1
|
Mueller JW, Thomas P, Dalgaard LT, da Silva Xavier G. Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes. Essays Biochem 2024:EBC20240034. [PMID: 39290144 DOI: 10.1042/ebc20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Diabetes Type 1 and Type 2 are widely occurring diseases. In spite of a vast amount of biomedical literature about diabetic processes in general, links to certain biological processes are only becoming evident these days. One such area of biology is the sulfation of small molecules, such as steroid hormones or metabolites from the gastrointestinal tract, as well as larger biomolecules, such as proteins and proteoglycans. Thus, modulating the physicochemical propensities of the different sulfate acceptors, resulting in enhanced solubility, expedited circulatory transit, or enhanced macromolecular interaction. This review lists evidence for the involvement of sulfation pathways in the maintenance of functional pancreatic beta-cell mass and the implications for diabetes, grouped into various classes of sulfated biomolecule. Complex heparan sulfates might play a role in the development and maintenance of beta-cells. The sulfolipids sulfatide and sulfo-cholesterol might contribute to beta-cell health. In beta-cells, there are only very few proteins with confirmed sulfation on some tyrosine residues, with the IRS4 molecule being one of them. Sulfated steroid hormones, such as estradiol-sulfate and vitamin-D-sulfate, may facilitate downstream steroid signaling in beta-cells, following de-sulfation. Indoxyl sulfate is a metabolite from the intestine, that causes kidney damage, contributing to diabetic kidney disease. Finally, from a technological perspective, there is heparan sulfate, heparin, and chondroitin sulfate, that all might be involved in next-generation beta-cell transplantation. Sulfation pathways may play a role in pancreatic beta-cells through multiple mechanisms. A more coherent understanding of sulfation pathways in diabetes will facilitate discussion and guide future research.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | - Patricia Thomas
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | | | | |
Collapse
|
2
|
Ye W, Xia S, Xie T, Ye H, Yang Y, Sun Y, Cai J, Luo X, Zhou L, Song Y. Klotho accelerates the progression of polycystic ovary syndrome through promoting granulosa cell apoptosis and inflammation†. Biol Reprod 2024; 111:625-639. [PMID: 38874314 DOI: 10.1093/biolre/ioae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The morbidity of polycystic ovary syndrome (PCOS) is in highly increasing rate nowadays. PCOS not only affects the fertility in women, but also threatens the health of whole life. Hence, to find the prognostic risk factors is of great value. However, the effective predictors in clinical practice of PCOS are still in blackness. In this study, we found Klotho (KL) was increased in follicular fluid (FF) and primary luteinized granulosa cells (GCs) from PCOS patients with hyperandrogenism. Furthermore, we found follicular KL was negatively correlated with numbers of mature oocytes, and positively correlated with serum testosterone, LH, and LH/FSH levels menstrual cycle and number of total antral follicles in PCOS patients. In primary luteinized GCs, the increased KL was accompanied with upregulation of cell apoptosis and inflammation-related genes. In ovaries of PCOS mice and cultured human KGN cell line, KL was up-regulated and accompanied by apoptosis, inflammation, and mitochondrial dysfunction. Therefore, our findings suggest new mechanisms for granulosa cell injury and revealed to target inhibit KL maybe a new therapeutic strategy for treatment of PCOS.
Collapse
Affiliation(s)
- Wenting Ye
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyu Xia
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiyun Ye
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Sun
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Jing Cai
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Xiaoqing Luo
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| |
Collapse
|
3
|
Qadir MMF, Elgamal RM, Song K, Kudtarkar P, Sakamuri SS, Katakam PV, El-Dahr SS, Kolls JK, Gaulton KJ, Mauvais-Jarvis F. Single cell regulatory architecture of human pancreatic islets suggests sex differences in β cell function and the pathogenesis of type 2 diabetes. RESEARCH SQUARE 2024:rs.3.rs-4607352. [PMID: 39011095 PMCID: PMC11247939 DOI: 10.21203/rs.3.rs-4607352/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Type 2 and type 1 diabetes (T2D, T1D) exhibit sex differences in insulin secretion, the mechanisms of which are unknown. We examined sex differences in human pancreatic islets from 52 donors with and without T2D combining single cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), hormone secretion, and bioenergetics. In nondiabetic (ND) donors, sex differences in islet cells gene accessibility and expression predominantly involved sex chromosomes. Islets from T2D donors exhibited similar sex differences in sex chromosomes differentially expressed genes (DEGs), but also exhibited sex differences in autosomal genes. Comparing β cells from T2D vs. ND donors, gene enrichment of female β cells showed suppression in mitochondrial respiration, while male β cells exhibited suppressed insulin secretion. Thus, although sex differences in gene accessibility and expression of ND β cells predominantly affect sex chromosomes, the transition to T2D reveals sex differences in autosomes highlighting mitochondrial failure in females.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| | - Ruth M. Elgamal
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Keijing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Siva S.V.P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samir S. El-Dahr
- Department of Pediatrics, Tulane University, School of Medicine, New Orleans, LA, USA
| | - Jay K. Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| |
Collapse
|
4
|
Qadir MMF, Elgamal RM, Song K, Kudtarkar P, Sakamuri SS, Katakam PV, El-Dahr S, Kolls J, Gaulton KJ, Mauvais-Jarvis F. Single cell regulatory architecture of human pancreatic islets suggests sex differences in β cell function and the pathogenesis of type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589096. [PMID: 38645001 PMCID: PMC11030320 DOI: 10.1101/2024.04.11.589096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Biological sex affects the pathogenesis of type 2 and type 1 diabetes (T2D, T1D) including the development of β cell failure observed more often in males. The mechanisms that drive sex differences in β cell failure is unknown. Studying sex differences in islet regulation and function represent a unique avenue to understand the sex-specific heterogeneity in β cell failure in diabetes. Here, we examined sex and race differences in human pancreatic islets from up to 52 donors with and without T2D (including 37 donors from the Human Pancreas Analysis Program [HPAP] dataset) using an orthogonal series of experiments including single cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), dynamic hormone secretion, and bioenergetics. In cultured islets from nondiabetic (ND) donors, in the absence of the in vivo hormonal environment, sex differences in islet cell type gene accessibility and expression predominantly involved sex chromosomes. Of particular interest were sex differences in the X-linked KDM6A and Y-linked KDM5D chromatin remodelers in female and male islet cells respectively. Islets from T2D donors exhibited similar sex differences in differentially expressed genes (DEGs) from sex chromosomes. However, in contrast to islets from ND donors, islets from T2D donors exhibited major sex differences in DEGs from autosomes. Comparing β cells from T2D and ND donors revealed that females had more DEGs from autosomes compared to male β cells. Gene set enrichment analysis of female β cell DEGs showed a suppression of oxidative phosphorylation and electron transport chain pathways, while male β cell had suppressed insulin secretion pathways. Thus, although sex-specific differences in gene accessibility and expression of cultured ND human islets predominantly affect sex chromosome genes, major differences in autosomal gene expression between sexes appear during the transition to T2D and which highlight mitochondrial failure in female β cells.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| | - Ruth M. Elgamal
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Keijing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Siva S.V.P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samir El-Dahr
- Department of Pediatrics, Tulane University, School of Medicine, New Orleans, LA, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| |
Collapse
|
5
|
Ravi H, Das S, Devi Rajeswari V, Venkatraman G, Choudhury AA, Chakraborty S, Ramanathan G. Hormonal regulation in diabetes: Special emphasis on sex hormones and metabolic traits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:257-291. [PMID: 39059988 DOI: 10.1016/bs.apcsb.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diabetes constitutes a significant global public health challenge that is rapidly reaching epidemic proportions. Among the non-communicable diseases, the incidence of diabetes is rising at an alarming rate. The International Diabetes Federation has documented a 9.09% prevalence of diabetes among individuals aged between 20 and 79 years. The interplay of gonadal hormones and gender differences is critical in regulating insulin sensitivity and glucose tolerance, and this dynamic is particularly crucial because of the escalating incidence of diabetes. Variations in insulin sensitivity are observed across genders, levels of adiposity, and age groups. Both estrogen and testosterone are seen to influence glucose metabolism and insulin sensitivity. This chapter surveys the present knowledge of sex differences, sex hormones, and chromosomes on insulin imbalance and diabetes development. It further highlights the influence of metabolic traits in diabetes and changes in sex hormones during diabetic pregnancy. Notably, even stressful lifestyles have been acknowledged to induce hormonal imbalances. Furthermore, it discusses the potential of hormonal therapy to help stabilize sex hormones in diabetic individuals and focuses on the most recent research investigating the correlation between sex hormones and diabetes.
Collapse
Affiliation(s)
- Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Abbas Alam Choudhury
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Sun C, Zhao S, Pan Z, Li J, Wang Y, Kuang H. The Role Played by Mitochondria in Polycystic Ovary Syndrome. DNA Cell Biol 2024; 43:158-174. [PMID: 38588493 DOI: 10.1089/dna.2023.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) refers to an endocrine disorder syndrome that are correlated with multiple organs and systems. PCOS has an effect on women at all stages of their lives, and it has an incidence nearly ranging from 6% to 20% worldwide. Mitochondrial dysfunctions (e.g., oxidative stress, dynamic imbalance, and abnormal quality control system) have been identified in patients and animal models of PCOS, and the above processes may play a certain role in the development of PCOS and its associated complications. However, their specific pathogenic roles should be investigated in depth. In this review, recent studies on the mechanisms of action of mitochondrial dysfunction in PCOS and its associated clinical manifestations are summarized from the perspective of tissues and organs, and some studies on the treatment of the disease by improving mitochondrial function are reviewed to highlight key role of mitochondrial dysfunction in this syndrome.
Collapse
Affiliation(s)
- Chang Sun
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shanshan Zhao
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Li
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yasong Wang
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongying Kuang
- Second Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Mauvais-Jarvis F. Sex differences in energy metabolism: natural selection, mechanisms and consequences. Nat Rev Nephrol 2024; 20:56-69. [PMID: 37923858 DOI: 10.1038/s41581-023-00781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Metabolic homeostasis operates differently in men and women. This sex asymmetry is the result of evolutionary adaptations that enable women to resist loss of energy stores and protein mass while remaining fertile in times of energy deficit. During starvation or prolonged exercise, women rely on oxidation of lipids, which are a more efficient energy source than carbohydrates, to preserve glucose for neuronal and placental function and spare proteins necessary for organ function. Carbohydrate reliance in men could be an evolutionary adaptation related to defence and hunting, as glucose, unlike lipids, can be used as a fuel for anaerobic high-exertion muscle activity. The larger subcutaneous adipose tissue depots in healthy women than in healthy men provide a mechanism for lipid storage. As female mitochondria have higher functional capacity and greater resistance to oxidative damage than male mitochondria, uniparental inheritance of female mitochondria may reduce the transmission of metabolic disorders. However, in women, starvation resistance and propensity to obesity have evolved in tandem, and the current prevalence of obesity is greater in women than in men. The combination of genetic sex, programming by developmental testosterone in males, and pubertal sex hormones defines sex-specific biological systems in adults that produce phenotypic sex differences in energy homeostasis, metabolic disease and drug responses.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine and Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA.
- Endocrine service, Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
8
|
Yin L, Qi S, Zhu Z. Advances in mitochondria-centered mechanism behind the roles of androgens and androgen receptor in the regulation of glucose and lipid metabolism. Front Endocrinol (Lausanne) 2023; 14:1267170. [PMID: 37900128 PMCID: PMC10613047 DOI: 10.3389/fendo.2023.1267170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
An increasing number of studies have reported that androgens and androgen receptors (AR) play important roles in the regulation of glucose and lipid metabolism. Impaired glucose and lipid metabolism and the development of obesity-related diseases have been found in either hypogonadal men or male rodents with androgen deficiency. Exogenous androgens supplementation can effectively improve these disorders, but the mechanism by which androgens regulate glucose and lipid metabolism has not been fully elucidated. Mitochondria, as powerhouses within cells, are key organelles influencing glucose and lipid metabolism. Evidence from both pre-clinical and clinical studies has reported that the regulation of glucose and lipid metabolism by androgens/AR is strongly associated with the impact on the content and function of mitochondria, but few studies have systematically reported the regulatory effect and the molecular mechanism. In this paper, we review the effect of androgens/AR on mitochondrial content, morphology, quality control system, and function, with emphases on molecular mechanisms. Additionally, we discuss the sex-dimorphic effect of androgens on mitochondria. This paper provides a theoretical basis for shedding light on the influence and mechanism of androgens on glucose and lipid metabolism and highlights the mitochondria-based explanation for the sex-dimorphic effect of androgens on glucose and lipid metabolism.
Collapse
Affiliation(s)
- Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuo Qi
- School of Sport Health, Shandong Sport University, Jinan, China
| | - Zhiqiang Zhu
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Moon S, Alsarkhi L, Lin TT, Inoue R, Tahiri A, Colson C, Cai W, Shirakawa J, Qian WJ, Zhao JY, El Ouaamari A. Transcriptome and secretome profiling of sensory neurons reveals sex differences in pathways relevant to insulin sensing and insulin secretion. FASEB J 2023; 37:e23185. [PMID: 37695721 PMCID: PMC10503313 DOI: 10.1096/fj.202300941r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Sensory neurons in the dorsal root ganglia (DRG) convey somatosensory and metabolic cues to the central nervous system and release substances from stimulated terminal endings in peripheral organs. Sex-biased variations driven by the sex chromosome complement (XX and XY) have been implicated in the sensory-islet crosstalk. However, the molecular underpinnings of these male-female differences are not known. Here, we aim to characterize the molecular repertoire and the secretome profile of the lower thoracic spinal sensory neurons and to identify molecules with sex-biased insulin sensing- and/or insulin secretion-modulating activity that are encoded independently of circulating gonadal sex hormones. We used transcriptomics and proteomics to uncover differentially expressed genes and secreted molecules in lower thoracic T5-12 DRG sensory neurons derived from sexually immature 3-week-old male and female C57BL/6J mice. Comparative transcriptome and proteome analyses revealed differential gene expression and protein secretion in DRG neurons in males and females. The transcriptome analysis identified, among others, higher insulin signaling/sensing capabilities in female DRG neurons; secretome screening uncovered several sex-specific candidate molecules with potential regulatory functions in pancreatic β cells. Together, these data suggest a putative role of sensory interoception of insulin in the DRG-islet crosstalk with implications in sensory feedback loops in the regulation of β-cell activity in a sex-biased manner. Finally, we provide a valuable resource of molecular and secretory targets that can be leveraged for understanding insulin interoception and insulin secretion and inform the development of novel studies/approaches to fathom the role of the sensory-islet axis in the regulation of energy balance in males and females.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lamyaa Alsarkhi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Azeddine Tahiri
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Cecilia Colson
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey. New Brunswick, NJ, 08901, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Abdelfattah El Ouaamari
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
- Department of Pharmacology, New York Medical College, Valhalla, NY 01595, USA
| |
Collapse
|
10
|
Calcaterra V, Cena H, Sottotetti F, Hruby C, Madini N, Zelaschi N, Zuccotti G. Low-Calorie Ketogenic Diet: Potential Application in the Treatment of Polycystic Ovary Syndrome in Adolescents. Nutrients 2023; 15:3582. [PMID: 37630772 PMCID: PMC10459579 DOI: 10.3390/nu15163582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age. Hyperandrogenism, hyperinsulinism and insulin resistance (IR) are the main drivers of clinical, metabolic and reproductive phenotypes of PCOS. In adolescence, the cornerstones of PCOS treatment are lifestyle and dietary interventions. In particular, the quality and quantity of carbohydrates introduced with the diet play a crucial role in the benefits of diet on PCOS. Recently, the ketogenic diet (KD) has attracted significant interest for the treatment of IR and for the control of carbohydrate metabolism, which has proven to be beneficial for several dysmetabolic conditions, including PCOS. The goal of the KD is to induce a fasting-like metabolism with production of chetonic bodies. Ketosis is a good regulator of calorie intake and mimics the starvation effect in the body, leading to body weight control and consequent metabolism. Additionally, during ketogenesis, insulin receptor sensitivity is also promoted. We proposed a broad overview of the available literature regarding KD indications and considered its metabolic benefits useful for improving PCOS management. The reported data support that a low-calorie ketogenic diet (LCKD) plays a positive role as a regulator of control weight, IR, glucose and lipid homeostasis and hormonal profile. Unfortunately, the evidence concerning the benefits of the very LCKD in adolescents with PCOS and excessive body weight is still numerically scarce. Further studies are necessary to understand whether these effects are due to weight loss or to the nutritional characteristics of this diet. Considering the long-term consequences of PCOS, it is crucial to detect the prospects of nutritional interventions to protect fertility, starting in adolescence.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (C.H.); (G.Z.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (F.S.); (N.M.); (N.Z.)
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, 27100 Pavia, Italy
| | - Francesca Sottotetti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (F.S.); (N.M.); (N.Z.)
| | - Chiara Hruby
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (C.H.); (G.Z.)
| | - Nagaia Madini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (F.S.); (N.M.); (N.Z.)
| | - Noemi Zelaschi
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (F.S.); (N.M.); (N.Z.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (C.H.); (G.Z.)
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (F.S.); (N.M.); (N.Z.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| |
Collapse
|
11
|
Dorfman MD, Monfeuga T, Melhorn SJ, Kanter JE, Frey JM, Fasnacht RD, Chandran A, Lala E, Velasco I, Rubinow KB, Meek TH, Schur EA, Bornfeldt KE, Thaler JP. Central androgen action reverses hypothalamic astrogliosis and atherogenic risk factors induced by orchiectomy and high-fat diet feeding in male mice. Am J Physiol Endocrinol Metab 2023; 324:E461-E475. [PMID: 37053049 PMCID: PMC10202485 DOI: 10.1152/ajpendo.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Hypogonadism in males confers elevated cardiovascular disease (CVD) risk by unknown mechanisms. Recent radiological evidence suggests that low testosterone (T) is associated with mediobasal hypothalamic (MBH) gliosis, a central nervous system (CNS) cellular response linked to metabolic dysfunction. To address mechanisms linking CNS androgen action to CVD risk, we generated a hypogonadal, hyperlipidemic mouse model with orchiectomy (ORX) combined with hepatic PCSK9 overexpression. After 4 wk of high-fat, high-sucrose diet (HFHS) consumption, despite equal body weights and glucose tolerance, androgen-deficient ORX mice had a more atherogenic lipid profile and increased liver and leukocyte inflammatory signaling compared with sham-operated control mice. Along with these early CVD risk indicators, ORX markedly amplified HFHS-induced astrogliosis in the MBH. Transcriptomic analysis further revealed that ORX and high-fat diet feeding induced upregulation of inflammatory pathways and downregulation of metabolic pathways in hypothalamic astrocytes. To interrogate the role of sex steroid signaling in the CNS in cardiometabolic risk and MBH inflammation, central infusion of T and dihydrotestosterone (DHT) was performed on ORX mice. Central DHT prevented MBH astrogliosis and reduced the liver inflammatory signaling and monocytosis induced by HFHS and ORX; T had a partial protective effect. Finally, a cross-sectional study in 41 adult men demonstrated a positive correlation between radiological evidence of MBH gliosis and plasma lipids. These findings demonstrate that T deficiency in combination with a Western-style diet promotes hypothalamic gliosis concomitant with increased atherogenic risk factors and provide supportive evidence for regulation of lipid metabolism and cardiometabolic risk determinants by the CNS action of sex steroids.NEW & NOTEWORTHY This study provides evidence that hypothalamic gliosis is a key early event through which androgen deficiency in combination with a Western-style diet might lead to cardiometabolic dysregulation in males. Furthermore, this work provides the first evidence in humans of a positive association between hypothalamic gliosis and LDL-cholesterol, advancing our knowledge of CNS influences on CVD risk progression.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Susan J Melhorn
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Jenny E Kanter
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Jeremy M Frey
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Rachael D Fasnacht
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Emaad Lala
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Inmaculada Velasco
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Katya B Rubinow
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Thomas H Meek
- Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
| | - Ellen A Schur
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Karin E Bornfeldt
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States
| | - Joshua P Thaler
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
12
|
Zhao H, Zhang J, Cheng X, Nie X, He B. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res 2023; 16:9. [PMID: 36631836 PMCID: PMC9832677 DOI: 10.1186/s13048-022-01091-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic ovulation dysfunction and overabundance of androgens; it affects 6-20% of women of reproductive age. PCOS involves various pathophysiological factors, and affected women usually have significant insulin resistance (IR), which is a major cause of PCOS. IR and compensatory hyperinsulinaemia have differing pathogeneses in various tissues, and IR varies among different PCOS phenotypes. Genetic and epigenetic changes, hyperandrogenaemia, and obesity aggravate IR. Insulin sensitization drugs are a new treatment modality for PCOS. We searched PubMed, Google Scholar, Elsevier, and UpToDate databases in this review, and focused on the pathogenesis of IR in women with PCOS and the pathophysiology of IR in various tissues. In addition, the review provides a comprehensive overview of the current progress in the efficacy of insulin sensitization therapy in the management of PCOS, providing the latest evidence for the clinical treatment of women with PCOS and IR.
Collapse
Affiliation(s)
- Han Zhao
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Jiaqi Zhang
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Xiangyi Cheng
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Xiaozhao Nie
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110000, People's Republic of China.
| |
Collapse
|
13
|
The Role of Glp-1 Receptor Agonists in Insulin Resistance with Concomitant Obesity Treatment in Polycystic Ovary Syndrome. Int J Mol Sci 2022; 23:ijms23084334. [PMID: 35457152 PMCID: PMC9029608 DOI: 10.3390/ijms23084334] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Insulin resistance is documented in clamp studies in 75% of women with polycystic ovary syndrome (PCOS). Although it is not included in the diagnostic criteria of PCOS, there is a crucial role of this metabolic impairment, which along with hormonal abnormalities, increase each other in a vicious circle of PCOS pathogenesis. Insulin resistance in this group of patients results from defects at the molecular level, including impaired insulin receptor-related signaling pathways enhanced by obesity and its features: Excess visceral fat, chronic inflammation, and reactive oxygen species. While lifestyle intervention has a first-line role in the prevention and management of excess weight in PCOS, the role of anti-obesity pharmacological agents in achieving and maintaining weight loss is being increasingly recognized. Glucagon-like peptide-1 receptor agonists (GLP1-RAs) not only act by reducing body weight but also can affect the mechanisms involved in insulin resistance, like an increasing expression of glucose transporters in insulin-dependent tissues, decreasing inflammation, reducing oxidative stress, and modulating lipid metabolism. They also tend to improve fertility either by increasing LH surge in hypothalamus-pituitary inhibition due to estrogen excess connected with obesity or decreasing too high LH levels accompanying hyperinsulinemia. GLP1-RAs seem promising for effective treatment of obese PCOS patients, acting on one of the primary causes of PCOS at the molecular level.
Collapse
|
14
|
Lee D, Kim JY, Kwon HC, Kwon J, Jang DS, Kang KS. Dual Beneficial Effects of α-Spinasterol Isolated from Aster pseudoglehnii on Glucose Uptake in Skeletal Muscle Cells and Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050658. [PMID: 35270128 PMCID: PMC8912510 DOI: 10.3390/plants11050658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 05/14/2023]
Abstract
Herein, we determined whether α-Spinasterol, a stigmastane-type phytosterol isolated from Aster pseudoglehnii, potentially impacts glucose uptake and glucose-stimulated insulin secretion in skeletal muscle cells and pancreatic β-cells, respectively. We observed that A. pseudoglehnii and its fractions enhanced glucose uptake, with no toxic effects on C2C12 cells, with the n-hexane fraction exhibiting the most potent effect. α-Spinasterol, isolated from the n-hexane fraction, enhanced glucose uptake with no toxic effects on C2C12 cells. Additionally, α-Spinasterol increased the expression of associated proteins, including insulin receptor substrate-1, AMP-activated protein kinase, and glucose transporter type 4, as determined by Western blotting. Furthermore, α-Spinasterol enhanced insulin secretion in response to high glucose concentrations, with no toxic effects on INS-1 cells; this effect was superior to that demonstrated by gliclazide (positive control), commonly prescribed to treat type 2 diabetes (T2D). α-Spinasterol enhanced the expression of associated proteins, including insulin receptor substrate-2, peroxisome proliferator-activated receptor γ, and pancreatic and duodenal homeobox 1, as determined using Western blotting. The insulin secretory effect of α-Spinasterol was enhanced by a K+ channel blocker and L-type Ca2+ channel agonist and was suppressed by a K+ channel activator and L-type Ca2+ channel blocker. α-Spinasterol isolated from A. pseudoglehnii may improve hyperglycemia by improving glucose uptake into skeletal muscle cells and enhancing insulin secretion in pancreatic β-cells. Accordingly, α-Spinasterol could be a potential candidate for anti-T2D therapy.
Collapse
Affiliation(s)
- Dahae Lee
- Cooperative-Center of Natural Product Central Bank for Biological Evaluation, College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Ji-Young Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Hak Cheol Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (H.C.K.); (J.K.)
| | - Jaeyoung Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (H.C.K.); (J.K.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (D.S.J.); (K.S.K.); Tel.: +82-2-961-0719 (D.S.J.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- Cooperative-Center of Natural Product Central Bank for Biological Evaluation, College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (D.S.J.); (K.S.K.); Tel.: +82-2-961-0719 (D.S.J.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
15
|
Abstract
The role of central estrogen in cognitive, metabolic, and reproductive health has long fascinated the lay public and scientists alike. In the last two decades, insight into estrogen signaling in the brain and its impact on female physiology is beginning to catch up with the vast information already established for its actions on peripheral tissues. Using newer methods to manipulate estrogen signaling in hormone-sensitive brain regions, neuroscientists are now identifying the molecular pathways and neuronal subtypes required for controlling sex-dependent energy allocation. However, the immense cellular complexity of these hormone-sensitive brain regions makes it clear that more research is needed to fully appreciate how estrogen modulates neural circuits to regulate physiological and behavioral end points. Such insight is essential for understanding how natural or drug-induced hormone fluctuations across lifespan affect women's health.
Collapse
Affiliation(s)
- Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| |
Collapse
|
16
|
Hill M, Pařízek A, Šimják P, Koucký M, Anderlová K, Krejčí H, Vejražková D, Ondřejíková L, Černý A, Kancheva R. Steroids, steroid associated substances and gestational diabetes mellitus. Physiol Res 2021. [DOI: 10.33549//physiolres.934794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As gestational diabetes mellitus (GDM) is both a frequent and serious complication, steroid levels in pregnancy are extremely elevated and their role in pregnancy is crucial, this review focuses on the role of steroids and related substances in the GDM pathophysiology. Low SHBG levels are associated with insulin resistance and hyperinsulinemia, while also predicting a predisposition to GDM. Other relevant agents are placental hormones such as kisspeptin and CRH, playing also an important role beyond pregnancy, but which are synthesized here in smaller amounts in the hypothalamus. These hormones affect both the course of pregnancy as well as the synthesis of pregnancy steroids and may also be involved in the GDM pathophysiology. Steroids, whose biosynthesis is mainly provided by the fetal adrenal glands, placenta, maternal adrenal glands, and both maternal and fetal livers, are also synthesized in limited amounts directly in the pancreas and may influence the development of GDM. These substances involve the sulfated Δ5 steroids primarily acting via modulating different ion channels and influencing the development of GDM in different directions, mostly diabetogenic progesterone and predominantly anti-diabetic estradiol acting both in genomic and non-genomic way, androgens associated with IR and hyperinsulinemia, neuroactive steroids affecting the pituitary functioning, and cortisol whose production is stimulated by CRH but which suppresses its pro-inflammatory effects. Due to the complex actions of steroids, studies assessing their predominant effect and studies assessing their predictive values for estimating predisposition to GDM are needed.
Collapse
Affiliation(s)
- M Hill
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
张 玲, 李 贵, 苏 莉, 杜 磊, 周 东, 程 晓, 林 紫, 曲 伸. [Correlation between total testosterone levels and insulin resistance in patients with acanthosis nigricans and non-acanthosis nigrican]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1780-1786. [PMID: 35012908 PMCID: PMC8752425 DOI: 10.12122/j.issn.1673-4254.2021.12.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the correlation of the total testosterone (TT) level with insulin secretion and resistance in patients with acanthosis nigricans (AN) and non-acanthosis nigricans (NAN). METHODS This study was conducted in a total of 639 overweight patients (body mass index ≥24 kg/m2), including 137 female AN patients, 277 female NAN patients, 129 male AN patients, and 146 male NAN patients. Each group was further divided into 4 subgroups according to the quartile of TT level for comparison of insulin secretion and insulin resistance parameters. RESULTS Both female and male patients with AN showed obvious hyperinsulinemia with increased area under the curve for insulin (AUC-INS) (P < 0.05), increased homeostatic model assessment of insulin resistance (HOMA-IR) index (P < 0.05) and decreased whole-body insulin sensitivity index (WBISI) (P < 0.01) as compared with those in NAN groups, but these parameters did not show significant variations with the change of TT levels. In female patients with NAN, insulin secretion level increased progressively as the TT level increased; the AUC-INS increased (P < 0.01) and WBISI decreased significantly (P < 0.05) when the TT levels increased to Q4. In male patients with NAN, insulin secretion level increased progressively as the TT levels decreased, and the AUC-INS increased (P < 0.05) and the WBISI decreased significantly (P < 0.05) when the TT levels decreased to Q1. CONCLUSIONS The TT level has a significant effect on insulin resistance and insulin secretion, but its effect varies between genders and is more significant in NAN patients than in AN patients.
Collapse
Affiliation(s)
- 玲 张
- 南京医科大学附属上海十院临床医学院内分泌与代谢病科,上海 200072Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, China
- 苏州大学附属常州肿瘤医院内分泌科,江苏 常州 213000Department of Endocrinology, Changzhou Cancer Hospital of Soochow University, Changzhou 213000, China
| | - 贵芳 李
- 同济大学附属第十人民医院内分泌代谢中心,同济大学附属第十人民医院减重糖尿病代谢外科,国家标准化代谢性疾病管理中心(上海市第十人民医院),同济大学医学院肥胖症研究所,上海 200072Endocrinology and Metabolism Center, Department of Metabolic Surgery for Obesity and Diabetes, Tenth People's Hospital of Tongji University; National Metabolic Management Center (Shanghai Tenth People's Hospital), Research Institute of Obesity, Tongji University School of Medicine, Shanghai 200072, China
| | - 莉莉 苏
- 同济大学附属第十人民医院内分泌代谢中心,同济大学附属第十人民医院减重糖尿病代谢外科,国家标准化代谢性疾病管理中心(上海市第十人民医院),同济大学医学院肥胖症研究所,上海 200072Endocrinology and Metabolism Center, Department of Metabolic Surgery for Obesity and Diabetes, Tenth People's Hospital of Tongji University; National Metabolic Management Center (Shanghai Tenth People's Hospital), Research Institute of Obesity, Tongji University School of Medicine, Shanghai 200072, China
| | - 磊 杜
- 同济大学附属第十人民医院内分泌代谢中心,同济大学附属第十人民医院减重糖尿病代谢外科,国家标准化代谢性疾病管理中心(上海市第十人民医院),同济大学医学院肥胖症研究所,上海 200072Endocrinology and Metabolism Center, Department of Metabolic Surgery for Obesity and Diabetes, Tenth People's Hospital of Tongji University; National Metabolic Management Center (Shanghai Tenth People's Hospital), Research Institute of Obesity, Tongji University School of Medicine, Shanghai 200072, China
| | - 东雷 周
- 同济大学附属第十人民医院内分泌代谢中心,同济大学附属第十人民医院减重糖尿病代谢外科,国家标准化代谢性疾病管理中心(上海市第十人民医院),同济大学医学院肥胖症研究所,上海 200072Endocrinology and Metabolism Center, Department of Metabolic Surgery for Obesity and Diabetes, Tenth People's Hospital of Tongji University; National Metabolic Management Center (Shanghai Tenth People's Hospital), Research Institute of Obesity, Tongji University School of Medicine, Shanghai 200072, China
| | - 晓芸 程
- 同济大学附属第十人民医院内分泌代谢中心,同济大学附属第十人民医院减重糖尿病代谢外科,国家标准化代谢性疾病管理中心(上海市第十人民医院),同济大学医学院肥胖症研究所,上海 200072Endocrinology and Metabolism Center, Department of Metabolic Surgery for Obesity and Diabetes, Tenth People's Hospital of Tongji University; National Metabolic Management Center (Shanghai Tenth People's Hospital), Research Institute of Obesity, Tongji University School of Medicine, Shanghai 200072, China
| | - 紫薇 林
- 同济大学附属第十人民医院内分泌代谢中心,同济大学附属第十人民医院减重糖尿病代谢外科,国家标准化代谢性疾病管理中心(上海市第十人民医院),同济大学医学院肥胖症研究所,上海 200072Endocrinology and Metabolism Center, Department of Metabolic Surgery for Obesity and Diabetes, Tenth People's Hospital of Tongji University; National Metabolic Management Center (Shanghai Tenth People's Hospital), Research Institute of Obesity, Tongji University School of Medicine, Shanghai 200072, China
| | - 伸 曲
- 南京医科大学附属上海十院临床医学院内分泌与代谢病科,上海 200072Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, China
- 同济大学附属第十人民医院内分泌代谢中心,同济大学附属第十人民医院减重糖尿病代谢外科,国家标准化代谢性疾病管理中心(上海市第十人民医院),同济大学医学院肥胖症研究所,上海 200072Endocrinology and Metabolism Center, Department of Metabolic Surgery for Obesity and Diabetes, Tenth People's Hospital of Tongji University; National Metabolic Management Center (Shanghai Tenth People's Hospital), Research Institute of Obesity, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
18
|
Kumarendran B, O'Reilly MW, Subramanian A, Šumilo D, Toulis K, Gokhale KM, Wijeratne CN, Coomarasamy A, Tahrani AA, Azoulay L, Arlt W, Nirantharakumar K. Polycystic Ovary Syndrome, Combined Oral Contraceptives, and the Risk of Dysglycemia: A Population-Based Cohort Study With a Nested Pharmacoepidemiological Case-Control Study. Diabetes Care 2021; 44:2758-2766. [PMID: 34649997 PMCID: PMC8669537 DOI: 10.2337/dc21-0437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Irregular menstrual cycles are associated with increased cardiovascular mortality. Polycystic ovary syndrome (PCOS) is characterized by androgen excess and irregular menses; androgens are drivers of increased metabolic risk in women with PCOS. Combined oral contraceptive pills (COCPs) are used in PCOS both for cycle regulation and to reduce the biologically active androgen fraction. We examined COCP use and risk of dysglycemia (prediabetes and type 2 diabetes) in women with PCOS. RESEARCH DESIGN AND METHODS Using a large U.K. primary care database (The Health Improvement Network [THIN]; 3.7 million patients from 787 practices), we carried out a retrospective population-based cohort study to determine dysglycemia risk (64,051 women with PCOS and 123,545 matched control subjects), as well as a nested pharmacoepidemiological case-control study to investigate COCP use in relation to dysglycemia risk (2,407 women with PCOS with [case subjects] and without [control subjects] a diagnosis of dysglycemia during follow-up). Cox models were used to estimate the unadjusted and adjusted hazard ratio, and conditional logistic regression was used to obtain adjusted odds ratios (aORs). RESULTS The adjusted hazard ratio for dysglycemia in women with PCOS was 1.87 (95% CI 1.78-1.97, P < 0.001; adjustment for age, social deprivation, BMI, ethnicity, and smoking), with increased rates of dysglycemia in all BMI subgroups. Women with PCOS and COCP use had a reduced dysglycemia risk (aOR 0.72, 95% CI 0.59-0.87). CONCLUSIONS In this study, limited by its retrospective nature and the use of routinely collected electronic general practice record data, which does not allow for exclusion of the impact of prescription-by-indication bias, women with PCOS exposed to COCPs had a reduced risk of dysglycemia across all BMI subgroups. Future prospective studies should be considered for further understanding of these observations and potential causality.
Collapse
Affiliation(s)
- Balachandran Kumarendran
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
- Department of Community and Family Medicine, Faculty of Medicine, University of Jaffna, Kokkuvil, Sri Lanka
| | - Michael W O'Reilly
- Department of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Republic of Ireland
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Anuradhaa Subramanian
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
| | - Dana Šumilo
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
| | - Konstantinos Toulis
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
| | - Krishna M Gokhale
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K
| | - Chandrika N Wijeratne
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Arri Coomarasamy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Abd A Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Laurent Azoulay
- Department of Epidemiology, Biostatistics and Occupational Health and Gerald Bronfman Department of Oncology, McGill University, Toronto, Canada
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K.
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
| | - Krishnarajah Nirantharakumar
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, U.K.
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| |
Collapse
|
19
|
Tuorila K, Ollila MM, Järvelin MR, Tapanainen JS, Franks S, Puukka K, Piltonen TT, Morin-Papunen L. Hyperandrogenemia in Early Adulthood Is an Independent Risk Factor for Abnormal Glucose Metabolism in Middle Age. J Clin Endocrinol Metab 2021; 106:e4621-e4633. [PMID: 34153097 PMCID: PMC8530724 DOI: 10.1210/clinem/dgab456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The role of androgen excess as a contributing factor to abnormal glucose metabolism (AGM) and insulin resistance in women remains controversial. OBJECTIVE To investigate whether hyperandrogenemia (HA) estimated by serum testosterone (T) level and free androgen index (FAI) at ages 31 and 46 years is associated with insulin resistance, insulin secretion and AGM by age 46. DESIGN Prospective study including 5889 females followed at ages 31 and 46 years. SETTING General community. PARTICIPANTS Women with HA were compared with normoandrogenic women at ages 31 and 46 years. INTERVENTION None. MAIN OUTCOME MEASUREMENTS AGM, including prediabetes and type 2 diabetes mellitus, homeostatic model assessments of insulin resistance (HOMA-IR) and of pancreatic β-cell function (HOMA-B). RESULTS At age 31 years, HA women displayed increased HOMA-IR (P = 0.002), HOMA-B (P = 0.007), and higher fasting insulin (P = 0.03) than normoandrogenic women after adjusting for body mass index (BMI). At age 46 years, there was a nonsignificant trend toward higher fasting glucose (P = 0.07) and glycated hemoglobin A1 (P = 0.07) levels in HA women. Women in the highest T quartile (odds ratio [OR] = 1.80; 95%CI, 1.15-2.82) at age 31 years and in the 2 highest FAI quartiles at ages 31 (Q4: OR = 3.76; 95% CI, 2.24-6.32) and 46 (Q4: OR = 2.79; 95% CI, 1.74-4.46) years had increased risk for AGM, independently of BMI, when compared with women in Q1. SHBG was inversely associated with AGM (at age 31 years: Q4: OR = 0.37; 95% CI, 0.23-0.60, at age 46 years: Q4: OR = 0.28; 95% CI, 0.17-0.44). CONCLUSION Hyperandrogenemia and low SHBG in early and middle age associates with AGM independently of BMI.
Collapse
Affiliation(s)
- Katri Tuorila
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
| | - Meri-Maija Ollila
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
| | - Marjo-Riitta Järvelin
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Katri Puukka
- NordLab Oulu, Department of Clinical Chemistry, University of Oulu and Oulu University Hospital, Medical Research Center Oulu, Oulu, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
| | - Laure Morin-Papunen
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
- Correspondence: Laure Morin-Papunen, MD, PhD, Department of Obstetrics and Gynecology, Oulu University Hospital, PL 23 90029 OYS, Finland.
| |
Collapse
|
20
|
Andrisse S, Feng M, Wang Z, Awe O, Yu L, Zhang H, Bi S, Wang H, Li L, Joseph S, Heller N, Mauvais-Jarvis F, Wong GW, Segars J, Wolfe A, Divall S, Ahima R, Wu S. Androgen-induced insulin resistance is ameliorated by deletion of hepatic androgen receptor in females. FASEB J 2021; 35:e21921. [PMID: 34547140 DOI: 10.1096/fj.202100961r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Androgen excess is one of the most common endocrine disorders of reproductive-aged women, affecting up to 20% of this population. Women with elevated androgens often exhibit hyperinsulinemia and insulin resistance. The mechanisms of how elevated androgens affect metabolic function are not clear. Hyperandrogenemia in a dihydrotestosterone (DHT)-treated female mouse model induces whole body insulin resistance possibly through activation of the hepatic androgen receptor (AR). We investigated the role of hepatocyte AR in hyperandrogenemia-induced metabolic dysfunction by using several approaches to delete hepatic AR via animal-, cell-, and clinical-based methodologies. We conditionally disrupted hepatocyte AR in female mice developmentally (LivARKO) or acutely by tail vein injection of an adeno-associated virus with a liver-specific promoter for Cre expression in ARfl/fl mice (adLivARKO). We observed normal metabolic function in littermate female Control (ARfl/fl ) and LivARKO (ARfl/fl ; Cre+/- ) mice. Following chronic DHT treatment, female Control mice treated with DHT (Con-DHT) developed impaired glucose tolerance, pyruvate tolerance, and insulin tolerance, not observed in LivARKO mice treated with DHT (LivARKO-DHT). Furthermore, during an euglycemic hyperinsulinemic clamp, the glucose infusion rate was improved in LivARKO-DHT mice compared to Con-DHT mice. Liver from LivARKO, and primary hepatocytes derived from LivARKO, and adLivARKO mice were protected from DHT-induced insulin resistance and increased gluconeogenesis. These data support a paradigm in which elevated androgens in females disrupt metabolic function via hepatic AR and insulin sensitivity was restored by deletion of hepatic AR.
Collapse
Affiliation(s)
- Stanley Andrisse
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Physiology and Biophysics, Howard University, Washington, District of Columbia, USA
| | - Mingxiao Feng
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhiqiang Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olubusayo Awe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lexiang Yu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haiying Zhang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Serene Joseph
- Department of Cardiovascular Sciences/Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicola Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, Louisiana, USA.,VA Medical Center, New Orleans, Louisiana, USA
| | - Guang William Wong
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sara Divall
- Department of Pediatrics, Seattle's Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Rexford Ahima
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Cardiovascular Sciences/Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism 2021; 122:154821. [PMID: 34174327 DOI: 10.1016/j.metabol.2021.154821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Optimal metabolic homeostasis requires precise temporal and quantitative control of insulin secretion. Both in vivo and in vitro studies have often focused on the regulation by glucose although many additional factors including other nutrients, neurotransmitters, hormones and drugs, modulate the secretory function of pancreatic β-cells. This review is based on the analysis of clinical investigations characterizing the effects of non-glucose modulators of insulin secretion in healthy subjects, and of experimental studies testing the same modulators in islets isolated from normal human donors. The aim was to determine whether the information gathered in vitro can reliably be translated to the in vivo situation. The comparison evidenced both convincing similarities and areas of discordance. The lack of coherence generally stems from the use of exceedingly high concentrations of test agents at too high or too low glucose concentrations in vitro, which casts doubts on the physiological relevance of a number of observations made in isolated islets. Future projects resorting to human islets should avoid extreme experimental conditions, such as oversized stimulations or inhibitions of β-cells, which are unlikely to throw light on normal insulin secretion and contribute to the elucidation of its defects.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
22
|
Chappell NR, Zhou B, Hosseinzadeh P, Schutt A, Gibbons WE, Blesson CS. Hyperandrogenemia alters mitochondrial structure and function in the oocytes of obese mouse with polycystic ovary syndrome. ACTA ACUST UNITED AC 2021; 2:101-112. [PMID: 34458875 DOI: 10.1016/j.xfss.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Capsule Hyperandrogenemia in an obese PCOS mouse model results in altered glucose/insulin metabolism and mitochondrial structure and function in the oocytes, in part explaining adverse outcomes and inheritance patterns seen in PCOS. Objective To study the oocyte quality by means of mitochondrial structure and function in a well-established classic PCOS mouse model. Design Animal study using an obese PCOS mouse model compared with control. Setting Animal research facility in a tertiary care university hospital setting. Animals C57/B6J mice. Intervention Three week old mice had subdermal implants of DHT controlled release pellet or placebo for 90 days. Main Outcome Measures The mouse model was validated by performing glucose tolerance test, HbA1c levels, body weight and estrous cycle analyses. Oocytes were subsequently isolated and were used to investigate mitochondrial membrane potential, oxidative stress, lipid peroxidation, ATP production, mtDNA copy number, transcript abundance, histology and electron microscopy. Results Results showed glucose intolerance and hyperinsulinemia along with dysregulated estrus cycle. Analysis of the oocytes demonstrated impaired inner mitochondrial membrane function, increased ATP production and mtDNA copy number, altered RNA transcript abundance and aberrant ovarian histology. Electron microscopy of the oocytes showed severely impaired mitochondrial ultrastructure. Conclusion The obese PCOS mouse model shows a decreased oocyte quality related to impaired mitochondrial function.
Collapse
Affiliation(s)
- Neil R Chappell
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Beth Zhou
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Pardis Hosseinzadeh
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Amy Schutt
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - William E Gibbons
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Chellakkan S Blesson
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
23
|
Münzberg H, Floyd E, Chang JS. Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige? Physiology (Bethesda) 2021; 36:246-255. [PMID: 34159808 DOI: 10.1152/physiol.00038.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity research progresses in understanding neuronal circuits and adipocyte biology to regulate metabolism. However, the interface of neuro-adipocyte interaction is less studied. We summarize the current knowledge of adipose tissue innervation and interaction with adipocytes and emphasize adipocyte transitions from white to brown adipocytes and vice versa. We further highlight emerging concepts for the differential neuronal regulation of brown/beige versus white adipocyte and the interdependence of both for metabolic regulation.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Ji Suk Chang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
24
|
Kothmann KH, Jacobsen V, Laffitte E, Bromfield C, Grizzaffi M, Jarboe M, Braundmeier-Fleming AG, Bahr JM, Nowak RA, Newell-Fugate AE. Virilizing doses of testosterone decrease circulating insulin levels and differentially regulate insulin signaling in liver and adipose tissue of females. Am J Physiol Endocrinol Metab 2021; 320:E1107-E1118. [PMID: 33900852 PMCID: PMC8285596 DOI: 10.1152/ajpendo.00281.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transgender men undergoing hormone therapy are at risk for insulin resistance. However, how virilizing testosterone therapy affects serum insulin and peripheral insulin sensitivity in transgender men is unknown. This study assessed the effect of acute, virilizing testosterone on serum insulin concentrations and insulin signaling in liver, skeletal muscle, and white adipose tissue (WAT) of female pigs as a translational model for transgender men. Females received three doses of intramuscular testosterone cypionate (TEST females; 50 mg/day/pig) or corn oil (control) spaced 6 days apart starting on the day of estrus (D0). Fasting blood was collected on D0, D3, D5, D11, and D13, and females were euthanized on D13. On D13, TEST females had virilizing concentrations of serum testosterone with normal concentrations of serum estradiol. Virilizing serum testosterone concentrations (D13) were associated with decreased serum insulin and C-peptide concentrations. Blood glucose and serum glycerol concentrations were not altered by testosterone. Virilizing concentrations of testosterone downregulated AR and ESR1 in subcutaneous (sc) WAT and upregulated transcript levels of insulin-signaling pathway components in WAT and liver. At the protein level, virilizing testosterone concentrations were associated with increased PI3K 110α in liver and increased insulin receptor (INSR) and phospho(Ser256)-FOXO1 in visceral (v) WAT but decreased phospho(Ser473)-AKT in vWAT and scWAT. These results suggest that acute exposure to virilizing concentrations of testosterone suppresses circulating insulin levels and results in increased abundance of proteins in the insulin-signaling pathway in liver and altered phosphorylation of key proteins in control of insulin sensitivity in WAT.NEW & NOTEWORTHY Acute virilizing doses of testosterone administered to females suppress circulating insulin levels, upregulate components of the insulin-signaling pathway in liver, and suppress insulin signaling in white adipose tissue. These results suggest that insulin resistance in transgender men may be due to suppression of the insulin-signaling pathway and decreased insulin sensitivity in white adipose tissue.
Collapse
Affiliation(s)
- Kadden H Kothmann
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Victoria Jacobsen
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Emily Laffitte
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Corinne Bromfield
- Agricultural Animal Care and Use Program, Office of the Vice Chancellor for Research, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Matthew Grizzaffi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Monica Jarboe
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Andrea G Braundmeier-Fleming
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Janice M Bahr
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Annie E Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
25
|
McEwan S, Kwon H, Tahiri A, Shanmugarajah N, Cai W, Ke J, Huang T, Belton A, Singh B, Wang L, Pang ZP, Dirice E, Engel EA, El Ouaamari A. Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells. Mol Metab 2021; 53:101260. [PMID: 34023484 PMCID: PMC8258979 DOI: 10.1016/j.molmet.2021.101260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner. OBJECTIVE Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic β cells and its overall impact on insulin release and glucose homeostasis. METHODS We used viral retrograde tracing techniques, surgical and chemodenervation models, and primary cell-based co-culture systems to uncover the biology underlying sex differences in sensory modulation of pancreatic β-cell activity. RESULTS Retrograde transsynaptic labeling revealed a sex difference in the density of sensory innervation in the pancreas. The number of sensory neurons emanating from the dorsal root and nodose ganglia that project in the pancreas is higher in male than in female mice. Immunostaining and confocal laser scanning microscopy confirmed the higher abundance of peri-islet sensory axonal tracts in the male pancreas. Capsaicin-induced sensory chemodenervation concomitantly enhanced glucose-stimulated insulin secretion and glucose clearance in male mice. These metabolic benefits were blunted when mice were orchidectomized prior to the ablation of sensory nerves. Interestingly, orchidectomy also lowered the density of peri-islet sensory neurons. In female mice, capsaicin treatment did not affect glucose-induced insulin secretion nor glucose excursion and ovariectomy did not modify these outcomes. Interestingly, same- and opposite-sex sensory-islet co-culture paradigms unmasked the existence of potential gonadal hormone-independent mechanisms mediating the male-female difference in sensory modulation of islet β-cell activity. CONCLUSION Taken together, these data suggest that the sex-biased nature of the sensory control of islet β-cell activity is a result of a combination of neurodevelopmental inputs, sex hormone-dependent mechanisms and the potential action of somatic molecules encoded by the sex chromosome complement.
Collapse
Affiliation(s)
- Sara McEwan
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hyokjoon Kwon
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Azeddine Tahiri
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Nivetha Shanmugarajah
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Jin Ke
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianwen Huang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ariana Belton
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Bhagat Singh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ercument Dirice
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Abdelfattah El Ouaamari
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Corresponding author. Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
26
|
Bleach R, Sherlock M, O'Reilly MW, McIlroy M. Growth Hormone/Insulin Growth Factor Axis in Sex Steroid Associated Disorders and Related Cancers. Front Cell Dev Biol 2021; 9:630503. [PMID: 33816477 PMCID: PMC8012538 DOI: 10.3389/fcell.2021.630503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
To date, almost all solid malignancies have implicated insulin-like growth factor (IGF) signalling as a driver of tumour growth. However, the remarkable level of crosstalk between sex hormones, the IGF-1 receptor (IGF-1R) and its ligands IGF-1 and 2 in endocrine driven cancers is incompletely understood. Similar to the sex steroids, IGF signalling is essential in normal development as well as growth and tissue homoeostasis, and undergoes a steady decline with advancing age and increasing visceral adiposity. Interestingly, IGF-1 has been found to play a compensatory role for both estrogen receptor (ER) and androgen receptor (AR) by augmenting hormonal responses in the absence of, or where low levels of ligand are present. Furthermore, experimental, and epidemiological evidence supports a role for dysregulated IGF signalling in breast and prostate cancers. Insulin-like growth factor binding protein (IGFBP) molecules can regulate the bioavailability of IGF-1 and are frequently expressed in these hormonally regulated tissues. The link between age-related disease and the role of IGF-1 in the process of ageing and longevity has gained much attention over the last few decades, spurring the development of numerous IGF targeted therapies that have, to date, failed to deliver on their therapeutic potential. This review will provide an overview of the sexually dimorphic nature of IGF signalling in humans and how this is impacted by the reduction in sex steroids in mid-life. It will also explore the latest links with metabolic syndromes, hormonal imbalances associated with ageing and targeting of IGF signalling in endocrine-related tumour growth with an emphasis on post-menopausal breast cancer and the impact of the steroidal milieu.
Collapse
Affiliation(s)
- Rachel Bleach
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mark Sherlock
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Michael W O'Reilly
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
27
|
Borzan V, Lerchbaum E, Missbrenner C, Heijboer AC, Goschnik M, Trummer C, Theiler-Schwetz V, Haudum C, Gumpold R, Schweighofer N, Obermayer-Pietsch B. Risk of Insulin Resistance and Metabolic Syndrome in Women with Hyperandrogenemia: A Comparison between PCOS Phenotypes and Beyond. J Clin Med 2021; 10:829. [PMID: 33670546 PMCID: PMC7922675 DOI: 10.3390/jcm10040829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in premenopausal women, with a wide spectrum of possible phenotypes, symptoms and sequelae according to the current clinical definition. However, there are women who do not fulfill at least two out of the three commonly used "Rotterdam criteria" and their risk of developing type 2 diabetes or obesity later in life is not defined. Therefore, we addressed this important gap by conducting a retrospective analysis based on 750 women with and without PCOS. We compared four different PCOS phenotypes according to the Rotterdam criteria with women who exhibit only one Rotterdam criterion and with healthy controls. Hormone and metabolic differences were assessed by analysis of variance (ANOVA) as well as logistic regression analysis. We found that hyperandrogenic women have per se a higher risk of developing insulin resistance compared to phenotypes without hyperandrogenism and healthy controls. In addition, hyperandrogenemia is associated with developing insulin resistance also in women with no other Rotterdam criterion. Our study encourages further diagnostic and therapeutic approaches for PCOS phenotypes in order to account for varying risks of developing metabolic diseases. Finally, women with hyperandrogenism as the only symptom should also be screened for insulin resistance to avoid later metabolic risks.
Collapse
Affiliation(s)
- Valentin Borzan
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Elisabeth Lerchbaum
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
| | - Cornelia Missbrenner
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
| | - Annemieke C. Heijboer
- Endocrine Laboratory, Department of Clinical Chemistry, University Medical Center, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;
| | - Michaela Goschnik
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
| | - Verena Theiler-Schwetz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
| | - Christoph Haudum
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Roswitha Gumpold
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
| | - Natascha Schweighofer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (V.B.); (E.L.); (C.M.); (M.G.); (C.T.); (V.T.-S.); (C.H.); (R.G.); (N.S.)
| |
Collapse
|
28
|
Abstract
PCOS is a common and heterogeneous endocrine disorder in women of reproductive age, frequently associated with metabolic abnormalities. It was estimated that about 75% of these subjects have an impairment of insulin action, as measured by gold standard methods. While the relationship between insulin resistance and PCOS is consistently shown by a number of studies, the mechanisms underlying its primary origin still remains an unsolved issue. Insulin resistance and the associated hyperinsulinemia can induce both the endocrine and reproductive traits of PCOS. However, androgen excess, in turn, can impair insulin action, directly and/or through several changes occurring in different tissues. Body fat excess, which is another common feature in these women, can contribute to worsening the whole picture. Nevertheless, insulin resistance may also be found in many normal-weight individuals. Endocrine and metabolic abnormalities can develop in different moments, and probably there is fetal programming of these alterations. However, a number of vicious circles, with bidirectional relationships between androgen excess and insulin resistance, and with the contribution of several other factors, make it extremely difficult to understand where this process really originates. This review summarizes available evidence on this topic, in order to better understand the complex relationships linking hyperandrogenism and impaired insulin action in women with PCOS.
Collapse
Affiliation(s)
- P Moghetti
- Unit of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, P.le Stefani, 1, 37126, Verona, Italy.
| | - F Tosi
- Unit of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, P.le Stefani, 1, 37126, Verona, Italy
| |
Collapse
|
29
|
Yin L, Luo M, Wang R, Ye J, Wang X. Mitochondria in Sex Hormone-Induced Disorder of Energy Metabolism in Males and Females. Front Endocrinol (Lausanne) 2021; 12:749451. [PMID: 34987473 PMCID: PMC8721233 DOI: 10.3389/fendo.2021.749451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
Androgens have a complex role in the regulation of insulin sensitivity in the pathogenesis of type 2 diabetes. In male subjects, a reduction in androgens increases the risk for insulin resistance, which is improved by androgen injections. However, in female subjects with polycystic ovary syndrome (PCOS), androgen excess becomes a risk factor for insulin resistance. The exact mechanism underlying the complex activities of androgens remains unknown. In this review, a hormone synergy-based view is proposed for understanding this complexity. Mitochondrial overactivation by substrate influx is a mechanism of insulin resistance in obesity. This concept may apply to the androgen-induced insulin resistance in PCOS. Androgens and estrogens both exhibit activities in the induction of mitochondrial oxidative phosphorylation. The two hormones may synergize in mitochondria to induce overproduction of ATP. ATP surplus in the pancreatic β-cells and α-cells causes excess secretion of insulin and glucagon, respectively, leading to peripheral insulin resistance in the early phase of type 2 diabetes. In the skeletal muscle and liver, the ATP surplus contributes to insulin resistance through suppression of AMPK and activation of mTOR. Consistent ATP surplus leads to mitochondrial dysfunction as a consequence of mitophagy inhibition, which provides a potential mechanism for mitochondrial dysfunction in β-cells and brown adipocytes in PCOS. The hormone synergy-based view provides a basis for the overactivation and dysfunction of mitochondria in PCOS-associated type 2 diabetes. The molecular mechanism for the synergy is discussed in this review with a focus on transcriptional regulation. This view suggests a unifying mechanism for the distinct metabolic roles of androgens in the control of insulin action in men with hypogonadism and women with PCOS.
Collapse
Affiliation(s)
- Lijun Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Man Luo
- Metabolism Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianping Ye
- Metabolism Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Jianping Ye, ; Xiaohui Wang,
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jianping Ye, ; Xiaohui Wang,
| |
Collapse
|
30
|
Ye W, Xie T, Song Y, Zhou L. The role of androgen and its related signals in PCOS. J Cell Mol Med 2020; 25:1825-1837. [PMID: 33369146 PMCID: PMC7882969 DOI: 10.1111/jcmm.16205] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women at reproductive age. However, the underlying pathogenic mechanisms have not been completely understood. Hyperandrogenism is an important clinic feature in patients with PCOS, suggesting its pathologic role in the development and progression of PCOS. However, the actual role of androgen and the related signals in PCOS and PCOS-related complications have not yet been clarified. In this review, we surveyed the origin and effects of androgen on PCOS and the related complications, highlighted the cellular signals affecting androgen synthesis and summarized the pathological processes caused by hyperandrogenism. Our review well reveals the important mechanisms referring the pathogenesis of PCOS and provides important clues to the clinic strategies in patients with PCOS.
Collapse
Affiliation(s)
- Wenting Ye
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yali Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
31
|
Jackson IJ, Puttabyatappa M, Anderson M, Muralidharan M, Veiga-Lopez A, Gregg B, Limesand S, Padmanabhan V. Developmental programming: Prenatal testosterone excess disrupts pancreatic islet developmental trajectory in female sheep. Mol Cell Endocrinol 2020; 518:110950. [PMID: 32726642 PMCID: PMC7609617 DOI: 10.1016/j.mce.2020.110950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Prenatal testosterone (T)- treated female sheep manifest juvenile insulin resistance, post-pubertal increase in insulin sensitivity and return to insulin resistance during adulthood. Since compensatory hyperinsulinemia is associated with insulin resistance, altered pancreatic islet ontogeny may contribute towards metabolic defects. To test this, pregnant sheep were treated with or without T propionate from days 30-90 of gestation and pancreas collected from female fetuses at gestational day 90 and female offspring at 21 months-of-age. Uterine (maternal) and umbilical (fetal) arterial blood insulin/glucose ratios were determined at gestational day 90. The morphological and functional changes in pancreatic islet were assessed through detection of 1) islet hormones (insulin, glucagon) and apoptotic beta cells at fetal day 90 and 2) islet hormones (insulin, glucagon and somatostatin), and pancreatic lipid and collagen accumulation in adults. At gestational day 90, T-treatment led to maternal but not fetal hyperinsulinemia, decrease in pancreatic/fetal weight ratio and alpha cells, and a trend for increase in beta cell apoptosis in fetal pancreas. Adult prenatal T-treated female sheep manifested 1) significant increase in beta cell size and a tendency for increase in insulin and somatostatin stained area and proportion of beta cells in the islet; and 2) significant increase in pancreatic islet collagen and a tendency towards increased lipid accumulation. Gestational T-treatment induced changes in pancreatic islet endocrine cells during both fetal and adult ages track the trajectory of hyperinsulinemic status with the increase in adult pancreatic collagen accumulation indicative of impending beta cell failure with chronic insulin resistance.
Collapse
Affiliation(s)
- Ian J Jackson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA; School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | | | - Miranda Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Meha Muralidharan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sean Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | | |
Collapse
|
32
|
Xu W, Schiffer L, Qadir MMF, Zhang Y, Hawley J, Mota De Sa P, Keevil BG, Wu H, Arlt W, Mauvais-Jarvis F. Intracrine Testosterone Activation in Human Pancreatic β-Cells Stimulates Insulin Secretion. Diabetes 2020; 69:2392-2399. [PMID: 32855171 PMCID: PMC7576567 DOI: 10.2337/db20-0228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Testosterone (T) affects β-cell function in men and women. T is a prohormone that undergoes intracrine conversion in target tissues to the potent androgen dihydrotestosterone (DHT) via the enzyme 5α-reductase (5α-R) or to the active estrogen 17β-estradiol (E2) via the aromatase enzyme. Using male and female human pancreas sections, we show that the 5α-R type 1 isoform (SRD5A1) and aromatase are expressed in male and female β-cells. We show that cultured male and female human islets exposed to T produce DHT and downstream metabolites. In these islets, exposure to the 5α-R inhibitors finasteride and dutasteride inhibited T conversion into DHT. We did not detect T conversion into E2 from female islets. However, we detected T conversion into E2 in islets from two out of four male donors. In these donors, exposure to the aromatase inhibitor anastrozole inhibited E2 production. Notably, in cultured male and female islets, T enhanced glucose-stimulated insulin secretion (GSIS). In these islets, exposure to 5α-R inhibitors or the aromatase inhibitor both inhibited T enhancement of GSIS. In conclusion, male and female human islets convert T into DHT and E2 via the intracrine activities of SRD5A1 and aromatase. This process is necessary for T enhancement of GSIS.
Collapse
Affiliation(s)
- Weiwei Xu
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
| | - Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
| | - Yanqing Zhang
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
| | - James Hawley
- Department of Clinical Biochemistry, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, U.K
| | - Paula Mota De Sa
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
| | - Brian G Keevil
- Department of Clinical Biochemistry, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, U.K
| | - Hongju Wu
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA
| |
Collapse
|
33
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
34
|
GSTM1-null allele predicts rapid disease progression in nondialysis patients and mortality among South Indian ESRD patients. Mol Cell Biochem 2020; 469:21-28. [PMID: 32304007 DOI: 10.1007/s11010-020-03724-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/20/2020] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is one of the main causes of early death in humans worldwide. Glutathione S-Transferases (GSTs) are involved in a series of xenobiotics metabolism and free radical scavenging. The previous studies elucidated the interlink between GST variants and to the development of various diseases. The present case-control study performed to ascertain whether GST polymorphisms are associated with the incidence and advancement of CKD. From the Southern part of India, a total of 392 CKD patients (nondialysis, ND; n = 170, end-stage renal disease, ESRD; n = 222) and 202 healthy individuals were enrolled. Patients were followed-up for 70 months. Serum biochemical parameters were recorded, and the extraction of DNA was done from the patient's blood samples. To genotype study participants, multiplex PCR for GSTM1/T1 was performed. Statistical analysis was carried out to analyze the relationship between gene frequency and sonographic grading, as well as biochemical parameters for disease development. The GSTM1-null genotype showed threefold increased risk (OR = 2.9304; 95% CI 1.8959 to 4.5296; P < 0.0001) to CKD development and twofold increased risk (OR = 1.8379; 95% CI 1.1937 to 2.8299; P = 0.0057) to ESRD progression. During the mean follow-up of 41 months study, multivariate Cox regression analysis revealed that GSTM1-null genotype has 4 times increased the risk for all-cause rapid disease progression to ESRD among ND patients and 3.85-fold increased risk for death among ESRD patients. Survival analysis revealed that patients with GSTM1-present allele showed a significantly diminished risk of mortality compared to patients bearing the GSTM1-null allele among ESRD patients with a hazard ratio of 4.6242 (P < 0.0001). Thus, present data confirm that GSTM1-null genotype increased the risk for all-cause rapid disease progression to ESRD among ND patients. Based on our results, GSTM1-null genotype could be considered as a significant predictor for causing mortality among CKD patients when compared to all other variables.
Collapse
|
35
|
Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, Gourdy P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020; 63:453-461. [PMID: 31754750 PMCID: PMC6997275 DOI: 10.1007/s00125-019-05040-3] [Citation(s) in RCA: 431] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
Gender and biological sex impact the pathogenesis of numerous diseases, including metabolic disorders such as diabetes. In most parts of the world, diabetes is more prevalent in men than in women, especially in middle-aged populations. In line with this, considering almost all animal models, males are more likely to develop obesity, insulin resistance and hyperglycaemia than females in response to nutritional challenges. As summarised in this review, it is now obvious that many aspects of energy balance and glucose metabolism are regulated differently in males and females and influence their predisposition to type 2 diabetes. During their reproductive life, women exhibit specificities in energy partitioning as compared with men, with carbohydrate and lipid utilisation as fuel sources that favour energy storage in subcutaneous adipose tissues and preserve them from visceral and ectopic fat accumulation. Insulin sensitivity is higher in women, who are also characterised by higher capacities for insulin secretion and incretin responses than men; although, these sex advantages all disappear when glucose tolerance deteriorates towards diabetes. Clinical and experimental observations evidence the protective actions of endogenous oestrogens, mainly through oestrogen receptor α activation in various tissues, including the brain, the liver, skeletal muscle, adipose tissue and pancreatic beta cells. However, beside sex steroids, underlying mechanisms need to be further investigated, especially the role of sex chromosomes, fetal/neonatal programming and epigenetic modifications. On the path to precision medicine, further deciphering sex-specific traits in energy balance and glucose homeostasis is indeed a priority topic to optimise individual approaches in type 2 diabetes prevention and treatment.
Collapse
Affiliation(s)
- Blandine Tramunt
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France
| | - Sarra Smati
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- Institut National de la Recherche Agronomique (INRA), Toxalim UMR 1331, Toulouse, France
| | - Naia Grandgeorge
- Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France.
- Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France.
| |
Collapse
|
36
|
Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab 2020; 35:100937. [PMID: 32244180 PMCID: PMC7115104 DOI: 10.1016/j.molmet.2020.01.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among reproductive age women. Although its cardinal manifestations include hyperandrogenism, oligo/anovulation, and/or polycystic ovarian morphology, PCOS women often display also notable metabolic comorbidities. An array of pathogenic mechanisms have been implicated in the etiology of this heterogeneous endocrine disorder; hyperandrogenism at various developmental periods is proposed as a major driver of the metabolic and reproductive perturbations associated with PCOS. However, the current understanding of the pathophysiology of PCOS-associated metabolic disease is incomplete, and therapeutic strategies used to manage this syndrome's metabolic complications remain limited. Scope of review This study is a systematic review of the potential etiopathogenic mechanisms of metabolic dysfunction frequently associated with PCOS, with special emphasis on the metabolic impact of androgen excess on different metabolic tissues and the brain. We also briefly summarize the therapeutic approaches currently available to manage metabolic perturbations linked to PCOS, highlighting current weaknesses and future directions. Major conclusions Androgen excess plays a prominent role in the development of metabolic disturbances associated with PCOS, with a discernible impact on key peripheral metabolic tissues, including the adipose, liver, pancreas, and muscle, and very prominently the brain, contributing to the constellation of metabolic complications of PCOS, from obesity to insulin resistance. However, the current understanding of the pathogenic roles of hyperandrogenism in metabolic dysfunction of PCOS and the underlying mechanisms remain largely incomplete. In addition, the development of more efficient, even personalized therapeutic strategies for the metabolic management of PCOS patients persists as an unmet need that will certainly benefit from a better comprehension of the molecular basis of this heterogeneous syndrome.
Collapse
|
37
|
Kempegowda P, Melson E, Manolopoulos KN, Arlt W, O’Reilly MW. Implicating androgen excess in propagating metabolic disease in polycystic ovary syndrome. Ther Adv Endocrinol Metab 2020; 11:2042018820934319. [PMID: 32637065 PMCID: PMC7315669 DOI: 10.1177/2042018820934319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) has been traditionally perceived as a reproductive disorder due to its most common presentation with menstrual dysfunction and infertility. However, it is now clear that women with PCOS are at increased risk of metabolic dysfunction, from impaired glucose tolerance and type 2 diabetes mellitus to nonalcoholic fatty liver disease and cardiovascular disease. PCOS is characterised by androgen excess, with cross-sectional data showing that hyperandrogenism is directly complicit in the development of metabolic complications. Recent studies have also shown that C11-oxy C19 androgens are emerging to be clinically and biochemically significant in PCOS, thus emphasising the importance of understanding the impact of both classic and C11-oxy C19 androgens on women's health. Here we discuss androgen metabolism in the context of PCOS, and dissect the role played by androgens in the development of metabolic disease through their effects on metabolic target tissues in women.
Collapse
Affiliation(s)
- Punith Kempegowda
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Eka Melson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Konstantinos N. Manolopoulos
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | |
Collapse
|
38
|
Handgraaf S, Philippe J. The Role of Sexual Hormones on the Enteroinsular Axis. Endocr Rev 2019; 40:1152-1162. [PMID: 31074764 DOI: 10.1210/er.2019-00004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Sex steroid estrogens, androgens, and progesterone, produced by the gonads, which have long been considered as endocrine glands, are implicated in sexual differentiation, puberty, and reproduction. However, the impact of sex hormones goes beyond these effects through their role on energy metabolism. Indeed, sex hormones are important physiological regulators of glucose homeostasis and, in particular, of the enteroinsular axis. In this review, we describe the roles of estrogens, androgens, and progesterone on glucose homeostasis through their effects on pancreatic α- and β-cells, as well as on enteroendocrine L-cells, and their implications in hormonal biosynthesis and secretion. The analysis of their mechanisms of action with the dissection of the receptors implicated in the several protective effects could provide some new aspects of the fine-tuning of hormonal secretion under the influence of the sex. This knowledge paves the way to the understanding of transgender physiology and new potential therapeutics in the field of type 2 diabetes.
Collapse
Affiliation(s)
- Sandra Handgraaf
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Jacques Philippe
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
39
|
杨 鑫, 汪 悦. [Correlation analysis of serum progesterone with clinical indicators and common traditional Chinese medicine syndrome types in male type 2 diabetic patients]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:586-590. [PMID: 31140424 PMCID: PMC6743947 DOI: 10.12122/j.issn.1673-4254.2019.05.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the correlation of serum progesterone (PROG) level with blood biochemical parameters and common traditional Chinese medicine (TCM) syndromes in male patients with type 2 diabetes mellitus (T2DM). METHODS We collected the clinical data of 192 male patients with T2DM, who were admitted in the Department of Endocrinology, Nanjing Hospital of Chinese Medical Affiliated to Nanjing University of Chinese Medicine between January, 2018 and March, 2019. The general clinical data, C-peptide level, blood glucose level, glycated hemoglobin (HbA1c), HOMA, blood lipid level, and sex hormones were compared between the patients with normal PROG and elevated PROG levels and also between the patients with two common TCM syndromes, namely qi and Yin deficiency syndrome and damp- heat accumulation in the spleen syndrome. We further compared the sex hormones, C-peptide level, HOMA, HbA1c, and blood glucose level among the patients with the two TCM syndromes having normal or elevated PROG levels. RESULTS Compared with those in patients with normal PROG level, BMI, C-peptide, HOMA-β, and HOMA2-IR were significantly lowered and HOMA-IS, E2, and T were significantly increased in patients with elevated PROG level; no statistical differences were found in age, disease duration, waist-to-hip ratio (WHR), smoking history, blood pressure, blood glucose, blood lipids, HbA1c, LH, FSH or PRL between the two groups. Compared with the patients with damp-heat accumulation syndrome group, the patients with qi and Yin deficiency syndrome were older and had a longer disease duration, a greater BMI, and higher levels of PROG, C-Peptide, HOMA-β, HOMA2-IR and HOMA-IS, but the smoking history, WHR, HbA1c, blood glucose, and sex hormone levels were comparable between the two groups. Among the 4 groups of patients with different PROG levels and TCM syndromes, significant differences were found in the levels of C-peptide, HOMA-β, HOMA-IS, HOMA2-IR, PROG, E2, T, LH and FSH, and the patients with qi and Yin deficiency syndrome as well as an elevated PROG level had the lowest C-peptide level, HOMA-β and HOMA2-IR and the highest HOMA-IS, PROG, E2, T, LH and FSH. CONCLUSIONS An elevated PROG level is closely related to islet cell dysfunction and TCM syndrome types in male patients with T2DM.
Collapse
Affiliation(s)
- 鑫 杨
- 南京中医药大学 第一临床医学院,江苏 南京 210000First Clinical Medical College of Nanjing University of Traditional Chinese Medicine, Nanjing 210000, China
- 南京中医药大学 南京市中医院,江苏 南京 210000Nanjing Municipal Hospital of Traditional Chinese Medicine, Nanjing 210000, China
| | - 悦 汪
- 南京中医药大学 南京中医药大学附属医院//江苏省中医院,江苏 南京 210000Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
40
|
Hammes SR, Levin ER. Impact of estrogens in males and androgens in females. J Clin Invest 2019; 129:1818-1826. [PMID: 31042159 DOI: 10.1172/jci125755] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Androgens and estrogens are known to be critical regulators of mammalian physiology and development. While these two classes of steroids share similar structures (in general, estrogens are derived from androgens via the enzyme aromatase), they subserve markedly different functions via their specific receptors. In the past, estrogens such as estradiol were thought to be most important in the regulation of female biology, while androgens such as testosterone and dihydrotestosterone were believed to primarily modulate development and physiology in males. However, the emergence of patients with deficiencies in androgen or estrogen hormone synthesis or actions, as well as the development of animal models that specifically target androgen- or estrogen-mediated signaling pathways, have revealed that estrogens and androgens regulate critical biological and pathological processes in both males and females. In fact, the concept of "male" and "female" hormones is an oversimplification of a complex developmental and biological network of steroid actions that directly impacts many organs. In this Review, we will discuss important roles of estrogens in males and androgens in females.
Collapse
Affiliation(s)
- Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Ellis R Levin
- Departments of Medicine and Biochemistry, UCI, Irvine, California, USA.,Division of Endocrinology, UCI and United States Department of Veterans Affairs Medical Center, Long Beach, California, USA
| |
Collapse
|
41
|
Xu W, Morford J, Mauvais-Jarvis F. Emerging role of testosterone in pancreatic β-cell function and insulin secretion. J Endocrinol 2019; 240:JOE-18-0573.R1. [PMID: 30601759 PMCID: PMC6602868 DOI: 10.1530/joe-18-0573] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/24/2018] [Indexed: 12/16/2022]
Abstract
One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose homeostasis by testosterone in male and females. Severe testosterone deficiency predisposes men to type 2 diabetes (T2D), while in contrast, androgen excess predisposes women to hyperglycemia. The role of androgen deficiency and excess in promoting visceral obesity and insulin resistance in men and women respectively is well established. However, although it is established that hyperglycemia requires β cell dysfunction to develop, the role of testosterone in β cell function is less understood. This review discusses recent evidence that the androgen receptor (AR) is present in male and female β cells. In males, testosterone action on AR in β cells enhances glucose-stimulated insulin secretion by potentiating the insulinotropic action of glucagon-like peptide-1. In females, excess testosterone action via AR in β cells promotes insulin hypersecretion leading to oxidative injury, which in turn predisposes to T2D.
Collapse
Affiliation(s)
- Weiwei Xu
- W Xu, Division of Endocrinology and Metabolism, Tulane University, New Orleans, United States
| | - Jamie Morford
- J Morford, Division of Endocrinology and Metabolism, Tulane University, New Orleans, United States
| | - Franck Mauvais-Jarvis
- F Mauvais-Jarvis, Division of Endocrinology and Metabolism, Tulane University, New Orleans, United States
| |
Collapse
|
42
|
Mullapudi ST, Helker CS, Boezio GL, Maischein HM, Sokol AM, Guenther S, Matsuda H, Kubicek S, Graumann J, Yang YHC, Stainier DY. Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists. eLife 2018; 7:42209. [PMID: 30520733 PMCID: PMC6300353 DOI: 10.7554/elife.42209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Pathways modulating glucose homeostasis independently of insulin would open new avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization, and use of a vertebrate ‘insulin-free’ model to identify insulin-independent modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant technique, we generated viable chimeric adults that provide the large numbers of insulin mutant larvae required for our screening platform. Using glucose as a disease-relevant readout, we screened 2233 molecules and identified three that consistently reduced glucose levels in insulin mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels. Our study proposes therapeutic roles for androgen signaling in diabetes and, more broadly, offers a novel in vivo model for rapid screening and decoupling of insulin-dependent and -independent mechanisms. Diabetes is a disease that affects the ability of the body to control the level of sugar in the blood. Individuals with diabetes are unable to make a hormone called insulin – which normally stimulates certain cells to absorb sugar from the blood – or their cells are less able to respond to this hormone. Most treatments for diabetes involve replacing the lost insulin or boosting the hormone’s activity in the body. However, these treatments can also cause individuals to gain weight or become more resistant to insulin, making it harder to control blood sugar levels. In addition to insulin, several other factors regulate the levels of sugar in the blood and some of them may operate independently of insulin. However, little is known about such factors because it is impractical to carry out large-scale screens to identify drugs that target them in humans or mice, which are often used as experimental models for human biology. To overcome this challenge, Mullapudi et al. turned to another animal known as the zebrafish and generated mutant fish that lack insulin. The mutant zebrafish had similar problems with regulating sugar levels as those observed in humans and mice with diabetes. This observation suggests that insulin is just as important in zebrafish as it is in humans and other mammals. The mutant zebrafish did not survive into adulthood, and so Mullapudi et al. transplanted healthy tissue into the zebrafish to allow them to produce enough insulin to survive. These adult zebrafish produced many offspring that still carried the insulin mutation. Mullapudi et al. used these mutant offspring to screen over 2,000 drugs for their ability to decrease blood sugar levels in the absence of insulin. The screen identified three promising candidate drugs, including a molecule that interferes with a receptor for a signal known as androgen. These findings will help researchers investigate new ways to treat diabetes. In the future, the screening approach developed by Mullapudi et al. could be adapted to search for new drugs to treat other human metabolic conditions.
Collapse
Affiliation(s)
- Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anna M Sokol
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research, Berlin, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
43
|
Sure VN, Sakamuri SSVP, Sperling JA, Evans WR, Merdzo I, Mostany R, Murfee WL, Busija DW, Katakam PVG. A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice. GeroScience 2018; 40:365-375. [PMID: 30074132 PMCID: PMC6136296 DOI: 10.1007/s11357-018-0037-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebral blood flow (CBF) is uniquely regulated by the anatomical design of the cerebral vasculature as well as through neurovascular coupling. The process of directing the CBF to meet the energy demands of neuronal activity is referred to as neurovascular coupling. Microvasculature in the brain constitutes the critical component of the neurovascular coupling. Mitochondria provide the majority of ATP to meet the high-energy demand of the brain. Impairment of mitochondrial function plays a central role in several age-related diseases such as hypertension, ischemic brain injury, Alzheimer's disease, and Parkinson disease. Interestingly, microvessels and small arteries of the brain have been the focus of the studies implicating the vascular mechanisms in several age-related neurological diseases. However, the role of microvascular mitochondrial dysfunction in age-related diseases remains unexplored. To date, high-throughput assay for measuring mitochondrial respiration in microvessels is lacking. The current study presents a novel method to measure mitochondrial respiratory parameters in freshly isolated microvessels from mouse brain ex vivo using Seahorse XFe24 Analyzer. We validated the method by demonstrating impairments of mitochondrial respiration in cerebral microvessels isolated from old mice compared to the young mice. Thus, application of mitochondrial respiration studies in microvessels will help identify novel vascular mechanisms underlying a variety of age-related neurological diseases.
Collapse
Affiliation(s)
- Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jared A Sperling
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Wesley R Evans
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pharmacology, University of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA.
| |
Collapse
|
44
|
Gannon M, Kulkarni RN, Tse HM, Mauvais-Jarvis F. Sex differences underlying pancreatic islet biology and its dysfunction. Mol Metab 2018; 15:82-91. [PMID: 29891438 PMCID: PMC6066785 DOI: 10.1016/j.molmet.2018.05.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/30/2022] Open
Abstract
Background The sex of an individual affects glucose homeostasis and the pathophysiology, incidence, and prevalence of diabetes as well as the response to therapy. Scope of the review This review focuses on clinical and experimental sex differences in islet cell biology and dysfunction during development and in adulthood in human and animal models. We discuss sex differences in β-cell and α-cell function, heterogeneity, and dysfunction. We cover sex differences in communication between gonads and islets and islet-cell immune interactions. Finally, we discuss sex differences in β-cell programming by nutrition and other environmental factors during pregnancy. Major conclusions Important sex differences exist in islet cell function and susceptibility to failure. These differences represent sex-related biological factors that can be harnessed for gender-based prevention of and therapy for diabetes.
Collapse
Affiliation(s)
- Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, USA; Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, USA; Harvard Stem Cell Institute, Boston, MA, USA
| | - Hubert M Tse
- Department of Microbiology, Birmingham, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center School of Medicine, New Orleans, USA; Southeast Louisiana Veterans Healthcare System Medical Center, New Orleans, LA, USA.
| |
Collapse
|