1
|
Chavda VP, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G, Duo Y, Das BK, Shah Y, Postwala H. Unveiling the promise: Exosomes as game-changers in anti-infective therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230139. [PMID: 39439498 PMCID: PMC11491308 DOI: 10.1002/exp.20230139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs)-based intercellular communication (through exosomes, microvesicles, and apoptotic bodies) is conserved across all kingdoms of life. In recent years, exosomes have gained much attention for targeted pharmaceutical administration due to their unique features, nanoscale size, and capacity to significantly contribute to cellular communication. As drug delivery vehicles, exosomes have several advantages over alternative nanoparticulate drug delivery technologies. A key advantage lies in their comparable makeup to the body's cells, which makes them non-immunogenic. However, exosomes vesicles face several challenges, including a lack of an effective and standard production technique, decreased drug loading capacity, limited characterization techniques, and underdeveloped isolation and purification procedures. Exosomes are well known for their long-term safety and natural ability to transport intercellular nucleic acids and medicinal compounds across the blood-brain-barrier (BBB). Therefore, in addition to revealing new insights into exosomes' distinctiveness, the growing availability of new analytical tools may drive the development of next-generation synthetic systems. Herein, light is shed on exosomes as drug delivery vehicles in anti-infective therapy by reviewing the literature on primary articles published between 2002 and 2023. Additionally, the benefits and limitations of employing exosomes as vehicles for therapeutic drug delivery are also discussed.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Guanghong Luo
- Department of Radiation OncologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Rajashri Bezbaruah
- Department of Pharmaceutical SciencesFaculty of Science and EngineeringDibrugarh UniversityDibrugarhAssamIndia
| | - Tutumoni Kalita
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Anupam Sarma
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Gitima Deka
- College of PharmacyYeungnam UniversityGyeonsanRepublic of Korea
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Bhrigu Kumar Das
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Yesha Shah
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| | - Humzah Postwala
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
2
|
Tang X, Lu H, Tarwater PM, Silverberg DL, Schorl C, Ramratnam B. Adeno-Associated Virus (AAV)-Delivered Exosomal TAT and BiTE Molecule CD4-αCD3 Facilitate the Elimination of CD4 T Cells Harboring Latent HIV-1. Microorganisms 2024; 12:1707. [PMID: 39203549 PMCID: PMC11357122 DOI: 10.3390/microorganisms12081707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Combinatorial antiretroviral therapy (cART) has transformed HIV infection from a death sentence to a controllable chronic disease, but cannot eliminate the virus. Latent HIV-1 reservoirs are the major obstacles to cure HIV-1 infection. Previously, we engineered exosomal Tat (Exo-Tat) to reactivate latent HIV-1 from the reservoir of resting CD4+ T cells. Here, we present an HIV-1 eradication platform, which uses our previously described Exo-Tat to activate latent virus from resting CD4+ T cells guided by the specific binding domain of CD4 in interleukin 16 (IL16), attached to the N-terminus of exosome surface protein lysosome-associated membrane protein 2 variant B (Lamp2B). Cells with HIV-1 surface protein gp120 expressed on the cell membranes are then targeted for immune cytolysis by a BiTE molecule CD4-αCD3, which colocalizes the gp120 surface protein of HIV-1 and the CD3 of cytotoxic T lymphocytes. Using primary blood cells obtained from antiretroviral treated individuals, we find that this combined approach led to a significant reduction in replication-competent HIV-1 in infected CD4+ T cells in a clonal in vitro cell system. Furthermore, adeno-associated virus serotype DJ (AAV-DJ) was used to deliver Exo-Tat, IL16lamp2b and CD4-αCD3 genes by constructing them in one AAV-DJ vector (the plasmid was named pEliminator). The coculture of T cells from HIV-1 patients with Huh-7 cells infected with AAV-Eliminator viruses led to the clearance of HIV-1 reservoir cells in the in vitro experiment, which could have implications for reducing the viral reservoir in vivo, indicating that Eliminator AAV viruses have the potential to be developed into therapeutic biologics to cure HIV-1 infection.
Collapse
Affiliation(s)
- Xiaoli Tang
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (X.T.); (H.L.)
| | - Huafei Lu
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (X.T.); (H.L.)
| | - Patrick M. Tarwater
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, College Station, TX 77843, USA;
| | - David L. Silverberg
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02906, USA;
| | - Christoph Schorl
- The Brown University Genomics Core, Providence, RI 02906, USA;
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906, USA
| | - Bharat Ramratnam
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (X.T.); (H.L.)
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
- Clinical Research Center of Lifespan, Providence, RI 02903, USA
| |
Collapse
|
3
|
Raines SLM, Falcinelli SD, Peterson JJ, Van Gulck E, Allard B, Kirchherr J, Vega J, Najera I, Boden D, Archin NM, Margolis DM. Nanoparticle delivery of Tat synergizes with classical latency reversal agents to express HIV antigen targets. Antimicrob Agents Chemother 2024; 68:e0020124. [PMID: 38829049 PMCID: PMC11232404 DOI: 10.1128/aac.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.
Collapse
Affiliation(s)
- Samuel L. M. Raines
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Brigitte Allard
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | - Isabel Najera
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nancie M. Archin
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
5
|
Pardons M, Cole B, Lambrechts L, van Snippenberg W, Rutsaert S, Noppe Y, De Langhe N, Dhondt A, Vega J, Eyassu F, Nijs E, Van Gulck E, Boden D, Vandekerckhove L. Potent latency reversal by Tat RNA-containing nanoparticle enables multi-omic analysis of the HIV-1 reservoir. Nat Commun 2023; 14:8397. [PMID: 38110433 PMCID: PMC10728105 DOI: 10.1038/s41467-023-44020-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
The development of latency reversing agents that potently reactivate HIV without inducing global T cell activation would benefit the field of HIV reservoir research and could pave the way to a functional cure. Here, we explore the reactivation capacity of a lipid nanoparticle containing Tat mRNA (Tat-LNP) in CD4 T cells from people living with HIV undergoing antiretroviral therapy (ART). When combined with panobinostat, Tat-LNP induces latency reversal in a significantly higher proportion of latently infected cells compared to PMA/ionomycin (≈ 4-fold higher). We demonstrate that Tat-LNP does not alter the transcriptome of CD4 T cells, enabling the characterization of latently infected cells in their near-native state. Upon latency reversal, we identify transcriptomic differences between infected cells carrying an inducible provirus and non-infected cells (e.g. LINC02964, GZMA, CCL5). We confirm the transcriptomic differences at the protein level and provide evidence that the long non-coding RNA LINC02964 plays a role in active HIV infection. Furthermore, p24+ cells exhibit heightened PI3K/Akt signaling, along with downregulation of protein translation, suggesting that HIV-infected cells display distinct signatures facilitating their long-term persistence. Tat-LNP represents a valuable research tool for in vitro reservoir studies as it greatly facilitates the in-depth characterization of HIV reservoir cells' transcriptome and proteome profiles.
Collapse
Affiliation(s)
- Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Basiel Cole
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Willem van Snippenberg
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Ytse Noppe
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Nele De Langhe
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Annemieke Dhondt
- Department of Nephrology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Jerel Vega
- Arcturus Therapeutics, 10628 Science Center Drive, Suite 250, San Diego, 92121, CA, USA
| | - Filmon Eyassu
- Computational biology, Johnson and Johnson, 2340, Beerse, Belgium
| | - Erik Nijs
- Janssen infectious diseases and diagnostics, Johnson and Johnson, 2340, Beerse, Belgium
| | - Ellen Van Gulck
- Janssen infectious diseases and diagnostics, Johnson and Johnson, 2340, Beerse, Belgium
| | - Daniel Boden
- Janssen Biopharma, Johnson and Johnson, South San Francisco, 94080, CA, USA
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Habib A, Liang Y, Zhu N. Exosomes multifunctional roles in HIV-1: insight into the immune regulation, vaccine development and current progress in delivery system. Front Immunol 2023; 14:1249133. [PMID: 37965312 PMCID: PMC10642161 DOI: 10.3389/fimmu.2023.1249133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Human Immunodeficiency Virus (HIV-1) is known to establish a persistent latent infection. The use of combination antiretroviral therapy (cART) can effectively reduce the viral load, but the treatment can be costly and may lead to the development of drug resistance and life-shortening side effects. It is important to develop an ideal and safer in vivo target therapy that will effectively block viral replication and expression in the body. Exosomes have recently emerged as a promising drug delivery vehicle due to their low immunogenicity, nanoscale size (30-150nm), high biocompatibility, and stability in the targeted area. Exosomes, which are genetically produced by different types of cells such as dendritic cells, neurons, T and B cells, epithelial cells, tumor cells, and mast cells, are designed for efficient delivery to targeted cells. In this article, we review and highlight recent developments in the strategy and application of exosome-based HIV-1 vaccines. We also discuss the use of exosome-based antigen delivery systems in vaccine development. HIV-1 antigen can be loaded into exosomes, and this modified cargo can be delivered to target cells or tissues through different loading approaches. This review also discusses the immunological prospects of exosomes and their role as biomarkers in disease progression. However, there are significant administrative and technological obstacles that need to be overcome to fully harness the potential of exosome drug delivery systems.
Collapse
Affiliation(s)
- Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
8
|
Osna NA, Poluektova LY. Elucidating the role of extracellular vesicles in liver injury induced by HIV. Expert Rev Gastroenterol Hepatol 2023; 17:701-708. [PMID: 37378531 PMCID: PMC10528210 DOI: 10.1080/17474124.2023.2230867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Liver disease is known as one of the leading co-morbidities in HIV infection, with 18% of non-AIDS-related mortality. There is constant crosstalk between liver parenchymal (hepatocytes) and non-parenchymal cells (macrophages, hepatic stellate cells, endothelial cells), and extracellular vesicles (EVs) are one of the most important ways of cell-to-cell communication. AREAS COVERED We briefly cover the role of EVs in liver disease as well as what is known about the role of small EVs, exosomes, in HIV-induced liver disease potentiated by alcohol as one of the second hits. We also touch large EVs, apoptotic bodies (ABs), in HIV-induced liver injury, the mechanisms of their formation and potentiation by second hits, and their role in the progression of liver disease. EXPERT OPINION/COMMENTARY Liver cells are an important source of EVs, which may provide the connection between different organs via secretion into the circulating blood (exosomes) or serve for the communication between the cells within the organ (ABs). Understanding the role of liver EVs in HIV infection and the involvement of second hits in EV generation would provide a new angle for the analysis of HIV-related liver disease pathogenesis and progression to end-stage liver disease.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, the University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, the University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, the University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
9
|
Andre M, Nair M, Raymond AD. HIV Latency and Nanomedicine Strategies for Anti-HIV Treatment and Eradication. Biomedicines 2023; 11:biomedicines11020617. [PMID: 36831153 PMCID: PMC9953021 DOI: 10.3390/biomedicines11020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Antiretrovirals (ARVs) reduce Human Immunodeficiency Virus (HIV) loads to undetectable levels in infected patients. However, HIV can persist throughout the body in cellular reservoirs partly due to the inability of some ARVs to cross anatomical barriers and the capacity of HIV-1 to establish latent infection in resting CD4+ T cells and monocytes/macrophages. A cure for HIV is not likely unless latency is addressed and delivery of ARVs to cellular reservoir sites is improved. Nanomedicine has been used in ARV formulations to improve delivery and efficacy. More specifically, researchers are exploring the benefit of using nanoparticles to improve ARVs and nanomedicine in HIV eradication strategies such as shock and kill, block and lock, and others. This review will focus on mechanisms of HIV-1 latency and nanomedicine-based approaches to treat HIV.
Collapse
Affiliation(s)
- Mickensone Andre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-305-348-6430
| |
Collapse
|
10
|
A Dynamic Interplay of Circulating Extracellular Vesicles and Galectin-1 Reprograms Viral Latency during HIV-1 Infection. mBio 2022; 13:e0061122. [PMID: 35943163 PMCID: PMC9426495 DOI: 10.1128/mbio.00611-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combined Antiretroviral therapy (cART) suppresses HIV replication but fails to eradicate the virus, which persists in a small pool of long-lived latently infected cells. Immune activation and residual inflammation during cART are considered to contribute to viral persistence. Galectins, a family of β-galactoside-binding proteins, play central roles in host-pathogen interactions and inflammatory responses. Depending on their structure, glycan binding specificities and/or formation of distinct multivalent signaling complexes, different members of this family can complement, synergize, or oppose the function of others. Here, we identify a regulatory circuit, mediated by galectin-1 (Gal-1)–glycan interactions, that promotes reversal of HIV-1 latency in infected T cells. We found elevated levels of circulating Gal-1 in plasma from HIV-1-infected individuals, which correlated both with inflammatory markers and the transcriptional activity of the reservoir, as determined by unspliced-RNA (US-RNA) copy number. Proinflammatory extracellular vesicles (EVs) isolated from the plasma of HIV-infected individuals induced Gal-1 secretion by macrophages. Extracellularly, Gal-1 interacted with latently infected resting primary CD4+ T cells and J-LAT cells in a glycan-dependent manner and reversed HIV latency via activation of the nuclear factor κB (NF-κB). Furthermore, CD4+ T cells isolated from HIV-infected individuals showed increased HIV-1 transcriptional activity when exposed to Gal-1. Thus, by modulating reservoir dynamics, EV-driven Gal-1 secretion by macrophages links inflammation with HIV-1 persistence in cART-treated individuals.
Collapse
|
11
|
Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, Li C, Li W. The reservoir of latent HIV. Front Cell Infect Microbiol 2022; 12:945956. [PMID: 35967854 PMCID: PMC9368196 DOI: 10.3389/fcimb.2022.945956] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent reservoir of the human immunodeficiency virus (HIV) is currently the major challenge in curing HIV infection. After HIV infects the human body, the latent HIV is unable to be recognized by the body’s immune system. Currently, the widely adopted antiretroviral therapy (ART) is also unble to eliminate it, thus hindering the progress of HIV treatment. This review discusses the existence of latent HIV vault for HIV treatment, its formation and factors affecting its formation, cell, and tissue localization, methods for detection and removing latent reservoir, to provide a comprehensive understanding of latent HIV vault, in order to assist in the future research and play a potential role in achieving HIV treatment.
Collapse
Affiliation(s)
- Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| |
Collapse
|
12
|
Busatto S, Yang Y, Iannotta D, Davidovich I, Talmon Y, Wolfram J. Considerations for extracellular vesicle and lipoprotein interactions in cell culture assays. J Extracell Vesicles 2022; 11:e12202. [PMID: 35362268 PMCID: PMC8971175 DOI: 10.1002/jev2.12202] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
With an exponential increase in extracellular vesicle (EV) studies in the past decade, focus has been placed on standardization of experimental design to ensure inter‐study comparisons and validity of conclusions. In the case of in vitro assays, the composition of cell culture media is important to consider for EV studies. In particular, levels of lipoproteins, which are critical components of the interstitial fluid, should be taken into consideration. Results from this study reveal that lipoprotein levels in cell culture medium impact the effects that EVs have on recipient cells. Additionally, evidence of EV binding and fusion to lipoprotein‐like structures in plasma is provided. However, it is unclear whether the impact of lipoproteins in cell culture is due to direct interactions with EVs, indirect effects, or a combination of both mechanisms. Taken together, cell culture studies performed in the absence of physiological levels of lipoproteins are unlikely to reflect interactions that occur between EVs and recipient cells in an in vivo environment.
Collapse
Affiliation(s)
- Sara Busatto
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Yubo Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA.,Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia.,School of Chemical Engineering, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Navarrete-Muñoz MA, Llorens C, Benito JM, Rallón N. Extracellular Vesicles as a New Promising Therapy in HIV Infection. Front Immunol 2022; 12:811471. [PMID: 35058938 PMCID: PMC8765339 DOI: 10.3389/fimmu.2021.811471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Combination antiretroviral therapy (cART) effectively blocks HIV replication but cannot completely eliminate HIV from the body mainly due to establishment of a viral reservoir. To date, clinical strategies designed to replace cART for life and alternatively to eliminate the HIV reservoir have failed. The reduced expression of viral antigens in the latently infected cells is one of the main reasons behind the failure of the strategies to purge the HIV reservoir. This situation has forced the scientific community to search alternative therapeutic strategies to control HIV infection. In this regard, recent findings have pointed out extracellular vesicles as therapeutic agents with enormous potential to control HIV infection. This review focuses on their role as pro-viral and anti-viral factors, as well as their potential therapeutic applications.
Collapse
Affiliation(s)
- Maria A. Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
- Biotechvana, Madrid Scientific Park Foundation, Madrid, Spain
| | - Carlos Llorens
- Biotechvana, Madrid Scientific Park Foundation, Madrid, Spain
| | - José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The exosomes play a critical role in HIV infection, which constitute a pathway to release intracellular material and exchange material and information between cells. Exosomes have become a hotspot in the field of AIDS research. This review introduces the formation process of HIV particles and exosomes, and summarizes the role of exosomes in the progression of HIV disease from multiple aspects. RECENT FINDINGS Many components of the exosomes involved in HIV transfer and replication affect the occurrence, development, and outcome of AIDS, and are closely related to HIV infection. Exosomes can have a dual impact on HIV infection, and play an important role in activating the latent reservoir of HIV and affecting the chronic inflammation of HIV. The biological information carried by exosomes is also of great significance for the prediction of HIV disease. SUMMARY The present review summarizes the role of exosomes in HIV disease progression in various aspects in order to further understand the underlying mechanism affecting the infection and providing a new idea for the clinical diagnosis and treatment of AIDS.
Collapse
Affiliation(s)
| | - Chuanyun Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rong Li
- Beijing Institute of Hepatology
| | | | | | | |
Collapse
|
15
|
Debyser Z, Bruggemans A, Van Belle S, Janssens J, Christ F. LEDGINs, Inhibitors of the Interaction Between HIV-1 Integrase and LEDGF/p75, Are Potent Antivirals with a Potential to Cure HIV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:97-114. [PMID: 34258738 DOI: 10.1007/978-981-16-0267-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A permanent cure remains the greatest challenge in the field of HIV research. In order to reach this goal, a profound understanding of the molecular mechanisms controlling HIV integration and transcription is needed. Here we provide an overview of recent advances in the field. Lens epithelium-derived growth factor p75 (LEDGF/p75), a transcriptional coactivator, tethers and targets the HIV integrase into transcriptionally active regions of the chromatin through an interaction with the epigenetic mark H3K36me2/3. This finding prompted us to propose a "block-and-lock" strategy to retarget HIV integration into deep latency. A decade ago, we pioneered protein-protein interaction inhibitors for HIV and discovered LEDGINs. LEDGINs are small molecule inhibitors of the interaction between the integrase binding domain (IBD) of LEDGF/p75 and HIV integrase. They modify integration site selection and therefore might be molecules with a "block-and-lock" mechanism of action. Here we will describe how LEDGINs may become part in the future functional cure strategies.
Collapse
Affiliation(s)
- Zeger Debyser
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium.
| | - Anne Bruggemans
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Siska Van Belle
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Julie Janssens
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Okoye I, Xu L, Oyegbami O, Shahbaz S, Pink D, Gao P, Sun X, Elahi S. Plasma Extracellular Vesicles Enhance HIV-1 Infection of Activated CD4 + T Cells and Promote the Activation of Latently Infected J-Lat10.6 Cells via miR-139-5p Transfer. Front Immunol 2021; 12:697604. [PMID: 34249000 PMCID: PMC8264662 DOI: 10.3389/fimmu.2021.697604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
HIV latency is a challenge to the success of antiretroviral therapy (ART). Hence patients may benefit from interventions that efficiently reactivate the latent virus to be eliminated by ARTs. Here we show that plasma extracellular vesicles (pEVs) can enhance HIV infection of activated CD4+ T cells and reactivate the virus in latently infected J-Lat 10.6 cells. Evaluation of the extravesicular miRNA cargo by a PCR array revealed that pEVs from HIV patients express miR-139-5p. Furthermore, we found that increased levels of miR-139-5p in J-Lat 10.6 cells incubated with pEVs corresponded with reduced expression of the transcription factor, FOXO1. pEV treatment also corresponded with increased miR-139-5p expression in stimulated PD1+ Jurkat cells, but with concomitant upregulation of FOXO1, Fos, Jun, PD-1 and PD-L1. However, J-Lat 10.6 cells incubated with miR-139-5p inhibitor-transfected pEVs from HIV ART-naïve and on-ART patients expressed reduced levels of miR-139-5p than cells treated with pEVs from healthy controls (HC). Collectively, our results indicate that pEV miR-139-5p belongs to a network of miRNAs that can promote cell activation, including latent HIV-infected cells by regulating the expression of FOXO1 and the PD1/PD-L1 promoters, Fos and Jun.
Collapse
Affiliation(s)
- Isobel Okoye
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lai Xu
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Olaide Oyegbami
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shima Shahbaz
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Desmond Pink
- Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Priscilla Gao
- Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Xuejun Sun
- Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Clauss M, Chelvanambi S, Cook C, ElMergawy R, Dhillon N. Viral Bad News Sent by EVAIL. Viruses 2021; 13:v13061168. [PMID: 34207152 PMCID: PMC8234235 DOI: 10.3390/v13061168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023] Open
Abstract
This article reviews the current knowledge on how viruses may utilize Extracellular Vesicle Assisted Inflammatory Load (EVAIL) to exert pathologic activities. Viruses are classically considered to exert their pathologic actions through acute or chronic infection followed by the host response. This host response causes the release of cytokines leading to vascular endothelial cell dysfunction and cardiovascular complications. However, viruses may employ an alternative pathway to soluble cytokine-induced pathologies-by initiating the release of extracellular vesicles (EVs), including exosomes. The best-understood example of this alternative pathway is human immunodeficiency virus (HIV)-elicited EVs and their propensity to harm vascular endothelial cells. Specifically, an HIV-encoded accessory protein called the "negative factor" (Nef) was demonstrated in EVs from the body fluids of HIV patients on successful combined antiretroviral therapy (ART); it was also demonstrated to be sufficient in inducing endothelial and cardiovascular dysfunction. This review will highlight HIV-Nef as an example of how HIV can produce EVs loaded with proinflammatory cargo to disseminate cardiovascular pathologies. It will further discuss whether EV production can explain SARS-CoV-2-mediated pulmonary and cardiovascular pathologies.
Collapse
Affiliation(s)
- Matthias Clauss
- IU School of Medicine, Pulmonary, Critical Care, Sleep and Occupational Medicine, Indianapolis, IN 46202, USA;
- Correspondence: or
| | - Sarvesh Chelvanambi
- Brigham and Women’s Hospital, Department of Medicine, Boston, MA 02115, USA;
| | - Christine Cook
- Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.C.); (N.D.)
| | - Rabab ElMergawy
- IU School of Medicine, Pulmonary, Critical Care, Sleep and Occupational Medicine, Indianapolis, IN 46202, USA;
| | - Navneet Dhillon
- Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.C.); (N.D.)
| |
Collapse
|
18
|
Mahajan SD, Ordain NS, Kutscher H, Karki S, Reynolds JL. HIV Neuroinflammation: The Role of Exosomes in Cell Signaling, Prognostic and Diagnostic Biomarkers and Drug Delivery. Front Cell Dev Biol 2021; 9:637192. [PMID: 33869183 PMCID: PMC8047197 DOI: 10.3389/fcell.2021.637192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
Fifty to sixty percent of HIV-1 positive patients experience HIV-1 associated neurocognitive disorders (HAND) likely due to persistent inflammation and blood-brain barrier (BBB) dysfunction. The role that microglia and astrocytes play in HAND pathogenesis has been well delineated; however, the role of exosomes in HIV neuroinflammation and neuropathogenesis is unclear. Exosomes are 50-150 nm phospholipid bilayer membrane vesicles that are responsible for cell-to-cell communication, cellular signal transduction, and cellular transport. Due to their diverse intracellular content, exosomes, are well poised to provide insight into HIV neuroinflammation as well as provide for diagnostic and predictive information that will greatly enhance the development of new therapeutic interventions for neuroinflammation. Exosomes are also uniquely positioned to be vehicles to delivery therapeutics across the BBB to modulate HIV neuroinflammation. This mini-review will briefly discuss what is known about exosome signaling in the context of HIV in the central nervous system (CNS), their potential for biomarkers as well as their potential for vehicles to deliver various therapeutics to treat HIV neuroinflammation.
Collapse
Affiliation(s)
- Supriya D. Mahajan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nigel Smith Ordain
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hilliard Kutscher
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Institute for Laser, Photonics and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Anesthesiology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Shanta Karki
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jessica L. Reynolds
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
19
|
Maina EK, Adan AA, Mureithi H, Muriuki J, Lwembe RM. A Review of Current Strategies Towards the Elimination of Latent HIV-1 and Subsequent HIV-1 Cure. Curr HIV Res 2021; 19:14-26. [PMID: 32819259 PMCID: PMC8573729 DOI: 10.2174/1570162x18999200819172009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Background During the past 35 years, highly effective ART has saved the lives of millions of people worldwide by suppressing viruses to undetectable levels. However, this does not translate to the absence of viruses in the body as HIV persists in latent reservoirs. Indeed, rebounded HIV has been recently observed in the Mississippi and California infants previously thought to have been cured. Hence, much remains to be learned about HIV latency, and the search for the best strategy to eliminate the reservoir is the direction current research is taking. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and is applicable in human therapy is prudent for HIV eradication to be more feasible. Objectives The main barriers preventing the cure of HIV with antiretroviral therapy have been identified, progress has been made in the understanding of the therapeutic targets to which potentially eradicating drugs could be directed, integrative strategies have been proposed, and clinical trials with various alternatives are underway. The aim of this review is to provide an update on the main advances in HIV eradication, with particular emphasis on the obstacles and the different strategies proposed. The core challenges of each strategy are highlighted and the most promising strategy and new research avenues in HIV eradication strategies are proposed. Methods A systematic literature search of all English-language articles published between 2015 and 2019, was conducted using MEDLINE (PubMed) and Google scholar. Where available, medical subject headings (MeSH) were used as search terms and included: HIV, HIV latency, HIV reservoir, latency reactivation, and HIV cure. Additional search terms consisted of suppression, persistence, establishment, generation, and formation. A total of 250 articles were found using the above search terms. Out of these, 89 relevant articles related to HIV-1 latency establishment and eradication strategies were collected and reviewed, with no limitation of study design. Additional studies (commonly referenced and/or older and more recent articles of significance) were selected from bibliographies and references listed in the primary resources. Results In general, when exploring the literature, there are four main strategies heavily researched that provide promising strategies to the elimination of latent HIV: Haematopoietic Stem-Cell Transplantation, Shock and Kill Strategy, Gene-specific transcriptional activation using RNA-guided CRISPR-Cas9 system, and Block and Lock strategy. Most of the studies of these strategies are applicable in vitro, leaving many questions about the extent to which, or if any, these strategies are applicable to complex picture In vivo. However, the success of these strategies at least shows, in part, that HIV-1 can be cured, though some strategies are too invasive and expensive to become a standard of care for all HIV-infected patients. Conclusion Recent advances hold promise for the ultimate cure of HIV infection. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and applicable in human therapy is prudent for HIV eradication to be more feasible. Future studies aimed at achieving a prolonged HIV remission state are more likely to be successful if they focus on a combination strategy, including the block and kill, and stem cell approaches. These strategies propose a functional cure with minimal toxicity for patients. It is believed that the cure of HIV infection will be attained in the short term if a strategy based on purging the reservoirs is complemented with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Edward K Maina
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Asma A Adan
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Haddison Mureithi
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Joseph Muriuki
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Raphael M Lwembe
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
20
|
Noren Hooten N, Yáñez‐Mó M, DeRita R, Russell A, Quesenberry P, Ramratnam B, Robbins PD, Di Vizio D, Wen S, Witwer KW, Languino LR. Hitting the Bullseye: Are extracellular vesicles on target? J Extracell Vesicles 2020; 10:e12032. [PMID: 33708359 PMCID: PMC7890543 DOI: 10.1002/jev2.12032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Epidemiology and Population ScienceNational Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - María Yáñez‐Mó
- Departamento de Biología MolecularUAMCentro de Biología Molecular Severo OchoaIIS‐IPMadridSpain
| | - Rachel DeRita
- Department of Cancer BiologySidney Kimmel Cancer CenterJefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Ashley Russell
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Peter Quesenberry
- Division of Hematology/OncologyThe Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Bharat Ramratnam
- Department of MedicineAlpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, and Department of BiochemistryMolecular Biology and Biophysics University of MinnesotaMinneapolisMinnesotaUSA
| | - Dolores Di Vizio
- Departments of SurgeryBiomedical Sciences, and Pathology & Laboratory MedicineDivision of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Sicheng Wen
- Division of Hematology/OncologyThe Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyRichman Family Precision Medicine Center of Excellence in Alzheimer’s DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Lucia R. Languino
- Department of Cancer BiologySidney Kimmel Cancer CenterJefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
21
|
McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 2020; 44:129-138. [PMID: 32846272 PMCID: PMC7755726 DOI: 10.1016/j.coviro.2020.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Viruses are obligate intracellular parasites that usurp cellular signaling networks to promote pathogen spread and disease progression. Signaling through extracellular vesicles (EVs) is an emerging field of study in the virus-host interaction network. EVs relay information both locally and distally through incorporated contents, typically without tripping innate immune sensors. Therefore, this extracellular signaling axis presents itself as a tantalizing target for promoting a favorable niche for the pathogen(s) takeover of the host, particularly for chronic infections. From the incorporation of virus-encoded molecules such as micro RNAs and proteins/enzymes to the envelopment of entire infectious particles, evolutionary distinct viruses have shown a remarkable ability to converge on this means of communication. In this review, we will cover the recent advances in this field and explore how EV can be used as potential biomarkers for chronic, persistent, or latent virus infections.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States.
| |
Collapse
|
22
|
Ventura JD. Human Immunodeficiency Virus 1 (HIV-1): Viral Latency, the Reservoir, and the Cure. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:549-560. [PMID: 33005119 PMCID: PMC7513431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An estimated 37 million people globally suffer from Human Immunodeficiency Virus-1 (HIV-1) infection with 1.7 million newly acquired infections occurring on average each year. Although crucial advances in combined antiretroviral therapy (ART) over the last two decades have transformed an HIV-1 diagnosis into a tolerable and controlled condition, enabling over 20 million people living with HIV-1 to enjoy healthy and productive lives, no cure or vaccine yet exists. Developing a successful cure strategy will require a firm understanding of how viral latency is established and how a persistent and long-lived latent is generated. The latent reservoir remains the primary obstacle for cure development and most putative cure strategies proposed fundamentally address its eradication or permanent suppression.
Collapse
Affiliation(s)
- John D. Ventura
- To whom all correspondence should be addressed:
Dr. John D. Ventura, . ORCID iD:
https://orcid.org/0000-0002-4373-3242.
| |
Collapse
|
23
|
Neurotoxicity of HIV-1 Tat is attributed to its penetrating property. Sci Rep 2020; 10:14002. [PMID: 32814783 PMCID: PMC7438513 DOI: 10.1038/s41598-020-70950-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
We have recently engineered an exosomal Tat (Exo-Tat) which can activate latent HIV-1 in resting CD4+ T lymphocytes from antiretroviral treated HIV-1 infected patients. HIV-1 Tat protein can penetrate cell membrane freely and secrete into extracellular medium. Exo-Tat loses this penetrating property. HIV-1 Tat protein can damage the synaptic membranes contributing to the development of dementia in HIV-1 infected patients. To investigate whether the penetrating property attributes to synaptic damage in vivo, we have generated adeno-associated viruses AAV-Tat and AAV-Exo-Tat viruses. Vehicle control or AAV viruses (1 × 1012 GC/mouse in 200 μl PBS) were injected into Balb/cj mice via tail veins. The mRNA and protein expression levels in blood, brain, heart, intestine, kidney, liver, lung, muscle and spleen were determined on day 21. Intravenously injected AAV-Tat or AAV-Exo-Tat mainly infects liver and heart. Short-term expression of Tat or Exo-Tat doesn’t change the expression levels of neuronal cytoskeletal marker β3-tubulin and synaptic marker postsynaptic density 95 protein (PSD-95). Wild-type Tat, but not Exo-Tat, reduces the expression level of synaptic marker synaptophysin significantly in mice, indicating that penetrating property of HIV-1 Tat protein attributes to synaptic damage.
Collapse
|
24
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
25
|
Tschuschke M, Kocherova I, Bryja A, Mozdziak P, Angelova Volponi A, Janowicz K, Sibiak R, Piotrowska-Kempisty H, Iżycki D, Bukowska D, Antosik P, Shibli JA, Dyszkiewicz-Konwińska M, Kempisty B. Inclusion Biogenesis, Methods of Isolation and Clinical Application of Human Cellular Exosomes. J Clin Med 2020; 9:jcm9020436. [PMID: 32041096 PMCID: PMC7074492 DOI: 10.3390/jcm9020436] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/18/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a heterogenous subpopulation of extracellular vesicles 30–150 nm in range and of endosome-derived origin. We explored the exosome formation through different systems, including the endosomal sorting complex required for transport (ESCRT) and ESCRT-independent system, looking at the mechanisms of release. Different isolation techniques and specificities of exosomes from different tissues and cells are also discussed. Despite more than 30 years of research that followed their definition and indicated their important role in cellular physiology, the exosome biology is still in its infancy with rapidly growing interest. The reasons for the rapid increase in interest with respect to exosome biology is because they provide means of intercellular communication and transmission of macromolecules between cells, with a potential role in the development of diseases. Moreover, they have been investigated as prognostic biomarkers, with a potential for further development as diagnostic tools for neurodegenerative diseases and cancer. The interest grows further with the fact that exosomes were reported as useful vectors for drugs.
Collapse
Affiliation(s)
- Max Tschuschke
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (M.T.); (I.K.); (A.B.); (K.J.); (M.D.-K.)
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (M.T.); (I.K.); (A.B.); (K.J.); (M.D.-K.)
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (M.T.); (I.K.); (A.B.); (K.J.); (M.D.-K.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty for Dentistry, Oral and Craniofacial Sciences, King’s College University of London, London SE1 9RT, UK;
| | - Krzysztof Janowicz
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (M.T.); (I.K.); (A.B.); (K.J.); (M.D.-K.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Rafał Sibiak
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | | | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznań, Poland;
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07030-010, Brazil;
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (M.T.); (I.K.); (A.B.); (K.J.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (M.T.); (I.K.); (A.B.); (K.J.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
- Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-6185-464-18; Fax: +48-6185-464-40
| |
Collapse
|
26
|
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, Le Grand R, Damouche A, Béréziat V, Lambotte O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front Microbiol 2019; 10:2837. [PMID: 31921023 PMCID: PMC6927940 DOI: 10.3389/fmicb.2019.02837] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.
Collapse
Affiliation(s)
- Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Aurélie Barrail-Tran
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| | - Claire Lagathu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jacqueline Capeau
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Delphine Desjardins
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Véronique Béréziat
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Olivier Lambotte
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
27
|
Sullivan NT, Dampier W, Chung CH, Allen AG, Atkins A, Pirrone V, Homan G, Passic S, Williams J, Zhong W, Kercher K, Desimone M, Li L, C Antell G, Mell JC, Ehrlich GD, Szep Z, Jacobson JM, Nonnemacher MR, Wigdahl B. Novel gRNA design pipeline to develop broad-spectrum CRISPR/Cas9 gRNAs for safe targeting of the HIV-1 quasispecies in patients. Sci Rep 2019; 9:17088. [PMID: 31745112 PMCID: PMC6864089 DOI: 10.1038/s41598-019-52353-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
The CRISPR/Cas9 system has been proposed as a cure strategy for HIV. However, few published guide RNAs (gRNAs) are predicted to cleave the majority of HIV-1 viral quasispecies (vQS) observed within and among patients. We report the design of a novel pipeline to identify gRNAs that target HIV across a large number of infected individuals. Next generation sequencing (NGS) of LTRs from 269 HIV-1-infected samples in the Drexel CARES Cohort was used to select gRNAs with predicted broad-spectrum activity. In silico, D-LTR-P4-227913 (package of the top 4 gRNAs) accounted for all detectable genetic variation within the vQS of the 269 samples and the Los Alamos National Laboratory HIV database. In silico secondary structure analyses from NGS indicated extensive TAR stem-loop malformations predicted to inactivate proviral transcription, which was confirmed by reduced viral gene expression in TZM-bl or P4R5 cells. Similarly, a high sensitivity in vitro CRISPR/Cas9 cleavage assay showed that the top-ranked gRNA was the most effective at cleaving patient-derived HIV-1 LTRs from five patients. Furthermore, the D-LTR-P4-227913 was predicted to cleave a median of 96.1% of patient-derived sequences from other HIV subtypes. These results demonstrate that the gRNAs possess broad-spectrum cutting activity and could contribute to an HIV cure.
Collapse
Affiliation(s)
- Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Greg Homan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Jean Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Mathew Desimone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Luna Li
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Gregory C Antell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, 19102, Pennsylvania, USA
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, 19102, Pennsylvania, USA
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, 19102, Pennsylvania, USA
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, 19102, Pennsylvania, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Otolaryngology - Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, 19102, PA, USA
| | - Zsofia Szep
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Philadelphia, PA, USA
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Jeffrey M Jacobson
- Department of Neuroscience and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, PA, USA
- Department of Medicine, Section of Infectious Disease, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, PA, USA
- Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Pérez PS, Romaniuk MA, Duette GA, Zhao Z, Huang Y, Martin-Jaular L, Witwer KW, Théry C, Ostrowski M. Extracellular vesicles and chronic inflammation during HIV infection. J Extracell Vesicles 2019; 8:1687275. [PMID: 31998449 PMCID: PMC6963413 DOI: 10.1080/20013078.2019.1687275] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a hallmark of HIV infection. Among the multiple stimuli that can induce inflammation in untreated infection, ongoing viral replication is a primary driver. After initiation of effective combined antiretroviral therapy (cART), HIV replication is drastically reduced or halted. However, even virologically controlled patients may continue to have abnormal levels of inflammation. A number of factors have been proposed to cause inflammation in HIV infection: among others, residual (low-level) HIV replication, production of HIV protein or RNA in the absence of replication, microbial translocation from the gut to the circulation, co-infections, and loss of immunoregulatory responses. Importantly, chronic inflammation in HIV-infected individuals increases the risk for a number of non-infectious co-morbidities, including cancer and cardiovascular disease. Thus, achieving a better understanding of the underlying mechanisms of HIV-associated inflammation in the presence of cART is of utmost importance. Extracellular vesicles have emerged as novel actors in intercellular communication, involved in a myriad of physiological and pathological processes, including inflammation. In this review, we will discuss the role of extracellular vesicles in the pathogenesis of HIV infection, with particular emphasis on their role as inducers of chronic inflammation.
Collapse
Affiliation(s)
- Paula Soledad Pérez
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | - Gabriel A. Duette
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Zezhou Zhao
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiyao Huang
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorena Martin-Jaular
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clotilde Théry
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Matías Ostrowski
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
29
|
Lu H, Tang X, Sibley M, Coburn J, Rao RSP, Ahsan N, Ramratnam B. Impact of exosomal HIV-1 Tat expression on the human cellular proteome. Oncotarget 2019; 10:5632-5644. [PMID: 31608139 PMCID: PMC6771461 DOI: 10.18632/oncotarget.27207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/27/2019] [Indexed: 11/25/2022] Open
Abstract
HIV-1 exists in a latent form in all infected patients. When antiretroviral therapy is stopped, viral replication resumes. The HIV-1 Tat protein is a potent activator of viral transcription. Our previous work has demonstrated that exosomal formulations of Tat can reverse HIV-1 latency in primary CD4+ T lymphocytes isolated from long term antiretroviral treated individuals suggesting a potential role for Tat as a therapeutic HIV-1 Latency Reversal Agent (LRA). Here, we employed the label-free proteomic approach for profiling the proteomic changes associated with exosomal Tat production in human cell lines. Comparative proteomic analysis revealed that >30% peptides were differentially expressed in abundance in the Tat-expressing cell line compared with relevant controls. As expected, many of the known Tat-interactor proteins were upregulated. Tat expression also led to the upregulation of antioxidant proteins suggesting Tat-mediates an oxidative burst. Gene ontology and pathway analyses of these differentially expressed proteins showed enrichment of extracellular vesicular exosome and spliceosome localized proteins and proteins involved with transcriptional and translational mechanisms. Our work suggests that HIV-1 Tat expression leads to perturbations in cellular protein expression. In vivo administration of Tat using HIV/SIV animal models needs to be performed to assess the physiologic significance of Tat-induced proteomic changes prior to developing HIV-1 Tat as an LRA.
Collapse
Affiliation(s)
- Huafei Lu
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Xiaoli Tang
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Mitchell Sibley
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jillian Coburn
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
| | - R. Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore 575018, India
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Biology and Medicine, Brown University, Providence, RI 02903, USA
| | - Bharat Ramratnam
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
- Clinical Research Center of Lifespan, Providence, RI 02903, USA
| |
Collapse
|
30
|
Shahjin F, Chand S, Yelamanchili SV. Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System. J Neuroimmune Pharmacol 2019; 15:443-458. [DOI: 10.1007/s11481-019-09875-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
|
31
|
Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 2019; 76:3583-3600. [PMID: 31129856 PMCID: PMC6697715 DOI: 10.1007/s00018-019-03156-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become available to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed "Shock and Kill" strategy involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from latently infected cells by "Lock and Block" intervention, where transcription of provirus is inhibited to prevent virus spread or disruption of the HIV provirus genome by genome editing.
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Stoszko M, Ne E, Abner E, Mahmoudi T. A broad drug arsenal to attack a strenuous latent HIV reservoir. Curr Opin Virol 2019; 38:37-53. [PMID: 31323521 DOI: 10.1016/j.coviro.2019.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
HIV cure is impeded by the persistence of a strenuous reservoir of latent but replication competent infected cells, which remain unsusceptible to c-ART and unrecognized by the immune system for elimination. Ongoing progress in understanding the molecular mechanisms that control HIV transcription and latency has led to the development of strategies to either permanently inactivate the latent HIV infected reservoir of cells or to stimulate the virus to emerge out of latency, coupled to either induction of death in the infected reactivated cell or its clearance by the immune system. This review focuses on the currently explored and non-exclusive pharmacological strategies and their molecular targets that 1. stimulate reversal of HIV latency in infected cells by targeting distinct steps in the HIV-1 gene expression cycle, 2. exploit mechanisms that promote cell death and apoptosis to render the infected cell harboring reactivated virus more susceptible to death and/or elimination by the immune system, and 3. permanently inactivate any remaining latently infected cells such that c-ART can be safely discontinued.
Collapse
Affiliation(s)
- Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Erik Abner
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Asada H, Tomiyasu H, Uchikai T, Ishihara G, Goto-Koshino Y, Ohno K, Tsujimoto H. Comprehensive analysis of miRNA and protein profiles within exosomes derived from canine lymphoid tumour cell lines. PLoS One 2019; 14:e0208567. [PMID: 31034520 PMCID: PMC6488050 DOI: 10.1371/journal.pone.0208567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/07/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles released from almost all cell types, which play roles in cell-cell communication. Recent studies have suggested that microenvironmental crosstalk mediated by exosomes is an important factor in the escape of tumour cells from the anti-tumour immune system in human haematopoietic malignancies. Here, we conducted comprehensive analysis of the miRNA and protein profiles within the exosomes released from four canine lymphoid tumour cell lines as a model of human lymphoid tumours. The results showed that the major miRNAs and proteins extracted from the exosomes were similar among the four cell lines. However, the miRNA profiles differed among the exosomes of each cell line, which corresponded to the expression patterns of the parent cells. In the comparison of the amounts of miRNAs and proteins among the cell lines, those of three miRNAs (miR-151, miR-8908a-3p, and miR-486) and CD82 protein differed between exosomes derived from vincristine-sensitive and resistant cell lines. Further investigations are needed to elucidate the biological functions of the exosomal contents in the microenvironmental crosstalk of lymphoid tumours.
Collapse
Affiliation(s)
- Hajime Asada
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takao Uchikai
- Anicom Specialty Medical Institute Inc., Shinjuku-ku, Tokyo, Japan
| | - Genki Ishihara
- Anicom Specialty Medical Institute Inc., Shinjuku-ku, Tokyo, Japan
| | - Yuko Goto-Koshino
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
34
|
Takahashi RU, Prieto-Vila M, Kohama I, Ochiya T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci 2019; 110:1140-1147. [PMID: 30729639 PMCID: PMC6447849 DOI: 10.1111/cas.13965] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades, siRNA and miRNA have attracted a great deal of attention from researchers and clinicians. These molecules have been extensively studied from the standpoint of developing biopharmaceuticals against various diseases, including heart disease, diabetes and cancers. siRNA suppresses only a single target, whereas each miRNA regulates the expression of multiple target genes. More importantly, because miRNA are also secreted from cancer cells, and their aberrant expression is associated with tumor development and progression, they represent not only therapeutic targets but also promising biomarkers for diagnosis and prognosis. Therefore, miRNA may be more effective tools against cancers, in which multiple signal pathways are dysregulated. In this review, we summarize recent progress in the development of miRNA therapeutics for the treatment of cancer patients, and describe delivery systems for oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Ryou-U Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
35
|
Debyser Z, Vansant G, Bruggemans A, Janssens J, Christ F. Insight in HIV Integration Site Selection Provides a Block-and-Lock Strategy for a Functional Cure of HIV Infection. Viruses 2018; 11:E12. [PMID: 30587760 PMCID: PMC6356730 DOI: 10.3390/v11010012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/20/2022] Open
Abstract
Despite significant improvements in therapy, the HIV/AIDS pandemic remains an important threat to public health. Current treatments fail to eradicate HIV as proviral DNA persists in long-living cellular reservoirs, leading to viral rebound whenever treatment is discontinued. Hence, a better understanding of viral reservoir establishment and maintenance is required to develop novel strategies to destroy latently infected cells, and/or to durably silence the latent provirus in infected cells. Whereas the mechanism of integration has been well studied from a catalytic point of view, it remains unknown how integration site selection and transcription are linked. In recent years, evidence has grown that lens epithelium-derived growth factor p75 (LEDGF/p75) is the main determinant of HIV integration site selection and that the integration site affects the transcriptional state of the provirus. LEDGINs have been developed as small molecule inhibitors of the interaction between LEDGF/p75 and integrase. Recently, it was shown that LEDGIN treatment in cell culture shifts the residual integrated provirus towards the inner nuclear compartment and out of transcription units in a dose dependent manner. This LEDGIN-mediated retargeting increased the proportion of provirus with a transcriptionally silent phenotype and the residual reservoir proved refractory to reactivation in vitro. LEDGINs provide us with a research tool to study the link between integration and transcription, a quintessential question in retrovirology. LEDGIN-mediated retargeting of the residual reservoirs provides a novel potential "block-and-lock" strategy as a functional cure of HIV infection.
Collapse
Affiliation(s)
- Zeger Debyser
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| | - Gerlinde Vansant
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| | - Anne Bruggemans
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| | - Julie Janssens
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| | - Frauke Christ
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| |
Collapse
|
36
|
Khoury G, Mota TM, Li S, Tumpach C, Lee MY, Jacobson J, Harty L, Anderson JL, Lewin SR, Purcell DFJ. HIV latency reversing agents act through Tat post translational modifications. Retrovirology 2018; 15:36. [PMID: 29751762 PMCID: PMC5948896 DOI: 10.1186/s12977-018-0421-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Different classes of latency reversing agents (LRAs) are being evaluated to measure their effects in reactivating HIV replication from latently infected cells. A limited number of studies have demonstrated additive effects of LRAs with the viral protein Tat in initiating transcription, but less is known about how LRAs interact with Tat, particularly through basic residues that may be post-translationally modified to alter the behaviour of Tat for processive transcription and co-transcriptional RNA processing. Results Here we show that various lysine and arginine mutations reduce the capacity of Tat to induce both transcription and mRNA splicing. The lysine 28 and lysine 50 residues of Tat, or the acetylation and methylation modifications of these basic amino acids, were essential for Tat transcriptional control, and also for the proviral expression effects elicited by histone deacetylase inhibitors (HDACi) or the bromodomain inhibitor JQ1. We also found that JQ1 was the only LRA tested that could induce HIV mRNA splicing in the absence of Tat, or rescue splicing for Tat lysine mutants in a BRD4-dependent manner. Conclusions Our data provide evidence that Tat activities in both co-transcriptional RNA processing together with transcriptional initiation and processivity are crucial during reactivation of latent HIV infection. The HDACi and JQ1 LRAs act with Tat to increase transcription, but JQ1 also enables post-transcriptional mRNA splicing. Tat residues K28 and K50, or their modifications through acetylation or methylation, are critical for LRAs that function in conjunction with Tat. Electronic supplementary material The online version of this article (10.1186/s12977-018-0421-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Talia M Mota
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Shuang Li
- School of Life Sciences, Peking University, Beijing, China
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Michelle Y Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jonathan Jacobson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Leigh Harty
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jenny L Anderson
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
37
|
Mele AR, Marino J, Chen K, Pirrone V, Janetopoulos C, Wigdahl B, Klase Z, Nonnemacher MR. Defining the molecular mechanisms of HIV-1 Tat secretion: PtdIns(4,5)P 2 at the epicenter. Traffic 2018; 19:10.1111/tra.12578. [PMID: 29708629 PMCID: PMC6207469 DOI: 10.1111/tra.12578] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) protein functions both intracellularly and extracellularly. Intracellularly, the main function is to enhance transcription of the viral promoter. However, this process only requires a small amount of intracellular Tat. The majority of Tat is secreted through an unconventional mechanism by binding to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2 ), a phospholipid in the inner leaflet of the plasma membrane that is required for secretion. This interaction is mediated by the basic domain of Tat (residues 48-57) and a conserved tryptophan (residue 11). After binding to PtdIns(4,5)P2 , Tat secretion diverges into multiple pathways, which we categorized as oligomerization-mediated pore formation, spontaneous translocation and incorporation into exosomes. Extracellular Tat has been shown to be neurotoxic and toxic to other cells of the central nervous system (CNS) and periphery, able to recruit immune cells to the CNS and cerebrospinal fluid, and alter the gene expression and morphology of uninfected cells. The effects of extracellular Tat have been examined in HIV-1-associated neurocognitive disorders (HAND); however, only a small number of studies have focused on the mechanisms underlying Tat secretion. In this review, the molecular mechanisms of Tat secretion will be examined in a variety of biologically relevant cell types.
Collapse
Affiliation(s)
- Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kenneth Chen
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Chris Janetopoulos
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zachary Klase
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|