1
|
Okuma H, Tsuchiya K. Tissue-specific activation of insulin signaling as a potential target for obesity-related metabolic disorders. Pharmacol Ther 2024; 262:108699. [PMID: 39111411 DOI: 10.1016/j.pharmthera.2024.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
The incidence of obesity is rapidly increasing worldwide. Obesity-associated insulin resistance has long been established as a significant risk factor for obesity-related disorders such as type 2 diabetes and atherosclerosis. Insulin plays a key role in systemic glucose metabolism, with the liver, skeletal muscle, and adipose tissue as the major acting tissues. Insulin receptors and the downstream insulin signaling-related molecules are expressed in various tissues, including vascular endothelial cells, vascular smooth muscle cells, and monocytes/macrophages. In obesity, decreased insulin action is considered a driver for associated disorders. However, whether insulin action has a positive or negative effect on obesity-related disorders depends on the tissue in which it acts. While an enhancement of insulin signaling in the liver increases hepatic fat accumulation and exacerbates dyslipidemia, enhancement of insulin signaling in adipose tissue protects against obesity-related dysfunction of various organs by increasing the capacity for fat accumulation in the adipose tissue and inhibiting ectopic fat accumulation. Thus, this "healthy adipose tissue expansion" by enhancing insulin sensitivity in adipose tissue, but not in the liver, may be an effective therapeutic strategy for obesity-related disorders. To effectively address obesity-related metabolic disorders, the mechanisms of insulin resistance in various tissues of obese patients must be understood and drugs that enhance insulin action must be developed. In this article, we review the potential of interventions that enhance insulin signaling as a therapeutic strategy for obesity-related disorders, focusing on the molecular mechanisms of insulin action in each tissue.
Collapse
Affiliation(s)
- Hideyuki Okuma
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan.
| |
Collapse
|
2
|
Davenport A, Kessinger CW, Pfeiffer RD, Shah N, Xu R, Abel ED, Tucker NR, Lin Z. Comparative analysis of two independent Myh6-Cre transgenic mouse lines. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100081. [PMID: 39323506 PMCID: PMC11423776 DOI: 10.1016/j.jmccpl.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We have previously shown that the Myh6 promoter drives Cre expression in a subset of male germ line cells in three independent Myh6-Cre mouse lines, including two transgenic lines and one knock-in allele. In this study, we further compared the tissue-specificity of the two Myh6-Cre transgenic mouse lines, MDS Myh6-Cre and AUTR Myh6-Cre, through examining the expression of tdTomato (tdTom) red fluorescence protein in multiple internal organs, including the heart, brain, liver, lung, pancreas and brown adipose tissue. Our results show that MDS Myh6-Cre mainly activates tdTom reporter in the heart, whereas AUTR Myh6-Cre activates tdTom expression significantly in the heart, and in the cells of liver, pancreas and brain. In the heart, similar to MDS Myh6-Cre, AUTR Myh6-Cre activates tdTom in most cardiomyocytes. In the other organs, AUTR Myh6-Cre not only mosaically activates tdTom in some parenchymal cells, such as hepatocytes in the liver and neurons in the brain, but also turns on tdTom in some interstitial cells of unknown identity.
Collapse
Affiliation(s)
- Amanda Davenport
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Chase W. Kessinger
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Ryan D. Pfeiffer
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Nikita Shah
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
- College of Arts and Sciences, SUNY Polytechnic Institute, Utica, NY 13502, United States of America
| | - Richard Xu
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - E. Dale Abel
- Department of Medicine David Geffen School of Medicine and UCLA Health, United States of America
| | - Nathan R. Tucker
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Zhiqiang Lin
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| |
Collapse
|
3
|
Bianchi VE, von Haehling S. The treatment of chronic anemia in heart failure: a global approach. Clin Res Cardiol 2024; 113:1117-1136. [PMID: 37660308 DOI: 10.1007/s00392-023-02275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Chronic anemia is an independent risk factor for mortality in patients with heart failure (HF). Restoring physiological hemoglobin (Hb) levels is essential to increase oxygen transport capacity to tissues and improve cell metabolism as well as physical and cardiac performance. Nutritional deficits and iron deficiency are the major causes of chronic anemia, but other etiologies include chronic kidney disease, inflammatory processes, and unexplained anemia. Hormonal therapy, including erythropoietin (EPO) and anabolic treatment in chronic anemia HF patients, may contribute to improving Hb levels and clinical outcomes. Although preliminary studies showed a beneficial effect of EPO therapy on cardiac efficiency and in HF, more recent studies have not confirmed this positive impact of EPO, alluding to its side effect profile. Physical exercise significantly increases Hb levels and the response of anemia to treatment. In malnourished patients and chronic inflammatory processes, low levels of anabolic hormones, such as testosterone and insulin-like growth factor-1, contribute to the development of chronic anemia. This paper aims to review the effect of nutrition, EPO, anabolic hormones, standard HF treatments, and exercise as regulatory mechanisms of chronic anemia and their cardiovascular consequences in patients with HF.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, 42, 47891, Falciano, San Marino.
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| |
Collapse
|
4
|
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int J Mol Sci 2024; 25:8369. [PMID: 39125938 PMCID: PMC11313400 DOI: 10.3390/ijms25158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| |
Collapse
|
5
|
Achter JS, Vega ET, Sorrentino A, Kahnert K, Galsgaard KD, Hernandez-Varas P, Wierer M, Holst JJ, Wojtaszewski JFP, Mills RW, Kjøbsted R, Lundby A. In-depth phosphoproteomic profiling of the insulin signaling response in heart tissue and cardiomyocytes unveils canonical and specialized regulation. Cardiovasc Diabetol 2024; 23:258. [PMID: 39026321 PMCID: PMC11264841 DOI: 10.1186/s12933-024-02338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.
Collapse
Affiliation(s)
- Jonathan Samuel Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Douglas Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Hernandez-Varas
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Frank Pind Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert William Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
An X, Xu W, Zhao X, Chen H, Yang J, Wu Y, Wang D, Cheng W, Li H, Zeng L, Ma J, Wang Q, Wang X, Hou Y, Ai J. Bazi Bushen capsule attenuates cardiac systolic injury via SIRT3/SOD2 pathway in high-fat diet-fed ovariectomized mice. Heliyon 2024; 10:e32159. [PMID: 38912487 PMCID: PMC11190601 DOI: 10.1016/j.heliyon.2024.e32159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
Background Bazi Bushen capsule (BZBS) is a Chinese herbal compound that is clinically used to treat fatigue and forgetfulness. However, it is still unclear whether and how BZBS affects heart function decline in menopausal women. This study aimed to examine the effect of BZBS on cardiac function in a high-fat diet-fed ovariectomy (HFD-fed OVX) mouse model and elucidate the underlying mechanism of this effect. Methods The experimental animals were divided into five groups: sham group, HFD-fed OVX group, and BZBS (0.7, 1.4, 2.8 g/kg) intervention groups. Senescence β-galactosidase staining and echocardiography were used to evaluate cardiac function. SwissTargetPrediction, KEGG and GO enrichment analyses were used to screen the underlying mechanism of BZBS. The morphological and functional changes in cardiac mitochondria and the underlying molecular mechanism were assessed by transmission electron microscopy, western blotting and biochemical assays. STRING database was used to analysis protein-protein interaction (PPI) network. Molecular docking studies were employed to predict the interactions of specific BZBS compounds with their protein targets. Results BZBS treatment ameliorated cardiac senescence and cardiac systole injury in HFD-fed OVX mice. GO and KEGG analyses revealed that the 530 targets of the 14 main components of BZBS were enriched mainly in the oxidative stress-associated pathway, which was confirmed by the finding that BZBS treatment prevented abnormal morphological changes and oxidative stress damage to cardiac mitochondria in HFD-fed OVX mice. Furthermore, the STRING database showed that the targets of BZBS were broadly related to the Sirtuins family. And BZBS upregulated the SIRT3 and elevated the activity of SOD2 in the hearts of HFD-fed OVX mice, which was also verified in vitro. Additionally, we revealed that imperatorin and osthole from the BZBS upregulated the expression of SIRT3 by directly docking with the transcription factors HDAC1, HDAC2, and BRD4, which regulate the expression of SIRT3. Conclusion This research shows that the antioxidative effect and cardioprotective role of BZBS on HFD-fed OVX mice involves an increase in the activity of the SIRT3/SOD2 pathway, and the imperatorin and osthole of BZBS may play central roles in this process.
Collapse
Affiliation(s)
- Xiaobin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Wentao Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Xinyue Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Haihui Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Jinan Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Yan Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Dongyang Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Wei Cheng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Hongrong Li
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, Hebei Province, 050035, China
| | - Lu Zeng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Jing Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Qin Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Xuqiao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Yunlong Hou
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, Hebei Province, 050035, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| |
Collapse
|
7
|
Zambrano-Carrasco J, Zou J, Wang W, Sun X, Li J, Su H. Emerging Roles of Cullin-RING Ubiquitin Ligases in Cardiac Development. Cells 2024; 13:235. [PMID: 38334627 PMCID: PMC10854628 DOI: 10.3390/cells13030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Heart development is a spatiotemporally regulated process that extends from the embryonic phase to postnatal stages. Disruption of this highly orchestrated process can lead to congenital heart disease or predispose the heart to cardiomyopathy or heart failure. Consequently, gaining an in-depth understanding of the molecular mechanisms governing cardiac development holds considerable promise for the development of innovative therapies for various cardiac ailments. While significant progress in uncovering novel transcriptional and epigenetic regulators of heart development has been made, the exploration of post-translational mechanisms that influence this process has lagged. Culling-RING E3 ubiquitin ligases (CRLs), the largest family of ubiquitin ligases, control the ubiquitination and degradation of ~20% of intracellular proteins. Emerging evidence has uncovered the critical roles of CRLs in the regulation of a wide range of cellular, physiological, and pathological processes. In this review, we summarize current findings on the versatile regulation of cardiac morphogenesis and maturation by CRLs and present future perspectives to advance our comprehensive understanding of how CRLs govern cardiac developmental processes.
Collapse
Affiliation(s)
- Josue Zambrano-Carrasco
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119:1905-1914. [PMID: 37392421 PMCID: PMC10681665 DOI: 10.1093/cvr/cvad100] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 07/03/2023] Open
Abstract
A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Via Massimo Gorki 50, Cinisello Balsamo, Italy
| |
Collapse
|
9
|
Chakraborty A, Peterson NG, King JS, Gross RT, Pla MM, Thennavan A, Zhou KC, DeLuca S, Bursac N, Bowles DE, Wolf MJ, Fox DT. Conserved chamber-specific polyploidy maintains heart function in Drosophila. Development 2023; 150:dev201896. [PMID: 37526609 PMCID: PMC10482010 DOI: 10.1242/dev.201896] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Developmentally programmed polyploidy (whole-genome duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, in both Drosophila larvae and human organ donors, we reveal distinct polyploidy levels in cardiac organ chambers. In Drosophila, differential growth and cell cycle signal sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume and cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic human cardiomyopathies. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest that precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.
Collapse
Affiliation(s)
- Archan Chakraborty
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nora G. Peterson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Juliet S. King
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan T. Gross
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | | | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Kevin C. Zhou
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Sophia DeLuca
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Nenad Bursac
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Dawn E. Bowles
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Matthew J. Wolf
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Donald T. Fox
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
10
|
Ock S, Choi SW, Choi SH, Kang H, Kim SJ, Lee WS, Kim J. Insulin signaling is critical for sinoatrial node maintenance and function. Exp Mol Med 2023; 55:965-973. [PMID: 37121973 PMCID: PMC10238478 DOI: 10.1038/s12276-023-00988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 05/02/2023] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) signaling regulate cellular growth and glucose metabolism in the myocardium. However, their physiological role in the cells of the cardiac conduction system has never been explored. Therefore, we sought to determine the spatiotemporal function of insulin/IGF-1 receptors in the sinoatrial node (SAN). We generated cardiac conduction cell-specific inducible IGF-1 receptor (IGF-1R) knockout (KO) (CSIGF1RKO), insulin receptor (IR) KO (CSIRKO), and IR/IGF-1R double-KO (CSDIRKO) mice and evaluated their phenotypes. Telemetric electrocardiography revealed regular sinus rhythm in CSIGF1RKO mice, indicating that IGF-1R is dispensable for normal pacemaking. In contrast, CSIRKO and CSDIRKO mice exhibited profound sinus bradycardia. CSDIRKO mice showed typical sinus node dysfunction characterized by junctional rhythm and sinus pauses on electrocardiography. Interestingly, the lack of an insulin receptor in the SAN cells of CSIRKO and CSDIRKO mice caused sinus nodal fibrosis. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) protein expression significantly decreased in the CSIRKO and CSDIRKO mice relative to the controls. A patch-clamp study of the SAN cells of CSIRKO mice revealed a significant decrease in the funny current, which is responsible for spontaneous diastolic depolarization in the SAN. This result suggested that insulin receptor loss reduces the heart rate via downregulation of the HCN4 channel. Additionally, HCN1 expression was decreased in CSDIRKO mice, explaining their sinus node dysfunction. Our results reveal a previously unrecognized role of insulin/IGF-1 signaling in sinus node structural maintenance and pacemaker function.
Collapse
Affiliation(s)
- Sangmi Ock
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seong Woo Choi
- Departments of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Korea
| | - Seung Hee Choi
- Division of Endocrinology and Metabolism, Departments of Internal Medicine and Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hyun Kang
- Department of Anesthesiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sung Joon Kim
- Departments of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
11
|
Shi S, Jiang P. Therapeutic potentials of modulating autophagy in pathological cardiac hypertrophy. Biomed Pharmacother 2022; 156:113967. [DOI: 10.1016/j.biopha.2022.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
12
|
Prakoso D, De Blasio MJ, Tate M, Ritchie RH. Current landscape of preclinical models of diabetic cardiomyopathy. Trends Pharmacol Sci 2022; 43:940-956. [PMID: 35779966 DOI: 10.1016/j.tips.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Patients with diabetes have an increased risk of developing heart failure, preceded by (often asymptomatic) cardiac abnormalities, collectively called diabetic cardiomyopathy (DC). Diabetic heart failure lacks effective treatment, remaining an urgent, unmet clinical need. Although structural and functional characteristics of the diabetic human heart are well defined, clinical studies lack the ability to pinpoint the specific mechanisms responsible for DC. Preclinical animal models represent a vital component for understanding disease aetiology, which is essential for the discovery of new targeted treatments for diabetes-induced heart failure. In this review, we describe the current landscape of preclinical DC models (genetic, pharmacologically induced, and diet-induced models), highlighting their strengths and weaknesses and alignment to features of the human disease. Finally, we provide tools, resources, and recommendations to assist future preclinical translation addressing this knowledge gap.
Collapse
Affiliation(s)
- Darnel Prakoso
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Miles J De Blasio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Mitchel Tate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Diabetes, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
13
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
14
|
Patel N, Yaqoob MM, Aksentijevic D. Cardiac metabolic remodelling in chronic kidney disease. Nat Rev Nephrol 2022; 18:524-537. [DOI: 10.1038/s41581-022-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
|
15
|
Guo J, Zhang Y, Liu T, Levy BD, Libby P, Shi GP. Allergic asthma is a risk factor for human cardiovascular diseases. NATURE CARDIOVASCULAR RESEARCH 2022; 1:417-430. [PMID: 39195946 DOI: 10.1038/s44161-022-00067-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/08/2022] [Indexed: 08/29/2024]
Abstract
Asthma is an allergic airway disease in which type 2-mediated inflammation has a pathogenic role. Cardiovascular diseases (CVDs) are type 1-dominant inflammatory diseases in which type 2 cytokines often have a protective role. However, clinical studies demonstrate that allergic asthma and associated allergies are essential risk factors for CVD, including coronary heart diseases, aortic diseases, peripheral arterial diseases, pulmonary embolism, right ventricular dysfunction, atrial fibrillation, cardiac hypertrophy and even hypertension. Mast cells, eosinophils, inflammatory cytokines and immunoglobulin (Ig)E accumulate in asthmatic lungs and in the injured heart and vasculature of patients with CVD. Clinical studies show that many anti-asthmatic therapies affect the risk of CVD. As such, allergic asthma and CVD may share common pathogenic mechanisms. Preclinical investigations indicate that anti-asthmatic drugs have therapeutic potential in certain CVDs. In this Review, we discuss how asthma and allied allergic conditions may contribute to the prevalence, incidence and progression of CVD and vice versa.
Collapse
Affiliation(s)
- Junli Guo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Yong JN, Ng CH, Lee CWM, Chan YY, Tang ASP, Teng M, Tan DJH, Lim WH, Quek J, Xiao J, Chin YH, Foo R, Chan M, Lin W, Noureddin M, Siddiqui MS, Muthiah MD, Sanyal A, Chew NWS. Non-alcoholic fatty liver disease association with structural heart, systolic and diastolic dysfunction: a meta-analysis. Hepatol Int 2022; 16:269-281. [PMID: 35320497 DOI: 10.1007/s12072-022-10319-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Several studies have documented a relationship between non-alcoholic fatty liver disease (NAFLD) and structural heart disease, particularly diastolic function. This meta-analysis will be the first to examine the echocardiographic-derived cardiac function and structural characteristics in NAFLD patients, and its association with liver disease severity and metabolic profile. METHODS Medline and Embase were searched and pairwise meta-analysis was conducted in DerSimonian and Laird to obtain the odds ratio (OR) and mean difference (MD) for dichotomous and continuous variables, respectively, to compare the effects of NAFLD on the echocardiography parameters. RESULTS Forty-one articles involving 33,891 patients underwent echocardiography. NAFLD patients had worse systolic indices with lower ejection fraction (EF, MD: - 0.693; 95% CI: - 1.112 to - 0.274; p = 0.001), and worse diastolic indices with higher E/e' (MD: 1.575; 95% CI: 0.924 to 2.227; p < 0.001) compared to non-NAFLD patients. NAFLD patients displayed increased left ventricular mass (LVM, MD: 34.484; 95% CI: 26.236 to 42.732; p < 0.001) and epicardial adipose thickness (EAT, MD: 0.1343; 95% CI: 0.055 to 0.214; p = 0.001). An increased severity of NAFLD was associated with worse diastolic indices (decreased E/A ratio, p = 0.007), but not with systolic indices. CONCLUSIONS NAFLD is associated with impaired systolic and diastolic function with changes in cardiac structure. Concomitant metabolic risk factors and liver disease severity are independently associated with worsening systolic and diastolic function.
Collapse
Affiliation(s)
- Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chloe Wen-Min Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Yi Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ansel Shao Pin Tang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Margaret Teng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Tower Block Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jingxuan Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jieling Xiao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiology, National University Heart Centre, National University Hospital, Tower Block Level 9, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Mark Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiology, National University Heart Centre, National University Hospital, Tower Block Level 9, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Weiqin Lin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiology, National University Heart Centre, National University Hospital, Tower Block Level 9, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Comprehensive Transplant Center, Los Angeles, CA, USA
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Tower Block Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.
| | - Arun Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas W S Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Cardiology, National University Heart Centre, National University Hospital, Tower Block Level 9, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
17
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
18
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Díaz del Moral S, Benaouicha M, Muñoz-Chápuli R, Carmona R. The Insulin-like Growth Factor Signalling Pathway in Cardiac Development and Regeneration. Int J Mol Sci 2021; 23:ijms23010234. [PMID: 35008660 PMCID: PMC8745665 DOI: 10.3390/ijms23010234] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Insulin and Insulin-like growth factors (IGFs) perform key roles during embryonic development, regulating processes of cell proliferation and survival. The IGF signalling pathway comprises two IGFs (IGF1, IGF2), two IGF receptors (IGFR1, IGFR2), and six IGF binding proteins (IGFBPs) that regulate IGF transport and availability. The IGF signalling pathway is essential for cardiac development. IGF2 is the primary mitogen inducing ventricular cardiomyocyte proliferation and morphogenesis of the compact myocardial wall. Conditional deletion of the Igf1r and the insulin receptor (Insr) genes in the myocardium results in decreased cardiomyocyte proliferation and ventricular wall hypoplasia. The significance of the IGF signalling pathway during embryonic development has led to consider it as a candidate for adult cardiac repair and regeneration. In fact, paracrine IGF2 plays a key role in the transient regenerative ability of the newborn mouse heart. We aimed to review the current knowledge about the role played by the IGF signalling pathway during cardiac development and also the clinical potential of recapitulating this developmental axis in regeneration of the adult heart.
Collapse
Affiliation(s)
- Sandra Díaz del Moral
- Institute of Biomedical Research of Málaga (IBIMA), Department of Animal Biology, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Faculty of Science, University of Málaga, 29071 Malaga, Spain; (S.D.d.M.); (M.B.); (R.M.-C.)
| | - Maha Benaouicha
- Institute of Biomedical Research of Málaga (IBIMA), Department of Animal Biology, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Faculty of Science, University of Málaga, 29071 Malaga, Spain; (S.D.d.M.); (M.B.); (R.M.-C.)
| | - Ramón Muñoz-Chápuli
- Institute of Biomedical Research of Málaga (IBIMA), Department of Animal Biology, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Faculty of Science, University of Málaga, 29071 Malaga, Spain; (S.D.d.M.); (M.B.); (R.M.-C.)
| | - Rita Carmona
- Institute of Biomedical Research of Málaga (IBIMA), Department of Animal Biology, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Faculty of Science, University of Málaga, 29071 Malaga, Spain; (S.D.d.M.); (M.B.); (R.M.-C.)
- Department of Human Anatomy and Embryology, Legal Medicine and History of Medicine, Faculty of Medicine, University of Málaga, 29071 Malaga, Spain
- Correspondence:
| |
Collapse
|
20
|
Cetin Sanlialp S, Sanlialp M, Nar G, Malcok A. Triglyceride glucose index reflects the unfavorable changes of left ventricular diastolic functions and structure in uncomplicated newly diagnosed hypertensive patients. Clin Exp Hypertens 2021; 44:215-222. [PMID: 34951339 DOI: 10.1080/10641963.2021.2018599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Left ventricular (LV) diastolic dysfunction and structural abnormalities are common cardiac changes in hypertension (HTN), and several factors other than high blood pressure (BP) may play a role in these changes. The aim of this study was to reveal the relationship between triglyceride glucose (TyG) index, a novel parameter for insulin resistance (IR), with LV diastolic function and structure in hypertensive patients. MATERIAL AND METHOD A total of 119 newly diagnosed, untrated hypertensive patients free of diabetes and/or cardiovascular complications were included in this study. IR was estimated with the TyG index calculated from ln [fasting TG (mg/dL) × fasting blood glucose (mg/dL)/2]. Two-dimensional and Doppler echocardiographic examinations were performed to assess LV diastolic functions and structure. RESULTS Based on median TyG index, 51 patients was assigned as group I (<8.7) and 68 patients as group II (>8.7). In patients with high TyG index, left atrial volume index (LAVi) (p < .001) LV mass index (LVMI) (p = .016), E/e' ratio (p < .001) increased, and e' velocity (p < .001) and E/A ratio (p = .028) decreased. There was a statistically significant correlation between TyG index and these parameters (all p > .05). Stepwise multiple regression analysis demonstrated that the relationship of TyG index with LV diastolic function and structure was independent of potential confounders (all p < .001). CONCLUSION This study suggest that a high TyG index is related to LV diastolic functional impairment and structure abnormality in newly diagnosed hypertensive patients in the absence of diabetes or CVD.
Collapse
Affiliation(s)
| | - Musa Sanlialp
- The Department of Cardiology, Denizli State Hospital, Denizli, Turkey
| | - Gokay Nar
- The Department of Cardiology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Aydan Malcok
- The Deparment of Biostatistics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
21
|
Yan A, Xie G, Ding X, Wang Y, Guo L. Effects of Lipid Overload on Heart in Metabolic Diseases. Horm Metab Res 2021; 53:771-778. [PMID: 34891207 PMCID: PMC8664556 DOI: 10.1055/a-1693-8356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Metabolic diseases are often associated with lipid and glucose metabolism abnormalities, which increase the risk of cardiovascular disease. Diabetic cardiomyopathy (DCM) is an important development of metabolic diseases and a major cause of death. Lipids are the main fuel for energy metabolism in the heart. The increase of circulating lipids affects the uptake and utilization of fatty acids and glucose in the heart, and also affects mitochondrial function. In this paper, the mechanism of lipid overload in metabolic diseases leading to cardiac energy metabolism disorder is discussed.
Collapse
Affiliation(s)
- An Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Guinan Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Xinya Ding
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Yi Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
- Correspondence Yi Wang Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine300193 TianjinChina+86-22-59596555
| | - Liping Guo
- Tianjin Academy of Traditional Chinese Medicine, Tianjin,
China
- Liping Guo Tianjin Academy of Traditional Chinese Medicine300120 TianjinChina
| |
Collapse
|
22
|
Liguori F, Mascolo E, Vernì F. The Genetics of Diabetes: What We Can Learn from Drosophila. Int J Mol Sci 2021; 22:ijms222011295. [PMID: 34681954 PMCID: PMC8541427 DOI: 10.3390/ijms222011295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is a heterogeneous disease characterized by hyperglycemia due to impaired insulin secretion and/or action. All diabetes types have a strong genetic component. The most frequent forms, type 1 diabetes (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM), are multifactorial syndromes associated with several genes’ effects together with environmental factors. Conversely, rare forms, neonatal diabetes mellitus (NDM) and maturity onset diabetes of the young (MODY), are caused by mutations in single genes. Large scale genome screenings led to the identification of hundreds of putative causative genes for multigenic diabetes, but all the loci identified so far explain only a small proportion of heritability. Nevertheless, several recent studies allowed not only the identification of some genes as causative, but also as putative targets of new drugs. Although monogenic forms of diabetes are the most suited to perform a precision approach and allow an accurate diagnosis, at least 80% of all monogenic cases remain still undiagnosed. The knowledge acquired so far addresses the future work towards a study more focused on the identification of diabetes causal variants; this aim will be reached only by combining expertise from different areas. In this perspective, model organism research is crucial. This review traces an overview of the genetics of diabetes and mainly focuses on Drosophila as a model system, describing how flies can contribute to diabetes knowledge advancement.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Elisa Mascolo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy;
| | - Fiammetta Vernì
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy;
- Correspondence:
| |
Collapse
|
23
|
Jia D, Zhang J, Liu X, Andersen JP, Tian Z, Nie J, Shi Y. Insulin Resistance in Skeletal Muscle Selectively Protects the Heart in Response to Metabolic Stress. Diabetes 2021; 70:2333-2343. [PMID: 34244238 PMCID: PMC8576508 DOI: 10.2337/db20-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/02/2021] [Indexed: 11/13/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are the leading causes of cardiovascular morbidity and mortality. Although insulin resistance is believed to underlie these disorders, anecdotal evidence contradicts this common belief. Accordingly, obese patients with cardiovascular disease have better prognoses relative to leaner patients with the same diagnoses, whereas treatment of T2DM patients with thiazolidinedione, one of the popular insulin-sensitizer drugs, significantly increases the risk of heart failure. Using mice with skeletal musclespecific ablation of the insulin receptor gene (MIRKO), we addressed this paradox by demonstrating that insulin signaling in skeletal muscles specifically mediated cross talk with the heart, but not other metabolic tissues, to prevent cardiac dysfunction in response to metabolic stress. Despite severe hyperinsulinemia and aggregating obesity, MIRKO mice were protected from myocardial insulin resistance, mitochondrial dysfunction, and metabolic reprogramming in response to diet-induced obesity. Consequently, the MIRKO mice were also protected from myocardial inflammation, cardiomyopathy, and left ventricle dysfunction. Together, our findings suggest that insulin resistance in skeletal muscle functions as a double-edged sword in metabolic diseases.
Collapse
Affiliation(s)
- Dandan Jia
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Jun Zhang
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Xueling Liu
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - John-Paul Andersen
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jia Nie
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Yuguang Shi
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
24
|
Johnson PC, Cochet AA, Gore RS, Harrison SA, Magulick JP, Aden JK, Paredes AH. Early Cardiac Dysfunction in Biopsy-proven Nonalcoholic Fatty Liver Disease. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 78:161-167. [PMID: 34565785 DOI: 10.4166/kjg.2021.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Backgrounds/Aims Nonalcoholic fatty liver disease (NAFLD) encompasses a range of diseases from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) and has been linked to cardiovascular disease and sub-clinical cardiac remodeling. This paper presents a retrospective study of biopsy-proven NAFL and NASH to examine the differences in subclinical cardiac remodeling. Methods Patients were recruited from an institutional repository of patients with liver-biopsy-confirmed NAFLD. Patients with a transthoracic echocardiogram (TTE) within 12 months of the liver biopsy were included. The parameters of the diastolic dysfunction were reviewed for the differences between NAFL and NASH as well as between the stages and grades of NASH. Results Thirty-three patients were included in the study, 17 with NAFL and 16 with NASH. The NASH patients were more likely to have lower platelets, higher AST, higher ALT, and higher rates of type 2 diabetes mellitus, coronary artery disease, and hypertension than the NAFL patients. The E/e' ratio on transthoracic echocardiogram was significantly higher in NASH compared to NAFL, advanced-stage NASH compared to early stage, and high-grade NASH compared to low-grade. The E/e' ratio was also significantly higher in NASH than NAFL in patients without diabetes mellitus. The presence of diastolic dysfunction trended toward significance. The other markers of diastolic dysfunction were similar. Logistic regression revealed a statistical association with E/e' and NASH. Conclusions NASH patients had evidence of a higher E/e' ratio than NAFL, and there was a trend towards a significant diastolic dysfunction. Patients with NASH compared to NAFL should be closely monitored for signs and symptoms of cardiac dysfunction.
Collapse
Affiliation(s)
- Peter C Johnson
- Department of Medicine, Brooke Army Medical Center, San Antonio, TX, USA.,Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Anthony A Cochet
- Department of Medicine, Cardiology Service, Brooke Army Medical Center, San Antonio, TX, USA
| | - Rosco S Gore
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA.,Department of Medicine, Cardiology Service, Brooke Army Medical Center, San Antonio, TX, USA
| | | | - John P Magulick
- Department of Medicine, Gastroenterology and Hepatology Service, Brooke Army Medical Center, San Antonio, TX, USA
| | - James K Aden
- US Army Institute for Surgical Research, San Antonio, TX, USA
| | - Angelo H Paredes
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA.,Department of Medicine, Gastroenterology and Hepatology Service, Brooke Army Medical Center, San Antonio, TX, USA
| |
Collapse
|
25
|
Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nat Commun 2021; 12:4829. [PMID: 34376643 PMCID: PMC8355239 DOI: 10.1038/s41467-021-25025-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D.
Collapse
|
26
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
27
|
Zhen C, Liu H, Gao L, Tong Y, He C. Signal transducer and transcriptional activation 1 protects against pressure overload-induced cardiac hypertrophy. FASEB J 2021; 35:e21240. [PMID: 33377257 DOI: 10.1096/fj.202000325rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Signal transducers and transcriptional activation 1 (Stat1) is a member of the STATs family, and its role in various biological responses, including cell proliferation, differentiation, migration, apoptosis, and immune regulation has been extensively studied. We aimed to investigate its role in pathological cardiac hypertrophy, which is currently poorly understood. Experiments using H9C2 cardiomyocytes, Stat1, and IfngR cardiomyocyte-specific knockout mice revealed that Stat1 had a protective effect on cardiac hypertrophy. Using transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice, we analyzed the degree of hypertrophy using echocardiography, pathology, and at the molecular level. Mice lacking Stat1 had more pronounced cardiac hypertrophy and fibrosis than wild-type TAC mice. Analysis of the molecular mechanisms suggested that Stat1 downregulated the mRNA levels of hypertrophy and fibrosis markers to inhibit cardiac hypertrophy, and promotes mitochondrial fission through the Ucp2/P-Drp1 pathway, enhancing mitochondrial function, and increasing compensatory myocardial ATP production in the compensatory phase for cardiac hypertrophy inhibition. Overall, this comprehensive analysis revealed that Stat1 inhibits cardiac hypertrophy by downregulating hypertrophic and fibrotic marker genes and enhancing the mitochondrial function to enhance cardiomyocyte function through the Ucp2/P-Drp1 signaling pathway.
Collapse
Affiliation(s)
- Changlin Zhen
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Hongxia Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Li Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Tampakakis E, Mahmoud AI. The role of hormones and neurons in cardiomyocyte maturation. Semin Cell Dev Biol 2021; 118:136-143. [PMID: 33931308 DOI: 10.1016/j.semcdb.2021.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
The heart undergoes profound morphological and functional changes as it continues to mature postnatally. However, this phase of cardiac development remains understudied. More recently, cardiac maturation research has attracted a lot of interest due to the need for more mature stem cell-derived cardiomyocytes for disease modeling, drug screening and heart regeneration. Additionally, neonatal heart injury models have been utilized to study heart regeneration, and factors regulating postnatal heart development have been associated with adult cardiac disease. Critical components of cardiac maturation are systemic and local biochemical cues. Specifically, cardiac innervation and the concentration of various metabolic hormones appear to increase perinatally and they have striking effects on cardiomyocytes. Here, we first report some of the key parameters of mature cardiomyocytes and then discuss the specific effects of neurons and hormonal cues on cardiomyocyte maturation. We focus primarily on the structural, electrophysiologic, metabolic, hypertrophic and hyperplastic effects of each factor. This review highlights the significance of underappreciated regulators of cardiac maturation and underscores the need for further research in this exciting field.
Collapse
Affiliation(s)
- Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
29
|
Sun X, Alford J, Qiu H. Structural and Functional Remodeling of Mitochondria in Cardiac Diseases. Int J Mol Sci 2021; 22:ijms22084167. [PMID: 33920673 PMCID: PMC8072869 DOI: 10.3390/ijms22084167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria undergo structural and functional remodeling to meet the cell demand in response to the intracellular and extracellular stimulations, playing an essential role in maintaining normal cellular function. Merging evidence demonstrated that dysregulation of mitochondrial remodeling is a fundamental driving force of complex human diseases, highlighting its crucial pathophysiological roles and therapeutic potential. In this review, we outlined the progress of the molecular basis of mitochondrial structural and functional remodeling and their regulatory network. In particular, we summarized the latest evidence of the fundamental association of impaired mitochondrial remodeling in developing diverse cardiac diseases and the underlying mechanisms. We also explored the therapeutic potential related to mitochondrial remodeling and future research direction. This updated information would improve our knowledge of mitochondrial biology and cardiac diseases’ pathogenesis, which would inspire new potential strategies for treating these diseases by targeting mitochondria remodeling.
Collapse
Affiliation(s)
| | | | - Hongyu Qiu
- Correspondence: ; Tel.: +404-413-3371; Fax: +404-413-9566
| |
Collapse
|
30
|
Jichitu A, Bungau S, Stanescu AMA, Vesa CM, Toma MM, Bustea C, Iurciuc S, Rus M, Bacalbasa N, Diaconu CC. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: Pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics (Basel) 2021; 11:689. [PMID: 33921359 PMCID: PMC8069361 DOI: 10.3390/diagnostics11040689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a growing prevalence in recent years. Its association with cardiovascular disease has been intensively studied, and certain correlations have been identified. The connection between these two entities has lately aroused interest regarding therapeutic management. In order to find the best therapeutic options, a detailed understanding of the pathophysiology that links (NAFLD) to cardiovascular comorbidities is needed. This review focuses on the pathogenic mechanisms that are behind these two diseases and on the therapeutic management available at this time.
Collapse
Affiliation(s)
- Alexandra Jichitu
- Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania; (A.J.); (C.C.D.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Ana Maria Alexandra Stanescu
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.M.V.); (C.B.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.M.V.); (C.B.)
| | - Stela Iurciuc
- Department of Cardiology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Nicolae Bacalbasa
- Department 13, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Surgery, “Ion Cantacuzino” Clinical Hospital, 030167 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania; (A.J.); (C.C.D.)
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
31
|
Abstract
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| |
Collapse
|
32
|
Veracruz N, Hameed B, Saab S, Wong RJ. The Association Between Nonalcoholic Fatty Liver Disease and Risk of Cardiovascular Disease, Stroke, and Extrahepatic Cancers. J Clin Exp Hepatol 2021; 11:45-81. [PMID: 33679048 PMCID: PMC7897860 DOI: 10.1016/j.jceh.2020.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND & AIMS Although primarily a disease with liver-specific complications, nonalcoholic fatty liver disease (NAFLD) is a systemic disease with extrahepatic complications. We aim to evaluate the association between NAFLD and cardiovascular disease (CVD), stroke and cerebrovascular disease, and extrahepatic cancers. METHODS We searched MEDLINE, EMBASE, and Cochrane Systematic Review Database from January 1, 2000 to July 1, 2019 to identify peer-reviewed English language literature using predefined keywords for NAFLD, CVD, stroke and cerebrovascular disease, and extrahepatic cancers among adults. Two reviewers independently selected studies for inclusion. Measures of association between NAFLD and CVD, stroke and cerebrovascular disease, and extrahepatic cancers were extracted. Quality assessed using Newcastle-Ottawa scale and Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS Thirty studies were included evaluating CVD, 16 studies evaluating stroke or cerebrovascular disease, and 13 studies evaluating extrahepatic cancers. On pooled meta-analysis assessment, NAFLD was associated with increased risk of CVD (risk ratio [RR]: 1.78; 95% confidence interval [CI]: 1.52-2.08) and stroke or cerebrovascular disease (RR: 2.08, 95% CI: 1.72-2.51). Significant heterogeneity in assessing extrahepatic cancers prevented applying meta-analysis methods, but NAFLD seemed to be associated with increased risk of breast and colorectal cancers. Overall level of quality of studies were very low by GRADE. CONCLUSIONS NAFLD is associated with increased risks of CVD and stroke or cerebrovascular disease among adults. There appears to be increased risk of breast and colorectal cancers. Given low quality of evidence, it is premature to make any strong conclusions to modify CVD, stroke, or cancer screening policies in patients with NAFLD.
Collapse
Affiliation(s)
- Nicolette Veracruz
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Bilal Hameed
- Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, CA, USA
| | - Sammy Saab
- Division of Gastroenterology and Hepatology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Robert J. Wong
- Division of Gastroenterology and Hepatology, Alameda Health System, Highland Hospital, Oakland, CA, USA
- Address for correspondence:
| |
Collapse
|
33
|
Dhandapany PS, Kang S, Kashyap DK, Rajagopal R, Sundaresan NR, Singh R, Thangaraj K, Jayaprakash S, Manjunath CN, Shenthar J, Lebeche D. Adiponectin receptor 1 variants contribute to hypertrophic cardiomyopathy that can be reversed by rapamycin. SCIENCE ADVANCES 2021; 7:eabb3991. [PMID: 33523960 PMCID: PMC7787482 DOI: 10.1126/sciadv.abb3991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous genetic heart muscle disease characterized by hypertrophy with preserved or increased ejection fraction in the absence of secondary causes. However, recent studies have demonstrated that a substantial proportion of individuals with HCM also have comorbid diabetes mellitus (~10%). Whether genetic variants may contribute a combined phenotype of HCM and diabetes mellitus is not known. Here, using next-generation sequencing methods, we identified novel and ultrarare variants in adiponectin receptor 1 (ADIPOR1) as risk factors for HCM. Biochemical studies showed that ADIPOR1 variants dysregulate glucose and lipid metabolism and cause cardiac hypertrophy through the p38/mammalian target of rapamycin and/or extracellular signal-regulated kinase pathways. A transgenic mouse model expressing an ADIPOR1 variant displayed cardiomyopathy that recapitulated the cellular findings, and these features were rescued by rapamycin. Our results provide the first evidence that ADIPOR1 variants can cause HCM and provide new insights into ADIPOR1 regulation.
Collapse
Affiliation(s)
- Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Departments of Medicine, Molecular, and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Soojeong Kang
- Cardiovascular Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Deepak K Kashyap
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
| | - Raksha Rajagopal
- Department of Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - Rajvir Singh
- Cardiovascular Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kumarasamy Thangaraj
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Shilpa Jayaprakash
- Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, India
| | - Cholenahally N Manjunath
- Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, India
| | - Jayaprakash Shenthar
- Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, India
| | - Djamel Lebeche
- Cardiovascular Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
34
|
Takano APC, Senger N, Barreto-Chaves MLM. The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 2020; 518:110972. [PMID: 32777452 DOI: 10.1016/j.mce.2020.110972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.
Collapse
Affiliation(s)
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
35
|
Romic S, Djordjevic A, Tepavcevic S, Culafic T, Stojiljkovic M, Bursac B, Stanisic J, Kostic M, Gligorovska L, Koricanac G. Effects of a fructose-rich diet and chronic stress on insulin signaling and regulation of glycogen synthase kinase-3 beta and the sodium-potassium pump in the hearts of male rats. Food Funct 2020; 11:1455-1466. [PMID: 31974538 DOI: 10.1039/c9fo02306b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Both a diet rich in fructose and chronic stress exposure induce metabolic and cardiovascular disturbances. The aim of this study was to examine the effects of the fructose-rich diet and chronic stress, separately and in combination, on insulin signaling and molecules regulating glycogen synthesis and ion transport in the heart, and to reveal whether these effects coincide with changes in glucocorticoid receptor (GR) activation. Male Wistar rats were subjected to 10% fructose in drinking water and/or to chronic unpredictable stress for 9 weeks. Protein expression and/or phosphorylation of the insulin receptor (IR), protein tyrosine phosphatase 1B, insulin receptor substrate 1 (IRS1), protein kinase B (Akt), extracellular signal-regulated kinase 1/2 (ERK1/2), glycogen synthase kinase-3β (GSK-3β) and Na+/K+-ATPase α-subunits in cardiac tissue were analyzed by western blot. GR distribution between cytosolic and nuclear fractions was also analyzed. The fructose-rich diet decreased the level of pERK1/2 (Thr202/Tyr204) and pGSK-3β (Ser9) independently of stress, while chronic stress increased the IRS1 content and prevented the fructose diet-induced decrease of the pAkt (Ser473) level. The fructose-rich diet in combination with chronic stress reduced the protein content of cardiac IR and attenuated IRS1 upregulation. Separate treatments increased the protein content of Na+/K+-ATPase α1- and α2-subunits, while after combined treatment the α2 content was at the control level and the α1 content was lower than the control level. The effect of combined treatment on cardiac IR and α2-subunit expression could be mediated by increased GR nuclear accumulation. Our study provides new insights into the effects of chronic stress and a combination of the fructose diet and chronic stress on the studied molecules in the heart.
Collapse
Affiliation(s)
- Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhao MT, Ye S, Su J, Garg V. Cardiomyocyte Proliferation and Maturation: Two Sides of the Same Coin for Heart Regeneration. Front Cell Dev Biol 2020; 8:594226. [PMID: 33178704 PMCID: PMC7593613 DOI: 10.3389/fcell.2020.594226] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
In the past few decades, cardiac regeneration has been the central target for restoring the injured heart. In mammals, cardiomyocytes are terminally differentiated and rarely divide during adulthood. Embryonic and fetal cardiomyocytes undergo robust proliferation to form mature heart chambers in order to accommodate the increased workload of a systemic circulation. In contrast, postnatal cardiomyocytes stop dividing and initiate hypertrophic growth by increasing the size of the cardiomyocyte when exposed to increased workload. Extracellular and intracellular signaling pathways control embryonic cardiomyocyte proliferation and postnatal cardiac hypertrophy. Harnessing these pathways could be the future focus for stimulating endogenous cardiac regeneration in response to various pathological stressors. Meanwhile, patient-specific cardiomyocytes derived from autologous induced pluripotent stem cells (iPSCs) could become the major exogenous sources for replenishing the damaged myocardium. Human iPSC-derived cardiomyocytes (iPSC-CMs) are relatively immature and have the potential to increase the population of cells that advance to physiological hypertrophy in the presence of extracellular stimuli. In this review, we discuss how cardiac proliferation and maturation are regulated during embryonic development and postnatal growth, and explore how patient iPSC-CMs could serve as the future seed cells for cardiac cell replacement therapy.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Shiqiao Ye
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Juan Su
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
37
|
Wende AR, Schell JC, Ha CM, Pepin ME, Khalimonchuk O, Schwertz H, Pereira RO, Brahma MK, Tuinei J, Contreras-Ferrat A, Wang L, Andrizzi CA, Olsen CD, Bradley WE, Dell'Italia LJ, Dillmann WH, Litwin SE, Abel ED. Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction. Diabetes 2020; 69:2094-2111. [PMID: 32366681 PMCID: PMC7506832 DOI: 10.2337/db19-1057] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy, we generated transgenic mice with inducible cardiomyocyte-specific expression of the GLUT4. We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in nondiabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest that reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations.
Collapse
Affiliation(s)
- Adam R Wende
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - John C Schell
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Chae-Myeong Ha
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Mark E Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE
| | - Hansjörg Schwertz
- Division of Occupational Medicine, Molecular Medicine Program, and Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT
| | - Renata O Pereira
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Manoja K Brahma
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Joseph Tuinei
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Ariel Contreras-Ferrat
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Li Wang
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Chase A Andrizzi
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Curtis D Olsen
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Wayne E Bradley
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Louis J Dell'Italia
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | | | - Sheldon E Litwin
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT
- Department of Medicine, Medical University of South Carolina, Charleston, SC
- Division of Cardiology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
38
|
Das PN, Kumar A, Bairagi N, Chatterjee S. Effect of delay in transportation of extracellular glucose into cardiomyocytes under diabetic condition: a study through mathematical model. J Biol Phys 2020; 46:253-281. [PMID: 32583238 PMCID: PMC7441137 DOI: 10.1007/s10867-020-09551-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/26/2020] [Indexed: 01/02/2023] Open
Abstract
A four-dimensional model was built to mimic the cross-talk among plasma glucose, plasma insulin, intracellular glucose and cytoplasmic calcium of a cardiomyocyte. A time delay was considered to represent the time required for performing various cellular mechanisms between activation of insulin receptor and subsequent glucose entry from extracellular region into intracellular region of a cardiac cell. We analysed the delay-induced model and deciphered conditions for stability and bifurcation. Extensive numerical computations were performed to validate the analytical results and give further insights. Sensitivity study of the system parameters using LHS-PRCC method reveals that some rate parameters, which represent the input of plasma glucose, absorption of glucose by noncardiac cells and insulin production, are sensitive and may cause significant change in the system dynamics. It was observed that the time taken for transportation of extracellular glucose into the cell through GLUT4 plays an important role in maintaining physiological oscillations of the state variables. Parameter recalibration exercise showed that reduced input rate of glucose in the blood plasma or an alteration in transportation delay may be used for therapeutic targets in diabetic-like condition for maintaining normal cardiac function.
Collapse
Affiliation(s)
- Phonindra Nath Das
- Department of Mathematics, Memari College, Burdwan, West Bengal, 713146, India
| | - Ajay Kumar
- Non-communicable disease group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
39
|
Bianchi VE. Caloric restriction in heart failure: A systematic review. Clin Nutr ESPEN 2020; 38:50-60. [PMID: 32690177 DOI: 10.1016/j.clnesp.2020.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Nutrition exerts a determinant role in maintaining cardiac function, regulating insulin and mitochondrial efficiency, that are essential to support energy production for contractility. In patients with heart failure (HF), myocardial tissue efficiency is reduced because of decreased mitochondrial oxidative capacity. In HF conditions, cardiomyocytes shift toward glucose and a reduction in fatty acid utilization. Calorie restriction induces weight loss in obese patients and can be beneficial in some HF patients, although this has generated some controversy. This study aims to evaluate the impact of the CR diet on myocardial efficiency in HF patients. METHODS On Pubmed and Embase, articles related to the keywords: "chronic heart failure" with "diet," "nutrition," "insulin resistance," and "caloric restriction" have been searched, Studies, including exercise or food supplementation, were excluded. RESULTS The retrieved articles showed that weight loss, through the activation of insulin and various kinase pathways, regulates the efficiency of myocardial tissue. In contrast, insulin resistance represents a strong cardiovascular risk factor that reduces myocardial function. CONCLUSION CR diet represents the first therapy in overweight HF patients, both with preserved ejection fraction (HFpEF) and with reduced ejection fraction (HFrHF) because reducing body fat, the myocardial function increased. Insulin activity is the critical hormone that regulates mitochondrial function and cardiac efficiency. However, a severely restricted diet may represent a severe risk factor correlated with all-cause mortality, particularly in underweight HF patients. Long-term studies conducted on large populations are necessary to evaluate the effects of CR on myocardial function in HF patients.
Collapse
|
40
|
A PKB-SPEG signaling nexus links insulin resistance with diabetic cardiomyopathy by regulating calcium homeostasis. Nat Commun 2020; 11:2186. [PMID: 32367034 PMCID: PMC7198626 DOI: 10.1038/s41467-020-16116-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/07/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetic cardiomyopathy is a progressive disease in diabetic patients, and myocardial insulin resistance contributes to its pathogenesis through incompletely-defined mechanisms. Striated muscle preferentially expressed protein kinase (SPEG) has two kinase-domains and is a critical cardiac regulator. Here we show that SPEG is phosphorylated on Ser2461/Ser2462/Thr2463 by protein kinase B (PKB) in response to insulin. PKB-mediated phosphorylation of SPEG activates its second kinase-domain, which in turn phosphorylates sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (SERCA2a) and accelerates calcium re-uptake into the SR. Cardiac-specific deletion of PKBα/β or a high fat diet inhibits insulin-induced phosphorylation of SPEG and SERCA2a, prolongs SR re-uptake of calcium, and impairs cardiac function. Mice bearing a Speg3A mutation to prevent its phosphorylation by PKB display cardiac dysfunction. Importantly, the Speg3A mutation impairs SERCA2a phosphorylation and calcium re-uptake into the SR. Collectively, these data demonstrate that insulin resistance impairs this PKB-SPEG-SERCA2a signal axis, which contributes to the development of diabetic cardiomyopathy. Molecular mechanisms linking myocardial insulin resistance to diabetic cardiomyopathy are incompletely understood. Here the authors show that myocardial insulin resistance impairs a PKB-SPEG-SERCA2a signaling axis, which contributes to the development of diabetic cardiomyopathy.
Collapse
|
41
|
Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart. Cell Rep 2020; 26:1934-1950.e5. [PMID: 30759401 DOI: 10.1016/j.celrep.2019.01.079] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
The heart is the central organ of the circulatory system, and its proper development is vital for maintaining human life. Here, we used single-cell RNA sequencing to profile the gene expression landscapes of ∼4,000 cardiac cells from human embryos and identified four major types of cells: cardiomyocytes (CMs), cardiac fibroblasts, endothelial cells (ECs), and valvar interstitial cells (VICs). Atrial and ventricular CMs acquired distinct features early in heart development. Furthermore, both CMs and fibroblasts show stepwise changes in gene expression. As development proceeds, VICs may be involved in the remodeling phase, and ECs display location-specific characteristics. Finally, we compared gene expression profiles between humans and mice and identified a series of unique features of human heart development. Our study lays the groundwork for elucidating the mechanisms of in vivo human cardiac development and provides potential clues to understand cardiac regeneration.
Collapse
|
42
|
Resveratrol and Diabetic Cardiomyopathy: Focusing on the Protective Signaling Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7051845. [PMID: 32256959 PMCID: PMC7094200 DOI: 10.1155/2020/7051845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/01/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetic mellitus that is characterized by diastolic disorder in the early stage and clinical heart failure in the later stage. Presently, DCM is considered one of the major causes of death in diabetic patients. Resveratrol (RSV), a naturally occurring stilbene, is widely reported as a cardioprotective substance in many heart diseases. Thus far, the specific roles of RSV in DCM prevention and treatment have attracted great attention. Here, we discuss the roles of RSV in DCM by focusing its downstream targets from both in vivo and in vitro studies. Among such targets, Sirtuins 1/3 and AMP-activated kinase have been identified as key mediators that induce cardioprotection during hyperglycemia. In addition, many other signaling molecules (e.g., forkhead box-O3a and extracellular regulated protein kinases) are also regulated in the presence of RSV and exert beneficial effects such as opposing oxidative stress, inflammation, and apoptosis in cardiomyocytes exposed to high-glucose conditions. The beneficial potential of an RSV/stem cell cotherapy is also reviewed as a promising therapeutic strategy for preventing the development of DCM.
Collapse
|
43
|
Barbeau PA, Houad JM, Huber JS, Paglialunga S, Snook LA, Herbst EAF, Dennis KMJH, Simpson JA, Holloway GP. Ablating the Rab-GTPase activating protein TBC1D1 predisposes rats to high-fat diet-induced cardiomyopathy. J Physiol 2020; 598:683-697. [PMID: 31845331 DOI: 10.1113/jp279042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Although the role of TBC1D1 within the heart remains unknown, expression of TBC1D1 increases in the left ventricle following an acute infarction, suggesting a biological importance within this tissue. We investigated the mechanistic role of TBC1D1 within the heart, aiming to establish the consequences of attenuating TBC1D1 signalling in the development of diabetic cardiomyopathy, as well as to determine potential sex differences. TBC1D1 ablation increased plasma membrane fatty acid binding protein content and myocardial palmitate oxidation. Following high-fat feeding, TBC1D1 ablation dramatically increased fibrosis and induced end-diastolic dysfunction in both male and female rats in the absence of changes in mitochondrial bioenergetics. Altogether, independent of sex, ablating TBC1D1 predisposes the left ventricle to pathological remodelling following high-fat feeding, and suggests TBC1D1 protects against diabetic cardiomyopathy. ABSTRACT TBC1D1, a Rab-GTPase activating protein, is involved in the regulation of glucose handling and substrate metabolism within skeletal muscle, and is essential for maintaining pancreatic β-cell mass and insulin secretion. However, the function of TBC1D1 within the heart is largely unknown. Therefore, we examined the role of TBC1D1 in the left ventricle and the functional consequence of ablating TBC1D1 on the susceptibility to high-fat diet-induced abnormalities. Since mutations within TBC1D1 (R125W) display stronger associations with clinical parameters in women, we further examined possible sex differences in the predisposition to diabetic cardiomyopathy. In control-fed animals, TBC1D1 ablation did not alter insulin-stimulated glucose uptake, or echocardiogram parameters, but increased accumulation of a plasma membrane fatty acid transporter and the capacity for palmitate oxidation. When challenged with an 8 week high-fat diet, TBC1D1 knockout rats displayed a four-fold increase in fibrosis compared to wild-type animals, and this was associated with diastolic dysfunction, suggesting a predisposition to diet-induced cardiomyopathy. Interestingly, high-fat feeding only induced cardiac hypertrophy in male TBC1D1 knockout animals, implicating a possible sex difference. Mitochondrial respiratory capacity and substrate sensitivity to pyruvate and ADP were not altered by diet or TBC1D1 ablation, nor were markers of oxidative stress, or indices of overt heart failure. Altogether, independent of sex, ablation of TBC1D1 not only increased the susceptibility to high-fat diet-induced diastolic dysfunction and left ventricular fibrosis, independent of sex, but also predisposed male animals to the development of cardiac hypertrophy. These data suggest that TBC1D1 may exert cardioprotective effects in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Pierre-Andre Barbeau
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jacy M Houad
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jason S Huber
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Laelie A Snook
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Eric A F Herbst
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Kaitlyn M J H Dennis
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| |
Collapse
|
44
|
Sodium Selenate Ameliorates Cardiac Injury Developed from High-Fat Diet in Mice through Regulation of Autophagy Activity. Sci Rep 2019; 9:18752. [PMID: 31822702 PMCID: PMC6904559 DOI: 10.1038/s41598-019-54985-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is often accompanied by dyslipidemia, high blood glucose, hypertension, atherosclerosis, and myocardial dysfunction. Selenate is a vital antioxidant in the cardiovascular system. The beneficial effects of selenate on obesity-associated cardiac dysfunction and potential molecular mechanism were identified in both H9C2 cells and C57BL/6J mice hearts. The cardiac histological preformation in C57BL/6J mice were evaluated by cross-sectional area (CSA) of cardiomyocytes and percent area of fibrosis in the left ventricles. The cardiac autophagy flux in H9C2 cells and C57BL/6J mice hearts was analyzed by Western blots and the number of autophagosomes and autolysosome in H9C2 cells. In the present study, we found that lipid overload caused increases in serum lipid, CSA, and percent area of fibrosis. We further found that lipid-induced accumulation of autophagosomes was due to depressed autophagy degradation, which was not restored in the pretreatment with 3-methyladenine and chloroquine, whereas, it was improved by rapamycin. Moreover, we demonstrated that increased levels of serum lipid, CSA, percent area of fibrosis and mRNA expression related to cardiomyocytes hypertrophy and fibrosis were significantly reduced after selenate treatments of mice. We also found selenate treatment significantly down-regulated activity of the Akt pathway, which was activated in response to lipid-overload. Furthermore, selenate dramatically improved cardiac autophagic degradation which was suppressed after exposure to lipid-overload in both H9C2 cells and C57BL/6J mice hearts. Taken together, selenate offers therapeutic intervention in lipid-related metabolic disorders, and protection against cardiac remodeling, likely through regulation of the activity of autophagic degradation and Akt pathway.
Collapse
|
45
|
Kalra J, Mangali SB, Dasari D, Bhat A, Goyal S, Dhar I, Sriram D, Dhar A. SGLT1 inhibition boon or bane for diabetes-associated cardiomyopathy. Fundam Clin Pharmacol 2019; 34:173-188. [PMID: 31698522 DOI: 10.1111/fcp.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022]
Abstract
Chronic hyperglycaemia is a peculiar feature of diabetes mellitus (DM). Sequential metabolic abnormalities accompanying glucotoxicity are some of its implications. Glucotoxicity most likely corresponds to the vascular intricacy and metabolic alterations, such as increased oxidation of free fatty acids and reduced glucose oxidation. More than half of those with diabetes also develop cardiac abnormalities due to unknown causes, posing a major threat to the currently available marketed preparations which are being used for treating these cardiac complications. Even though impairment in cardiac functioning is the principal cause of death in individuals with type 2 diabetes (T2D), reducing plasma glucose levels has little effect on cardiovascular disease (CVD) risk. In vitro and in vivo studies have demonstrated that inhibitors of sodium glucose transporter (SGLT) represent a putative therapeutic intervention for these pathological conditions. Several clinical trials have reported the efficacy of SGLT inhibitors as a novel and potent antidiabetic agent which along with its antihyperglycaemic activity possesses the potential of effectively treating its associated cardiac abnormalities. Thus, hereby, the present review highlights the role of SGLT inhibitors as a successful drug candidate for correcting the shifts in deregulation of cardiac energy substrate metabolism together with its role in treating diabetes-related cardiac perturbations.
Collapse
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Suresh Babu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Deepika Dasari
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu, 181143, India
| | - Srashti Goyal
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Indu Dhar
- Department of Clinical Science, University of Bergen, Bergen, 5009, Norway
| | - Dharamrajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| |
Collapse
|
46
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
47
|
Contribution of Impaired Insulin Signaling to the Pathogenesis of Diabetic Cardiomyopathy. Int J Mol Sci 2019; 20:ijms20112833. [PMID: 31212580 PMCID: PMC6600234 DOI: 10.3390/ijms20112833] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) has emerged as a relevant cause of heart failure among the diabetic population. Defined as a cardiac dysfunction that develops in diabetic patients independently of other major cardiovascular risks factors, such as high blood pressure and coronary artery disease, the underlying cause of DCMremains to be unveiled. Several pathogenic factors, including glucose and lipid toxicity, mitochondrial dysfunction, increased oxidative stress, sustained activation of the renin-angiotensin system (RAS) or altered calcium homeostasis, have been shown to contribute to the structural and functional alterations that characterize diabetic hearts. However, all these pathogenic mechanisms appear to stem from the metabolic inflexibility imposed by insulin resistance or lack of insulin signaling. This results in absolute reliance on fatty acids for the synthesis of ATP and impairment of glucose oxidation. Glucose is then rerouted to other metabolic pathways, with harmful effects on cardiomyocyte function. Here, we discuss the role that impaired cardiac insulin signaling in diabetic or insulin-resistant individuals plays in the onset and progression of DCM.
Collapse
|
48
|
Eid RA, Al-Shraim M, Eleawa SM, Zaki MSA, El-kott AF, Eldeen MA, Alkhateeb MA, Alassiri M, Alderah H. Fish oil protects against corn oil-induced cardiac insulin resistance and left ventricular dysfunction in rats via upregulation of PPAR-β/γ and inhibition of diacylglycerol/PCK axis activation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
49
|
Nikolajević Starčević J, Janić M, Šabovič M. Molecular Mechanisms Responsible for Diastolic Dysfunction in Diabetes Mellitus Patients. Int J Mol Sci 2019; 20:ijms20051197. [PMID: 30857271 PMCID: PMC6429211 DOI: 10.3390/ijms20051197] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
In diabetic patients, cardiomyopathy is an important cause of heart failure, but its pathophysiology has not been completely understood thus far. Myocardial hypertrophy and diastolic dysfunction have been considered the hallmarks of diabetic cardiomyopathy (DCM), while systolic function is affected in the latter stages of the disease. In this article we propose the potential pathophysiological mechanisms responsible for myocardial hypertrophy and increased myocardial stiffness leading to diastolic dysfunction in this specific entity. According to our model, increased myocardial stiffness results from both cellular and extracellular matrix stiffness as well as cell–matrix interactions. Increased intrinsic cardiomyocyte stiffness is probably the most important contributor to myocardial stiffness. It results from the impairment in cardiomyocyte cytoskeleton. Several other mechanisms, specifically affected by diabetes, seem to also be significantly involved in myocardial stiffening, i.e., impairment in the myocardial nitric oxide (NO) pathway, coronary microvascular dysfunction, increased inflammation and oxidative stress, and myocardial sodium glucose cotransporter-2 (SGLT-2)-mediated effects. Better understanding of the complex pathophysiology of DCM suggests the possible value of drugs targeting the listed mechanisms. Antidiabetic drugs, NO-stimulating agents, anti-inflammatory agents, and SGLT-2 inhibitors are emerging as potential treatment options for DCM.
Collapse
Affiliation(s)
- Jovana Nikolajević Starčević
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Miodrag Janić
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Mišo Šabovič
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
50
|
Abstract
Significance: Diabetic cardiomyopathy (DCM) is a frequent complication occurring even in well-controlled asymptomatic diabetic patients, and it may advance to heart failure (HF). Recent Advances: The diabetic heart is characterized by a state of "metabolic rigidity" involving enhanced rates of fatty acid uptake and mitochondrial oxidation as the predominant energy source, and it exhibits mitochondrial electron transport chain defects. These alterations promote redox state changes evidenced by a decreased NAD+/NADH ratio associated with an increase in acetyl-CoA/CoA ratio. NAD+ is a co-substrate for deacetylases, sirtuins, and a critical molecule in metabolism and redox signaling; whereas acetyl-CoA promotes protein lysine acetylation, affecting mitochondrial integrity and causing epigenetic changes. Critical Issues: DCM lacks specific therapies with treatment only in later disease stages using standard, palliative HF interventions. Traditional therapy targeting neurohormonal signaling and hemodynamics failed to improve mortality rates. Though mitochondrial redox state changes occur in the heart with obesity and diabetes, how the mitochondrial NAD+/NADH redox couple connects the remodeled energy metabolism with mitochondrial and cytosolic antioxidant defense and nuclear epigenetic changes remains to be determined. Mitochondrial therapies targeting the mitochondrial NAD+/NADH redox ratio may alleviate cardiac dysfunction. Future Directions: Specific therapies must be supported by an optimal understanding of changes in mitochondrial redox state and how it influences other cellular compartments; this field has begun to surface as a therapeutic target for the diabetic heart. We propose an approach based on an alternate mitochondrial electron transport that normalizes the mitochondrial redox state and improves cardiac function in diabetes.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- 1 Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Jacob G Kurdys
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| | - Danina M Muntean
- 3 Department of Functional Sciences-Pathophysiology, "Victor Babes" University of Medicine and Pharmacy , Timisoara, Romania
| | - Mariana G Rosca
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| |
Collapse
|