1
|
Bertinat R, Holyoak T, Gatica R, Jara N, González-Chavarría I, Westermeier F. The neglected PCK1/glucagon (inter)action in nutrient homeostasis beyond gluconeogenesis: Disease pathogenesis and treatment. Mol Metab 2025; 94:102112. [PMID: 39954782 PMCID: PMC11909762 DOI: 10.1016/j.molmet.2025.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Glucagon plays a central role in hepatic adaptation during fasting, with the upregulation of hepatic phosphoenolpyruvate carboxykinase 1 (PCK1) traditionally associated with increased gluconeogenesis. However, recent experimental models and clinical studies have challenged this view, suggesting a more complex interplay between PCK1 and glucagon, which extends beyond gluconeogenesis and has broader implications for metabolic regulation in health and disease. SCOPE OF REVIEW This review provides a comprehensive overview of the current evidence on the multifaceted roles of PCK1 in glucagon-dependent hepatic adaptation during fasting, which is crucial for maintaining systemic homeostasis not only of glucose, but also of lipids and amino acids. We explore the relationship between PCK1 deficiency and glucagon resistance in metabolic disorders, including inherited PCK1 deficiency and metabolic dysfunction-associated steatotic liver disease (MASLD), and compare findings from experimental animal models with whole-body or tissue-specific ablation of PCK1 or the glucagon receptor. We propose new research platforms to advance the therapeutic potential of targeting PCK1 in metabolic diseases. MAJOR CONCLUSIONS We propose that hepatic PCK1 deficiency might be an acquired metabolic disorder linking alterations in lipid metabolism with impaired glucagon signaling. Our findings highlight interesting links between glycerol, PCK1 deficiency, elevated plasma alanine levels and glucagon resistance. We conclude that the roles of PCK1 and glucagon in metabolic regulation are more complex than previously assumed. In this (un)expected scenario, hepatic PCK1 deficiency and glucagon resistance appear to exert limited control over glycemia, but have broader metabolic effects related to lipid and amino acid dysregulation. Given the shift in glucagon research from receptor inhibition to activation, we propose that a similar paradigm shift is needed in the study of hepatic PCK1. Understanding PCK1 expression and activity in the glucagon-dependent hepatic adaptation to fasting might provide new perspectives and therapeutic opportunities for metabolic diseases.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA-BIO BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile.
| | - Todd Holyoak
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Nery Jara
- Departamento de Farmacología, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH JOANNEUM University of Applied Sciences, Graz, Austria; Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
2
|
Galsgaard KD, Elmelund E, Hunt JE, Smits MM, Grevengoed TJ, Christoffersen C, Færgeman NJ, Havelund J, Wewer Albrechtsen NJ, Holst JJ. Female glucagon receptor knockout mice are prone to steatosis but resistant to weight gain when fed a MASH-promoting GAN diet and a high-fat diet. Physiol Rep 2025; 13:e70235. [PMID: 39985139 PMCID: PMC11845321 DOI: 10.14814/phy2.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/24/2025] Open
Abstract
Glucagon is secreted from the pancreatic alpha cells and regulates not only hepatic glucose production, but also hepatic lipid and amino acid metabolism. Thus, glucagon provides a switch from hepatic glucose and lipid storage towards lipid and amino acid breakdown fueling glucose production during fasting. However, the effects of genetic deletion of the glucagon receptor on lipid metabolism are unclear. We therefore assessed parameters of lipid metabolism in fasted and non-fasted male and female mice with permanent whole-body deletion of the glucagon receptor (Gcgr-/- mice). To investigate whether Gcgr-/- mice tolerated a diet promoting metabolic dysfunction-associated steatohepatitis (MASH) and steatosis, we fed female Gcgr-/- mice the Gubra Amylin Nonalcoholic steatohepatitis (GAN) diet and high-fat diet (HFD), respectively. We found that non-fasted Gcgr-/- mice fed standard chow showed hypercholesterolemia and increased liver fat (borderline significant in non-fasted male Gcgr-/- mice, but significant in the remaining groups). In the fasted state these changes were insignificant due to fasting-induced steatosis. When challenged with a GAN diet and HFD, female Gcgr-/- mice were prone to steatosis and dyslipidemia but resistant to weight gain. Taken together, our data highlight glucagon as an important physiological regulator of not just glucose, but also hepatic lipid metabolism.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mark M. Smits
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Trisha J. Grevengoed
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Jesper Havelund
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Clinical BiochemistryCopenhagen University Hospital – BispebjergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Kjeldsen SAS, Richter MM, Jensen NJ, Nilsson MSD, Heinz N, Nybing JD, Linden FH, Høgh-Schmidt E, Boesen MP, Andersen TL, Johannesen HH, Trammell SAJ, Grevengoed TJ, Madsbad S, Vilstrup H, Schiødt FV, Møller A, Rashu EB, Nørgaard K, Schmidt S, Gluud LL, Haugaard SB, Holst JJ, Rungby J, Wewer Albrechtsen NJ. Glucagon Resistance in Individuals With Obesity and Hepatic Steatosis Can Be Measured Using the GLUSENTIC Test and Index. Diabetes 2024; 73:1716-1727. [PMID: 38976454 DOI: 10.2337/db23-0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Increased plasma levels of glucagon (hyperglucagonemia) promote diabetes development but are also observed in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). This may reflect hepatic glucagon resistance toward amino acid catabolism. A clinical test for measuring glucagon resistance has not been validated. We evaluated our glucagon sensitivity (GLUSENTIC) test, which consists of 2 study days: a glucagon injection and measurements of plasma amino acids and an infusion of mixed amino acids and subsequent calculation of the GLUSENTIC index (primary outcome measure) from measurements of glucagon and amino acids. To distinguish glucagon-dependent from insulin-dependent actions on amino acid metabolism, we also studied patients with type 1 diabetes (T1D). The δ-decline in total amino acids was 49% lower in MASLD following exogenous glucagon (P = 0.01), and the calculated GLUSENTIC index was 34% lower in MASLD (P < 0.0001) but not T1D (P > 0.99). In contrast, glucagon-induced glucose increments were similar in control participants and participants with MASLD (P = 0.41). The GLUSENTIC test and index may be used to measure glucagon resistance in individuals with obesity and MASLD. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole J Jensen
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Malin S D Nilsson
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Niklas Heinz
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus D Nybing
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Frederik H Linden
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Erik Høgh-Schmidt
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mikael P Boesen
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Helle H Johannesen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Samuel A J Trammell
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trisha J Grevengoed
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Frank Vinholt Schiødt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center K, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Andreas Møller
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Elias B Rashu
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kirsten Nørgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Lise L Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Kjeldsen SAS, Werge MP, Grandt J, Richter MM, Thing M, Hetland LE, Rashu EB, Jensen ASH, Winther-Sørensen M, Kellemann JS, Holst JJ, Junker AE, Serizawa RR, Vyberg M, Gluud LL, Wewer Albrechtsen NJ. Hepatic steatosis and not type 2 diabetes, body mass index, or hepatic fibrosis associates with hyperglucagonemia in individuals with steatotic liver disease. Am J Physiol Gastrointest Liver Physiol 2024; 327:G558-G570. [PMID: 39104323 DOI: 10.1152/ajpgi.00147.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
Increased plasma concentrations of glucagon (hyperglucagonemia) are reported in patients with type 2 diabetes (T2D) and are considered a diabetogenic risk factor. Emerging evidence suggests that hepatic steatosis in obesity is causing a condition of resistance toward glucagon's effects on amino acid metabolism, resulting in an amino acid-induced hyperglucagonemia. We investigated the presence of hyperglucagonemia in individuals with biopsy-verified metabolic dysfunction-associated steatotic liver disease (MASLD), and whether body mass index (BMI), T2D, hepatic steatosis, and/or fibrosis contribute to this relationship. To dissect potential mechanisms, we also determined hepatic gene expression related to amino acid transport and catabolism. Individuals with MASLD had hyperglucagonemia {controls (n = 74) vs. MASLD (n = 106); median [Q1, Q3]; 4 [3, 7] vs. 8 [6, 13] pM), P < 0.0001} and were glucagon resistant (assessed by the glucagon-alanine index) {1.3 [0.9, 2.1] vs. 3.3 [2.1, 5.3] pM·mM, P < 0.0001}. These changes were associated with hepatic steatosis (P < 0.001, R2 > 0.25) independently of BMI, sex, age, and T2D. Plasma levels of glucagon were similar in individuals with MASLD when stratified on T2D status {MASLD-T2D (n = 52) vs. MASLD + T2D (n = 54); 8 [6, 11] vs. 8 [6, 13] pM, P = 0.34} and hepatic fibrosis {MASLD + F0 (n = 25) vs. MASLD + F1-F3 (n = 67); 8.4 [7.0, 13.3] vs. 7.9 [5.2, 11.6] pM, P = 0.43}. Obesity (BMI = 30 kg/m2) did not alter glucagon levels (P = 0.65) within groups (control/MASLD). The mRNA expression of proteins involved in amino acid transport and catabolism was downregulated in MASLD. Thus, relative hyperglucagonemia is present in individuals with biopsy-verified MASLD, and hepatic steatosis partially drives hyperglucagonemia and glucagon resistance, irrespective of T2D, BMI, and hepatic fibrosis.NEW & NOTEWORTHY Individuals with metabolic dysfunction-associated steatotic liver disease (MASLD) present with increased plasma levels of glucagon (hyperglucagonemia), irrespective of body mass index (BMI) and type 2 diabetes. Therefore, MASLD and the resultant hyperglucagonemia may act as a diabetogenic risk factor. Notably, hepatic steatosis was a significant contributor to the hyperglucagonemia in MASLD, potentially unveiling a pathway for the hyperglucagonemia in some patients with type 2 diabetes.
Collapse
Affiliation(s)
- Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| | - Mikkel P Werge
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Josephine Grandt
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mira Thing
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Liv E Hetland
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Elias B Rashu
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Anne-Sofie H Jensen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Marie Winther-Sørensen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| | - Jesper Sloth Kellemann
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders E Junker
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Reza R Serizawa
- Department of Pathology, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Mogens Vyberg
- Department of Pathology, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Kang Q, Jia J, Dean ED, Yuan H, Dai C, Li Z, Jiang F, Zhang XK, Powers AC, Chen W, Li M. ErbB3 is required for hyperaminoacidemia-induced pancreatic α cell hyperplasia. J Biol Chem 2024; 300:107499. [PMID: 38944125 PMCID: PMC11326907 DOI: 10.1016/j.jbc.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 07/01/2024] Open
Abstract
Blood amino acid levels are maintained in a narrow physiological range. The pancreatic α cells have emerged as the primary aminoacidemia regulator through glucagon secretion to promote hepatic amino acid catabolism. Interruption of glucagon signaling disrupts the liver-α cells axis leading to hyperaminoacidemia, which triggers a compensatory rise in glucagon secretion and α cell hyperplasia. The mechanisms of hyperaminoacidemia-induced α cell hyperplasia remain incompletely understood. Using a mouse α cell line and in vivo studies in zebrafish and mice, we found that hyperaminoacidemia-induced α cell hyperplasia requires ErbB3 signaling. In addition to mechanistic target of rapamycin complex 1, another ErbB3 downstream effector signal transducer and activator of transcription 3 also plays a role in α cell hyperplasia. Mechanistically, ErbB3 may partner with ErbB2 to stimulate cyclin D2 and suppress p27 via mechanistic target of rapamycin complex 1 and signal transducer and activator of transcription 3. Our study identifies ErbB3 as a new regulator for hyperaminoacidemia-induced α cell proliferation and a critical component of the liver-α cells axis that regulates aminoacidemia.
Collapse
Affiliation(s)
- Qi Kang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jianxin Jia
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - E Danielle Dean
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hang Yuan
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chunhua Dai
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zhehui Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Alvin C Powers
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Wenbiao Chen
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Mingyu Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Merkhassine M, Coch RW, Frederick CE, Bennett LL, Peng SA, Morse B, Cummings BP, Loftus JP. Glucagon infusion alters the circulating metabolome and urine amino acid excretion in dogs. J Endocrinol 2024; 262:e240051. [PMID: 38814331 PMCID: PMC11301426 DOI: 10.1530/joe-24-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/30/2024] [Indexed: 05/31/2024]
Abstract
Glucagon plays a central role in amino acid (AA) homeostasis. The dog is an established model of glucagon biology, and recently, metabolomic changes in people associated with glucagon infusions have been reported. Glucagon also has effects on the kidney; however, changes in urinary AA concentrations associated with glucagon remain under investigation. Therefore, we aimed to fill these gaps in the canine model by determining the effects of glucagon on the canine plasma metabolome and measuring urine AA concentrations. Employing two constant rate glucagon infusions (CRI) - low-dose (CRI-LO: 3 ng/kg/min) and high-dose (CRI-HI: 50 ng/kg/min) on five research beagles, we monitored interstitial glucose and conducted untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) on plasma samples and urine AA concentrations collected pre- and post-infusion. The CRI-HI induced a transient glucose peak (90-120 min), returning near baseline by infusion end, while only the CRI-LO resulted in 372 significantly altered plasma metabolites, primarily reductions (333). Similarly, CRI-HI affected 414 metabolites, with 369 reductions, evidenced by distinct clustering post-infusion via data reduction (PCA and sPLS-DA). CRI-HI notably decreased circulating AA levels, impacting various AA-related and energy-generating metabolic pathways. Urine analysis revealed increased 3-methyl-l-histidine and glutamine, and decreased alanine concentrations post-infusion. These findings demonstrate glucagon's glucose-independent modulation of the canine plasma metabolome and highlight the dog's relevance as a translational model for glucagon biology. Understanding these effects contributes to managing dysregulated glucagon conditions and informs treatments impacting glucagon homeostasis.
Collapse
Affiliation(s)
- Michael Merkhassine
- Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
- VCA Colonial Animal Hospital, Ithaca, New York, USA
| | - Reilly W Coch
- Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
- Weill Cornell College of Medicine, New York, New York, USA
| | - Carol E Frederick
- Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
| | - Lucinda L Bennett
- Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
| | - Seth A Peng
- Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
- Fate Therapeutics, San Diego, California, USA
| | - Benjamin Morse
- Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
| | - Bethany P Cummings
- Center for Alimentary and Metabolic Science, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - John P Loftus
- Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
| |
Collapse
|
7
|
Nishida K, Ueno S, Seino Y, Hidaka S, Murao N, Asano Y, Fujisawa H, Shibata M, Takayanagi T, Ohbayashi K, Iwasaki Y, Iizuka K, Okuda S, Tanaka M, Fujii T, Tochio T, Yabe D, Yamada Y, Sugimura Y, Hirooka Y, Hayashi Y, Suzuki A. Impaired Fat Absorption from Intestinal Tract in High-Fat Diet Fed Male Mice Deficient in Proglucagon-Derived Peptides. Nutrients 2024; 16:2270. [PMID: 39064713 PMCID: PMC11280123 DOI: 10.3390/nu16142270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced β-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract.
Collapse
Affiliation(s)
- Koki Nishida
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Shinji Ueno
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yusuke Seino
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Shihomi Hidaka
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Naoya Murao
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yuki Asano
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Haruki Fujisawa
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Megumi Shibata
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Takeshi Takayanagi
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan;
| | - Shoei Okuda
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Mamoru Tanaka
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
- Center for One Medicine Innovative Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuuichiro Yamada
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yoshihisa Sugimura
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan;
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Suzuki
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| |
Collapse
|
8
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
9
|
Hayashi Y. Advances in basic research on glucagon and alpha cells. Diabetol Int 2024; 15:348-352. [PMID: 39101161 PMCID: PMC11291817 DOI: 10.1007/s13340-024-00696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 08/06/2024]
Abstract
The regulation of plasma amino acid levels by glucagon in humans first attracted the attention of researchers in the 1980s. Recent basic research using animal models of glucagon deficiency suggested that a major physiological role of glucagon is the regulation of amino acid metabolism rather than to increase blood glucose levels. In this regard, novel feedback regulatory mechanisms that are mediated by glucagon and amino acids have recently been described between islet alpha cells and the liver. Increasingly, hyperglucagonemia in humans with diabetes and/or nonalcoholic fatty liver diseases is reported to likely be a compensatory response to hepatic glucagon resistance. Severe glucagon resistance due to a glucagon receptor mutation in humans causes hyperaminoacidemia and islet alpha cell expansion combined with pancreatic hypertrophy. Notably, a recent report showed that the restoration of glucagon resistance by liver transplantation resolved not only hyperglucagonemia, but also pancreatic hypertrophy and other metabolic disorders. The mechanisms that regulate islet cell proliferation by amino acids largely remain unelucidated. Clarification of such mechanisms will increase our understanding of the pathophysiology of diseases related to glucagon.
Collapse
Affiliation(s)
- Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, 464-8601 Japan
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
McGlone ER, Bloom SR, Tan TMM. Glucagon resistance and metabolic-associated steatotic liver disease: a review of the evidence. J Endocrinol 2024; 261:e230365. [PMID: 38579751 PMCID: PMC11067060 DOI: 10.1530/joe-23-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) is closely associated with obesity. MASLD affects over 1 billion adults globally but there are few treatment options available. Glucagon is a key metabolic regulator, and its actions include the reduction of liver fat through direct and indirect means. Chronic glucagon signalling deficiency is associated with hyperaminoacidaemia, hyperglucagonaemia and increased circulating levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF-21). Reduction in glucagon activity decreases hepatic amino acid and triglyceride catabolism; metabolic effects include improved glucose tolerance, increased plasma cholesterol and increased liver fat. Conversely, glucagon infusion in healthy volunteers leads to increased hepatic glucose output, decreased levels of plasma amino acids and increased urea production, decreased plasma cholesterol and increased energy expenditure. Patients with MASLD share many hormonal and metabolic characteristics with models of glucagon signalling deficiency, suggesting that they could be resistant to glucagon. Although there are few studies of the effects of glucagon infusion in patients with obesity and/or MASLD, there is some evidence that the expected effect of glucagon on amino acid catabolism may be attenuated. Taken together, this evidence supports the notion that glucagon resistance exists in patients with MASLD and may contribute to the pathogenesis of MASLD. Further studies are warranted to investigate the direct effects of glucagon on metabolism in patients with MASLD.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
11
|
Pocai A. G protein-coupled receptors and obesity. Front Endocrinol (Lausanne) 2023; 14:1301017. [PMID: 38161982 PMCID: PMC10757641 DOI: 10.3389/fendo.2023.1301017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity and diabetes. Obesity is a complex chronic disease that requires long term management predisposing to type 2 diabetes, heart disease, and some cancers. The therapeutic landscape for GPCR as targets of anti-obesity medications has undergone significant changes with the approval of semaglutide, the first peptide glucagon like peptide 1 receptor agonist (GLP-1RA) achieving double digit weight loss (≥10%) and cardiovascular benefits. The enhanced weight loss, with the expected beneficial effect on obesity-related complications and reduction of major adverse cardiovascular events (MACE), has propelled the commercial opportunity for the obesity market leading to new players entering the space. Significant progress has been made on approaches targeting GPCRs such as single peptides that simultaneously activate GIP and/or GCGR in addition to GLP1, oral tablet formulation of GLP-1, small molecules nonpeptidic oral GLP1R and fixed-dose combination as well as add-on therapy for patients already treated with a GLP-1 agonist.
Collapse
Affiliation(s)
- Alessandro Pocai
- Cardiovascular and Metabolic Disease, Johnson & Johnson Innovative Medicine Research & Development, Spring House, PA, United States
| |
Collapse
|
12
|
Zhang J, Zheng Y, Martens L, Pfeiffer AFH. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023; 15:3913. [PMID: 37764697 PMCID: PMC10536047 DOI: 10.3390/nu15183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jiudan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| | - Yang Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Lisa Martens
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
- Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| |
Collapse
|
13
|
Brooks EP, Sussel L. Not the second fiddle: α cell development, identity, and function in health and diabetes. J Endocrinol 2023; 258:e220297. [PMID: 37171828 PMCID: PMC10524258 DOI: 10.1530/joe-22-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Historic and emerging studies provide evidence for the deterioration of pancreatic α cell function and identity in diabetes mellitus. Increased access to human tissue and the availability of more sophisticated molecular technologies have identified key insights into how α cell function and identity are preserved in healthy conditions and how they become dysfunctional in response to stress. These studies have revealed evidence of impaired glucagon secretion, shifts in α cell electrophysiology, changes in α cell mass, dysregulation of α cell transcription, and α-to-β cell conversion prior to and during diabetes. In this review, we outline the current state of research on α cell identity in health and disease. Evidence in model organisms and humans suggests that in addition to β cell dysfunction, diabetes is associated with a fundamental dysregulation of α cell identity. Importantly, epigenetic studies have revealed that α cells retain more poised and open chromatin at key cell-specific and diabetes-dysregulated genes, supporting the model that the inherent epigenetic plasticity of α cells makes them susceptible to the transcriptional changes that potentiate the loss of identity and function seen in diabetes. Thus, additional research into the maintenance of α cell identity and function is critical to fully understanding diabetes. Furthermore, these studies suggest α cells could represent an alternative source of new β cells for diabetes treatment.
Collapse
Affiliation(s)
- Elliott P Brooks
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Forteath C, Mordi I, Nisr R, Gutierrez-Lara EJ, Alqurashi N, Phair IR, Cameron AR, Beall C, Bahr I, Mohan M, Wong AKF, Dihoum A, Mohammad A, Palmer CNA, Lamont D, Sakamoto K, Viollet B, Foretz M, Lang CC, Rena G. Amino acid homeostasis is a target of metformin therapy. Mol Metab 2023; 74:101750. [PMID: 37302544 PMCID: PMC10328998 DOI: 10.1016/j.molmet.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
OBJECTIVE Unexplained changes in regulation of branched chain amino acids (BCAA) during diabetes therapy with metformin have been known for years. Here we have investigated mechanisms underlying this effect. METHODS We used cellular approaches, including single gene/protein measurements, as well as systems-level proteomics. Findings were then cross-validated with electronic health records and other data from human material. RESULTS In cell studies, we observed diminished uptake/incorporation of amino acids following metformin treatment of liver cells and cardiac myocytes. Supplementation of media with amino acids attenuated known effects of the drug, including on glucose production, providing a possible explanation for discrepancies between effective doses in vivo and in vitro observed in most studies. Data-Independent Acquisition proteomics identified that SNAT2, which mediates tertiary control of BCAA uptake, was the most strongly suppressed amino acid transporter in liver cells following metformin treatment. Other transporters were affected to a lesser extent. In humans, metformin attenuated increased risk of left ventricular hypertrophy due to the AA allele of KLF15, which is an inducer of BCAA catabolism. In plasma from a double-blind placebo-controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin caused selective accumulation of plasma BCAA and glutamine, consistent with the effects in cells. CONCLUSIONS Metformin restricts tertiary control of BCAA cellular uptake. We conclude that modulation of amino acid homeostasis contributes to therapeutic actions of the drug.
Collapse
Affiliation(s)
- Calum Forteath
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Ify Mordi
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Raid Nisr
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Erika J Gutierrez-Lara
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Noor Alqurashi
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Iain R Phair
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Amy R Cameron
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK; Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Exeter, EX2 5DW, UK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Exeter, EX2 5DW, UK
| | - Ibrahim Bahr
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Mohapradeep Mohan
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Aaron K F Wong
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Adel Dihoum
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK; Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Anwar Mohammad
- Public Health and Epidemiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Colin N A Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Douglas Lamont
- Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK.
| | - Graham Rena
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK.
| |
Collapse
|
15
|
Hædersdal S, Andersen A, Knop FK, Vilsbøll T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol 2023; 19:321-335. [PMID: 36932176 DOI: 10.1038/s41574-023-00817-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
Insulin and glucagon exert opposing effects on glucose metabolism and, consequently, pancreatic islet β-cells and α-cells are considered functional antagonists. The intra-islet hypothesis has previously dominated the understanding of glucagon secretion, stating that insulin acts to inhibit the release of glucagon. By contrast, glucagon is a potent stimulator of insulin secretion and has been used to test β-cell function. Over the past decade, α-cells have received increasing attention due to their ability to stimulate insulin secretion from neighbouring β-cells, and α-cell-β-cell crosstalk has proven central for glucose homeostasis in vivo. Glucagon is not only the counter-regulatory hormone to insulin in glucose metabolism but also glucagon secretion is more susceptible to changes in the plasma concentration of certain amino acids than to changes in plasma concentrations of glucose. Thus, the actions of glucagon also include a central role in amino acid turnover and hepatic fat oxidation. This Review provides insights into glucagon secretion, with a focus on the local paracrine actions on glucagon and the importance of α-cell-β-cell crosstalk. We focus on dysregulated glucagon secretion in obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus. Lastly, the future potential of targeting hyperglucagonaemia and applying dual and triple receptor agonists with glucagon receptor-activating properties in combination with incretin hormone receptor agonism is discussed.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Kjeldsen SAS, Richter MM, Jensen NJ, Nilsson MSD, Heinz N, Nybing JD, Linden FH, Høgh-Schmidt E, Boesen MP, Madsbad S, Vilstrup H, Schiødt FV, Møller A, Nørgaard K, Schmidt S, Rashu EB, Gluud LL, Haugaard SB, Holst JJ, Rungby J, Wewer Albrechtsen NJ. Development of a glucagon sensitivity test in humans: Pilot data and the GLUSENTIC study protocol. Peptides 2023; 161:170938. [PMID: 36596314 DOI: 10.1016/j.peptides.2022.170938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
A physiological feedback system exists between hepatocytes and the alpha cells, termed the liver-alpha cell axis and refers to the relationship between amino acid-stimulated glucagon secretion and glucagon-stimulated amino acid catabolism. Several reports indicate that non-alcoholic fatty liver disease (NAFLD) disrupts the liver-alpha cell axis, because of impaired glucagon receptor signaling (glucagon resistance). However, no experimental test exists to assess glucagon resistance in humans. The objective was to develop an experimental test to determine glucagon sensitivity with respect to amino acid and glucose metabolism in humans. The proposed glucagon sensitivity test (comprising two elements: 1) i.v. injection of 0.2 mg glucagon and 2) infusion of mixed amino acids 331 mg/hour/kg) is based on nine pilot studies which are presented. Calculation of a proposed glucagon sensitivity index with respect to amino acid catabolism is also described. Secondly, we describe a complete study protocol (GLUSENTIC) according to which the glucagon sensitivity test will be applied in a cross-sectional study currently taking place. 65 participants including 20 individuals with a BMI 18.6-25 kg/m2, 30 individuals with a BMI ≥ 25-40 kg/m2, and 15 individuals with type 1 diabetes with a BMI between 18.6 and 40 kg/m2 will be included. Participants will be grouped according to their degree of hepatic steatosis measured by whole-liver magnetic resonance imaging (MRI). The primary outcome measure will be differences in the glucagon sensitivity index between individuals with and without hepatic steatosis. Developing a glucagon sensitivity test and index may provide insight into the physiological and pathophysiological mechanism of glucagon action and glucagon-based therapies.
Collapse
Affiliation(s)
- Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Bispebjerg, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Bispebjerg, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole J Jensen
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Malin S D Nilsson
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Niklas Heinz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus D Nybing
- Department of Radiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Frederik H Linden
- Department of Radiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Erik Høgh-Schmidt
- Department of Radiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Mikael P Boesen
- Department of Radiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Andreas Møller
- Department of Gastroenterology and Gastrointestinal Surgery, Hvidovre University Hospital, Hvidovre, Denmark
| | - Kirsten Nørgaard
- Institute of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Elias B Rashu
- Department of Gastroenterology and Gastrointestinal Surgery, Hvidovre University Hospital, Hvidovre, Denmark
| | - Lise L Gluud
- Department of Gastroenterology and Gastrointestinal Surgery, Hvidovre University Hospital, Hvidovre, Denmark; Institute of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Bispebjerg, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Richter MM, Galsgaard KD, Elmelund E, Knop FK, Suppli MP, Holst JJ, Winther-Sørensen M, Kjeldsen SA, Wewer Albrechtsen NJ. The Liver-α-Cell Axis in Health and in Disease. Diabetes 2022; 71:1852-1861. [PMID: 35657688 PMCID: PMC9862287 DOI: 10.2337/dbi22-0004] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Glucagon and insulin are the main regulators of blood glucose. While the actions of insulin are extensively mapped, less is known about glucagon. Besides glucagon's role in glucose homeostasis, there are additional links between the pancreatic α-cells and the hepatocytes, often collectively referred to as the liver-α-cell axis, that may be of importance for health and disease. Thus, glucagon receptor antagonism (pharmacological or genetic), which disrupts the liver-α-cell axis, results not only in lower fasting glucose but also in reduced amino acid turnover and dyslipidemia. Here, we review the actions of glucagon on glucose homeostasis, amino acid catabolism, and lipid metabolism in the context of the liver-α-cell axis. The concept of glucagon resistance is also discussed, and we argue that the various elements of the liver-α-cell axis may be differentially affected in metabolic diseases such as diabetes, obesity, and nonalcoholic fatty liver disease (NAFLD). This conceptual rethinking of glucagon biology may explain why patients with type 2 diabetes have hyperglucagonemia and how NAFLD disrupts the liver-α-cell axis, compromising the normal glucagon-mediated enhancement of substrate-induced amino acid turnover and possibly fatty acid β-oxidation. In contrast to amino acid catabolism, glucagon-induced glucose production may not be affected by NAFLD, explaining the diabetogenic effect of NAFLD-associated hyperglucagonemia. Consideration of the liver-α-cell axis is essential to understanding the complex pathophysiology underlying diabetes and other metabolic diseases.
Collapse
Affiliation(s)
- Michael M. Richter
- Department of Clinical Biochemistry, Diagnostic Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Malte P. Suppli
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha A.S. Kjeldsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Clinical Biochemistry, Diagnostic Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital—Bispebjerg and Frederiksberg Hospital, Bispebjerg, Denmark
- Corresponding author: Nicolai J. Wewer Albrechtsen,
| |
Collapse
|
18
|
Trinh B, Peletier M, Simonsen C, Plomgaard P, Karstoft K, Pedersen BK, van Hall G, Ellingsgaard H. Amino Acid Metabolism and Protein Turnover in Lean and Obese Humans During Exercise-Effect of IL-6 Receptor Blockade. J Clin Endocrinol Metab 2022; 107:1854-1864. [PMID: 35442403 DOI: 10.1210/clinem/dgac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Interleukin-6 (IL-6) is implicated in skeletal muscle wasting and in regulating skeletal muscle hypertrophy in the healthy state. OBJECTIVE This work aimed to determine the role of IL-6 in regulating systemic protein and amino acid metabolism during rest, exercise, and recovery in lean and obese humans. METHODS In a nonrandomized, single-blind design, 12 lean and 9 obese individuals were infused first with 0.9% saline (Saline), secondly with the IL-6 receptor antibody tocilizumab (Acute IL-6R ab), and 21 days later with saline while still under tocilizumab influence (Chronic IL-6R ab). Outcome measures were determined before, during, and after 90 minutes of exercise at 40% Wattmax by isotope dilution technique, using primed continuous infusion of L-[ring-D5]phenylalanine and L-[D2]tyrosine. Main outcomes measures included systemic protein turnover and plasma amino acid concentrations. RESULTS We saw no effect of acute or chronic IL-6 receptor blockade on protein turnover. In lean individuals, chronic IL-6 receptor blockade increased plasma concentrations of total amino acids (rest Δ + 186 μmol/L; 95% CI, 40-332; recovery Δ + 201 μmol/L; 95% CI, 55-347) and essential amino acids (rest Δ + 43 μmol/L; 95% CI, 12-76; recovery Δ + 45 μmol/L; 95% CI, 13-77) independently of exercise but had no such effect in obese individuals (total amino acids rest Δ + 63 μmol/L; 95% CI, -170 to 295, recovery Δ - 23 μmol/L, 95% CI, -256 to 210; essential amino acids rest Δ + 26 μmol/L; 95% CI, -21 to 73, recovery Δ + 11 μmol/L; 95% CI, -36 to 58). CONCLUSION IL-6 receptor blockade has no effect on protein turnover in fasting lean and obese humans during rest, exercise, and recovery. Chronic IL-6 receptor blockade increases total and essential amino acid concentrations only in lean individuals.
Collapse
Affiliation(s)
- Beckey Trinh
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| | - Merel Peletier
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| | - Casper Simonsen
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| | - Peter Plomgaard
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristian Karstoft
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen 2400, Denmark
| | - Bente Klarlund Pedersen
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| | - Gerrit van Hall
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen 2100, Denmark
- Clinical Metabolomics Core Facility, Rigshospitalet, Copenhagen 2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Helga Ellingsgaard
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| |
Collapse
|
19
|
Zhang J, Pivovarova-Ramich O, Kabisch S, Markova M, Hornemann S, Sucher S, Rohn S, Machann J, Pfeiffer AFH. High Protein Diets Improve Liver Fat and Insulin Sensitivity by Prandial but Not Fasting Glucagon Secretion in Type 2 Diabetes. Front Nutr 2022; 9:808346. [PMID: 35662921 PMCID: PMC9160603 DOI: 10.3389/fnut.2022.808346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Glucagon (GCGN) plays a key role in glucose and amino acid (AA) metabolism by increasing hepatic glucose output. AA strongly stimulate GCGN secretion which regulates hepatic AA degradation by ureagenesis. Although increased fasting GCGN levels cause hyperglycemia GCGN has beneficial actions by stimulating hepatic lipolysis and improving insulin sensitivity through alanine induced activation of AMPK. Indeed, stimulating prandial GCGN secretion by isocaloric high protein diets (HPDs) strongly reduces intrahepatic lipids (IHLs) and improves glucose metabolism in type 2 diabetes mellitus (T2DM). Therefore, the role of GCGN and circulating AAs in metabolic improvements in 31 patients with T2DM consuming HPD was investigated. Six weeks HPD strongly coordinated GCGN and AA levels with IHL and insulin sensitivity as shown by significant correlations compared to baseline. Reduction of IHL during the intervention by 42% significantly improved insulin sensitivity [homeostatic model assessment for insulin resistance (HOMA-IR) or hyperinsulinemic euglycemic clamps] but not fasting GCGN or AA levels. By contrast, GCGN secretion in mixed meal tolerance tests (MMTTs) decreased depending on IHL reduction together with a selective reduction of GCGN-regulated alanine levels indicating greater GCGN sensitivity. HPD aligned glucose metabolism with GCGN actions. Meal stimulated, but not fasting GCGN, was related to reduced liver fat and improved insulin sensitivity. This supports the concept of GCGN-induced hepatic lipolysis and alanine- and ureagenesis-induced activation of AMPK by HPD.
Collapse
Affiliation(s)
- Jiudan Zhang
- Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Jiudan Zhang,
| | - Olga Pivovarova-Ramich
- Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Stephanie Sucher
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
- Faculty of Process Sciences, Institute of Food Technology and Food Chemistry, Technical University of Berlin, Berlin, Germany
| | - Jürgen Machann
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
- Andreas F. H. Pfeiffer,
| |
Collapse
|
20
|
Stinson SE, Jonsson AE, de Retana Alzola IF, Lund MAV, Frithioff-Bøjsøe C, Aas Holm L, Fonvig CE, Pedersen O, Ängquist L, Sørensen TIA, Holst JJ, Christiansen M, Holm JC, Hartmann B, Hansen T. Hyperglucagonemia in Pediatric Adiposity Associates With Cardiometabolic Risk Factors but Not Hyperglycemia. J Clin Endocrinol Metab 2022; 107:1569-1576. [PMID: 35213713 PMCID: PMC9113783 DOI: 10.1210/clinem/dgac108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 01/18/2023]
Abstract
CONTEXT In adults, hyperglucagonemia is associated with type 2 diabetes, impaired glucose tolerance, and obesity. The role of glucagon in pediatric overweight/obesity remains unclear. OBJECTIVE We examined whether fasting concentrations of glucagon are elevated in youth with overweight/obesity and whether this associates with cardiometabolic risk profiles. METHODS Analyses were based on the cross-sectional HOLBAEK study, including children and adolescents 6 to 19 years of age, with overweight/obesity from an obesity clinic group (n = 2154) and with normal weight from a population-based group (n = 1858). Fasting concentrations of plasma glucagon and cardiometabolic risk outcomes were assessed, and multiple linear and logistic regressions models were performed. RESULTS The obesity clinic group had higher glucagon concentrations than the population-based group (P < 0.001). Glucagon positively associated with body mass index (BMI) standard deviation score (SDS), waist, body fat %, liver fat %, alanine transaminase (ALT), high-sensitivity C-reactive protein, homeostasis model assessment of insulin resistance, insulin, C-peptide, LDL-C, triglycerides, SDS of diastolic and systolic blood pressure, and was inversely associated with fasting glucose. The inverse relationship between glucagon and glucose was attenuated in individuals with high BMI SDS and high fasting insulin. Glucagon was associated with a higher prevalence of insulin resistance, increased ALT, dyslipidemia, and hypertension, but not with hyperglycemia. Glucagon was positively associated with fasting total glucagon-like peptide-1. CONCLUSION Compared with normal weight peers, children and adolescents with overweight/obesity had elevated concentrations of fasting glucagon, which corresponded to worsened cardiometabolic risk outcomes, except for hyperglycemia. This suggests hyperglucagonemia in youth may precede impairments in glucose regulation.
Collapse
Affiliation(s)
- Sara E Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ierai Fernández de Retana Alzola
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten A V Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
| | - Christine Frithioff-Bøjsøe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
| | - Cilius E Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
- Department of Pediatrics, Kolding Hospital a part of Lillebælt Hospital, Kolding, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Effect of Sucrose on Amino Acid Absorption of Whey: A Randomized Crossover Trial. Metabolites 2022; 12:metabo12040282. [PMID: 35448469 PMCID: PMC9028591 DOI: 10.3390/metabo12040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Protein intake has been reported to secrete insulin and lower glucose levels, but the effect of carbohydrate and protein co-ingestion on amino acid absorption has not been well documented. A randomized, placebo-controlled, single-blinded, crossover trial was conducted to evaluate the effect of sucrose on blood amino acid levels. Eleven volunteers (both sexes aged 20–60 years with body mass index 21.4 ± 2.4 kg/m2) randomly received one of four test solutions: water (P-group), 10 g sucrose (S-group), 10 g whey protein (W-group), or 10 g whey protein + 10 g sucrose (W-S-group), and blood amino acid concentration, glucose levels, and insulin levels were monitored over 180 min. Following the wash-out period, randomized treatment and blood parameter monitoring were repeated. Consequently, amino acid concentration was significantly lower in the S-group than in the P-group, showing that single ingestion of sucrose decreased blood amino acid levels in a fasted state. However, there was no significant difference between blood amino acid levels of the W- and W-S-groups, suggesting that co-ingestion of sucrose does not affect blood amino acid concentration. Insulin levels were significantly higher in the W-S than in the S-group, and glucose levels were significantly lower in the W-S- than in the S-group, suggesting positive impact on glycotoxicity by reducing blood glucose levels. Therefore, whey protein co-ingestion with sucrose suppresses glucose levels and increases insulin levels as opposed to the sucrose ingestion, but does not affect amino acid absorption of whey protein, indicating that this co-ingestion may not be a problem for protein supplementation.
Collapse
|
22
|
Del Prato S, Gallwitz B, Holst JJ, Meier JJ. The incretin/glucagon system as a target for pharmacotherapy of obesity. Obes Rev 2022; 23:e13372. [PMID: 34713962 PMCID: PMC9286339 DOI: 10.1111/obr.13372] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a chronic, multifactorial, relapsing disease. Despite multicomponent lifestyle interventions, including pharmacotherapy, maintaining bodyweight loss is challenging for many people. The pathophysiology of obesity is complex, and currently approved pharmacotherapies only target a few of the many pathways involved; thus, single-targeting agents have limited efficacy. Proglucagon-derived peptides, glucagon, and the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), represent attractive targets for managing obesity and metabolic disorders because they may have direct roles in multiple mechanisms including satiety, energy homeostasis, and lipolytic activity. Unimolecular dual and triple agonists targeting glucagon and incretin hormone receptors have been shown to promote bodyweight loss, lower glucose levels, and reduce food intake in animal models of obesity. Multiple dual receptor agonists are in clinical development for the treatment of obesity, including GLP-1/GIP and GLP-1/glucagon receptor agonists. The extent to which glucagon contributes to treatment effects remains to be understood, but it may promote bodyweight loss by reducing food intake, while concomitant GLP-1 receptor agonism ensures normal glucose control. Further research is required to fully understand the molecular mechanisms of action and metabolic effects of both dual and triple receptor agonists.
Collapse
Affiliation(s)
- Stefano Del Prato
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Baptist Gallwitz
- Department of Internal Medicine IVEberhard Karls UniversityTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center MunichUniversity of TübingenTübingenGermany
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Juris J. Meier
- Division of Diabetology, Katholisches Klinikum Bochum, St. Josef HospitalRuhr UniversityBochumGermany
| |
Collapse
|
23
|
Jones B, Sands C, Alexiadou K, Minnion J, Tharakan G, Behary P, Ahmed AR, Purkayastha S, Lewis MR, Bloom S, Li JV, Tan TM. The Metabolomic Effects of Tripeptide Gut Hormone Infusion Compared to Roux-en-Y Gastric Bypass and Caloric Restriction. J Clin Endocrinol Metab 2022; 107:e767-e782. [PMID: 34460933 PMCID: PMC8764224 DOI: 10.1210/clinem/dgab608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/23/2022]
Abstract
CONTEXT The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY) are regulators of energy intake and glucose homeostasis and are thought to contribute to the glucose-lowering effects of bariatric surgery. OBJECTIVE To establish the metabolomic effects of a combined infusion of GLP-1, OXM, and PYY (tripeptide GOP) in comparison to a placebo infusion, Roux-en-Y gastric bypass (RYGB) surgery, and a very low-calorie diet (VLCD). DESIGN AND SETTING Subanalysis of a single-blind, randomized, placebo-controlled study of GOP infusion (ClinicalTrials.gov NCT01945840), including VLCD and RYGB comparator groups. PATIENTS AND INTERVENTIONS Twenty-five obese patients with type 2 diabetes or prediabetes were randomly allocated to receive a 4-week subcutaneous infusion of GOP (n = 14) or 0.9% saline control (n = 11). An additional 22 patients followed a VLCD, and 21 underwent RYGB surgery. MAIN OUTCOME MEASURES Plasma and urine samples collected at baseline and 4 weeks into each intervention were subjected to cross-platform metabolomic analysis, followed by unsupervised and supervised modeling approaches to identify similarities and differences between the effects of each intervention. RESULTS Aside from glucose, very few metabolites were affected by GOP, contrasting with major metabolomic changes seen with VLCD and RYGB. CONCLUSIONS Treatment with GOP provides a powerful glucose-lowering effect but does not replicate the broader metabolomic changes seen with VLCD and RYGB. The contribution of these metabolomic changes to the clinical benefits of RYGB remains to be elucidated.
Collapse
MESH Headings
- Adult
- Aged
- Blood Glucose/analysis
- Caloric Restriction/methods
- Caloric Restriction/statistics & numerical data
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Diabetes Mellitus, Type 2/urine
- Drug Therapy, Combination/methods
- Female
- Gastric Bypass/methods
- Gastric Bypass/statistics & numerical data
- Gastrointestinal Hormones/administration & dosage
- Glucagon-Like Peptide 1/administration & dosage
- Humans
- Infusions, Subcutaneous
- Male
- Metabolomics/statistics & numerical data
- Middle Aged
- Obesity, Morbid/blood
- Obesity, Morbid/metabolism
- Obesity, Morbid/therapy
- Obesity, Morbid/urine
- Oxyntomodulin/administration & dosage
- Peptide YY/administration & dosage
- Single-Blind Method
- Treatment Outcome
- Weight Loss
- Young Adult
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Caroline Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kleopatra Alexiadou
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - George Tharakan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Preeshila Behary
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew R Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Stephen Bloom
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jia V Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Correspondence: Tricia M. Tan, MB, ChB, BSc, PhD, FRCP, FRCPath, 6th Floor, Commonwealth Building, Hammersmith Campus, Imperial College London, London W12 0HS, UK.
| |
Collapse
|
24
|
Bossart M, Wagner M, Elvert R, Evers A, Hübschle T, Kloeckener T, Lorenz K, Moessinger C, Eriksson O, Velikyan I, Pierrou S, Johansson L, Dietert G, Dietz-Baum Y, Kissner T, Nowotny I, Einig C, Jan C, Rharbaoui F, Gassenhuber J, Prochnow HP, Agueusop I, Porksen N, Smith WB, Nitsche A, Konkar A. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab 2022; 34:59-74.e10. [PMID: 34932984 DOI: 10.1016/j.cmet.2021.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Unimolecular triple incretins, combining the activity of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG), have demonstrated reduction in body weight and improved glucose control in rodent models. We developed SAR441255, a synthetic peptide agonist of the GLP-1, GCG, and GIP receptors, structurally based on the exendin-4 sequence. SAR441255 displays high potency with balanced activation of all three target receptors. In animal models, metabolic outcomes were superior to results with a dual GLP-1/GCG receptor agonist. Preclinical in vivo positron emission tomography imaging demonstrated SAR441255 binding to GLP-1 and GCG receptors. In healthy subjects, SAR441255 improved glycemic control during a mixed-meal tolerance test and impacted biomarkers for GCG and GIP receptor activation. Single doses of SAR441255 were well tolerated. The results demonstrate that integrating GIP activity into dual GLP-1 and GCG receptor agonism provides improved effects on weight loss and glycemic control while buffering the diabetogenic risk of chronic GCG receptor agonism.
Collapse
Affiliation(s)
- Martin Bossart
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany.
| | - Michael Wagner
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Andreas Evers
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | | | - Katrin Lorenz
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Olof Eriksson
- Antaros Medical AB, Mölndal, Sweden; Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; PET Centre, Centre for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | - Irene Nowotny
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | - Christelle Jan
- Clinical Sciences & Operations, Sanofi, Chilly-Mazarin, France
| | - Faiza Rharbaoui
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | | | | | | | - William B Smith
- NOCCR Alliance for Multispecialty Research (AMR), Knoxville, TN, USA
| | | | | |
Collapse
|
25
|
Jog R, Chen G, Wang J, Leff T. Hormonal regulation of glycine decarboxylase and its relationship to oxidative stress. Physiol Rep 2021; 9:e14991. [PMID: 34342168 PMCID: PMC8329434 DOI: 10.14814/phy2.14991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
In both humans and rodent models, circulating glycine levels are significantly reduced in obesity, glucose intolerance, type II diabetes, and non-alcoholic fatty liver disease. The glycine cleavage system and its rate-limiting enzyme, glycine decarboxylase (GLDC), is a major determinant of plasma glycine levels. The goals of this study were to determine if the increased expression of GLDC contributes to the reduced plasma glycine levels seen in disease states, to characterize the hormonal regulation of GLDC gene expression, and to determine if altered GLDC expression has physiological effects that might affect the development of diabetes. The findings presented here show that hepatic GLDC gene expression is elevated in mouse models of obesity and diabetes, as well as by fasting. We demonstrated that GLDC gene expression is strongly regulated by the metabolic hormones glucagon and insulin, and we identified the signaling pathways involved in this regulation. Finally, we found that GLDC expression is linked to glutathione levels, with increased expression associated with elevated levels of glutathione and reduced expression associated with a suppression of glutathione and increased cellular ROS levels. These findings suggest that the hormonal regulation of GLDC contributes not only to the changes in circulating glycine levels seen in metabolic disease, but also affects glutathione production, possibly as a defense against metabolic disease-associated oxidative stress.
Collapse
Affiliation(s)
- Ruta Jog
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Guohua Chen
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Jian Wang
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Todd Leff
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
26
|
Vega RB, Whytock KL, Gassenhuber J, Goebel B, Tillner J, Agueusop I, Truax AD, Yu G, Carnero E, Kapoor N, Gardell S, Sparks LM, Smith SR. A Metabolomic Signature of Glucagon Action in Healthy Individuals With Overweight/Obesity. J Endocr Soc 2021; 5:bvab118. [PMID: 34337278 PMCID: PMC8317630 DOI: 10.1210/jendso/bvab118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/19/2022] Open
Abstract
Context Glucagon is produced and released from the pancreatic alpha-cell to regulate glucose levels during periods of fasting. The main target for glucagon action is the liver, where it activates gluconeogenesis and glycogen breakdown; however, glucagon is postulated to have other roles within the body. Objective We sought to identify the circulating metabolites that would serve as markers of glucagon action in humans. Methods In this study (NCT03139305), we performed a continuous 72-hour glucagon infusion in healthy individuals with overweight/obesity. Participants were randomized to receive glucagon 12.5 ng/kg/min (GCG 12.5), glucagon 25 ng/kg/min (GCG 25), or a placebo control. A comprehensive metabolomics analysis was then performed from plasma isolated at several time points during the infusion to identify markers of glucagon activity. Results Glucagon (GCG 12.5 and GCG 25) resulted in significant changes in the plasma metabolome as soon as 4 hours following infusion. Pathways involved in amino acid metabolism were among the most affected. Rapid and sustained reduction of a broad panel of amino acids was observed. Additionally, time-dependent changes in free fatty acids and diacylglycerol and triglyceride species were observed. Conclusion These results define a distinct signature of glucagon action that is broader than the known changes in glucose levels. In particular, the robust changes in amino acid levels may prove useful to monitor changes induced by glucagon in the context of additional glucagon-like peptide-1 or gastric inhibitory polypeptide treatment, as these agents also elicit changes in glucose levels.
Collapse
Affiliation(s)
- Rick B Vega
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | | | | | | | | | - Gongxin Yu
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Elvis Carnero
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Nidhi Kapoor
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Stephen Gardell
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| |
Collapse
|
27
|
Korenfeld N, Finkel M, Buchshtab N, Bar-Shimon M, Charni-Natan M, Goldstein I. Fasting Hormones Synergistically Induce Amino Acid Catabolism Genes to Promote Gluconeogenesis. Cell Mol Gastroenterol Hepatol 2021; 12:1021-1036. [PMID: 33957303 PMCID: PMC8346669 DOI: 10.1016/j.jcmgh.2021.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Gluconeogenesis from amino acids (AAs) maintains glucose homeostasis during fasting. Although glucagon is known to regulate AA catabolism, the contribution of other hormones to it and the scope of transcriptional regulation dictating AA catabolism are unknown. We explored the role of the fasting hormones glucagon and glucocorticoids in transcriptional regulation of AA catabolism genes and AA-dependent gluconeogenesis. METHODS We tested the RNA expression of AA catabolism genes and glucose production in primary mouse hepatocytes treated with fasting hormones (glucagon, corticosterone) and feeding hormones (insulin, fibroblast growth factor 19). We analyzed genomic data of chromatin accessibility and chromatin immunoprecipitation in mice and primary mouse hepatocytes. We performed chromatin immunoprecipitation in livers of fasted mice to show binding of cAMP responsive element binding protein (CREB) and the glucocorticoid receptor (GR). RESULTS Fasting induced the expression of 31 genes with various roles in AA catabolism. Of them, 15 were synergistically induced by co-treatment of glucagon and corticosterone. Synergistic gene expression relied on the activity of both CREB and GR and was abolished by treatment with either insulin or fibroblast growth factor 19. Enhancers adjacent to synergistically induced genes became more accessible and were bound by CREB and GR on fasting. Akin to the gene expression pattern, gluconeogenesis from AAs was synergistically induced by glucagon and corticosterone in a CREB- and GR-dependent manner. CONCLUSIONS Transcriptional regulation of AA catabolism genes during fasting is widespread and is driven by glucagon (via CREB) and corticosterone (via GR). Glucose production in hepatocytes is also synergistically augmented, showing that glucagon alone is insufficient in fully activating gluconeogenesis.
Collapse
Affiliation(s)
- Noga Korenfeld
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Finkel
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
28
|
Lespagnol E, Tagougui S, Fernandez BO, Zerimech F, Matran R, Maboudou P, Berthoin S, Descat A, Kim I, Pawlak-Chaouch M, Boissière J, Boulanger E, Feelisch M, Fontaine P, Heyman E. Circulating biomarkers of nitric oxide bioactivity and impaired muscle vasoreactivity to exercise in adults with uncomplicated type 1 diabetes. Diabetologia 2021; 64:325-338. [PMID: 33219433 DOI: 10.1007/s00125-020-05329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS Early compromised endothelial function challenges the ability of individuals with type 1 diabetes to perform normal physical exercise. The exact mechanisms underlying this vascular limitation remain unknown, but may involve either formation or metabolism of nitric oxide (NO), a major vasodilator, whose activity is known to be compromised by oxidative stress. METHODS Muscle microvascular reactivity (near-infrared spectroscopy) to an incremental exhaustive bout of exercise was assessed in 22 adults with uncomplicated type 1 diabetes (HbA1c 64.5 ± 15.7 mmol/mol; 8.0 ± 1.4%) and in 21 healthy individuals (18-40 years of age). NO-related substrates/metabolites were also measured in the blood along with other vasoactive compounds and oxidative stress markers; measurements were taken at rest, at peak exercise and after 15 min of recovery. Demographic characteristics, body composition, smoking status and diet were comparable in both groups. RESULTS Maximal oxygen uptake was impaired in individuals with type 1 diabetes compared with in healthy participants (35.6 ± 7.7 vs 39.6 ± 6.8 ml min-1 kg-1, p < 0.01) despite comparable levels of habitual physical activity (moderate to vigorous physical activity by accelerometery, 234.9 ± 160.0 vs 280.1 ± 114.9 min/week). Compared with non-diabetic participants, individuals with type 1 diabetes also displayed a blunted exercise-induced vasoreactivity (muscle blood volume at peak exercise as reflected by ∆ total haemoglobin, 2.03 ± 5.82 vs 5.33 ± 5.54 μmol/l; interaction 'exercise' × 'group', p < 0.05); this was accompanied by lower K+ concentration (p < 0.05), reduced plasma L-arginine (p < 0.05)-in particular when HbA1c was high (mean estimation: -4.0, p < 0.05)-and lower plasma urate levels (p < 0.01). Nonetheless, exhaustive exercise did not worsen lipid peroxidation or other oxidative stress biomarkers, and erythrocytic enzymatic antioxidant resources were mobilised to a comparable extent in both groups. Nitrite and total nitrosation products, which are potential alternative NO sources, were similarly unaltered. Graphical abstract CONCLUSIONS/INTERPRETATION: Participants with uncomplicated type 1 diabetes displayed reduced availability of L-arginine, the essential substrate for enzymatic nitric oxide synthesis, as well as lower levels of the major plasma antioxidant, urate. Lower urate levels may reflect a defect in the activity of xanthine oxidase, an enzyme capable of producing NO from nitrite under hypoxic conditions. Thus, both canonical and non-canonical NO production may be reduced. However, neither of these changes exacerbated exercise-induced oxidative stress. TRIAL REGISTRATION clinicaltrials.gov NCT02051504.
Collapse
Affiliation(s)
- Elodie Lespagnol
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Sémah Tagougui
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Farid Zerimech
- CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Université Lille, Lille, France
| | - Régis Matran
- CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Université Lille, Lille, France
| | - Patrice Maboudou
- CHU de Lille, Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie Pathologie Génétique, Lille, France
| | - Serge Berthoin
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Amandine Descat
- CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, Université Lille, Lille, France
| | - Isabelle Kim
- CHU de Lille, Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie Pathologie Génétique, Lille, France
| | - Mehdi Pawlak-Chaouch
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Julien Boissière
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Eric Boulanger
- Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, Université Lille, Lille, France
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Pierre Fontaine
- Department of Diabetology, Lille University Hospital, EA 4489, Lille, France
| | - Elsa Heyman
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France.
| |
Collapse
|
29
|
Kalra S, Unnikrishnan AG, Baruah MP, Sahay R, Bantwal G. Metabolic and Energy Imbalance in Dysglycemia-Based Chronic Disease. Diabetes Metab Syndr Obes 2021; 14:165-184. [PMID: 33488105 PMCID: PMC7816219 DOI: 10.2147/dmso.s286888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility is the ability to efficiently adapt metabolism based on nutrient availability and requirement that is essential to maintain homeostasis in times of either caloric excess or restriction and during the energy-demanding state. This regulation is orchestrated in multiple organ systems by the alliance of numerous metabolic pathways under the master control of the insulin-glucagon-sympathetic neuro-endocrine axis. This, in turn, regulates key metabolic enzymes and transcription factors, many of which interact closely with and culminate in the mitochondrial energy generation machinery. Metabolic flexibility is compromised due to the continuous mismatch between availability and intake of calorie-dense foods and reduced metabolic demand due to sedentary lifestyle and age-related metabolic slowdown. The resultant nutrient overload leads to mitochondrial trafficking of substrates manifesting as mitochondrial dysfunction characterized by ineffective substrate switching and incomplete substrate utilization. At the systemic level, the manifestation of metabolic inflexibility comprises reduced skeletal muscle glucose disposal rate, impaired suppression of hepatic gluconeogenesis and adipose tissue lipolysis manifesting as insulin resistance. This is compounded by impaired β-cell function and progressively reduced β-cell mass. A consequence of insulin resistance is the upregulation of the mitogen-activated protein kinase pathway leading to a pro-hypertensive, atherogenic, and thrombogenic environment. This is further aggravated by oxidative stress, advanced glycation end products, and inflammation, which potentiates the risk of micro- and macro-vascular complications. This review aims to elucidate underlying mechanisms mediating the onset of metabolic inflexibility operating at the main target organs and to understand the progression of metabolic diseases. This could potentially translate into a pharmacological tool that can manage multiple interlinked conditions of dysglycemia, hypertension, and dyslipidemia by restoring metabolic flexibility. We discuss the breadth and depth of metabolic flexibility and its impact on health and disease.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
- Department of Endocrinology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | | | - Manash P Baruah
- Department of Endocrinology, Excel Hospitals, Guwahati, India
| | - Rakesh Sahay
- Department of Endocrinology, Osmania Medical College, Hyderabad, Telangana, India
| | - Ganapathi Bantwal
- Department of Endocrinology, St. John’s Medical College and Hospital, Bangalore, Karnataka, India
| |
Collapse
|
30
|
Galsgaard KD. The Vicious Circle of Hepatic Glucagon Resistance in Non-Alcoholic Fatty Liver Disease. J Clin Med 2020; 9:jcm9124049. [PMID: 33333850 PMCID: PMC7765287 DOI: 10.3390/jcm9124049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
A key criterion for the most common chronic liver disease—non-alcoholic fatty liver disease (NAFLD)—is an intrahepatic fat content above 5% in individuals who are not using steatogenic agents or having significant alcohol intake. Subjects with NAFLD have increased plasma concentrations of glucagon, and emerging evidence indicates that subjects with NAFLD may show hepatic glucagon resistance. For many years, glucagon has been thought of as the counterregulatory hormone to insulin with a primary function of increasing blood glucose concentrations and protecting against hypoglycemia. However, in recent years, glucagon has re-emerged as an important regulator of other metabolic processes including lipid and amino acid/protein metabolism. This review discusses the evidence that in NAFLD, hepatic glucagon resistance may result in a dysregulated lipid and amino acid/protein metabolism, leading to excess accumulation of fat, hyperglucagonemia, and increased oxidative stress contributing to the worsening/progression of NAFLD.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; ; Tel.: +45-6044-6145
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
31
|
Li W, Kirchner T, Ho G, Bonilla F, D'Aquino K, Littrell J, Zhang R, Jian W, Qiu X, Zheng S, Gao B, Wong P, Leonard JN, Camacho RC. Amino acids are sensitive glucagon receptor-specific biomarkers for glucagon-like peptide-1 receptor/glucagon receptor dual agonists. Diabetes Obes Metab 2020; 22:2437-2450. [PMID: 33463043 DOI: 10.1111/dom.14173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022]
Abstract
AIM The aim of this study was to evaluate amino acids as glucagon receptor (GCGR)-specific biomarkers in rodents and cynomolgus monkeys in the presence of agonism of both glucagon-like peptide-1 receptor (GLP1R) and GCGR with a variety of dual agonist compounds. MATERIALS AND METHODS Primary hepatocytes, rodents (normal, diet-induced obese and GLP1R knockout) and cynomolgus monkeys were treated with insulin (hepatocytes only), glucagon (hepatocytes and cynomolgus monkeys), the GLP1R agonist, dulaglutide, or a variety of dual agonists with varying GCGR potencies. RESULTS A long-acting dual agonist, Compound 2, significantly decreased amino acids in both wild-type and GLP1R knockout mice in the absence of changes in food intake, body weight, glucose or insulin, and increased expression of hepatic amino acid transporters. Dulaglutide, or a variant of Compound 2 lacking GCGR agonism, had no effect on amino acids. A third variant with ~31-fold less GCGR potency than Compound 2 significantly decreased amino acids, albeit to a significantly lesser extent than Compound 2. Dulaglutide (with saline infusion) had no effect on amino acids, but an infusion of glucagon dose-dependently decreased amino acids on the background of GLP1R engagement (dulaglutide) in cynomolgus monkeys, as did Compound 2. CONCLUSIONS These results show that amino acids are sensitive and translatable GCGR-specific biomarkers.
Collapse
Affiliation(s)
- Wenyu Li
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Thomas Kirchner
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - George Ho
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Fany Bonilla
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Katharine D'Aquino
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - James Littrell
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Rui Zhang
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Wenying Jian
- Pharmacokinetics, Dynamics, and Metabolism, Janssen R&D, Spring House, Pennsylvania, USA
| | - Xi Qiu
- Pharmacokinetics, Dynamics, and Metabolism, Janssen R&D, Spring House, Pennsylvania, USA
| | - Songmao Zheng
- Janssen Biotherapeutics, Janssen R&D, Spring House, Pennsylvania, USA
| | - Bin Gao
- Translational Medicine and Early Development Statistics, Janssen R&D, Spring House, Pennsylvania, USA
| | - Peggy Wong
- Quantitative Sciences, Janssen R&D, Raritan, New Jersey, USA
| | - James N Leonard
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Raul C Camacho
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| |
Collapse
|
32
|
Winther-Sørensen M, Galsgaard KD, Santos A, Trammell SAJ, Sulek K, Kuhre RE, Pedersen J, Andersen DB, Hassing AS, Dall M, Treebak JT, Gillum MP, Torekov SS, Windeløv JA, Hunt JE, Kjeldsen SAS, Jepsen SL, Vasilopoulou CG, Knop FK, Ørskov C, Werge MP, Bisgaard HC, Eriksen PL, Vilstrup H, Gluud LL, Holst JJ, Wewer Albrechtsen NJ. Glucagon acutely regulates hepatic amino acid catabolism and the effect may be disturbed by steatosis. Mol Metab 2020; 42:101080. [PMID: 32937194 PMCID: PMC7560169 DOI: 10.1016/j.molmet.2020.101080] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. METHODS We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). RESULTS Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). CONCLUSIONS Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism.
Collapse
Affiliation(s)
- Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Catherine G Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel P Werge
- Gastrounit, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Hanne Cathrine Bisgaard
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Lotte Gluud
- Gastrounit, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
El K, Capozzi ME, Campbell JE. Repositioning the Alpha Cell in Postprandial Metabolism. Endocrinology 2020; 161:5910252. [PMID: 32964214 PMCID: PMC7899437 DOI: 10.1210/endocr/bqaa169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Glucose homeostasis is maintained in large part due to the actions of the pancreatic islet hormones insulin and glucagon, secreted from β- and α-cells, respectively. The historical narrative positions these hormones in opposition, with insulin primarily responsible for glucose-lowering and glucagon-driving elevations in glucose. Recent progress in this area has revealed a more complex relationship between insulin and glucagon, highlighted by data demonstrating that α-cell input is essential for β-cell function and glucose homeostasis. Moreover, the common perception that glucagon levels decrease following a nutrient challenge is largely shaped by the inhibitory effects of glucose administration alone on the α-cell. Largely overlooked is that a mixed nutrient challenge, which is more representative of typical human feeding, actually stimulates glucagon secretion. Thus, postprandial metabolism is associated with elevations, not decreases, in α-cell activity. This review discusses the recent advances in our understanding of how α-cells regulate metabolism, with a particular focus on the postprandial state. We highlight α- to β-cell communication, a term that describes how α-cell input into β-cells is a critical axis that regulates insulin secretion and glucose homeostasis. Finally, we discuss the open questions that have the potential to advance this field and continue to evolve our understanding of the role that α-cells play in postprandial metabolism.
Collapse
Affiliation(s)
- Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Department of Medicine, Division of Endocrinology, Duke University, Durham, North Carolina
- Correspondence: Jonathan E. Campbell, 300 N Duke Street, Durham, North Carolina 27701. E-mail:
| |
Collapse
|
34
|
Pedersen JS, Rygg MO, Kristiansen VB, Olsen BH, Serizawa RR, Holst JJ, Madsbad S, Gluud LL, Bendtsen F, Wewer Albrechtsen NJ. Nonalcoholic Fatty Liver Disease Impairs the Liver-Alpha Cell Axis Independent of Hepatic Inflammation and Fibrosis. Hepatol Commun 2020; 4:1610-1623. [PMID: 33163832 PMCID: PMC7603528 DOI: 10.1002/hep4.1562] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/22/2020] [Accepted: 05/31/2020] [Indexed: 01/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with impaired hepatic actions of glucagon and insulin. Glucagon and amino acids are linked in an endocrine feedback circuit, the liver-alpha cell axis, that may be disrupted by NAFLD. We investigated how NAFLD severity affects glucagon and insulin resistance in individuals with obesity and whether bariatric surgery improves these parameters. Plasma and liver biopsies from 33 individuals with obesity (collectively, OBE) were obtained before and 12 months after bariatric surgery (Roux-en-Y gastric bypass [RYGB] or sleeve gastrectomy [SG]). Nine healthy control individuals (collectively, CON) undergoing cholecystectomy were used as a comparison group. The NAFLD activity score (NAS) was used to subdivide study participants into the following groups: OBE-no steatosis, OBE+steatosis, and nonalcoholic steatohepatitis (NASH) and/or grade 2 fibrosis (Fib) (OBE-NASH-Fib). Measurements of amino acids by targeted metabolomics and glucagon were performed. Glucagon, amino acids (P < 0.05), and the glucagon-alanine index, a validated surrogate marker of glucagon resistance, were increased in OBE by 60%, 56%, and 61%, respectively, when compared with CON but irrespective of NAFLD severity. In contrast, markers of hepatic insulin resistance increased concomitantly with NAS. Hyperglucagonemia resolved in OBE-no steatosis and OBE+steatosis but not in OBE-NASH-Fib (median, 7.0; interquartile range, 5.0-9.8 pmol/L), regardless of improvement in insulin resistance and NAS. The type of surgery that participants underwent had no effect on metabolic outcomes. Conclusion: Glucagon resistance to amino acid metabolism exists in individuals with NAFLD independent of NAS severity. Patients with NASH showed persistent hyperglucagonemia 12 months after bariatric surgery, indicating that a disrupted liver-alpha cell may remain in NAFLD despite major improvement in liver histology.
Collapse
Affiliation(s)
- Julie Steen Pedersen
- GastrounitMedical DivisionCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Marte Opseth Rygg
- GastrounitMedical DivisionCopenhagen University Hospital HvidovreHvidovreDenmark
| | | | - Beth Hærstedt Olsen
- Department of Nuclear Medicine and Functional Imaging, Ultrasound SectionCopenhagen University Hospital HvidovreHvidovreDenmark
| | | | - Jens Juul Holst
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sten Madsbad
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Lise Lotte Gluud
- GastrounitMedical DivisionCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Flemming Bendtsen
- GastrounitMedical DivisionCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Nicolai Jacob Wewer Albrechtsen
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical Biochemistry, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
35
|
Suppli MP, Bagger JI, Lund A, Demant M, van Hall G, Strandberg C, Kønig MJ, Rigbolt K, Langhoff JL, Wewer Albrechtsen NJ, Holst JJ, Vilsbøll T, Knop FK. Glucagon Resistance at the Level of Amino Acid Turnover in Obese Subjects With Hepatic Steatosis. Diabetes 2020; 69:1090-1099. [PMID: 31974144 DOI: 10.2337/db19-0715] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Glucagon secretion is regulated by circulating glucose, but it has turned out that amino acids also play an important role and that hepatic amino acid metabolism and glucagon are linked in a mutual feedback cycle, the liver-α-cell axis. On the basis of this knowledge, we hypothesized that hepatic steatosis might impair glucagon's action on hepatic amino acid metabolism and lead to hyperaminoacidemia and hyperglucagonemia. We subjected 15 healthy lean and 15 obese steatotic male participants to a pancreatic clamp with somatostatin and evaluated hepatic glucose and amino acid metabolism when glucagon was at basal levels and at high physiological levels. The degree of steatosis was evaluated from liver biopsy specimens. Total RNA sequencing of liver biopsy specimens from the obese steatotic individuals revealed perturbations in the expression of genes predominantly involved in amino acid metabolism. This group was characterized by fasting hyperglucagonemia, hyperaminoacidemia, and no lowering of amino acid levels in response to high levels of glucagon. Endogenous glucose production was similar between lean and obese individuals. Our results suggest that hepatic steatosis causes resistance to the effect of glucagon on amino acid metabolism. This results in increased amino acid concentrations and increased glucagon secretion, providing a likely explanation for fatty liver-associated hyperglucagonemia.
Collapse
Affiliation(s)
- Malte P Suppli
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mia Demant
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Strandberg
- Department of Radiology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Merete J Kønig
- Department of Radiology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | - Jill L Langhoff
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
36
|
Galsgaard KD, Jepsen SL, Kjeldsen SAS, Pedersen J, Wewer Albrechtsen NJ, Holst JJ. Alanine, arginine, cysteine, and proline, but not glutamine, are substrates for, and acute mediators of, the liver-α-cell axis in female mice. Am J Physiol Endocrinol Metab 2020; 318:E920-E929. [PMID: 32255678 DOI: 10.1152/ajpendo.00459.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to identify the amino acids that stimulate glucagon secretion in mice and whose metabolism depends on glucagon receptor signaling. Pancreata of female C57BL/6JRj mice were perfused with 19 individual amino acids and pyruvate (at 10 mM), and secretion of glucagon was assessed using a specific glucagon radioimmunoassay. Separately, a glucagon receptor antagonist (GRA; 25-2648, 100 mg/kg) or vehicle was administered to female C57BL/6JRj mice 3 h before an intraperitoneal injection of four different isomolar amino acid mixtures (in total 7 µmol/g body wt) as follows: mixture 1 contained alanine, arginine, cysteine, and proline; mixture 2 contained aspartate, glutamate, histidine, and lysine; mixture 3 contained citrulline, methionine, serine, and threonine; and mixture 4 contained glutamine, leucine, isoleucine, and valine. Blood glucose, plasma glucagon, amino acid, and insulin concentrations were measured using well-characterized methodologies. Alanine (P = 0.03), arginine (P < 0.0001), cysteine (P = 0.01), glycine (P = 0.02), lysine (P = 0.02), and proline (P = 0.03), but not glutamine (P = 0.9), stimulated glucagon secretion from the perfused mouse pancreas. However, when the four isomolar amino acid mixtures were administered in vivo, the four mixtures elicited similar glucagon responses (P > 0.5). Plasma concentrations of total amino acids in vivo were higher after administration of GRA when mixture 1 (P = 0.004) or mixture 3 (P = 0.04) were injected. Our data suggest that alanine, arginine, cysteine, and proline, but not glutamine, are involved in the acute regulation of the liver-α-cell axis in female mice, as they all increased glucagon secretion and their disappearance rate was altered by GRA.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Nephrology and Endocrinology, Nordsjaellands Hospital Hilleroed, University of Copenhagen, Hilleroed, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Noguchi GM, Huising MO. Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 2019; 1:1189-1201. [PMID: 32694675 PMCID: PMC7378277 DOI: 10.1038/s42255-019-0148-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a complex mini organ composed of a variety of endocrine cells and their support cells, which together tightly control blood glucose homeostasis. Changes in glucose concentration are commonly regarded as the chief signal controlling insulin-secreting beta cells, glucagon-secreting alpha cells and somatostatin-secreting delta cells. However, each of these cell types is highly responsive to a multitude of endocrine, paracrine, nutritional and neural inputs, which collectively shape the final endocrine output of the islet. Here, we review the principal inputs for each islet-cell type and the physiological circumstances in which these signals arise, through the prism of the insights generated by the transcriptomes of each of the major endocrine-cell types. A comprehensive integration of the factors that influence blood glucose homeostasis is essential to successfully improve therapeutic strategies for better diabetes management.
Collapse
Affiliation(s)
- Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
38
|
Hayashi Y. Glutaminostatin: Another facet of glucagon as a regulator of plasma amino acid concentrations. J Diabetes Investig 2019; 10:1391-1393. [PMID: 31254453 PMCID: PMC6825951 DOI: 10.1111/jdi.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
Glucagon plays an essential role in robust feedback regulation between the liver and α‐cells, and exerts suppressive or static effects on the plasma concentration of amino acids, especially glutamine. Thereby, “glutaminostatin” might be an alternative name in recognition of another facet of glucagon as a suppressor of plasma glutamine levels.![]()
Collapse
Affiliation(s)
- Yoshitaka Hayashi
- Department of Endocrinology, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
39
|
Janah L, Kjeldsen S, Galsgaard KD, Winther-Sørensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Glucagon Resistance. Int J Mol Sci 2019; 20:E3314. [PMID: 31284506 PMCID: PMC6651628 DOI: 10.3390/ijms20133314] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon's potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.
Collapse
Affiliation(s)
- Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sasha Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, 3400 Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
40
|
Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019; 11:nu11061356. [PMID: 31208147 PMCID: PMC6627940 DOI: 10.3390/nu11061356] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.
Collapse
|
41
|
Galsgaard KD, Winther-Sørensen M, Pedersen J, Kjeldsen SAS, Rosenkilde MM, Wewer Albrechtsen NJ, Holst JJ. Glucose and amino acid metabolism in mice depend mutually on glucagon and insulin receptor signaling. Am J Physiol Endocrinol Metab 2019; 316:E660-E673. [PMID: 30807215 DOI: 10.1152/ajpendo.00410.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon and insulin are important regulators of blood glucose. The importance of insulin receptor signaling for alpha-cell secretion and of glucagon receptor signaling for beta-cell secretion is widely discussed and of clinical interest. Amino acids are powerful secretagogues for both hormones, and glucagon controls amino acid metabolism through ureagenesis. The role of insulin in amino acid metabolism is less clear. Female C57BL/6JRj mice received an insulin receptor antagonist (IRA) (S961; 30 nmol/kg), a glucagon receptor antagonist (GRA) (25-2648; 100 mg/kg), or both GRA and IRA (GRA + IRA) 3 h before intravenous administration of similar volumes of saline, glucose (0.5 g/kg), or amino acids (1 µmol/g) while anesthetized with isoflurane. IRA caused basal hyperglycemia, hyperinsulinemia, and hyperglucagonemia. Unexpectedly, IRA lowered basal plasma concentrations of amino acids, whereas GRA increased amino acids, lowered glycemia, and increased glucagon but did not influence insulin concentrations. After administration of GRA + IRA, insulin secretion was significantly reduced compared with IRA administration alone. Blood glucose responses to a glucose and amino acid challenge were similar after vehicle and GRA + IRA administration but greater after IRA and lower after GRA. Anesthesia may have influenced the results, which otherwise strongly suggest that both hormones are essential for the maintenance of glucose homeostasis and that the secretion of both is regulated by powerful negative feedback mechanisms. In addition, insulin limits glucagon secretion, while endogenous glucagon stimulates insulin secretion, revealed during lack of insulin autocrine feedback. Finally, glucagon receptor signaling seems to be of greater importance for amino acid metabolism than insulin receptor signaling.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjaellands Hospital Hilleroed, University of Copenhagen, Hilleroed, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen , Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
42
|
Adeva-Andany MM, Funcasta-Calderón R, Fernández-Fernández C, Castro-Quintela E, Carneiro-Freire N. Metabolic effects of glucagon in humans. J Clin Transl Endocrinol 2019; 15:45-53. [PMID: 30619718 PMCID: PMC6312800 DOI: 10.1016/j.jcte.2018.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a common metabolic disorder that involves glucose, amino acids, and fatty acids. Either insulin deficiency or insulin resistance may cause diabetes. Insulin deficiency causes type 1 diabetes and diabetes associated with total pancreatectomy. Glucagon produces insulin resistance. Glucagon-induced insulin resistance promotes type 2 diabetes and diabetes associated with glucagonoma. Further, glucagon-induced insulin resistance aggravates the metabolic consequences of the insulin-deficient state. A major metabolic effect of insulin is the accumulation of glucose as glycogen in the liver. Glucagon opposes hepatic insulin action and enhances the rate of gluconeogenesis, increasing hepatic glucose output. In order to support gluconeogenesis, glucagon promotes skeletal muscle wasting to supply amino acids as gluconeogenic precursors. Glucagon promotes hepatic fatty acid oxidation to supply energy required to sustain gluconeogenesis. Hepatic fatty acid oxidation generates β-hydroxybutyrate and acetoacetate (ketogenesis). Prospective studies reveal that elevated glucagon secretion at baseline occurs in healthy subjects who develop impaired glucose tolerance at follow-up compared with subjects who maintain normal glucose tolerance, suggesting a relationship between elevated glucagon secretion and development of impaired glucose tolerance. Prospective studies have identified animal protein consumption as an independent risk factor for type 2 diabetes and cardiovascular disease. Animal protein intake activates glucagon secretion inducing sustained elevations in plasma glucagon. Glucagon is a major hormone that causes insulin resistance. Insulin resistance is an established cardiovascular risk factor additionally to its pathogenic role in diabetes. Glucagon may be a potential link between animal protein intake and the risk of developing type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- María M. Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | | | | | | |
Collapse
|
43
|
Importance of Serum Amino Acid Profile for Induction of Hepatic Steatosis under Protein Malnutrition. Sci Rep 2018; 8:5461. [PMID: 29615653 PMCID: PMC5882898 DOI: 10.1038/s41598-018-23640-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
We previously reported that a low-protein diet caused animals to develop fatty liver containing a high level of triglycerides (TG), similar to the human nutritional disorder “kwashiorkor”. To investigate the underlying mechanisms, we cultured hepatocytes in amino acid-sufficient or deficient medium. Surprisingly, the intracellular TG level was increased by amino acid deficiency without addition of any lipids or hormones, accompanied by enhanced lipid synthesis, indicating that hepatocytes themselves monitored the extracellular amino acid concentrations to induce lipid accumulation in a cell-autonomous manner. We then confirmed that a low-amino acid diet also resulted in the development of fatty liver, and supplementation of the low-amino acid diet with glutamic acid to compensate the loss of nitrogen source did not completely suppress the hepatic TG accumulation. Only a dietary arginine or threonine deficiency was sufficient to induce hepatic TG accumulation. However, supplementation of a low-amino acid diet with arginine or threonine failed to reverse it. In silico analysis succeeded in predicting liver TG level from the serum amino acid profile. Based on these results, we conclude that dietary amino acid composition dynamically affects the serum amino acid profile, which is sensed by hepatocytes and lipid synthesis was activated cell-autonomously, leading to hepatic steatosis.
Collapse
|
44
|
Wewer Albrechtsen NJ, Færch K, Jensen TM, Witte DR, Pedersen J, Mahendran Y, Jonsson AE, Galsgaard KD, Winther-Sørensen M, Torekov SS, Lauritzen T, Pedersen O, Knop FK, Hansen T, Jørgensen ME, Vistisen D, Holst JJ. Evidence of a liver-alpha cell axis in humans: hepatic insulin resistance attenuates relationship between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia 2018; 61:671-680. [PMID: 29305624 DOI: 10.1007/s00125-017-4535-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The secretion of glucagon is controlled by blood glucose and inappropriate secretion of glucagon contributes to hyperglycaemia in diabetes. Besides its role in glucose regulation, glucagon regulates amino acid metabolism in hepatocytes by increasing ureagenesis. Disruption of this mechanism causes hyperaminoacidaemia, which in turn increases glucagon secretion. We hypothesised that hepatic insulin resistance (secondary to hepatic steatosis) via defective glucagon signalling/glucagon resistance would lead to impaired ureagenesis and, hence, increased plasma concentrations of glucagonotropic amino acids and, subsequently, glucagon. METHODS To examine the association between glucagon and amino acids, and to explore whether this relationship was modified by hepatic insulin resistance, we studied a well-characterised cohort of 1408 individuals with normal and impaired glucose regulation. In this cohort, we have previously reported insulin resistance to be accompanied by increased plasma concentrations of glucagon. We now measure plasma levels of amino acids in the same cohort. HOMA-IR was calculated as a marker of hepatic insulin resistance. RESULTS Fasting levels of glucagonotropic amino acids and glucagon were significantly and inversely associated in linear regression models (persisting after adjustment for age, sex and BMI). Increasing levels of hepatic, but not peripheral insulin resistance (p > 0.166) attenuated the association between glucagon and circulating levels of alanine, glutamine and tyrosine, and was significantly associated with hyperaminoacidaemia and hyperglucagonaemia. A doubling of the calculated glucagon-alanine index was significantly associated with a 30% increase in hepatic insulin resistance, a 7% increase in plasma alanine aminotransferase levels, and a 14% increase in plasma γ-glutamyltransferase levels. CONCLUSIONS/INTERPRETATION This cross-sectional study supports the existence of a liver-alpha cell axis in humans: glucagon regulates plasma levels of amino acids, which in turn feedback to regulate the secretion of glucagon. With hepatic insulin resistance, reflecting hepatic steatosis, the feedback cycle is disrupted, leading to hyperaminoacidaemia and hyperglucagonaemia. The glucagon-alanine index is suggested as a relevant marker for hepatic glucagon signalling.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Daniel R Witte
- The Danish Diabetes Academy, Odense, Denmark
- Department of Public Health, Section of General Practice, Aarhus University, Aarhus, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuvaraj Mahendran
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna E Jonsson
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Lauritzen
- Department of Public Health, Section of General Practice, Aarhus University, Aarhus, Denmark
| | - Oluf Pedersen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, Southern Denmark University, Odense, Denmark
| | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
45
|
Wewer Albrechtsen NJ. Glucagon receptor signaling in metabolic diseases. Peptides 2018; 100:42-47. [PMID: 29412830 DOI: 10.1016/j.peptides.2017.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 01/25/2023]
Abstract
Glucagon is a peptide hormone secreted from the pancreatic alpha cells in response to hypoglycemia but in some patients with type 2 diabetes a paradoxical hypersecretion results from the intake of glucose. In rodent, antagonizing the actions of glucagon have been shown to be effective for lowering blood glucose levels and this has recently have been solidified in patients with type 2 diabetes. Although the reported increases of liver enzymes, hyperglucagonemia, and alpha cell hyperplasia resulting from glucagon receptor antagonism may potentially limit the clinical applicability of glucagon receptor antagonists, they may serve as an instrumental toolbox for delineating the physiology of glucagon. Agonizing glucagon receptor signaling may be relevant, in particular when combined with glucagon-like peptide-1 receptor analogues in the perspective of body weight lowering therapy. Here, we will focus on new conceptual aspects of glucagon biology and how this may led to new diagnostics and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, and the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
46
|
Hayashi Y, Seino Y. Regulation of amino acid metabolism and α-cell proliferation by glucagon. J Diabetes Investig 2018; 9:464-472. [PMID: 29314731 PMCID: PMC5934249 DOI: 10.1111/jdi.12797] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022] Open
Abstract
Both glucagon and glucagon-like peptide-1 (GLP-1) are produced from proglucagon through proteolytic cleavage. Blocking glucagon action increases the circulating levels of glucagon and GLP-1, reduces the blood glucose level, and induces the proliferation of islet α-cells. Glucagon blockade also suppresses hepatic amino acid catabolism and increases the serum amino acid level. In animal models defective in both glucagon and GLP-1, the blood glucose level is not reduced, indicating that GLP-1 is required for glucagon blockade to reduce the blood glucose level. In contrast, hyperplasia of α-cells and hyperaminoacidemia are observed in such animal models, indicating that GLP-1 is not required for the regulation of α-cell proliferation or amino acid metabolism. These findings suggest that the regulation of amino acid metabolism is a more important specific physiological role of glucagon than the regulation of glucose metabolism. Although the effects of glucagon deficiency on glucose metabolism are compensated by the suppression of insulin secretion, the effects on amino acid metabolism are not. Recently, data showing a feedback regulatory mechanism between the liver and islet α-cells, which is mediated by glucagon and amino acids, are accumulating. However, a number of questions on the mechanism of this regulation remain to be addressed. The profile of glucagon as a regulator of amino acid metabolism must be carefully considered for glucagon blockade to be applied therapeutically in the treatment of patients with diabetes.
Collapse
Affiliation(s)
- Yoshitaka Hayashi
- Division of Stress Adaptation and ProtectionResearch Institute of Environmental MedicineNagoyaJapan
| | - Yusuke Seino
- Department of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoya UniversityNagoyaJapan
| |
Collapse
|
47
|
Wewer Albrechtsen NJ, Junker AE, Christensen M, Hædersdal S, Wibrand F, Lund AM, Galsgaard KD, Holst JJ, Knop FK, Vilsbøll T. Hyperglucagonemia correlates with plasma levels of non-branched-chain amino acids in patients with liver disease independent of type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 2018; 314:G91-G96. [PMID: 28971838 DOI: 10.1152/ajpgi.00216.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with type 2 diabetes (T2D) and patients with nonalcoholic fatty liver disease (NAFLD) frequently exhibit elevated plasma concentrations of glucagon (hyperglucagonemia). Hyperglucagonemia and α-cell hyperplasia may result from elevated levels of plasma amino acids when glucagon's action on hepatic amino acid metabolism is disrupted. We therefore measured plasma levels of glucagon and individual amino acids in patients with and without biopsy-verified NAFLD and with and without type T2D. Fasting levels of amino acids and glucagon in plasma were measured, using validated ELISAs and high-performance liquid chromatography, in obese, middle-aged individuals with I) normal glucose tolerance (NGT) and NAFLD, II) T2D and NAFLD, III) T2D without liver disease, and IV) NGT and no liver disease. Elevated levels of total amino acids were observed in participants with NAFLD and NGT compared with NGT controls (1,310 ± 235 µM vs. 937 ± 281 µM, P = 0.03) and in T2D and NAFLD compared with T2D without liver disease (1,354 ± 329 µM vs. 511 ± 235 µM, P < 0.0001). Particularly amino acids with known glucagonotropic effects (e.g., glutamine) were increased. Plasma levels of total amino acids correlated to plasma levels of glucagon also when adjusting for body mass index (BMI), glycated hemoglobin (HbA1c), and cholesterol levels (β = 0.013 ± 0.007, P = 0.024). Elevated plasma levels of total amino acids associate with hyperglucagonemia in NAFLD patients independently of glycemic control, BMI or cholesterol - supporting the potential importance of a "liver-α-cell axis" in which glucagon regulates hepatic amino acid metabolism. Fasting hyperglucagonemia as seen in T2D may therefore represent impaired hepatic glucagon action with increasing amino acids levels. NEW & NOTEWORTHY Hypersecretion of glucagon (hyperglucagonemia) has been suggested to be linked to type 2 diabetes. Here, we show that levels of amino acids correlate with levels of glucagon. Hyperglucagonemia may depend on hepatic steatosis rather than type 2 diabetes.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Anders E Junker
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mette Christensen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet , Copenhagen , Denmark
| | - Sofie Hædersdal
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Flemming Wibrand
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet , Copenhagen , Denmark
| | - Allan M Lund
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet , Copenhagen , Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Steno Diabetes Center Copenhagen, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
48
|
Galsgaard KD, Winther-Sørensen M, Ørskov C, Kissow H, Poulsen SS, Vilstrup H, Prehn C, Adamski J, Jepsen SL, Hartmann B, Hunt J, Charron MJ, Pedersen J, Wewer Albrechtsen NJ, Holst JJ. Disruption of glucagon receptor signaling causes hyperaminoacidemia exposing a possible liver-alpha-cell axis. Am J Physiol Endocrinol Metab 2018; 314:E93-E103. [PMID: 28978545 PMCID: PMC6048389 DOI: 10.1152/ajpendo.00198.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucagon secreted from the pancreatic alpha-cells is essential for regulation of blood glucose levels. However, glucagon may play an equally important role in the regulation of amino acid metabolism by promoting ureagenesis. We hypothesized that disruption of glucagon receptor signaling would lead to an increased plasma concentration of amino acids, which in a feedback manner stimulates the secretion of glucagon, eventually associated with compensatory proliferation of the pancreatic alpha-cells. To address this, we performed plasma profiling of glucagon receptor knockout ( Gcgr-/-) mice and wild-type (WT) littermates using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, and tissue biopsies from the pancreas were analyzed for islet hormones and by histology. A principal component analysis of the plasma metabolome from Gcgr-/- and WT littermates indicated amino acids as the primary metabolic component distinguishing the two groups of mice. Apart from their hyperaminoacidemia, Gcgr-/- mice display hyperglucagonemia, increased pancreatic content of glucagon and somatostatin (but not insulin), and alpha-cell hyperplasia and hypertrophy compared with WT littermates. Incubating cultured α-TC1.9 cells with a mixture of amino acids (Vamin 1%) for 30 min and for up to 48 h led to increased glucagon concentrations (~6-fold) in the media and cell proliferation (~2-fold), respectively. In anesthetized mice, a glucagon receptor-specific antagonist (Novo Nordisk 25-2648, 100 mg/kg) reduced amino acid clearance. Our data support the notion that glucagon secretion and hepatic amino acid metabolism are linked in a close feedback loop, which operates independently of normal variations in glucose metabolism.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Hendrik Vilstrup
- Department of Hepato-Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | - Cornelia Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum, German Research Center for Environmental Health, München-Neuerberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum, German Research Center for Environmental Health, München-Neuerberg, Germany
- Lehrstul für Experimentelle Genetik, Technishe Universität München, Freising- Weihenstephan , Germany
- German Center for Diabetes Research, München-Nueherberg, Germany
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jenna Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Maureen J Charron
- Departments of Biochemistry, Obstetrics and Gynecology and Women's Health, and Medicine, Albert Einstein College of Medicine , New York, New York
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
49
|
Thiessen SE, Derde S, Derese I, Dufour T, Vega CA, Langouche L, Goossens C, Peersman N, Vermeersch P, Vander Perre S, Holst JJ, Wouters PJ, Vanhorebeek I, Van den Berghe G. Role of Glucagon in Catabolism and Muscle Wasting of Critical Illness and Modulation by Nutrition. Am J Respir Crit Care Med 2017; 196:1131-1143. [PMID: 28475354 DOI: 10.1164/rccm.201702-0354oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Critical illness is hallmarked by muscle wasting and disturbances in glucose, lipid, and amino acid homeostasis. Circulating concentrations of glucagon, a catabolic hormone that affects these metabolic pathways, are elevated during critical illness. Insight in the nutritional regulation of glucagon and its metabolic role during critical illness is lacking. OBJECTIVES To evaluate whether macronutrient infusion can suppress plasma glucagon during critical illness and study the role of illness-induced glucagon abundance in the disturbed glucose, lipid, and amino acid homeostasis and in muscle wasting during critical illness. METHODS In human and mouse studies, we infused macronutrients and manipulated glucagon availability up and down to investigate its acute and chronic metabolic role during critical illness. MEASUREMENTS AND MAIN RESULTS In critically ill patients, infusing glucose with insulin did not lower glucagon, whereas parenteral nutrition containing amino acids increased glucagon. In critically ill mice, infusion of amino acids increased glucagon and up-regulated markers of hepatic amino acid catabolism without affecting muscle wasting. Immunoneutralizing glucagon in critically ill mice only transiently affected glucose and lipid metabolism, did not affect muscle wasting, but drastically suppressed markers of hepatic amino acid catabolism and reversed the illness-induced hypoaminoacidemia. CONCLUSIONS These data suggest that elevated glucagon availability during critical illness increases hepatic amino acid catabolism, explaining the illness-induced hypoaminoacidemia, without affecting muscle wasting and without a sustained impact on blood glucose. Furthermore, amino acid infusion likely results in a further breakdown of amino acids in the liver, mediated by increased glucagon, without preventing muscle wasting. Clinical trial registered with www.clinicaltrials.gov (NCT 00512122).
Collapse
Affiliation(s)
- Steven E Thiessen
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Sarah Derde
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Inge Derese
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Thomas Dufour
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Chloé Albert Vega
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Lies Langouche
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Chloë Goossens
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Nele Peersman
- 2 Department of Laboratory Medicine, KU Leuven, Leuven, Belgium; and
| | - Pieter Vermeersch
- 2 Department of Laboratory Medicine, KU Leuven, Leuven, Belgium; and
| | - Sarah Vander Perre
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Jens J Holst
- 3 Novo Nordisk Foundation Center for Basic Metabolic Research and.,4 Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Pieter J Wouters
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Ilse Vanhorebeek
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| | - Greet Van den Berghe
- 1 Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and
| |
Collapse
|
50
|
Adeva-Andany M, Souto-Adeva G, Ameneiros-Rodríguez E, Fernández-Fernández C, Donapetry-García C, Domínguez-Montero A. Insulin resistance and glycine metabolism in humans. Amino Acids 2017; 50:11-27. [PMID: 29094215 DOI: 10.1007/s00726-017-2508-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022]
Abstract
Plasma glycine level is low in patients with obesity or diabetes and the improvement of insulin resistance increases plasma glycine concentration. In prospective studies, hypoglycinemia at baseline predicts the risk of developing type 2 diabetes and higher serum glycine level is associated with decreased risk of incident type 2 diabetes. Consistently, plasma glycine concentration is lower in the lean offspring of parents with type 2 diabetes compared to healthy subjects. Among patients with type 2 diabetes, hypoglycinemia occurs before clinical manifestations of the disease, but the pathophysiological mechanisms underlying glycine deficit and its potential clinical repercussions are unclear. Glycine participates in several metabolic pathways, being required for relevant human physiological processes. Humans synthesize glycine from glyoxylate, glucose (via serine), betaine and likely from threonine and during the endogenous synthesis of L-carnitine. Glycine conjugates bile acids and other acyl moieties producing acyl-glycine derivatives. The glycine cleavage system catalyzes glycine degradation to carbon dioxide and ammonium while tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. Glycine is utilized to synthesize serine, sarcosine, purines, creatine, heme group, glutathione, and collagen. Glycine is a major quantitative component of collagen. In addition, the role of glycine maintaining collagen structure is critical, as glycine residues are required to stabilize the triple helix of the collagen molecule. This quality of glycine likely contributes to explain the occurrence of medial arterial calcification and the elevated cardiovascular risk associated with diabetes and chronic kidney disease, as emerging evidence links normal collagen content with the initiation and progression of vascular calcification in humans.
Collapse
Affiliation(s)
- M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain.
| | - G Souto-Adeva
- National Institutes of Health, National Institute of Arthritis and Metabolic Diseases, Bethesda, USA
| | - E Ameneiros-Rodríguez
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - C Fernández-Fernández
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - C Donapetry-García
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - A Domínguez-Montero
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|