1
|
Cotti S, Di Biagio C, Huysseune A, Koppe W, Forlino A, Witten PE. Matrix first, minerals later: fine-tuned dietary phosphate increases bone formation in zebrafish. JBMR Plus 2024; 8:ziae081. [PMID: 39045128 PMCID: PMC11264301 DOI: 10.1093/jbmrpl/ziae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Bone matrix formation and mineralization are two closely related, yet separated processes. Matrix formation occurs first, mineralization is a second step strictly dependent on the dietary intake of calcium and phosphorus (P). However, mineralization is commonly used as diagnostic parameter for bone-related diseases. In this context, bone loss, often characterized as a condition with reduced bone mineral density, represents a major burden for human health, for which increased dietary mineral intake is generally recommended. Using a counterintuitive approach, we use a low-P diet followed by a sufficient-P intake to increase bone volume. We show in zebrafish by histology, qPCR, micro-CT, and enzyme histochemistry that a two-months period of reduced dietary P intake stimulates extensive formation of new bone matrix, associated with the upregulation of key genes required for both bone matrix formation and mineralization. The return to a P-sufficient diet initiates the mineralization of the abundant matrix previously deposited, thus resulting in a striking increase of the mineralized bone volume as proven at the level of the vertebral column, including vertebral bodies and arches. In summary, bone matrix formation is first stimulated with a low-P diet, and its mineralization is later triggered by a sufficient-P dietary intake. In zebrafish, the uncoupling of bone formation and mineralization by alternating low and sufficient dietary P intake significantly increases the bone volume without causing skeletal malformations or ectopic mineralization. A modification of this approach to stimulate bone formation, optimized for mammalian models, can possibly open opportunities to support treatments in patients that suffer from low bone mass.
Collapse
Affiliation(s)
- Silvia Cotti
- Biology Department, Evolutionary Developmental Biology, Ghent University, 9000 Gent, Belgium
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Claudia Di Biagio
- Biology Department, Evolutionary Developmental Biology, Ghent University, 9000 Gent, Belgium
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ann Huysseune
- Biology Department, Evolutionary Developmental Biology, Ghent University, 9000 Gent, Belgium
- Department of Zoology, Charles University, 12800 Prague, Czech Republic
| | | | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - P Eckhard Witten
- Biology Department, Evolutionary Developmental Biology, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
2
|
Becker LL, Gebhardt JT, Tokach MD, Woodworth JC, Goodband RD, DeRouchey JM. A review of calcium and phosphorus requirement estimates for gestating and lactating sows. Transl Anim Sci 2024; 8:txae087. [PMID: 38863597 PMCID: PMC11165643 DOI: 10.1093/tas/txae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Calcium (Ca) and phosphorus (P) are minerals involved in biological functions and essential structural components of the skeleton. The body tightly regulates Ca and P to maintain homeostasis. Maternal needs for Ca and P increase during gestation and lactation to support conceptus growth and milk synthesis. Litter size and litter average daily gain (ADG) have a large effect on Ca and P requirements for sows because as they increase, the requirements increase due to a greater need from the sow. The objective of this review was to summarize published literature on Ca and P requirements in gestating and lactating sows derived from empirical data and factorial models. A total of nine empirical studies and seven factorial models were reviewed for determining the Ca and P requirements in gestation. For lactation, there were six empirical studies and seven factorial models reviewed. Empirical studies determined requirements based on the observed effect of Ca and P on bone mineralization, sow and litter performance, and milk characteristics. Factorial models generated equations to estimate Ca and P requirements using the main components of maintenance, fetal and placental growth, and maternal retention in gestation. The main components for factorial equations in lactation include maintenance and milk production. In gestation, the standardized total tract digestible phosphorus (STTD P) requirement estimates from empirical studies range from 5.4 to 9.5 g/d with total Ca ranging from 12.9 to 18.6 g/d to maximize bone measurements or performance criteria. According to the factorial models, the requirements increase throughout gestation to meet the needs of the growing fetuses and range from 7.6 to 10.6 g/d and 18.4 to 38.2 g/d of STTD P and total Ca, respectively, on day 114 of gestation for parity 1 sows. During lactation, STTD P requirement estimates from empirical studies ranged from 8.5 to 22.1 g/d and total Ca ranged from 21.2 to 50.4 g/d. For the lactation factorial models, STTD P requirements ranged from 14.2 to 25.1 g/d for STTD P and 28.4 to 55.6 g/d for total Ca for parity 1 sows with a litter size of 15 pigs. The large variation in requirement estimates makes it difficult to define Ca and P requirements; however, a minimum level of 6.0 and 22.1 g/d of STTD P during gestation and lactation, respectively, appears to be adequate to meet basal requirements. The limited data and high variation indicate a need for future research evaluating Ca and P requirements for gestating and lactating sows.
Collapse
Affiliation(s)
- Larissa L Becker
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
3
|
Motlaghzadeh Y, Bilezikian JP, Sellmeyer DE. Rare Causes of Hypercalcemia: 2021 Update. J Clin Endocrinol Metab 2021; 106:3113-3128. [PMID: 34240162 DOI: 10.1210/clinem/dgab504] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary hyperparathyroidism and malignancy are the etiologies in 90% of cases of hypercalcemia. When these entities are not the etiology of hypercalcemia, uncommon conditions need to be considered. In 2005, Jacobs and Bilezikian published a clinical review of rare causes of hypercalcemia, focusing on mechanisms and pathophysiology. This review is an updated synopsis of rare causes of hypercalcemia, extending the observations of the original article. EVIDENCE ACQUISITION Articles reporting rare associations between hypercalcemia and unusual conditions were identified through a comprehensive extensive PubMed-based search using the search terms "hypercalcemia" and "etiology," as well as examining the references in the identified case reports. We categorized the reports by adults vs pediatric and further categorized the adult reports based on etiology. Some included reports lacked definitive assessment of etiology and are reported as unknown mechanism with discussion of likely etiology. EVIDENCE SYNTHESIS There is a growing understanding of the breadth of unusual causes of hypercalcemia. When the cause of hypercalcemia is elusive, a focus on mechanism and review of prior reported cases is key to successful determination of the etiology. CONCLUSIONS The ever-expanding reports of patients with rare and even unknown mechanisms of hypercalcemia illustrate the need for continued investigation into the complexities of human calcium metabolism.
Collapse
Affiliation(s)
- Yasaman Motlaghzadeh
- Stanford University School of Medicine, Division of Endocrinology, Gerontology and Metabolism, Palo Alto, CA 94305, USA
| | - John P Bilezikian
- Division of Endocrinology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Deborah E Sellmeyer
- Stanford University School of Medicine, Division of Endocrinology, Gerontology and Metabolism, Palo Alto, CA 94305, USA
| |
Collapse
|
4
|
Wächter S, Cohrs I, Golbeck L, Wilkens MR, Grünberg W. Effects of restricted dietary phosphorus supply to dry cows on periparturient calcium status. J Dairy Sci 2021; 105:748-760. [PMID: 34656353 DOI: 10.3168/jds.2021-20726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022]
Abstract
Restricted dietary P supply to transition dairy cows has recently been reported to beneficially affect the Ca balance of periparturient cows. The objective of the present study was to determine whether this effect on the Ca balance can be reproduced when limiting the P-restricted feeding to the last 4 wk of gestation. A total of 30 dairy cows in late pregnancy were randomly assigned to a dry cow diet with either low or adequate P content (0.16 and 0.30% P in DM, respectively) to be fed in the 4 wk before expected calving. After calving, all cows received the same lactating cow ration with adequate P content (0.46% P in DM). Blood was collected daily from 4 d antepartum until calving, at calving (d 0), 6 and 12 h after calving (d +0.25 and d +0.5, respectively) and on days +1, +2, +3, +4 and +7 relative to calving. Blood gas analyses were conducted to determine the concentration of ionized Ca in whole blood ([Ca2+]), and plasma was assayed for concentrations of inorganic phosphorus ([Pi]), total calcium, parathyroid hormone ([PTH]), 1,25-dihydroxyvitamin D ([1,25-(OH)2D3]), and CrossLaps ([CTX]), a biomarker for bone resorption (Immunodiagnostic Systems GmbH). Repeated-measures ANOVA was conducted to study treatment, time, and lactation number effects. The mean [Ca2+] in P-deprived cows remained above the threshold of 1.10 mmol/L throughout the study, and values were higher compared with cows on adequate P supply between d 0 and d +2 and on d +4. The [Ca2+] differed between treatments at the sampling times d 0, d +0.25, d +0.5, d +2, and d +4. Plasma [PTH] and [1,25-(OH)2D3] did not differ between treatments, but P-deprived cows had greater [CTX] than cows with adequate P supply at d +1, d +2, and d +7. These results indicate that restricted dietary P supply to during the last 4 wk of the dry period improves the Ca homeostasis of these cows in the first days of lactation, an effect that seems to be primarily driven by increased bone tissue mobilization.
Collapse
Affiliation(s)
- S Wächter
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hanover, Germany
| | - I Cohrs
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany
| | - L Golbeck
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hanover, Germany
| | - M R Wilkens
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, 30173 Hanover, Germany
| | - W Grünberg
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hanover, Germany.
| |
Collapse
|
5
|
Behrens JL, Schnepel N, Hansen K, Hustedt K, Burmester M, Klinger S, Breves G, Muscher-Banse AS. Modulation of Intestinal Phosphate Transport in Young Goats Fed a Low Phosphorus Diet. Int J Mol Sci 2021; 22:ijms22020866. [PMID: 33467106 PMCID: PMC7831023 DOI: 10.3390/ijms22020866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/03/2022] Open
Abstract
The intestinal absorption of phosphate (Pi) takes place transcellularly through the active NaPi-cotransporters type IIb (NaPiIIb) and III (PiT1 and PiT2) and paracellularly by diffusion through tight junction (TJ) proteins. The localisation along the intestines and the regulation of Pi absorption differ between species and are not fully understood. It is known that 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and phosphorus (P) depletion modulate intestinal Pi absorption in vertebrates in different ways. In addition to the apical uptake into the enterocytes, there are uncertainties regarding the basolateral excretion of Pi. Functional ex vivo experiments in Ussing chambers and molecular studies of small intestinal epithelia were carried out on P-deficient goats in order to elucidate the transepithelial Pi route in the intestine as well as the underlying mechanisms of its regulation and the proteins, which may be involved. The dietary P reduction had no effect on the duodenal and ileal Pi transport rate in growing goats. The ileal PiT1 and PiT2 mRNA expressions increased significantly, while the ileal PiT1 protein expression, the mid jejunal claudin-2 mRNA expression and the serum 1,25-(OH)2D3 levels were significantly reduced. These results advance the state of knowledge concerning the complex mechanisms of the Pi homeostasis in vertebrates.
Collapse
|
6
|
Arnst JL, Beck GR. Modulating phosphate consumption, a novel therapeutic approach for the control of cancer cell proliferation and tumorigenesis. Biochem Pharmacol 2020; 183:114305. [PMID: 33129806 DOI: 10.1016/j.bcp.2020.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Phosphorus, often in the form of inorganic phosphate (Pi), is critical to cellular function on many levels; it is required as an integral component of kinase signaling, in the formation and function of DNA and lipids, and energy metabolism in the form of ATP. Accordingly, crucial aspects of cell mitosis - such as DNA synthesis and ATP energy generation - elevate the cellular requirement for Pi, with rapidly dividing cells consuming increased levels. Mechanisms to sense, respond, acquire, accumulate, and potentially seek Pi have evolved to support highly proliferative cellular states such as injury and malignant transformation. As such, manipulating Pi availability to target rapidly dividing cells presents a novel strategy to reduce or prevent unrestrained cell growth. Currently, limited knowledge exists regarding how modulating Pi consumption by pre-cancerous cells might influence the initiation of aberrant growth during malignant transformation, and if reducing the bioavailability or suppressing Pi consumption by malignant cells could alter tumorigenesis. The concept of targeting Pi-regulated pathways and/or consumption by pre-cancerous or tumor cells represents a novel approach to cancer prevention and control, although current data remains insufficient as to rigorously assess the therapeutic value and physiological relevance of this strategy. With this review, we present a critical evaluation of the paradox of how an element critical to essential cellular functions can, when available in excess, influence and promote a cancer phenotype. Further, we conjecture how Pi manipulation could be utilized as a therapeutic intervention, either systemically or at the cell level, to ultimately suppress or treat cancer initiation and/or progression.
Collapse
Affiliation(s)
- Jamie L Arnst
- Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, United States; Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
7
|
Fujii Y, Kozak E, Dutra E, Varadi A, Reichenberger EJ, Chen IP. Restriction of Dietary Phosphate Ameliorates Skeletal Abnormalities in a Mouse Model for Craniometaphyseal Dysplasia. J Bone Miner Res 2020; 35:2070-2081. [PMID: 33463757 PMCID: PMC9164311 DOI: 10.1002/jbmr.4110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 11/08/2022]
Abstract
Craniometaphyseal dysplasia (CMD), a rare genetic bone disorder, is characterized by lifelong progressive thickening of craniofacial bones and metaphyseal flaring of long bones. The autosomal dominant form of CMD is caused by mutations in the progressive ankylosis gene ANKH (mouse ortholog Ank), encoding a pyrophosphate (PPi) transporter. We previously reported reduced formation and function of osteoblasts and osteoclasts in a knockin (KI) mouse model for CMD (AnkKI/KI) and in CMD patients. We also showed rapid protein degradation of mutant ANK/ANKH. Mutant ANK protein displays reduced PPi transport, which may alter the inorganic phosphate (Pi) and PPi ratio, an important regulatory mechanism for bone mineralization. Here we investigate whether reducing dietary Pi intake can ameliorate the CMD-like skeletal phenotype by comparing male and female Ank+/+ and AnkKI/KI mice exposed to a low (0.3%) and normal (0.7%) Pi diet for 13 weeks from birth. Serum Pi and calcium (Ca) levels were not significantly changed by diet, whereas PTH and 25-hydroxy vitamin D (25-OHD) were decreased by low Pi diet but only in male Ank+/+ mice. Importantly, the 0.3% Pi diet significantly ameliorated mandibular hyperostosis in both sexes of AnkKI/KI mice. A tendency of decreased femoral trabeculation was observed in male and female Ank+/+ mice as well as in male AnkKI/KI mice fed with the 0.3% Pi diet. In contrast, in female AnkKI/KI mice the 0.3% Pi diet resulted in increased metaphyseal trabeculation. This was also the only group that showed increased bone formation rate. Low Pi diet led to increased osteoclast numbers and increased bone resorption in all mice. We conclude that lowering but not depleting dietary Pi delays the development of craniofacial hyperostosis in CMD mice without severely compromising serum levels of Pi, Ca, PTH, and 25-OHD. These findings may have implications for better clinical care of patients with CMD. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Eszter Kozak
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Eliane Dutra
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Andras Varadi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
8
|
Cotti S, Huysseune A, Koppe W, Rücklin M, Marone F, Wölfel EM, Fiedler IAK, Busse B, Forlino A, Witten PE. More Bone with Less Minerals? The Effects of Dietary Phosphorus on the Post-Cranial Skeleton in Zebrafish. Int J Mol Sci 2020; 21:ijms21155429. [PMID: 32751494 PMCID: PMC7432380 DOI: 10.3390/ijms21155429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels.
Collapse
Affiliation(s)
- Silvia Cotti
- Evolutionary Developmental Biology Group, Department of Biology, Ghent University, 9000 Ghent, Belgium; (S.C.); (A.H.)
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, 27100 Pavia, Italy;
| | - Ann Huysseune
- Evolutionary Developmental Biology Group, Department of Biology, Ghent University, 9000 Ghent, Belgium; (S.C.); (A.H.)
| | | | - Martin Rücklin
- Department of Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, 2333 Leiden, The Netherlands;
| | - Federica Marone
- X-ray Tomography Group, Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland;
| | - Eva M. Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; (E.M.W.); (I.A.K.F.); (B.B.)
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; (E.M.W.); (I.A.K.F.); (B.B.)
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; (E.M.W.); (I.A.K.F.); (B.B.)
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, 27100 Pavia, Italy;
| | - P. Eckhard Witten
- Evolutionary Developmental Biology Group, Department of Biology, Ghent University, 9000 Ghent, Belgium; (S.C.); (A.H.)
- Correspondence:
| |
Collapse
|
9
|
Sørensen KU, Shiguetomi‐Medina JM, Poulsen HD. Mineralisation of tubular bones is affected differently by low phosphorus supply in growing-finishing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3628-3634. [PMID: 30628081 PMCID: PMC6593434 DOI: 10.1002/jsfa.9583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phosphorus (P) supply is essential for bone mineralisation. Reduced P may result in osteopenia, whereas excessive P may result in environmental impacts. The objective was to study the long-term effect of three dietary P levels on net bone mineralisation in growing-finishing pigs. Eighteen female pigs were fed low P (LP (4.1)), medium P (MP (6.2)) or high P (HP (8.9 g P kg-1 DM)) from 39.7 until 110 kg. Trabecular, cortical and overall bone mineral density (BMD), ash, calcium (Ca) and P were determined after slaughter. RESULTS The LP diet generally reduced the BMD, ash, Ca and P in all bones, though all measures were markedly lowered in femur compared with humerus. The trabecular BMD in LP pigs was only different in the distal section compared to the MP-fed pigs (P < 0.05). In addition, ash, Ca and P were lower in the proximal and distal sections. No significant effect of HP was seen. Conclusively, LP caused lower net bone mineralisation, mainly of femur. The trabecular tissue of the distal bones seems to be most metabolically active. CONCLUSIONS The MP level was sufficient for net bone mineralisation. Femur is recommended for studying bone fragility whereas humerus seems useful to study increased P retention. © 2019 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Kristina U Sørensen
- Department of Animal Science, Faculty of Science and TechnologyAarhus UniversityTjeleDenmark
| | | | - Hanne D Poulsen
- Department of Animal Science, Faculty of Science and TechnologyAarhus UniversityTjeleDenmark
| |
Collapse
|
10
|
Palmieri S, Bedeschi MF, Cairoli E, Morelli V, Lunati ME, Scillitani A, Carnevale V, Lalatta F, Barbieri AM, Orsi E, Spada A, Chiodini I, Eller-Vainicher C. Bone involvement and mineral metabolism in Williams' syndrome. J Endocrinol Invest 2019; 42:337-344. [PMID: 30030744 DOI: 10.1007/s40618-018-0924-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
CONTEXT The previous studies suggested a possible increased risk of hypercalcaemia and reduced bone mineral density (BMD) in Williams' syndrome (WS). However, an extensive study regarding bone metabolism has never been performed. OBJECTIVE To investigate bone health in young adults with WS. DESIGN Cross-sectional study. SETTINGS Endocrinology and Metabolic Diseases and Medical Genetic Units. PATIENTS 29 WS young adults and 29 age- and sex-matched controls. MAIN OUTCOME MEASURES In all subjects, calcium, phosphorus, bone alkaline phosphatase (bALP), parathyroid hormone (PTH), 25-hydroxyvitamin D (25OHVitD), osteocalcin (OC), carboxyterminal cross-linking telopeptide of type I collagen (CTX), 24-h urinary calcium and phosphorus, femoral-neck (FN) and lumbar-spine (LS) BMD and vertebral fractures (VFx) were assessed. In 19 patients, serum fibroblast growth factor-23 (FGF23) levels were measured. RESULTS WS patients showed lower phosphorus (3.1 ± 0.7 vs 3.8 ± 0.5 mg/dL, p = 0.0001) and TmP/GFR (0.81 ± 0.32 vs 1.06 ± 0.25 mmol/L, p = 0.001), and an increased prevalence (p = 0.005) of hypophosphoremia (34.5 vs 3.4%) and reduced TmP/GFR (37.9 vs 3.4%). Moreover, bALP (26.3 ± 8.5 vs 35.0 ± 8.0 U/L), PTH (24.5 ± 12.6 vs 33.7 ± 10.8 pg/mL), OC (19.4 ± 5.3 vs 24.5 ± 8.7 ng/mL), and FN-BMD (- 0.51 ± 0.32 vs 0.36 ± 0.32) were significantly lower (p < 0.05), while CTX significantly higher (401.2 ± 169.3 vs 322.3 ± 122.4 pg/mL, p < 0.05). Serum and urinary calcium and 25OHVitD levels, LS-BMD and VFx prevalence were comparable. No cases of hypercalcemia and suppressed FGF23 were documented. Patients with low vs normal phosphorus and low vs normal TmP/GFR showed comparable FGF23 levels. FGF23 did not correlate with phosphorus and TmP/GFR values. CONCLUSIONS Adult WS patients have reduced TmP/GFR, inappropriately normal FGF23 levels and an uncoupled bone turnover with low femoral BMD.
Collapse
Affiliation(s)
- S Palmieri
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy.
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| | - M F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - E Cairoli
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | - V Morelli
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - M E Lunati
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - A Scillitani
- Unit of Endocrinology, "Casa Sollievo della Sofferenza", Hospital, IRCCS, San Giovanni Rotondo, Foggia, Italy
| | - V Carnevale
- Unit of Internal Medicine, "Casa Sollievo della Sofferenza", Hospital, IRCCS, San Giovanni Rotondo, Foggia, Italy
| | - F Lalatta
- Medical Genetic Unit, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - A M Barbieri
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - E Orsi
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - A Spada
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | - I Chiodini
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - C Eller-Vainicher
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
11
|
Abstract
Rickets is a bone disease associated with abnormal serum calcium and phosphate levels. The clinical presentation is heterogeneous and depends on the age of onset and pathogenesis but includes bowing deformities of the legs, short stature and widening of joints. The disorder can be caused by nutritional deficiencies or genetic defects. Mutations in genes encoding proteins involved in vitamin D metabolism or action, fibroblast growth factor 23 (FGF23) production or degradation, renal phosphate handling or bone mineralization have been identified. The prevalence of nutritional rickets has substantially declined compared with the prevalence 200 years ago, but the condition has been re-emerging even in some well-resourced countries; prematurely born infants or breastfed infants who have dark skin types are particularly at risk. Diagnosis is usually established by medical history, physical examination, biochemical tests and radiography. Prevention is possible only for nutritional rickets and includes supplementation or food fortification with calcium and vitamin D either alone or in combination with sunlight exposure. Treatment of typical nutritional rickets includes calcium and/or vitamin D supplementation, although instances infrequently occur in which phosphate repletion may be necessary. Management of heritable types of rickets associated with defects in vitamin D metabolism or activation involves the administration of vitamin D metabolites. Oral phosphate supplementation is usually indicated for FGF23-independent phosphopenic rickets, whereas the conventional treatment of FGF23-dependent types of rickets includes a combination of phosphate and activated vitamin D; an anti-FGF23 antibody has shown promising results and is under further study.
Collapse
|
12
|
Anderson ST, Kidd LJ, Benvenutti MA, Fletcher MT, Dixon RM. New candidate markers of phosphorus status in beef breeder cows. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Determining the phosphorus (P) status of cattle grazing P-deficient rangelands in northern Australia is important for improving animal production in these areas. Plasma inorganic P concentration is currently the best diagnostic marker of dietary P deficiency in growing cattle but is not suitable for assessing the P status of breeder cows, which often mobilise substantial bone and soft tissue reserves in late pregnancy and lactation. Markers of bone turnover offer potential as markers of P status in cattle, as they reflect bone mobilisation or bone formation. Recent experiments investigating the physiology of beef breeder cows during diet P deficiency have indicated that the ratio of plasma total calcium concentration to plasma inorganic P concentration might be suitable as a simple index of P deficiency. However, a more specific measure of increased bone mobilisation in P-deficient breeders is plasma concentration of C-terminal telopeptide of Type 1 collagen. Also, plasma concentration of bone alkaline phosphatase is a marker of defective bone mineralisation in dietary P deficiency. These candidate markers warrant further investigation to determine their predictive value for P deficiency in cattle.
Collapse
|
13
|
Ko FC, Martins JS, Reddy P, Bragdon B, Hussein AI, Gerstenfeld LC, Demay MB. Acute Phosphate Restriction Impairs Bone Formation and Increases Marrow Adipose Tissue in Growing Mice. J Bone Miner Res 2016; 31:2204-2214. [PMID: 27324177 DOI: 10.1002/jbmr.2891] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 01/28/2023]
Abstract
Phosphate plays a critical role in chondrocyte maturation and skeletal mineralization. Studies examining the consequences of dietary phosphate restriction in growing mice demonstrated not only the development of rickets, but also a dramatic decrease in bone accompanied by increased marrow adipose tissue (MAT). Thus studies were undertaken to determine the effects of dietary phosphate restriction on bone formation and bone marrow stromal cell (BMSC) differentiation. Acute phosphate restriction of 28-day-old mice profoundly inhibited bone formation within 48 hours. It also resulted in increased mRNA expression of the early osteolineage markers Sox9 and Runt-related transcription factor 2 (Runx2), accompanied by decreased expression of the late osteolineage markers Osterix and Osteocalcin in BMSCs and osteoblasts, suggesting that phosphate restriction arrests osteoblast differentiation between Runx2 and Osterix. Increased expression of PPARγ and CEBPα, key regulators of adipogenic differentiation, was observed within 1 week of dietary phosphate restriction and was followed by a 13-fold increase in MAT at 3 weeks of phosphate restriction. In vitro phosphate restriction did not alter BMSC osteogenic or adipogenic colony formation, implicating aberrant paracrine or endocrine signaling in the in vivo phenotype. Because BMP signaling regulates the transition between Runx2 and Osterix, this pathway was interrogated. A dramatic decrease in pSmad1/5/9 immunoreactivity was observed in the osteoblasts of phosphate-restricted mice on day 31 (d31) and d35. This was accompanied by attenuated expression of the BMP target genes Id1, KLF10, and Foxc2, the latter of which promotes osteogenic and angiogenic differentiation while impairing adipogenesis. A decrease in expression of the Notch target gene Hey1, a BMP-regulated gene that governs angiogenesis, was also observed in phosphate-restricted mice, in association with decreased metaphyseal marrow vasculature. Whereas circulating phosphate levels are known to control growth plate maturation and skeletal mineralization, these studies reveal novel consequences of phosphate restriction in the regulation of bone formation and osteoblast differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Frank C Ko
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Pooja Reddy
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Beth Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Amira I Hussein
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Do Ca2+-chelating polysaccharides reduce calcium ion release from gypsum-based biomaterials? Open Life Sci 2013. [DOI: 10.2478/s11535-013-0191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
15
|
Cowan CM, Zhang X, James AW, Kim TM, Sun N, Wu B, Ting K, Soo C. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2. Biochem Biophys Res Commun 2012; 422:351-7. [PMID: 22580275 DOI: 10.1016/j.bbrc.2012.04.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/14/2012] [Indexed: 11/15/2022]
Abstract
NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 2011; 68:205-18. [PMID: 20848155 PMCID: PMC11114507 DOI: 10.1007/s00018-010-0527-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/02/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023]
Abstract
Although considerable advances in our understanding of the mechanisms of phosphate homeostasis and skeleton mineralization have recently been made, little is known about the initial events involving the detection of changes in the phosphate serum concentrations and the subsequent downstream regulation cascade. Recent data has strengthened a long-established hypothesis that a phosphate-sensing mechanism may be present in various organs. Such a phosphate sensor would detect changes in serum or local phosphate concentration and would inform the body, the local environment, or the individual cell. This suggests that phosphate in itself could represent a signal regulating multiple factors necessary for diverse biological processes such as bone or vascular calcification. This review summarizes findings supporting the possibility that phosphate represents a signaling molecule, particularly in bone and cartilage, but also in other tissues. The involvement of various signaling pathways (ERK1/2), transcription factors (Fra-1, Runx2) and phosphate transporters (PiT1, PiT2) is discussed.
Collapse
Affiliation(s)
- Solmaz Khoshniat
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Annabelle Bourgine
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Marion Julien
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Pierre Weiss
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Jérôme Guicheux
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Laurent Beck
- Growth and Signalling Research Center, INSERM, U845, 75015 Paris, France
- Faculté de Médecine, Centre de Recherche, INSERM U845, Université Paris Descartes, 156 Rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
17
|
Affiliation(s)
- Dominique Prié
- Growth and Signaling Research Center and the Department of Physiology, INSERM Unité 845, Paris Descartes University, Paris, France
| | | |
Collapse
|
18
|
|
19
|
Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF, Wittrant Y, Masson M, Weiss P, Beck L, Magne D, Guicheux J. Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 2009; 24:1856-68. [PMID: 19419315 DOI: 10.1359/jbmr.090508] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inorganic phosphate (Pi) and the matrix Gla protein (MGP) are key regulators of bone formation. We have recently shown that Pi upregulates MGP in growth plate chondrocytes, which may represent a negative feedback loop for the control of mineralization. Osteoblasts from Fra-1-deleted mice express low levels of MGP, whereas the expression of MGP is elevated in Fra-1 transgenic osteoblasts, suggesting a role for Fra-1 in MGP expression and bone formation. In this study, we aimed at deciphering the relationships between Pi and MGP in osteoblasts to determine the molecular mechanisms involved in the Pi-dependent regulation of MGP. In MC3T3-E1 cells and primary calvaria-derived osteoblasts, Pi increased MGP and Fra-1 expression at both the mRNA and protein levels. We also found that Pi enhanced the phosphorylation of ERK1/2. U0126 (MEK1/2 inhibitor) suppressed Pi-stimulated MGP and Fra-1 expression, indicating that ERK1/2 is required for Pi-dependent regulation of MGP and Fra-1. In addition, using in vitro DNA binding and chromatin immunoprecipitation assays, we showed that Fra-1 interacts with the MGP promoter in response to Pi in MC3T3-E1 cells. Finally, we found that in fra-1 knockdown MC3T3-E1 osteoblasts, the level of MGP expression is no more significantly upregulated by Pi. We further showed that primary osteoblasts from Fra-1-deficient mice failed to exhibit a Pi-dependent stimulation of MGP expression. These data show, for the first time, that Pi regulates MGP expression in osteoblasts through the ERK1/2-Fra-1 pathway.
Collapse
Affiliation(s)
- Marion Julien
- INSERM, U 791, Laboratoire d'Ingénierie des Tissus Ostéo-Articulaires et Dentaires, Groupe Physiopathologie des Tissus Squelettiques et Ingénierie du Cartilage, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kaufman AM, Abraham JA, Kattapuram SV, Hornicek FJ. Orthopaedic . radiology . pathology conference: Chronic multifocal chest and leg pain in a 34-year-old woman. Clin Orthop Relat Res 2009; 467:1112-7. [PMID: 18810567 PMCID: PMC2650065 DOI: 10.1007/s11999-008-0516-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/27/2008] [Indexed: 01/31/2023]
Affiliation(s)
- Adam M. Kaufman
- Harvard Medical School, Boston, MA USA ,Department of Orthopaedics, Duke University Hospital, Duke Orthopaedic Surgery, 200 Trent Dr., 5313 Duke Clinic Bldg., Box 3000, Durham, NC 27710 USA
| | - John A. Abraham
- Department of Orthopaedics, Brigham and Women’s Hospital, Boston, MA USA
| | | | | |
Collapse
|
21
|
Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 2009; 44:11-6. [PMID: 18977320 DOI: 10.1016/j.bone.2008.09.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/10/2008] [Accepted: 09/20/2008] [Indexed: 10/21/2022]
Abstract
Osteocytes are cells buried in the bone matrix. They largely contribute to the regulation of bone remodeling in response to mechanical and microenvironmental changes. Much has been recognized in recent years regarding the role of osteocytes in bone homeostasis, nevertheless their ability to directly contribute to mineral equilibrium has been neglected. In the light of the renewed interest in their biology, we revisited the literature and discuss experimental evidence favoring the hypothesis that osteocytes are able to remove and replace the bone matrix according to the systemic needs of the body. We also reviewed reports against this theory, thus providing current views of what is known so far on the ability of osteocytes to mobilize bone mineral. This re-examination of osteocytic osteolysis might stimulate new interest and open new perspectives in osteocyte biology and in the cellular mechanisms that control bone homeostasis.
Collapse
Affiliation(s)
- Anna Teti
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
22
|
Hayashibara T, Hiraga T, Sugita A, Wang L, Hata K, Ooshima T, Yoneda T. Regulation of osteoclast differentiation and function by phosphate: potential role of osteoclasts in the skeletal abnormalities in hypophosphatemic conditions. J Bone Miner Res 2007; 22:1743-51. [PMID: 17638577 DOI: 10.1359/jbmr.070709] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Mice fed with a low Pi diet exhibited decreased osteoclast number. Hyp mice also showed decreased osteoclasts, and high Pi reversed it. Low Pi reduced osteoclast formation and bone resorption in vitro. Hypophosphatemia may suppress osteoclast differentiation/function, leading to skeletal abnormalities. INTRODUCTION Skeletal abnormalities seen in hypophosphatemic disorders indicate a critical role of phosphate (Pi) in skeletogenesis. However, the role of osteoclasts in the pathogenesis of the disturbed skeletogenesis is unclear. MATERIALS AND METHODS Mice fed with a low-Pi diet and Hyp mice that are characterized by hypophosphatemia and impaired osteogenesis were studied. Effects of Pi on osteoclast formation and bone resorption were also examined in vitro. RESULTS Histomorphometric examination showed that mice on a low-Pi diet exhibited decreased osteoclast number. Furthermore, osteoclast number in Hyp mice was also decreased compared with wildtype (WT) mice. Of note, feeding of Hyp mice with high-Pi diet significantly reversed hypophosphatemia, improved disturbed osteogenesis, and increased osteoclast number. Osteoclast-like cell (OLC) formation and bone resorption in Hyp bone marrow cells was not different from WT bone marrow cells. On the other hand, OLC formation and bone resorption were decreased in conjunction with reduced mRNA expression of RANKL in WT bone marrow cells cultured in the medium containing low Pi (0.5 mM). Recombinant human matrix extracellular phosphoglycoprotein (MEPE), a candidate for phosphatonin, also decreased osteoclast formation, whereas fibroblast growth factor 23 (FGF23), another phosphatonin candidate, showed no effects. CONCLUSIONS Our results suggest that Pi controls the differentiation and function of osteoclasts. These actions of Pi on osteoclasts may be associated with the pathogenesis of the skeletal abnormalities in hypophosphatemic disorders.
Collapse
Affiliation(s)
- Tetsuyuki Hayashibara
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
CONTEXT Although hypercalcemia is usually caused by primary hyperparathyroidism or malignancy, a number of other conditions can be important to consider. This review considers unusual causes of hypercalcemia that are generally not found in reviews on this subject. EVIDENCE ACQUISITION Articles describing rarely reported associations between hypercalcemia and unusual causes were identified through a computer search of the terms hypercalcemia/etiology and through the references listed in those articles. We grouped the 58 different reports into categories defined by a presumed etiology: increased levels of 1,25-dihydroxyvitamin D or PTHrP, occult milk-alkali syndrome, and undefined mechanisms. Reports in infants and children are listed separately, as are reports of pseudohypercalcemia, situations that are not truly hypercalcemic because the ionized calcium is normal. EVIDENCE SYNTHESIS In some situations, as this review points out, a number of unusual causes of hypercalcemia are important to consider. The search for an elusive cause of hypercalcemia is best accomplished by the most likely potential mechanism. An orderly search in this manner is likely to reveal the underlying cause. CONCLUSIONS That so many patients have been described with rare and usually poorly understood causes of hypercalcemia highlights our incomplete understanding of calcium metabolism in humans and suggests additional areas in which directed clinical investigation might improve our knowledge of the normal metabolism of calcium.
Collapse
Affiliation(s)
- Thomas P Jacobs
- Columbia University Medical Center, 161 Fort Washington Avenue, New York, New York 10032, USA.
| | | |
Collapse
|
24
|
Abstract
The spatial and temporal coordination of the many events required for osteogenic cells to create a mineralized matrix are only partially understood. The complexity of this process, and the nature of the final product, demand that these cells have mechanisms to carefully monitor events in the extracellular environment and have the ability to respond through cellular and molecular changes. The generation of inorganic phosphate during the process of differentiation may be one such signal. In addition to the requirement of inorganic phosphate as a component of hydroxyapatite mineral, Ca(10)(PO(4))(6)(OH)(2), a number of studies have also suggested it is required in the events preceding mineralization. However, contrasting results, physiological relevance, and the lack of a clear mechanism(s) have created some debate as to the significance of elevated phosphate in the differentiation process. More recently, a number of studies have begun to shed light on possible cellular and molecular consequences of elevated intracellular inorganic phosphate. These results suggest a model in which the generation of inorganic phosphate during osteoblast differentiation may in and of itself represent a signal capable of facilitating the temporal coordination of expression and regulation of multiple factors necessary for mineralization. The regulation of protein function and gene expression by elevated inorganic phosphate during osteoblast differentiation may represent a mechanism by which mineralizing cells monitor and respond to the changing extracellular environment.
Collapse
Affiliation(s)
- George R Beck
- National Cancer Institute at Frederick, Center for Cancer Research, Basic Research Laboratory, Frederick, Maryland 21702, USA.
| |
Collapse
|
25
|
Tenenhouse HS, Gauthier C, Chau H, St-Arnaud R. 1α-Hydroxylase gene ablation and Pisupplementation inhibit renal calcification in mice homozygous for the disruptedNpt2agene. Am J Physiol Renal Physiol 2004; 286:F675-81. [PMID: 14656762 DOI: 10.1152/ajprenal.00362.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disruption of the major renal Na-phosphate (Pi) cotransporter gene Npt2a in mice leads to a substantial decrease in renal brush-border membrane Na-Picotransport, hypophosphatemia, and appropriate adaptive increases in renal 25-hydroxyvitamin D3-1α-hydroxylase (1αOHase) activity and the serum concentration of 1,25-dihydroxyvitamin D3[1,25(OH)2D]. The latter is associated with increased intestinal Ca absorption, hypercalcemia, hypercalciuria, and renal calcification in Npt2-/-mice. To determine the contribution of elevated serum 1,25(OH)2D levels to the development of hypercalciuria and nephrocalcinosis in Npt2-/-mice, we examined the effects of 1α OHase gene ablation and long-term Pisupplementation on urinary Ca excretion and renal calcification by microcomputed tomography. We show that the urinary Ca/creatinine ratio is significantly decreased in Npt2-/-/1α OHase-/-mice compared with Npt2-/-mice. In addition, renal calcification, determined by estimating the calcified volume to total renal volume (CV/TV), is reduced by ∼80% in Npt2-/-/1α OHase-/-mice compared with that in Npt2-/-mice. In Npt2-/-mice derived from dams fed a 1% Pidiet and maintained on the same diet, we observed a significant decrease in urinary Ca/creatinine that was also associated with ∼80% reduction in CV/TV when compared with counterparts fed a 0.6% diet. Taken together, the present data demonstrate that both 1α OHase gene ablation and Pisupplementation inhibit renal calcification in Npt2-/-mice and that 1,25(OH)2D is essential for the development of hypercalciuria and nephrocalcinosis in the mutant strain.
Collapse
Affiliation(s)
- Harriet S Tenenhouse
- McGill Univ.-Montreal Children's Hospital Research Institute, 4060 Ste-Cathe ine St. West, Montreal, Quebec, Canada H3Z 2Z3.
| | | | | | | |
Collapse
|
26
|
Beck GR, Knecht N. Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 2003; 278:41921-9. [PMID: 12920127 DOI: 10.1074/jbc.m304470200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of inorganic phosphate by alkaline phosphatase during osteoblast differentiation represents an important signaling event, although the molecular and cellular consequences are currently undefined. We have previously described osteopontin as a gene regulated by an increase in inorganic phosphate not only in osteoblasts but also in other cell types. We describe here the identification of specific signaling pathways required for the stimulation of osteopontin expression by inorganic phosphate. We have determined that phosphate selectively activates the extracellular signal-regulated kinase (ERK1/2) signaling pathway but does not activate the other mitogen-activated protein kinase signaling proteins, p38, or the c-Jun N-terminal kinase. In addition, our results suggest that cellular exposure to 10 mm inorganic phosphate causes a biphasic ERK1/2 activation. The second ERK1/2 activation is required for osteopontin regulation, whereas the first is not sufficient. Analysis of common protein kinase families has revealed that phosphate-induced osteopontin expression specifically uses a protein kinase C-dependent signaling pathway. In addition, our results suggest that protein kinase C and ERK1/2 are not part of the same pathway but constitute two distinct pathways. Finally, we have determined that the proteasomal activity is required not only for phosphate-induced expression of osteopontin but also for the induction of osteopontin in response to 12-O-tetradecanoylphorbol 13-acetate and okadaic acid. The data presented here define for the first time the ability of increased inorganic phosphate to stimulate specific signaling pathways resulting in functionally significant changes in gene expression and identify three important signaling pathways in the regulation of osteopontin.
Collapse
Affiliation(s)
- George R Beck
- National Cancer Institute-Frederick, Center for Cancer Research, Basic Research Laboratory, Bldg. 576 Rm. 110, Frederick, MD 21702, USA.
| | | |
Collapse
|
27
|
Kanatani M, Sugimoto T, Kano J, Kanzawa M, Chihara K. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity. J Cell Physiol 2003; 196:180-9. [PMID: 12767054 DOI: 10.1002/jcp.10270] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although high inorganic phosphate (Pi) concentration in culture media directly inhibits generation of new osteoclasts and also inhibits bone resorption by mature osteoclasts, its precise mechanism and the physiological role have not been elucidated. The present study was performed to investigate these issues. Increase in extracellular Pi concentration ([Pi](e)) (2.5-4 mM) concentration dependently inhibited 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or parathyroid hormone (PTH)-(1-34)-induced osteoclast-like cell formation from unfractionated bone cells in the presence of stromal cells. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited 1,25(OH)(2)D(3)-, PTH-(1-34)-, or receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced osteoclast-like cell formation from hemopoietic blast cells in the absence of stromal cells. Increase in [Pi](e) (2.5-4 mM) dose dependently stimulated the expression of osteoprotegerin (OPG) mRNA and increased the expression of OPG mRNA suppressed by PTH-(1-34) or 1,25(OH)(2)D(3) in unfractionated bone cells, while it did not affect RANKL mRNA. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited the bone-resorbing activity of isolated rabbit osteoclasts. Increase in [Pi](e) (4 mM) induced the apoptosis of isolated rabbit osteoclasts while it did not affect the apoptosis of osteoclast precursor cells and mouse macrophage-like cell line C7 cells that can differentiate into osteoclasts in the presence of RANKL and M-CSF. These results indicate that increase in [Pi](e) inhibits osteoclast differentiation both by up-regulating OPG expression and by direct action on osteoclast precursor cells. It is also indicated that increase in [Pi](e) inhibits osteoclastic activity at least in part by the direct induction of apoptosis of osteoclasts.
Collapse
Affiliation(s)
- Masanori Kanatani
- Division of Endocrinology/Metabolism, Neurology and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
28
|
Kanatani M, Sugimoto T, Kano J, Chihara K. IGF-I mediates the stimulatory effect of high phosphate concentration on osteoblastic cell proliferation. J Cell Physiol 2002; 190:306-12. [PMID: 11857446 DOI: 10.1002/jcp.10067] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although high concentrations of inorganic phosphate (Pi) are known to have a distinct anabolic effect on bone structure and metabolism, the precise mechanism by which phosphate possesses anabolic effect on bone formation has not been elucidated. The present study was performed to examine the effects of an increase in extracellular Pi concentration ([Pi](e)) on the proliferation of osteoblastic MC3T3-E1 cells. Increase in [Pi](e)(2-4 mM) dose-dependently stimulated DNA synthesis. Indomethacin, an inhibitor of prostaglandin synthesis, did not affect high [Pi](e)-induced DNA synthesis. DNA synthesis first increased affer a 3 h exposure to 4 mM [Pi](e) and its stimulatory effect was observed in a time-dependent manner up to 24 h. On the other hand, DNA synthesis was significantly but partially blocked by cycloheximide, suggesting that this stimulatory effect of high [Pi](e) was at least in part dependent on new protein synthesis. There is recent evidence that MG3T3-E1 cells constitutively produce and secrete insulin-like growth factor-I (IGF-I) and possess IGF-I receptors. IGF-I antiserum (1:10,000 to 1:100) significantly but partially blocked the stimulatory effect of [Pi](e) (4 mM) on DNA synthesis in a concentration-dependent manner. A neutralizing IGF-I antibody as well as IGF-I receptor antibody also significantly but partially blocked DNA synthesis stimulated by high [Pi](e) in a concentration-dependent manner, indicating that IGF-I at least in part mediated the high [Pi](e)-induced effect. Actually, high [Pi](e) significantly increased the secretion of immunoreactive IGF-I into the medium as well as the expression of IGF-I mRNA. Present findings indicate that an increase in [Pi](e) stimulated DNA synthesis partly via an increase in IGF-I action.
Collapse
Affiliation(s)
- Masanori Kanatani
- Third Division, Department of Medicine, Kobe University School of Medicine, Kobe, Japan
| | | | | | | |
Collapse
|
29
|
Deol H, Stasko SE, De Niu P, James KA, Wagner GF. Post-natal ontogeny of stanniocalcin gene expression in rodent kidney and regulation by dietary calcium and phosphate. Kidney Int 2001; 60:2142-52. [PMID: 11737588 DOI: 10.1046/j.1523-1755.2001.00066.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Stanniocalcin (STC) is a polypeptide hormone first discovered in fish and more recently in mammals. In mammals, STC is produced in many tissues and does not normally circulate in the blood. In kidney and gut, STC regulates phosphate fluxes across the transporting epithelia, whereas in brain it protects neurons against cerebral ischemia and promotes neuronal cell differentiation. The gene is highly expressed in ovary and dramatically up-regulated during pregnancy and nursing. Gene expression also is high during mammalian embryogenesis, particularly in kidney where the hormone signals between epithelial and mesenchymal cells during nephrogenesis. METHODS This study examined the patterns of STC gene expression and protein distribution in the mouse kidney over the course of post-natal development. Further, because STC is a regulator of renal phosphate transport, we also examined the effects of changing levels of dietary calcium and phosphate on renal levels of STC gene expression in adult rats. RESULTS STC mRNA levels in the neonate kidney were found to be tenfold higher than adults. Isotopic in situ hybridization of neonate kidneys revealed that most, if not all, STC mRNA was confined to collecting duct (CD) cells, as is the case in adults. STC protein on the other hand was found in proximal tubule, thick ascending limb and distal tubules in addition to CD cells. This suggests that, as in adults, the more proximal nephron segments in neonates are targeted by CD-derived STC and sequester large amounts of hormone. The addition of 1% calcium gluconate to the drinking water significantly reduced STC mRNA levels in inner medullary CD cells of both males and females, but not those in the cortex and outer medulla. Placing animals on low phosphate diets also reduced STC mRNA levels, but uniquely in outer medullary and cortical CD cells, whereas a high phosphate diet increased transcript levels in the same regions. CONCLUSIONS These findings suggest that STC may be of unique importance to neonates. They also suggest that changes in dietary calcium and phosphate can alter renal levels of STC gene expression, but that these effects vary between the early and late segments of the collecting duct.
Collapse
Affiliation(s)
- H Deol
- Department of Physiology, Faculty of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Gupta A, Tenenhouse HS, Hoag HM, Wang D, Khadeer MA, Namba N, Feng X, Hruska KA. Identification of the type II Na(+)-Pi cotransporter (Npt2) in the osteoclast and the skeletal phenotype of Npt2-/- mice. Bone 2001; 29:467-76. [PMID: 11704500 DOI: 10.1016/s8756-3282(01)00601-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously reported that a type II sodium phosphate (Na(+)-Pi) cotransporter (Npt2) protein is expressed in osteoclasts and that Pi limitation decreases osteoclast-mediated bone resorption in vitro. We also demonstrated that mice homozygous for the disrupted Npt2 gene (Npt2-/-) exhibit a unique age-dependent bone phenotype that is associated with significant hypophosphatemia. In the present study, we sought to identify the Npt2 cDNA in mouse osteoclasts and characterize the impact of Npt2 gene ablation on osteoclast function and bone histomorphometry. We demonstrate that the osteoclast Npt2 cDNA sequence is identical to that of the proximal renal tubule and, thus, not an isoform or splice variant thereof. Histomorphometric analysis revealed that, at 25 days of age, Npt2-/- mice exhibited a reduction in osteoclast number and eroded perimeters, relative to wild-type mice. Moreover, although the number of metaphyseal trabeculae was reduced in 25-day-old Npt2-/- mice, trabecular bone volume was normal due to increased trabecular width. At 115 days of age, the decrease in osteoclast index persisted in Npt2-/- mice relative to wild-type littermates. However, mineralizing and osteoblast surfaces and bone formation rates were increased, and, although trabecular number was still reduced, trabecular bone volume was higher than that of wild-type mice. These data demonstrate a link between osteoclast activity and trabecular development in young Npt2-/- mice, and suggest that an age-related adaptation to Npt2 deficiency is apparent in osteoclast and osteoblast function and bone formation.
Collapse
Affiliation(s)
- A Gupta
- Department of Oral & Craniofacial Biological Sciences, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gepp H, Koch M, Schwille PO, Erben RG, Rümenapf G, Schmiedl A, Fries W. Vagus-sparing gastric fundectomy in the rat: development of osteopenia, relationship to urinary phosphate and net acid excretion, serum gastrin and vitamin D. RESEARCH IN EXPERIMENTAL MEDICINE. ZEITSCHRIFT FUR DIE GESAMTE EXPERIMENTELLE MEDIZIN EINSCHLIESSLICH EXPERIMENTELLER CHIRURGIE 2000; 200:1-16. [PMID: 11197917 DOI: 10.1007/s004330000048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In man and experimental animals, partial and total gastrectomy and gastric vagotomies disturb extracellular mineral homeostasis, osteopenia being among the late outcomes. The sequence of events is complex and insufficiently understood. We report on the long-term effects of gastric fundectomy (FX; FX-1, n=11; sham-operated controls, n=14) sparing gastric vagal fibers at the lesser curvature in the rat, a procedure eliminating gastric acid production but preserving gastric reservoir function. After FX-1 there was a marked increase of gastrinemia [FX-1: 590 (SE 95); controls: 82 (5) pg-equiv/ml; P<0.001], serum 1,25-dihydroxyvitamin D [FX-1: 188 (17); controls: 86 (6) pg/ml; P<0.001], phosphaturia [FX-1: 32 (2); controls 23 (2) micromol/h; P<0.001] due to increased fractional phosphate clearance, elevated urinary net acid [FX-1: 21 (2); controls: 16 (1) micromol/h; P=0.03], and low urinary pH. The urinary excretion of hydroxyproline was increased [FX-1: 137 (15); controls: 99 (8) micromol/h; P=0.01], and crosslinks were also high. These changes were associated with a significant decrease of bone ash calcium, magnesium, and phosphorus. Bone histomorphometry revealed signs of high bone turnover. No signs of hyperparathyroidism were detectable. Acute stimulation of serum gastrin by gastric acid abolishing omeprazole failed to provoke extra-osseous changes, as seen in the long-term after fundectomy. It was concluded that the described type of fundectomy disturbs gastrinemia, acid-base and phosphorus metabolism, thereby initiating osteopenia. This animal model may be suitable for research into post-gastrectomy bone disease.
Collapse
Affiliation(s)
- H Gepp
- Division of Experimental Surgery and Endocrine Research Laboratory, Friedrich-Alexander University, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Lemann J, Adams ND, Wilz DR, Brenes LG. Acid and mineral balances and bone in familial proximal renal tubular acidosis. Kidney Int 2000; 58:1267-77. [PMID: 10972690 DOI: 10.1046/j.1523-1755.2000.00282.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Metabolic acidosis caused by increased rates of fixed acid production is associated with increased urinary excretion of Ca and negative Ca balances. Metabolic acidosis caused by a reduced capacity of the kidneys to excrete acid contributes to the development of bone disease in the course of chronic renal failure and may be associated with bone disease among some patients with renal tubular acidosis. METHODS To assess the effects of life-long metabolic acidosis alone in the absence of other physiological disturbances, we measured the net balances of fixed acid and minerals in two brothers in a Costa Rican family with hereditary proximal renal tubular acidosis. Bone radiographs were assessed, and radial bone densities were measured. On a subsequent occasion, transiliac bone biopsies, following double-tetracycline labeling, were obtained from these two patients and an unaffected brother. RESULTS During the balance studies, serum [HCO3-] concentrations of the two affected patients were stable at 12.5 +/- 0.9 and 19.2 +/- 0.7 mmol/L, respectively. Their rates of net fixed acid production were normal and appropriate for their body weights, averaging 0.90 and 1.02 mEq/kg/day. Because their distal renal tubular function was normal, they were capable of acidifying their urine maximally, allowing sufficient urinary excretion of titratable acid and ammonium to maintain net acid excretion at a level that matched acid production. Thus, their acid balances were near zero, as observed among healthy subjects, at -1.9 +/- 2.3 and -2.2 +/- 2.2 mEq/day, respectively. Their rates of urinary Ca excretion were normal at 1.6 +/- 0.3 and 2.7 +/- 2.4 mmol/day, and the their balances of Ca and other minerals were close to zero so that ongoing bone loss was not occurring despite the acidosis. Nevertheless, their heights, relative to their ages, were shorter than the heights of their unaffected relatives. Their radial bone densities were lower than normal for their age and sex, and their iliac cortices were thinner than that of their unaffected brother. However, they had no histomorphometric evidence of osteomalacia or osteitis fibrosa, and their rates of bone mineralization were normal. CONCLUSIONS The results indicate that this chronic metabolic acidosis reduces growth, including that of bone. We speculate, without direct supporting evidence, that bone stores of HCO3-/CO3= are reduced, as has been observed in patients with the metabolic acidosis of chronic renal failure and in experimental metabolic acidosis in animals.
Collapse
Affiliation(s)
- J Lemann
- Nephrology Division, Department of Medicine and Clinical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | | | |
Collapse
|
33
|
Sanchez CP, Kuizon BD, Abdella PA, Jüppner H, Salusky IB, Goodman WG. Impaired growth, delayed ossification, and reduced osteoclastic activity in the growth plate of calcium-supplemented rats with renal failure. Endocrinology 2000; 141:1536-44. [PMID: 10746661 DOI: 10.1210/endo.141.4.7436] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Linear growth is reduced in prepubertal children with adynamic renal osteodystrophy, suggesting that the proliferation and/or differentiation of epiphyseal growth plate chondrocytes is abnormal in this disorder. To examine this issue, in situ hybridization and histochemistry were used to measure selected markers of endochondral bone formation and bone resorption in the proximal tibia of subtotally nephrectomized rats fed a high calcium diet to induce biochemical changes consistent with adynamic osteodystrophy. Blood ionized calcium concentrations were higher and serum PTH levels were lower in nephrectomized, calcium-supplemented rats than in either intact or nephrectomized control animals. Linear growth and tibial length were reduced, but messenger RNA levels for type II collagen, type X collagen, and the PTH/PTHrP receptor did not differ from control values in nephrectomized rats given supplemental calcium. In contrast, both the width of epiphyseal cartilage and the height of the zone of hypertrophic chondrocytes were greater in calcium-supplemented nephrectomized rats. These morphological changes were associated with decreases in histochemical staining for tartrate-resistant acid phosphatase and lower levels of messenger RNA expression for the matrix metalloproteinase MMP-9/gelatinase B immediately adjacent to the epiphyseal growth plate. Diminished chondroclastic/osteoclastic activity alters growth plate morphology and adversely affects linear bone growth in calcium-supplemented, nephrectomized rats.
Collapse
Affiliation(s)
- C P Sanchez
- Department of Pediatrics, School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
34
|
Schmiedl A, Schwille PO, Stühler C, Göhl J, Rümenapf G. Low bone mineral density after total gastrectomy in males: a preliminary report emphasizing the possible significance of urinary net acid excretion, serum gastrin and phosphorus. Clin Chem Lab Med 1999; 37:739-44. [PMID: 10510732 DOI: 10.1515/cclm.1999.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bone mineral density (BMD) and the associated extracellular status of mineral and acid-base metabolism were evaluated in 11 males, 3-18 years after total gastrectomy (GX). In the lumbar spine, but not in the femoral neck, BMD was decreased in seven, normal in three, and falsely high in one individual. Relative to the limits of normalcy, fasting serum levels of gastrin were low, but normal for calcium, phosphorus, parathyroid hormone, calcitonin and vitamin D, while the level of total alkaline phosphatase was elevated; fasting urine pH and calcium were low, while phosphorus and net acid were high. Regression analyses revealed serum gastrin and phosphorus, and urinary net acid as possible predictors of BMD. It was concluded that over the long-term GX evokes low BMD, but not hyperparathyroidism and deranged vitamin D metabolites. Future studies may focus on gastrin, parathyroid hormone-independent hyperphosphaturia and disturbed acid-base metabolism as indicators of a new extra-cellular equilibrium of minerals.
Collapse
Affiliation(s)
- A Schmiedl
- Mineral Metabolism and Endocrine Research Laboratory, University of Erlangen, Germany
| | | | | | | | | |
Collapse
|
35
|
Schoenmakers I, Hazewinkel HA, van den Brom WE. Excessive Ca and P intake during early maturation in dogs alters Ca and P balance without long-term effects after dietary normalization. J Nutr 1999; 129:1068-74. [PMID: 10222401 DOI: 10.1093/jn/129.5.1068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Calcium (Ca) and phosphorus (P) balance is important for skeletal development. Although the effects of deficiencies are well known, reports on the effects of excessive Ca and P supply are relatively scarce. Epidemiologic data and a few controlled studies have shown that skeletal abnormalities may develop when Ca intake is excessive, particularly in periods of rapid growth. Changes in Ca and P balance during and/or after a high Ca intake are thought to underlie this phenomenon. In this study, the effects of excessive Ca (3.1 g/kg dry matter) or Ca and P (Ca 3.1 g/kg, P 2.8 g/kg) intake on Ca and P balance in young, rapidly growing dogs during (for the period from 3 to 17 wk of age) and after (for the period from 17 to 27 wk of age) high Ca and P intake were compared with findings in age-matched controls with normal Ca and P intakes (Ca 1.0 g/kg, P 0.8 g/kg). Dogs fed a high Ca diet developed hypercalcemia, and food intake and fractional absorption of Ca and P were significantly lower at 15 wk of age, whereas endogenous fecal and renal Ca excretion were significantly higher than in controls. This resulted in significantly higher Ca retention than in controls only at 9 wk of age, and in disproportionate absorption of Ca and P. In dogs fed a high Ca and P diet, normocalcemia was maintained, fractional absorption of Ca and P were significantly lower at 9 and 15 wk of age, but retention of both was significantly higher at 9 wk than in controls. The endogenous fecal Ca and renal P losses were significantly higher, but renal Ca excretion was not different from that in controls. After normalization of Ca and P intake, Ca and P balance did not differ among groups. In conclusion, excessive Ca and P intake during early maturation alters Ca and P balance, but does not influence Ca and P balance after dietary normalization.
Collapse
Affiliation(s)
- I Schoenmakers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | |
Collapse
|
36
|
Jara A, Lee E, Stauber D, Moatamed F, Felsenfeld AJ, Kleeman CR. Phosphate depletion in the rat: effect of bisphosphonates and the calcemic response to PTH. Kidney Int 1999; 55:1434-43. [PMID: 10201008 DOI: 10.1046/j.1523-1755.1999.00395.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The removal of phosphate from the diet of the growing rat rapidly produces hypercalcemia, hypophosphatemia, hypercalciuria, and hypophosphaturia. Increased calcium efflux from bone has been shown to be the important cause of the hypercalcemia and hypercalciuria. It has been proposed that the increased calcium efflux from bone is osteoclast mediated. Because bisphosphonates have been shown to inhibit osteoclast-mediated bone resorption, this study was performed to determine whether bisphosphonate-induced inhibition of osteoclast function changed the biochemical and bone effects induced by phosphate depletion. METHODS Four groups of pair-fed rats were studied: (a) low-phosphate diet (LPD; phosphate less than 0.05%), (b) LPD plus the administration of the bisphosphonate Pamidronate (APD; LPD + APD), (c) normal diet (ND, 0.6% phosphate), and (d) ND + APD. All diets contained 0.6% calcium. A high dose of APD was administered subcutaneously (0.8 mg/kg) two days before the start of the study diet and on days 2, 6, and 9 during the 11 days of the study diet. On day 10, a 24-hour urine was collected, and on day 11, rats were either sacrificed or received an additional APD dose before a 48-hour parathyroid hormone (PTH) infusion (0.066 microgram/100 g/hr) via a subcutaneously implanted miniosmotic pump. RESULTS Serum and urinary calcium were greater in the LPD and LPD + APD groups than in the ND and ND + APD groups [serum, 11.12 +/- 0.34 and 11.57 +/- 0.45 vs. 9.49 +/- 0.17 and 9.48 +/- 0.15 mg/dl (mean +/- SE), P < 0.05; and urine, 8.78 +/- 2.74 and 16.30 +/- 4.68 vs. 0.32 +/- 0.09 and 0.67 +/- 0.28 mg/24 hr, P < 0.05]. Serum PTH and serum and urinary phosphorus were less in the LPD and LPD + APD than in the ND and ND + APD groups (P < 0.05). The calcemic response to PTH was less (P < 0.05) in the LPD and LPD + APD groups than in the ND group and was less (P = 0.05) in the LPD + APD than in the ND + APD group. Bone histology showed that phosphate depletion increased the osteoblast and osteoclast surface, and treatment with APD reduced the osteoblast surface (LPD vs. LPD + APD, 38 +/- 4 vs. 4 +/- 2%, P < 0.05, and ND vs. ND + APD, 20 +/- 2 vs. 5 +/- 2%, P < 0.05) and markedly altered osteoclast morphology by inducing cytoplasmic vacuoles. CONCLUSIONS (a) Phosphate depletion induced hypercalcemia and hypercalciuria that were not reduced by APD administration. (b) The calcemic response to PTH was reduced in phosphate-depleted rats and was unaffected by APD administration in normal and phosphate-depleted rats, and (c) APD administration markedly changed bone histology without affecting the biochemical changes induced by phosphate depletion.
Collapse
Affiliation(s)
- A Jara
- Division of Nephrology, West Los Angeles VA Medical Center, USA
| | | | | | | | | | | |
Collapse
|
37
|
Schwille PO, Herrmann U, Schmiedl A, Kissler H, Wipplinger J, Manoharan M. Urinary phosphate excretion in the pathophysiology of idiopathic recurrent calcium urolithiasis: hormonal interactions and lipid metabolism. UROLOGICAL RESEARCH 1998; 25:417-26. [PMID: 9443652 DOI: 10.1007/bf01268860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous work in younger males with recurrent idiopathic calcium urolithiasis (RCU) demonstrated inappropriately high postprandial phosphaturia, hyperinsulinemia and insulin resistance, but normal glycemia. To investigate further whether these abnormalities occur also in RCU patients with a mean age corresponding to the life period with peak formation of calcium-containing stones, two trials were carried out in 155 males of comparable age and body mass index. All participants underwent a standardized laboratory examination, including collection of urine and blood before and following a test meal rich in carbohydrate and calcium but low in phosphorus. In trial 1, comprising control subjects (n = 12, mean age 42 years) and RCU patients (n = 24, mean age 41 years), phosphate (Pi) excretion and fractional Pi excretion in postprandial urine of controls did not change compared with the values in fasting urine, but were significantly increased in RCU, despite the fact that there was almost equal suppression of serum parathyroid hormone (PTH) and increase in serum calcitonin. Postprandially, RCU patients were hyperinsulinemic but still normoglycemic versus controls. In trial 2, carried out in unclassified (in terms of calciuria) RCU patients (n = 119, mean age 40 years) only, the post-load Pi-uria was similar in magnitude to Pi-uria of RCU patients in trial 1; increased postprandial Pi-uria was a phenomenon also of normocalciuria but was slightly more pronounced in hypercalciuria, while changes in calcium phosphate (brushite) and calcium oxalate supersaturation of urine were unrelated to calciuria. In RCU patients, but not controls, there was a tendency toward higher urinary glucose in post-load as compared with fasting urine. When urinary Pi and fractional Pi excretion in trial 2 were considered as dependent variables in multivariate regression analysis, they appeared unrelated to age, but positively associated with postprandial glycemia as the best predictor, followed by insulinemia, insulin resistance, to a lesser degree fasting serum PTH and the metabolic activity of stone disease, negatively associated with blood total lipids and very low density lipoprotein (VLDL) cholesterol. It was concluded that RCU males (1) show low Pi-uria during fasting but impaired renal Pi conservation in response to a mixed meal, a situation carrying the risk of Pi deficiency over the long term; (2) represent a population developing hyperPi-uria despite suppressed PTH; (3) exhibit insulin resistance but are still able to maintain normoglycemia at the expense of hyperinsulinemia. It is suggested that calcium-containing renal stones are related to impaired Pi and glucose translocation across cell membranes, and that the role of lipids in this setting deserves further investigation.
Collapse
Affiliation(s)
- P O Schwille
- University Hospital, Department of Surgery, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Malcolm A, Reynolds E. Bone resorption and serum levels of vitamin D metabolites in the hypophosphataemic rat. Aust Dent J 1997; 42:118-20. [PMID: 9153840 DOI: 10.1111/j.1834-7819.1997.tb00107.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The supplementation of a low phosphate diet with vitamin D has been shown to result in an increase in bone resorption in the hypophosphataemic rat. The aim of the present study was to determine if administration of vitamin D to rats fed a vitamin D- and phosphate-depleted diet would result in an increase in the circulatory levels of the active vitamin D metabolite 1,25(OH)2D3 and an associated increase in bone resorption. Three groups of weanling Sprague-Dawley rats were used. The first group consisted of control animals on a normal laboratory stock diet and the second and third groups were experimental animals receiving a vitamin D- and phosphate-deficient diet with the third group receiving vitamin D supplementation. All animals were housed in the dark. After 30 days on the diet the experimental animals received 0.1 mmol NaH2PO4 by intraperitoneal injection. Blood was sampled at zero, 3, 6, 18 and 48 h post-injection and analysed for the vitamin D metabolites 25(OH)D3 and 1,25(OH)2D3, calcium and inorganic phosphate (Pi). The serum analyses revealed that the level of 25(OH)D3 in the hypophosphataemic animals was significantly lower than that of the control animals. However, the 1,25(OH)3D3 level was initially significantly higher, then dropped to the control level at 18 h post-intraperitoneal injection of phosphate. Further, the serum levels of 25(OH)D3 and 1,25(OH)2D3, calcium and Pi in the hypophosphataemic animals supplemented with vitamin D were significantly higher than those of the vitamin D-deficient animals. Also the vitamin D-supplemented animals exhibited significantly greater levels of bone resorption. These results therefore, are consistent with a role of 1,25(OH)2D3 in bone resorption in hypophosphataemic rats.
Collapse
Affiliation(s)
- A Malcolm
- School of Dental Science, University of Melbourne
| | | |
Collapse
|
39
|
Schröder B, Käppner H, Failing K, Pfeffer E, Breves G. Mechanisms of intestinal phosphate transport in small ruminants. Br J Nutr 1995; 74:635-48. [PMID: 8541270 DOI: 10.1079/bjn19950167] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to study the localization and mechanisms of intestinal phosphate transport in sheep and goats, unidirectional inorganic phosphate (Pi) flux rates across isolated stripped epithelial tissues were measured in vitro by applying the Ussing-chamber technique. In the first experiment the tissues were obtained from animals which had been kept on an adequate dietary P supply. In the second experiment the animals had either been kept on an adequate Ca and P supply or were Ca- and/or P-depleted. Significant net Pi absorption was measured in all segments of the small intestine and in the proximal colon of sheep and in the duodenum and jejunum of goats. Since the experiments were carried out in the absence of any electrochemical gradient, this clearly indicates the presence of active mechanisms for Pi transport in the intestinal tract of small ruminants. In sheep jejunum, reduction of mucosal Na concentration to 1.8 mM or serosal application of ouabain (0.1 mM) resulted in significant decreases of net Pi absorption of the same order of magnitude, indicating that about 65% of active Pi transport in sheep jejunum is mediated by a Na-dependent active transport mechanism. The mechanism for the remaining Na(+)-independent active Pi transport has not yet been identified. Dietary P depletion caused hypophosphataemia and induced a significant stimulation of net Pi absorption in goat duodenum and jejunum. This increase was independent of dietary Ca supply and was not associated with increased plasma calcitriol concentrations. This suggests substantial differences in hormonal regulation of Pi transport in small ruminants in comparison with single-stomached species.
Collapse
Affiliation(s)
- B Schröder
- Department of Veterinary Physiology, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | |
Collapse
|
40
|
Schröder B, Pfeffer E, Failing K, Breves G. Binding properties of goat intestinal vitamin D receptors as affected by dietary calcium and/or phosphorus depletion. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE A 1995; 42:411-7. [PMID: 7495173 DOI: 10.1111/j.1439-0442.1995.tb00393.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The binding capacity (Bmax) and the affinity (Kd) of the intestinal vitamin D receptor (VDR) have been studied using mucosa preparations from the duodenum, jejunum and proximal colon of male growing goats which had been kept in a two-factorial (2 x 2) trial on Ca and/or P deficient diets for 9 weeks. This treatment resulted in significant changes of different parameters of Ca and P homeostasis. Irrespective from the level of Ca intake, P depletion caused significant hypophosphatemia with corresponding hypercalcemia. In both Ca depleted groups the calcitriol concentrations in plasma significantly increased by more than 100% in comparison with normal Ca supply. No changes were recorded for plasma calcitriol concentrations in response to P depletion with an adequate Ca supply. Plasma PTH levels were only increased significantly in Ca depletion with adequate P supply. Irrespective of different feeding regimens, the highest Bmax values were found in the jejunum. In all intestinal segments tested, the Bmax values were significantly decreased by P depletion as compared with an adequate P supply. No effects on the Bmax of VDR were observed in response to changes of Ca supply. The Kd values of the VDR were neither affected by different intestinal localizations nor by Ca and/or P depletion. From the present results, it has to be concluded that the physiological relevance of VDR down-regulation may not be related to P homeostasis rather than to Ca homeostasis by minimizing the hypercalcemia induced by P depletion.
Collapse
Affiliation(s)
- B Schröder
- Department of Veterinary Physiology, Justus-Liebig-University of Giessen, Germany
| | | | | | | |
Collapse
|
41
|
Epstein S, Jee WS, Ma Y, Liu CC. Comments on "cyclosporin does not affect the absolute rate of cortical bone resorption at the organ level in the growing rat". Calcif Tissue Int 1995; 56:588-92. [PMID: 7648493 DOI: 10.1007/bf00298596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
van den Bos T, Oosting J, Everts V, Beertsen W. Mineralization of alkaline phosphatase-complexed collagen implants in the rat in relation to serum inorganic phosphate. J Bone Miner Res 1995; 10:616-24. [PMID: 7610933 DOI: 10.1002/jbmr.5650100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was designed to determine the relationship between mineralization of collagenous matrices and serum levels of calcium and inorganic phosphate. Collagen slices were prepared from bovine dentin or cortical bone and complexed with varying amounts of intestinal alkaline phosphatase (ALP). The enzyme was added to induce de novo mineralization. The ALP-complexed slices were implanted subcutaneously over the skull and in the dorsolateral aspect of the abdominal wall in female Wistar rats of various ages (5-, 10-, 20-, or 35-week-old) and in young male rats fed on a low-P diet. After 1-4 weeks, the implants were removed and analyzed for calcium and phosphate content. In addition, serum levels of calcium and phosphate (total and inorganic) were determined. It was shown that the highest mineral influx occurred in the younger rats (which were also highest in serum P(i)), whereas almost no mineral uptake occurred in the older ones. Also in rats fed on a low-P diet (which were low in serum P(i), a strongly decreased mineral influx was noted. In all animal groups a positive correlation was found between the degree of mineralization and serum P(i). No distinct relationship was found between serum Ca/organic phosphate levels and mineral influx in the implants. In vitro incubation of ALP-collagen conjugates in serum from younger and older rats confirmed our view that serum P(i), besides local levels of ALP, is important in de novo mineral deposition. For accretion of mineral in partially remineralized collagenous carriers, ALP activity was not required.
Collapse
Affiliation(s)
- T van den Bos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), The Netherlands
| | | | | | | |
Collapse
|
43
|
Laroche M, Moulinier L, Bon E, Cantagrel A, Mazieres B. Renal tubular disorders and arteriopathy of the lower limbs: risk factors for osteoporosis in men? Osteoporos Int 1994; 4:309-13. [PMID: 7696823 DOI: 10.1007/bf01622188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to clarify the risk-factors for men with vertebral fractures due to osteoporosis, we carried out a study of 51 cases. Twenty-five percent of patients had an endocrine disorder (hyperparathyroidism, hypogonadism, hyperthyroidism) or had received corticosteroids. These patients were compared with 26 age-matched controls. Eleven patients compared with 2 of the 26 control subjects had arteriopathy of the lower limbs; 11 patients had hypercalciuria or hyperphosphaturia compared with 3 of the control subjects. Arteriopathy appears to be associated with osteoporosis in older patients (mean age 71 years), whereas renal tubular disorders were found in younger patients (mean age 45 years).
Collapse
Affiliation(s)
- M Laroche
- Service de Rhumatologie, Centre Hospitalier et Universitaire Rangueil, Toulouse, France
| | | | | | | | | |
Collapse
|
44
|
Laroche M, Arlet J, Ader JL, Durand D, Tran-Van T, Mazières B. Skeletal manifestations of moderate phosphate diabetes. Clin Rheumatol 1993; 12:192-7. [PMID: 8358977 DOI: 10.1007/bf02231525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Six patients, with vertebral osteoporosis and reflex sympathetic algodystrophy syndrome of the lower limbs, due to moderate diabetes, are presented. Osteoporosis was documented by low CT scan bone density and moderate decrease of bone trabecular volume. Histomorphometric studies found a mild increase of resorption areas. All patients had unremarkable serum phosphorus level (mean: 0.91 +/- 0.13) but increase of urinary phosphorus excretion was documented by phosphate clearance higher than 20ml/mm, phosphate tubular reabsorption lower than 80% and TmPo4/GFR lower than 0.8mmol/l. Phosphate clearance and phosphate tubular reabsorption are studied in two control groups. Mild phosphate diabetes, of unknown incidence and prevalence (need for prospective studies) may be the vector of osteoporosis, vertebral and peripheral. The diagnosis of PD requires determination of phosphate clearance, phosphate tubular reabsorption, TmPo4/GFR and these tests may be useful in the diagnostic work up of bone demineralization disorders. We thought that osteoporosis could be the result of progressive dissolution of bone apatite crystals necessary to maintain normal or sub-normal blood phosphate level in spite of the phosphate diabetes.
Collapse
Affiliation(s)
- M Laroche
- Service de Rhumatologie, Hôpital Rangueil, Toulouse, France
| | | | | | | | | | | |
Collapse
|
45
|
Krapf R, Vetsch R, Vetsch W, Hulter HN. Chronic metabolic acidosis increases the serum concentration of 1,25-dihydroxyvitamin D in humans by stimulating its production rate. Critical role of acidosis-induced renal hypophosphatemia. J Clin Invest 1992; 90:2456-63. [PMID: 1469097 PMCID: PMC443402 DOI: 10.1172/jci116137] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic metabolic acidosis results in metabolic bone disease, calcium nephrolithiasis, and growth retardation. The pathogenesis of each of these sequelae is poorly understood in humans. We therefore investigated the effects of chronic extrarenal metabolic acidosis on the regulation of 1,25-(OH)2D, parathyroid hormone, calcium, and phosphate metabolism in normal humans. Chronic extrarenal metabolic acidosis was induced by administering two different doses of NH4Cl [2.1 (low dose) and 4.2 (high dose) mmol/kg body wt per d, respectively] to four male volunteers each during metabolic balance conditions. Plasma [HCO3-] decreased by 4.5 +/- 0.4 mmol/liter in the low dose and by 9.1 +/- 0.3 mmol/liter (P < 0.001) in the high dose group. Metabolic acidosis induced renal hypophosphatemia, which strongly correlated with the severity of acidosis (Plasma [PO4] on plasma [HCO3-]; r = 0.721, P < 0.001). Both metabolic clearance and production rates of 1,25-(OH)2D increased in both groups. In the high dose group, the percentage increase in production rate was much greater than the percentage increase in metabolic clearance rate, resulting in a significantly increased serum 1,25-(OH)2D concentration. A strong inverse correlation was observed for serum 1,25-(OH)2D concentration on both plasma [PO4] (r = -0.711, P < 0.001) and plasma [HCO3-] (r = -0.725, P < 0.001). Plasma ionized calcium concentration did not change in either group whereas intact serum parathyroid hormone concentration decreased significantly in the high dose group. In conclusion, metabolic acidosis results in graded increases in serum 1,25-(OH)2D concentration by stimulating its production rate in humans. The increased production rate is explained by acidosis-induced hypophosphatemia/cellular phosphate depletion resulting at least in part from decreased renal tubular phosphate reabsorption. The decreased serum intact parathyroid hormone levels in more severe acidosis may be the consequence of hypophosphatemia and/or increased serum 1,25-(OH)2D concentrations.
Collapse
Affiliation(s)
- R Krapf
- Department of Medicine, Insel University Hospital, Berne, Switzerland
| | | | | | | |
Collapse
|
46
|
Atkin I, Dean DD, Muniz OE, Agundez A, Castiglione G, Cohen G, Howell DS, Ornoy A. Enhancement of osteoinduction by vitamin D metabolites in rachitic host rats. J Bone Miner Res 1992; 7:863-75. [PMID: 1442201 DOI: 10.1002/jbmr.5650070803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diaphyseal bone from normal Sprague-Dawley rats was delipidated in chloroform-methanol and demineralized in 0.6 N HCl at 4 degrees C. The bones were then implanted for 7-28 days into rats made rachitic by a low-phosphate, vitamin D-deficient diet (VDP-) for 3 weeks. Bones from VDP- and normal rats were also implanted into normal hosts. When normal rats were used as the host environment, a consistent sequence of cartilage induction and bone formation was observed. Demineralized rachitic bone (RB) implanted into normal host rats resulted in cartilage and bone induction similar to that seen for normal bone (NB) implants. Transmission electron microscopy of RB in normal hosts revealed morphologically normal chondrocytes and cartilage matrix with normal mineralization. In contrast, implantation of NB in VDP- hosts resulted in delayed chondrogenesis and lack of calcification. Furthermore, similar results were observed when RB was implanted into VDP- hosts. Treatment of VDP- hosts with either 1 alpha-hydroxyvitamin D3 or 24,25-dihydroxyvitamin D3 did not accelerate the sequential appearance of precartilage or cartilage. However, 24,25-(OH)2D3 administered alone or in combination with 1 alpha-OHD3 significantly increased the amount of calcified cartilage observed at 2 weeks postimplantation compared to implants from either untreated VDP-hosts or those treated only with 1 alpha-OHD3. New bone formation was observed at 4 weeks postimplantation in all vitamin D-treated groups as determined by von Kossa staining or direct electron microscope examination. There was no apparent difference in the quantitative or qualitative bone formed within the various vitamin D-treated groups. Serum calcium and phosphorus levels were lower and alkaline phosphatase levels were higher in VDP- hosts compared with normal animals or those treated with vitamin D metabolites. The results of this study show a reduction in the capacity of progenitor cells in VDP- rat hosts to respond to osteoinductive factor(s). This impaired response appears to be corrected by vitamin D metabolites.
Collapse
Affiliation(s)
- I Atkin
- Morphology Unit, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hodnett DW, DeLuca HF, Jorgensen NA. Bone mineral loss during lactation occurs in absence of parathyroid tissue. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:E230-3. [PMID: 1539650 DOI: 10.1152/ajpendo.1992.262.2.e230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The requirement of parathyroid tissue for bone mineral loss during lactation was investigated. Lactating rats parathyroidectomized (PTX) at day 2 of lactation and consuming a 2% calcium diet are hypercalcemic and hypophosphatemic at day 13 of lactation. The high-calcium diet supports normal growth of pups nursing PTX mothers. PTX lactating rats mobilize bone mineral to the same extent as euparathyroid lactating rats consuming the same diet. Non-lactating PTX rats lose no bone mineral over a similar time period, indicating lactation-specific bone mineral mobilization in the absence of parathyroid tissue. PTX rats were verified to have physiologically insignificant amounts of parathyroid tissue, as evidenced by severe hypocalcemia and/or death in each rat after a shift from a 2% calcium to a 0.02% calcium diet. These results conclusively demonstrate that lactation-associated bone mineral mobilization does not require parathyroid hormone or parathyroid tissue.
Collapse
Affiliation(s)
- D W Hodnett
- Department of Biochemistry, University of Wisconsin-Madison, College of Agricultural and Life Sciences 53706
| | | | | |
Collapse
|
48
|
Yates AJ, Oreffo RO, Mayor K, Mundy GR. Inhibition of bone resorption by inorganic phosphate is mediated by both reduced osteoclast formation and decreased activity of mature osteoclasts. J Bone Miner Res 1991; 6:473-8. [PMID: 2068953 DOI: 10.1002/jbmr.5650060508] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High concentrations of inorganic phosphate (Pi) are known to inhibit bone resorption, although the mechanism(s) underlying this effect is unclear. To investigate whether Pi can inhibit the formation of osteoclasts we studied the effects of changes in Pi concentration between 1 and 4 mM on osteoclast-like cell formation in 1 week cultures of mouse bone marrow. Osteoclast-like cells were identified by multinuclearity, positive staining for tartrate-resistant acid phosphatase (TRAP), and contraction in response to calcitonin. Increasing concentrations of Pi inhibited formation of these cells in a dose-dependent manner. To study effects of Pi on the bone-resorbing activity of mature osteoclasts we isolated osteoclasts from calcium-deficient egg-laying hens or rat pups and incubated them on sperm whale dentine slices. High Pi concentrations markedly reduced both the number of resorption pits formed per dentine slice and the mean area of each pit in both avian and mammalian systems. These data indicate that high concentrations of Pi act on bone directly, both to inhibit generation of new osteoclasts from their precursor cells and to inhibit bone resorption by mature osteoclasts. These effects of extracellular Pi concentration may play an important modulatory role on bone turnover in vivo and have potential importance in several disease states in which Pi metabolism is perturbed.
Collapse
Affiliation(s)
- A J Yates
- Department of Medicine, University of Texas Health Science Center, San Antonio 78284-7877
| | | | | | | |
Collapse
|
49
|
The Effect of Tailoring Phosphate Binder Doses on Serum Phosphorus Levels in Adult Chronic Hemodialysis Patients. J Ren Nutr 1991. [DOI: 10.1016/s1051-2276(12)80196-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Foldes J, Balena R, Ho A, Parfitt AM, Kleerekoper M. Hypophosphatemic rickets with hypocalciuria following long-term treatment with aluminum-containing antacid. Bone 1991; 12:67-71. [PMID: 2064842 DOI: 10.1016/8756-3282(91)90002-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present what we believe is the first case of rickets following prolonged treatment with aluminum containing antacids that bind phosphate, in an 18-year-old mentally retarded boy with cerebral palsy and spastic quadriplegia. As expected, serum calcitriol was increased and urinary phosphate excretion was very low. However, in contrast to all published cases of antacid induced hypophosphatemic osteomalacia in adults, despite a substantial increase in bone resorption reflected by urinary total hydroxyproline excretion, urinary calcium excretion was low rather than high, and significant hypocalcemia occurred after antacids were ceased and a phosphate salt administered. We suggest that the skeleton was so under-mineralized because of growth during prolonged phosphate deficiency, possibly augmented by anticonvulsant administration and immobilization, that increased bone resorption did not release enough calcium to cause hypercalciuria, or to prevent hypocalcemia during resumption of normal mineralization.
Collapse
Affiliation(s)
- J Foldes
- Department of Medicine, Henry Ford Hospital, Detroit, Michigan
| | | | | | | | | |
Collapse
|