Collapse
Affiliation(s)
- Sara N A Akrab
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Nawal E Al Gawhary
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Amani N Shafik
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - George N B Morcos
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Cairo University, Egypt; Basic Medical Science Department, Faculty of Medicine, King Salman International University, South Sinai, Egypt.
| | - Marian Y Wissa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| |
Collapse
|
37
|
Koslover J, Bruce D, Patel S, Webb AJ. Metformin-'BRAINS & AIMS' pharmacological/prescribing principles of commonly prescribed (Top 100) drugs: Education and discussion. Br J Clin Pharmacol 2023; 89:931-938. [PMID: 36575901 DOI: 10.1111/bcp.15653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
We review pharmacological/prescribing principles relating to metformin according to our mnemonic framework: 'BRAINS & AIMS' (Benefits, Risks, Adverse Effects, Interactions, Necessary prophylaxis, Susceptibilities, Administering, Informing, Monitoring and Stopping): Benefits: Metformin's licensed uses: Type 2 diabetes mellitus (T2DM) treatment, reduction in risk or delay of onset. No clear evidence metformin influences patient-important outcomes [Cochrane Review (2020) of 18 RCTs (n = 10 680)]. Risks: Inexpensive, essential WHO list drug; use contraindicated/not tolerated in 15%: for example, contraindication: lactic acidosis in renal impairment (eGFR <30 mL/min/1.73 m2 ). Adverse effects: Common gastrointestinal (GI) side effects are dose-related and include abdominal pain, decreased appetite, diarrhoea (usually transient), nausea and vomiting, altered taste; vitamin B12 deficiency. Rare: acute metabolic acidosis (lactic acidosis/diabetic ketoacidosis). Interactions (pharmacokinetic) occur with drugs impairing renal function and hence metformin excretion, and drugs inhibiting organic cation transporter 1 or 2 (OCT1, OCT2), and/or multidrug and toxin extrusion protein 1 (MATE1/2-K), such as cimetidine, ranolazine, trimethoprim and verapamil, and inducers such as rifampicin. The risk of hypoglycaemia may increase when metformin is used in combination with other medications for diabetes (pharmacodynamic interaction). Necessary prophylaxis: Detect/treat vitamin B12 deficiency. Susceptible groups: Elderly/renal/liver impairment (lactic acidosis); safe in pregnancy/breastfeeding. Administering: Initially 500 mg once daily (morning) with breakfast; titrate only after 1 week. Informing (relevant BRAINS & A(I)MS principles). Monitoring: Renal function beforehand, and 6-12 monthly, HbA1c 3-6 monthly until controlled. Serum vitamin B12 levels if deficiency is suspected/risk factors for. Stopping: Encourage patients to continue medication, unless deteriorating renal/liver function. Reasons for deprescribing: no harms from stopping suddenly.
Collapse
Affiliation(s)
- Joshua Koslover
- King's College London GKT School of Medical Education, London, UK.,West Hertfordshire Teaching Hospitals NHS Trust (Watford General Hospital), Watford, UK
| | - Deborah Bruce
- King's College London GKT School of Medical Education, London, UK.,Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Shivani Patel
- King's College London GKT School of Medical Education, London, UK.,King's College Hospital NHS Foundation Trust, London, UK
| | - Andrew J Webb
- Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London, UK
| |
Collapse
|
38
|
Watkins JD, Carter S, Atkinson G, Koumanov F, Betts JA, Holst JJ, Gonzalez JT. Glucagon-like peptide-1 secretion in people with versus without type 2 diabetes: a systematic review and meta-analysis of cross-sectional studies. Metabolism 2023; 140:155375. [PMID: 36502882 DOI: 10.1016/j.metabol.2022.155375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The aim of this systematic review was to synthesise the study findings on whether GLP-1 secretion in response to a meal tolerance test is affected by the presence of type 2 diabetes (T2D). The influence of putative moderators such as age, sex, meal type, meal form, and assay type were also explored. METHODS A literature search identified 32 relevant studies. The sample mean and SD for fasting GLP-1TOTAL and GLP-1TOTAL iAUC were extracted and used to calculate between-group standardised mean differences (SMD), which were meta-analysed using a random-effects model to derive pooled estimates of Hedges' g and 95 % prediction intervals (PI). RESULTS Pooled across 18 studies, the overall SMD in GLP-1TOTAL iAUC between individuals with T2D (n = 270, 1047 ± 930 pmol·L-1·min) and individuals without T2D (n = 402, 1204 ± 937 pmol·L-1·min) was very small, not statistically significant and heterogenous across studies (g = -0.15, p = 0.43, PI: -1.53, 1.23). Subgroup analyses demonstrated an effect of assay type whereby Hedges' g for GLP-1 iAUC was greater in individuals with, versus those without T2D when using ELISA or Mesoscale (g = 0.67 [moderate], p = 0.009), but not when using RIA (g = -0.30 [small], p = 0.10). Pooled across 30 studies, the SMD in fasting GLP-1TOTAL between individuals with T2D (n = 580, 16.2 ± 6.9 pmol·L-1) versus individuals without T2D (n = 1363, 12.4 ± 5.7 pmol·L-1) was small and heterogenous between studies (g = 0.24, p = 0.21, PI: -1.55, 2.02). CONCLUSIONS Differences in fasting GLP-1TOTAL and GLP-1TOTAL iAUC between individuals with, versus those without T2D were generally small and inconsistent between studies. Factors influencing study heterogeneity such as small sample sizes and poor matching of groups may help to explain the wide prediction intervals observed. Considerations to improve comparisons of GLP-1 secretion in T2D and potential mediating factors more important than T2D diagnosis per se are outlined. PROSPERO ID CRD42020195612.
Collapse
Affiliation(s)
- J D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| | - S Carter
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - G Atkinson
- Liverpool John Moores University, Liverpool, UK
| | - F Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J J Holst
- Biomedical Sciences, Endocrinology Research Section, University of Copenhagen, Denmark
| | - J T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| |
Collapse
|
39
|
Mizoguchi M, Takemori H, Furukawa S, Ito M, Asai M, Morino H, Miura T, Yabe D, Shibata T. Increased expression of glucagon-like peptide-1 and cystic fibrosis transmembrane conductance regulator in the ileum and colon in mouse treated with metformin. Endocr J 2023; 70:149-159. [PMID: 36198615 DOI: 10.1507/endocrj.ej22-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metformin, an oral medication, is prescribed to patients with type 2 diabetes mellitus. Although the efficacy, safety, and low economic burden of metformin on patients have long been recognized, approximately 5% of the patients treated with this drug develop severe diarrhea and discontinue the treatment. We previously reported that 1,000 mg·kg-1·day-1 of metformin induced diarrhea in diabetic obese (db/db) mice and wood creosote (traditional medication for diarrhea) ameliorated the symptoms. In this study, we attempted to elucidate the molecular mechanisms by which metformin induces diarrhea. Cystic fibrosis transmembrane conductance regulator (CFTR) is a key ion (chloride) channel in cyclic adenosine monophosphate (cAMP)-induced diarrhea. Metformin treatment increased bile flow (bile acids and bilirubin) in the ileum of mice. In addition, the treatment was accompanied by an increase in mRNA and protein levels of CFTR in the mucosa of the ileum and colon in both wild-type (C57BL/6J) and db/db mice. Glucagon-like peptide-1 (GLP-1), as well as cholic acid, induces CFTR mRNA expression in human colon carcinoma Caco-2 cells through cAMP signaling. Although wood creosote (10 mg/kg) ameliorated diarrhea symptoms, it did not alter the mRNA levels of Glp-1 or Cftr. Similar to overeating, metformin upregulated GLP-1 and CFTR expression, which may have contributed to diarrhea symptoms in mice. Although we could not identify db/db mouse-specific factors associated with metformin-induced diarrhea, these factors may modulate colon function. Wood creosote may not interact with these factors but ameliorates diarrhea symptoms.
Collapse
Affiliation(s)
- Momoka Mizoguchi
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Hiroshi Takemori
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Saho Furukawa
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Masafumi Ito
- Taiko Pharmaceutical Co., Ltd., Osaka 550-0005, Japan
| | - Mutsumi Asai
- Taiko Pharmaceutical Co., Ltd., Osaka 550-0005, Japan
| | | | | | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical Nutrition, Gifu University Graduate School of Medicine, Gifu 501-1193, Japan
| | - Takashi Shibata
- Taiko Pharmaceutical Co., Ltd., Osaka 550-0005, Japan
- Strategic Global Partnership Cross-Innovation Initiative, Graduate School of Medicine, Osaka University Hospital, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Ahn CH, Oh TJ, Min SH, Cho YM. Incretin and Pancreatic β-Cell Function in Patients with Type 2 Diabetes. Endocrinol Metab (Seoul) 2023; 38:1-9. [PMID: 36781163 PMCID: PMC10008660 DOI: 10.3803/enm.2023.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
To maintain normal glucose homeostasis after a meal, it is essential to secrete an adequate amount of insulin from pancreatic β-cells. However, if pancreatic β-cells solely depended on the blood glucose level for insulin secretion, a surge in blood glucose levels would be inevitable after the ingestion of a large amount of carbohydrates. To avoid a deluge of glucose in the bloodstream after a large carbohydrate- rich meal, enteroendocrine cells detect the amount of nutrient absorption from the gut lumen and secrete incretin hormones at scale. Since insulin secretion in response to incretin hormones occurs only in a hyperglycemic milieu, pancreatic β-cells can secrete a "Goldilocks" amount of insulin (i.e., not too much and not too little) to keep the blood glucose level in the normal range. In this regard, pancreatic β-cell sensitivity to glucose and incretin hormones is crucial for maintaining normal glucose homeostasis. In this Namgok lecture 2022, we review the effects of current anti-diabetic medications on pancreatic β-cell sensitivity to glucose and incretin hormones.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Se Hee Min
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Corresponding author: Young Min Cho. Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-1965, Fax: +82-2-2072-7246, E-mail:
| |
Collapse
|
41
|
Mu W, Jiang Y, Liang G, Feng Y, Qu F. Metformin: A Promising Antidiabetic Medication for Cancer Treatment. Curr Drug Targets 2023; 24:41-54. [PMID: 36336804 DOI: 10.2174/1389450124666221104094918] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Metformin is a widely used drug in patients with type 2 diabetes mellitus. Metformin inhibits hepatic gluconeogenesis and increases glucose utilization in peripheral tissues. In recent years, several studies have shown that metformin is a potential therapeutic agent against cancer, alone or combined with other anticancer treatments. Metformin mainly activates the AMPK complex and regulates intracellular energy status, inhibiting the mitochondrial respiratory chain complex I and reducing the production of reactive oxygen species. Other anticancer targets of metformin are specific transcription factors inhibiting cell proliferation, promoting apoptosis and reducing drug resistance. In addition, metformin modulates tumor cells' response to anticancer treatments, favoring the activity of T cells. In diabetic patients, metformin reduces the occurrence of cancer and improves the prognosis and efficacy of anticancer treatments. In this review, we provided a comprehensive perspective of metformin as an anticancer drug.
Collapse
Affiliation(s)
- Wei Mu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Yunyun Jiang
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Guoqiang Liang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 215000 Suzhou, Jiangsu, PR China
| | - Yue Feng
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Falin Qu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| |
Collapse
|
42
|
Klempel N, Thomas K, Conlon JM, Flatt PR, Irwin N. Alpha-cells and therapy of diabetes: Inhibition, antagonism or death? Peptides 2022; 157:170877. [PMID: 36108978 DOI: 10.1016/j.peptides.2022.170877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Absolute or relative hyperglucagonaemia is a characteristic of both Type 1 and Type 2 diabetes, resulting in fasting hyperglycaemia due in part to increased hepatic glucose production and lack of postprandial suppression of circulating glucagon concentrations. Consequently, therapeutics that target glucagon secretion or biological action may be effective antidiabetic agents. In this regard, specific glucagon receptor (GCGR) antagonists have been developed that exhibit impressive glucose-lowering actions, but unfortunately may cause off-target adverse effects in humans. Further to this, several currently approved antidiabetic agents, including GLP-1 mimetics, DPP-4 inhibitors, metformin, sulphonylureas and pramlintide likely exert part of their glucose homeostatic actions through direct or indirect inhibition of GCGR signalling. In addition to agents that inhibit the release of glucagon, compounds that enhance the transdifferentiation of glucagon secreting alpha-cells towards an insulin positive beta-cell phenotype could also help curb excess glucagon secretion in diabetes. Use of alpha-cell toxins represents another possible strategy to address hyperglucagonaemia in diabetes. In that respect, research from the 1920 s with diguanides such as synthalin A demonstrated effective glucose-lowering with alpha-cell ablation in both animal models and humans with diabetes. However, further clinical use of synthalin A was curtailed due its adverse effects and the increased availability of insulin. Overall, these observations with therapeutics that directly target alpha-cells, or GCGR signaling, highlight a largely untapped potential for diabetes therapy that merits further detailed consideration.
Collapse
Affiliation(s)
- Natalie Klempel
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Keith Thomas
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
43
|
From Diabetes to Atherosclerosis: Potential of Metformin for Management of Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23179738. [PMID: 36077136 PMCID: PMC9456496 DOI: 10.3390/ijms23179738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a common cause of cardiovascular disease, which, in turn, is often fatal. Today, we know a lot about the pathogenesis of atherosclerosis. However, the main knowledge is that the disease is extremely complicated. The development of atherosclerosis is associated with more than one molecular mechanism, each making a significant contribution. These mechanisms include endothelial dysfunction, inflammation, mitochondrial dysfunction, oxidative stress, and lipid metabolism disorders. This complexity inevitably leads to difficulties in treatment and prevention. One of the possible therapeutic options for atherosclerosis and its consequences may be metformin, which has already proven itself in the treatment of diabetes. Both diabetes and atherosclerosis are complex metabolic diseases, the pathogenesis of which involves many different mechanisms, including those common to both diseases. This makes metformin a suitable candidate for investigating its efficacy in cardiovascular disease. In this review, we highlight aspects such as the mechanisms of action and targets of metformin, in addition to summarizing the available data from clinical trials on the effective reduction of cardiovascular risks.
Collapse
|
44
|
Dorsey-Trevino EG, Kaur V, Mercader JM, Florez JC, Leong A. Association of GLP1R Polymorphisms With the Incretin Response. J Clin Endocrinol Metab 2022; 107:2580-2588. [PMID: 35723666 PMCID: PMC9387717 DOI: 10.1210/clinem/dgac374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Polymorphisms in the gene encoding the glucagon-like peptide-1 receptor (GLP1R) are associated with type 2 diabetes but their effects on incretin levels remain unclear. OBJECTIVE We evaluated the physiologic and hormonal effects of GLP1R genotypes before and after interventions that influence glucose physiology. DESIGN Pharmacogenetic study conducted at 3 academic centers in Boston, Massachusetts. PARTICIPANTS A total of 868 antidiabetic drug-naïve participants with type 2 diabetes or at risk for developing diabetes. INTERVENTIONS We analyzed 5 variants within GLP1R (rs761387, rs10305423, rs10305441, rs742762, and rs10305492) and recorded biochemical data during a 5-mg glipizide challenge and a 75-g oral glucose tolerance test (OGTT) following 4 doses of metformin 500 mg over 2 days. MAIN OUTCOMES We used an additive mixed-effects model to evaluate the association of these variants with glucose, insulin, and incretin levels over multiple timepoints during the OGTT. RESULTS During the OGTT, the G-risk allele at rs761387 was associated with higher total GLP-1 (2.61 pmol/L; 95% CI, 1.0.72-4.50), active GLP-1 (2.61 pmol/L; 95% CI, 0.04-5.18), and a trend toward higher glucose (3.63; 95% CI, -0.16 to 7.42 mg/dL) per allele but was not associated with insulin. During the glipizide challenge, the G allele was associated with higher insulin levels per allele (2.01 IU/mL; 95% CI, 0.26-3.76). The other variants were not associated with any of the outcomes tested. CONCLUSIONS GLP1R variation is associated with differences in GLP-1 levels following an OGTT load despite no differences in insulin levels, highlighting altered incretin signaling as a potential mechanism by which GLP1R variation affects T2D risk.
Collapse
Affiliation(s)
- Edgar G Dorsey-Trevino
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Varinderpal Kaur
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Josep M Mercader
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jose C Florez
- Correspondence: Jose C. Florez, MD, PhD, Endocrine Division and Diabetes Unit, Massachusetts General Hospital, Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge St, CPZN 5.250, Boston, MA 02114, USA.
| | - Aaron Leong
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
45
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
46
|
Di Magno L, Di Pastena F, Bordone R, Coni S, Canettieri G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers (Basel) 2022; 14:cancers14133220. [PMID: 35804992 PMCID: PMC9265089 DOI: 10.3390/cancers14133220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Biguanides are a family of antidiabetic drugs with documented anticancer properties in preclinical and clinical settings. Despite intensive investigation, how they exert their therapeutic effects is still debated. Many studies support the hypothesis that biguanides inhibit mitochondrial complex I, inducing energy stress and activating compensatory responses mediated by energy sensors. However, a major concern related to this “complex” model is that the therapeutic concentrations of biguanides found in the blood and tissues are much lower than the doses required to inhibit complex I, suggesting the involvement of additional mechanisms. This comprehensive review illustrates the current knowledge of pharmacokinetics, receptors, sensors, intracellular alterations, and the mechanism of action of biguanides in diabetes and cancer. The conditions of usage and variables affecting the response to these drugs, the effect on the immune system and microbiota, as well as the results from the most relevant clinical trials in cancer are also discussed.
Collapse
Affiliation(s)
- Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Fiorella Di Pastena
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
- Istituto Pasteur—Fondazione Cenci—Bolognetti, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
47
|
Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH. Revisiting the concept of incretin and enteroendocrine L-cells as type 2 diabetes mellitus treatment. Pharmacol Res 2022; 180:106237. [PMID: 35487405 PMCID: PMC7614293 DOI: 10.1016/j.phrs.2022.106237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022]
Abstract
The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
Collapse
Affiliation(s)
- Kok-Hou Lok
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Nicholas J Wareham
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge, UK.
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
48
|
Yin R, Xu Y, Wang X, Yang L, Zhao D. Role of Dipeptidyl Peptidase 4 Inhibitors in Antidiabetic Treatment. Molecules 2022; 27:3055. [PMID: 35630534 PMCID: PMC9147686 DOI: 10.3390/molecules27103055] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, important changes have occurred in the field of diabetes treatment. The focus of the treatment of diabetic patients has shifted from the control of blood glucose itself to the overall management of risk factors, while adjusting blood glucose goals according to individualization. In addition, regulators need to approve new antidiabetic drugs which have been tested for cardiovascular safety. Thus, the newest class of drugs has been shown to reduce major adverse cardiovascular events, including sodium-glucose transporter 2 (SGLT2) and some glucagon like peptide 1 receptor (GLP1) analog. As such, they have a prominent place in the hyperglycemia treatment algorithms. In recent years, the role of DPP4 inhibitors (DPP4i) has been modified. DPP4i have a favorable safety profile and anti-inflammatory profile, do not cause hypoglycemia or weight gain, and do not require dose escalation. In addition, it can also be applied to some types of chronic kidney disease patients and elderly patients with diabetes. Overall, DPP4i, as a class of safe oral hypoglycemic agents, have a role in the management of diabetic patients, and there is extensive experience in their use.
Collapse
Affiliation(s)
| | | | | | | | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China; (R.Y.); (Y.X.); (X.W.); (L.Y.)
| |
Collapse
|
49
|
A Planar Culture Model of Human Absorptive Enterocytes Reveals Metformin Increases Fatty Acid Oxidation and Export. Cell Mol Gastroenterol Hepatol 2022; 14:409-434. [PMID: 35489715 PMCID: PMC9305019 DOI: 10.1016/j.jcmgh.2022.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin. METHODS Single-cell RNA-sequencing, transcriptomics, and lineage trajectory was performed on primary human jejunum. In vivo absorptive enterocyte maturational states informed conditions used to differentiate human intestinal stem cells (ISCs) that mimic in vivo absorptive enterocyte maturation. The system was scaled for high-throughput drug screening. Fatty acid oxidation was modulated pharmacologically and BODIPY (Thermo Fisher Scientific, Waltham, MA) (B)-labeled fatty acids were used to evaluate fatty acid handling via fluorescence and thin-layer chromatography. RESULTS Single-cell RNA-sequencing shows increasing expression of lipid-handling genes as absorptive enterocytes mature. Culture conditions promote ISC differentiation into confluent absorptive enterocyte monolayers. Fatty acid-handling gene expression mimics in vivo maturational states. The fatty acid oxidation inhibitor etomoxir decreased apical-to-basolateral export of medium-chain B-C12 and long-chain B-C16 fatty acids, whereas the CPT1 agonist C75 and the antidiabetic drug metformin increased apical-to-basolateral export. Short-chain B-C5 was unaffected by fatty acid oxidation inhibition and diffused through absorptive enterocytes. CONCLUSIONS Primary human ISCs in culture undergo programmed maturation. Absorptive enterocyte monolayers show in vivo maturational states and lipid-handling gene expression profiles. Absorptive enterocytes create strong epithelial barriers in 96-Transwell format. Fatty acid export is proportional to fatty acid oxidation. Metformin enhances fatty acid oxidation and increases basolateral fatty acid export, supporting an intestine-specific role.
Collapse
|
50
|
Top WMC, Kooy A, Stehouwer CDA. Metformin: A Narrative Review of Its Potential Benefits for Cardiovascular Disease, Cancer and Dementia. Pharmaceuticals (Basel) 2022; 15:312. [PMID: 35337110 PMCID: PMC8951049 DOI: 10.3390/ph15030312] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
The biguanide metformin has been used as first-line therapy in type 2 diabetes mellitus (T2DM) treatment for several decades. In addition to its glucose-lowering properties and its prevention of weight gain, the landmark UK Prospective Diabetes Study (UKPDS) demonstrated cardioprotective properties in obese T2DM patients. Coupled with a favorable side effect profile and low cost, metformin has become the cornerstone in the treatment of T2DM worldwide. In addition, metformin is increasingly being investigated for its potential anticancer and neuroprotective properties both in T2DM patients and non-diabetic individuals. In the meantime, new drugs with powerful cardioprotective properties have been introduced and compete with metformin for its place in the treatment of T2DM. In this review we will discuss actual insights in the various working mechanisms of metformin and the evidence for its beneficial effects on (the prevention of) cardiovascular disease, cancer and dementia. In addition to observational evidence, emphasis is placed on randomized trials and recent meta-analyses to obtain an up-to-date overview of the use of metformin in clinical practice.
Collapse
Affiliation(s)
- Wiebe M. C. Top
- Department of Intensive Care, Treant Care Group, 7909 AA Hoogeveen, The Netherlands;
| | - Adriaan Kooy
- Department of Internal Medicine, Treant Care Group, 7909 AA Hoogeveen, The Netherlands
- Bethesda Diabetes Research Center, 7909 AA Hoogeveen, The Netherlands
- Department of Internal Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Coen D. A. Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| |
Collapse
|