1
|
Lee CJM, Kosyakovsky LB, Khan MS, Wu F, Chen G, Hill JA, Ho JE, Foo RSY, Zannad F. Cardiovascular, Kidney, Liver, and Metabolic Interactions in Heart Failure: Breaking Down Silos. Circ Res 2025; 136:1170-1207. [PMID: 40403106 PMCID: PMC12125648 DOI: 10.1161/circresaha.125.325602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 05/24/2025]
Abstract
Over the past few decades, the rising burden of metabolic disease, including type 2 diabetes, prediabetes, obesity, and metabolic dysfunction-associated steatotic liver disease, has corresponded with fundamental shifts in the landscape of heart failure (HF) epidemiology, including the rising prevalence of HF with preserved ejection fraction. It has become increasingly important to understand the role of extracardiac contributors and interorgan communication in the pathophysiology and phenotypic heterogeneity of HF. Whereas traditional epidemiological strategies have separately examined individual contributions of specific comorbidities to HF risk, these approaches may not capture the shared mechanisms and more complex, bidirectional relationships between cardiac and noncardiac comorbidities. In this review, we highlight the cardiac, kidney, liver, and metabolism multiorgan interactions and pathways that complicate HF development and progression and propose research strategies to further understand HF in the context of multiple organ disease. This includes evolving epidemiological approaches such as multiomics and machine learning which may better capture common underlying mechanisms and interorgan crosstalk. We review existing preclinical models of HF and how they have enhanced our understanding of the role of multiorgan disease in the development of HF subtypes. We suggest recommendations as to how clinical practice across multiple specialties should screen for and manage multiorgan involvement in HF. Finally, recognizing the advent of novel combinatorial therapeutic agents that may have multiple indications across the cardiac-kidney-liver metabolism continuum, we review the current clinical trials landscape. We specifically highlight a pressing need for the design of more inclusive trials that examine the contributions of multimorbidity and incorporate multiorgan end points, which we propose may lead to outcomes that are evermore clinically relevant today.
Collapse
Affiliation(s)
- Chang Jie Mick Lee
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STaR), 61 Biopolis Drive, Singapore 138673, Singapore
| | - Leah B. Kosyakovsky
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Muhammad Shahzeb Khan
- Baylor Scott and White Research Institute, Dallas, TX, USA
- The Heart Hospital, Plano, TX, USA
| | - Feng Wu
- Division of Cardiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Guo Chen
- Division of Cardiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Hill
- Division of Cardiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jennifer E. Ho
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Roger S-Y. Foo
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STaR), 61 Biopolis Drive, Singapore 138673, Singapore
| | - Faiez Zannad
- Université de Lorraine, CHRU, Inserm Clinical Investigation Center 1433, Nancy, France
| |
Collapse
|
2
|
Lee SK, Xiong T, Qian AS, Yoo JA, Sokeechand BSH, Fuller MT, Gross PL, Austin RC, Igdoura SA, Trigatti BL. Scavenger receptor class B type I knockout mice develop extensive diet-induced coronary artery atherosclerosis in an age-dependent manner. PLoS One 2025; 20:e0318118. [PMID: 40403091 PMCID: PMC12097598 DOI: 10.1371/journal.pone.0318118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/10/2025] [Indexed: 05/24/2025] Open
Abstract
OBJECTIVE Homozygous knockout of scavenger receptor class B type I (SR-B1) in mice with atherogenic mutations (such as knockout of the apolipoprotein E or low density lipoprotein receptor genes) results in spontaneous or diet-induced coronary heart disease characterized by atherosclerosis development in the aortic sinus and coronary arteries, platelet accumulation in coronary artery plaques, myocardial fibrosis, and early death. However, the extent of coronary artery atherothrombosis and myocardial fibrosis in mice lacking SR-B1 alone (homozygous SR-B1 knockout mice) has not been examined. Although age is a major risk factor for coronary artery disease, few studies directly examine the effects of age on susceptibility to atherosclerosis or coronary artery atherothrombosis and myocardial fibrosis in mice. Therefore, we set out to examine the effects of age on diet-induced atherosclerosis in female homozygous SR-B1 knockout mice. APPROACH AND RESULTS SR-B1 knockout mice exhibited little-to-no aortic sinus or coronary artery atherosclerosis at 52 weeks of age, when fed a normal diet. However when fed a high-fat, high-cholesterol, cholate-containing (HFCC) diet for 12 weeks from either 14 weeks of age (26-week-old at analysis) or 40 weeks of age (52-week-old at analysis), they developed similar degrees of atherosclerosis in their aortic sinuses. Interestingly, the older aged SR-B1 knockout mice exhibited increased coronary artery atherosclerosis, increased vascular cell adhesion molecule 1 levels and platelet accumulation in coronary arteries, and increased myocardial fibrosis and plasma levels of cardiac troponin I compared to the younger aged mice. Older-aged HFCC diet-fed SR-B1 knockout mice also exhibited reduced survival to humane endpoint. Moreover, older-aged HFCC diet-fed SR-B1 knockout mice exhibited a greater inflammatory state with increased levels of circulating interleukin-6, tumour necrosis factor alpha, and neutrophils, despite plasma lipid levels being unchanged. Consistent with the increased circulating neutrophils, older-aged HFCC diet-fed SR-B1 knockout mice exhibited increased accumulation of the neutrophil marker myeloperoxidase and increased neutrophil extracellular traps in atherosclerotic plaques in the aortic sinus and increased abundance of atherosclerotic coronary arteries containing neutrophil extracellular traps. CONCLUSIONS HFCC diet-fed homozygous SR-B1 knockout mice develop occlusive coronary artery atherothrombosis and myocardial fibrosis in an age-dependent manner, and exhibit an increased inflammatory state with older age. Therefore, aged SR-B1 knockout mice may prove to be an attractive mouse model to analyze age-dependent mechanisms associated with coronary artery disease development, which may facilitate the discovery of more effective therapeutics to treat cardiovascular disease.
Collapse
Affiliation(s)
- Samuel K. Lee
- Thrombosis and Atherosclerosis Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Ting Xiong
- Thrombosis and Atherosclerosis Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alexander S. Qian
- Thrombosis and Atherosclerosis Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Jeong-Ah Yoo
- Thrombosis and Atherosclerosis Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - B. Sumayyah H. Sokeechand
- Thrombosis and Atherosclerosis Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Mark T. Fuller
- Thrombosis and Atherosclerosis Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Peter L. Gross
- Thrombosis and Atherosclerosis Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Richard C. Austin
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe’s Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Suleiman A. Igdoura
- Department of Biology and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Hajeer W, Blanco A, Miller AP, Amengual J. Recent advances in carotenoid absorption, distribution, and elimination. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159619. [PMID: 40306404 DOI: 10.1016/j.bbalip.2025.159619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Carotenoids are a class of pigments with antioxidant properties synthesized by photosynthetic and heterotrophic organisms. Humans can store carotenoids in their intact form or cleave them enzymatically to apocarotenoids such as vitamin A, a hormone-like nutrient with crucial roles in gene expression and vision. Clinical and preclinical studies suggest that the consumption of diets rich in carotenoids attenuate cardiometabolic diseases, some types of cancer, neurodegenerative disorders, and inflammatory conditions. The bioactive properties of carotenoids depend, at least in part, on their accumulation in target tissues. However, the pathways that drive carotenoid absorption, delivery, and accumulation in tissues remain largely uncharacterized. This review provides a critical overview of the experimental models utilized to monitor carotenoid homeostasis in mammals. We also delve into recent findings concerning carotenoid intestinal uptake, bodily distribution, cellular uptake, and intracellular trafficking. Finally, we discuss the physiological relevance of a fecal carotenoid elimination pathway that operates independently of carotenoid enzymatic cleavage. Establishing the players governing carotenoid biodistribution and elimination is essential to maximize the bioactive properties of carotenoids in humans to prevent chronic diseases.
Collapse
Affiliation(s)
- Wafa'a Hajeer
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amparo Blanco
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Pérez-Medina C, Fisher EA, Fayad ZA, Mulder WJM, Teunissen AJP. Radiolabeling lipoproteins to study and manage disease. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07281-4. [PMID: 40293448 DOI: 10.1007/s00259-025-07281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Lipoproteins are endogenous nanoparticles with essential roles in lipid transport and inflammation. Lipoproteins are also valuable in diagnosing and treating disease. For instance, certain lipoproteins are overexpressed in patients with atherosclerotic cardiovascular disease, and reconstituted lipoproteins have been extensively used for drug delivery. Radiolabeling has proven an especially powerful approach for studying and therapeutically exploiting lipoproteins. This review details how radiochemistry and nuclear imaging can facilitate the study of lipoproteins in health and disease. Among other topics, we discuss approaches for radiolabeling lipoproteins and detail how these have helped advance our understanding of lipoprotein biology and the diagnosis and treatment of diseases, including atherosclerosis, cancer, and hypercholesteremia. METHODS We performed an extensive literature search on all peer-reviewed studies involving radiolabeled lipoproteins and selected representative examples to provide a high-level overview of the most important discoveries and technological advancements. RESULTS More than 200 peer-reviewed papers involved radiolabeled lipoproteins, spanning mechanistic, diagnostic, and therapeutic studies across a wide range of diseases. CONCLUSION Radiolabeling has been critical in advancing our understanding of lipoprotein biology and leveraging these nanomaterials for diagnosing and treating disease.
Collapse
Affiliation(s)
| | - Edward A Fisher
- Department of Medicine (Cardiology), New York University Grossman School of Medicine, New York, NY, USA
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Shinozaki K, Honda T, Yamaji K, Nishijima E, Ichi I, Yamane D. Impaired ApoB secretion triggers enhanced secretion of ApoE to maintain triglyceride homeostasis in hepatoma cells. J Lipid Res 2025; 66:100795. [PMID: 40180213 DOI: 10.1016/j.jlr.2025.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
Apolipoprotein B (ApoB) is essential for the assembly and secretion of triglyceride (TG)-rich VLDL particles, and its dysfunction is linked to metabolic disorders, including dyslipidemia and liver steatosis. However, less attention has been paid to whether and how other apolipoproteins play redundant or compensatory roles when the ApoB function is compromised. Here, we investigated the effects of microsomal triglyceride transfer protein (MTP), which mediates lipidation of nascent ApoB, on ApoE function. We observed a paradoxical increase in ApoE secretion resulting from increased expression in MTP inhibitor (MTPi)-treated human hepatoma cells. This phenotype was recapitulated in APOB-knockout cells and was associated with impaired ApoB secretion. While MTP-dependent transfer of neutral lipids is dispensable for ApoE secretion, TG biosynthesis, redundantly catalyzed by DGAT1 and DGAT2, is required for efficient ApoE secretion in hepatoma cells. ApoE colocalizes with lipid droplets near the Golgi apparatus and mediates TG export in an ApoB-independent fashion. We found that simultaneous inhibition of both ApoE and ApoB, but not inhibition of either alone, led to TG accumulation in hepatoma cells, indicating that both proteins function redundantly to control TG content. Validation studies in primary human hepatocytes (PHHs) demonstrated DGAT2-dependent secretion of ApoE. While MTPi treatment did not elevate ApoE secretion, it induced increased sialylation of ApoE in the supernatants of PHHs. These results show that enhanced ApoE secretion compensates for the impaired ApoB function to maintain the lipid homeostasis, providing an alternative route to modulate lipid turnover in hepatoma cells.
Collapse
Affiliation(s)
- Kotomi Shinozaki
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Nutrition and Food Science, Ochanomizu University, Tokyo, Japan
| | - Tomoko Honda
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenzaburo Yamaji
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emi Nishijima
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Ikuyo Ichi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.
| |
Collapse
|
6
|
Zhou Z, Chen W, Cao Y, Abdi R, Tao W. Nanomedicine-based strategies for the treatment of vein graft disease. Nat Rev Cardiol 2025; 22:255-272. [PMID: 39501093 PMCID: PMC11925677 DOI: 10.1038/s41569-024-01094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 01/03/2025]
Abstract
Autologous saphenous veins are the most frequently used conduits for coronary and peripheral artery bypass grafting. However, vein graft failure rates of 40-50% within 10 years of the implantation lead to poor long-term outcomes after bypass surgery. Currently, only a few therapeutic approaches for vein graft disease have been successfully translated into clinical practice. Building on the past two decades of advanced understanding of vein graft biology and the pathophysiological mechanisms underlying vein graft disease, nanomedicine-based strategies offer promising opportunities to address this important unmet clinical need. In this Review, we provide deep insight into the latest developments in the rational design and applications of nanoparticles that have the potential to target specific cells during various pathophysiological stages of vein graft disease, including early endothelial dysfunction, intermediate intimal hyperplasia and late-stage accelerated atherosclerosis. Additionally, we underscore the convergence of nanofabricated biomaterials, with a particular focus on hydrogels, external graft support devices and cell-based therapies, alongside bypass surgery to improve local delivery efficiency and therapeutic efficacy. Finally, we provide a specific discussion on the considerations, challenges and novel perspectives for the future clinical translation of nanomedicine for the treatment of vein graft disease.
Collapse
Affiliation(s)
- Zhuoming Zhou
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Reza Abdi
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Ghiasvand T, Karimi J, Khodadadi I, Yazdi A, Khazaei S, Kichi ZA, Hosseini SK. The interplay of LDLR, PCSK9, and lncRNA- LASER genes expression in coronary artery disease: Implications for therapeutic interventions. Prostaglandins Other Lipid Mediat 2025; 177:106969. [PMID: 40020908 DOI: 10.1016/j.prostaglandins.2025.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND AND PURPOSE Coronary artery disease (CAD) is defined as stenosis of coronary arteries due to atherosclerosis. The etiology of atherosclerosis can be attributed to a disruption in lipid metabolism, specifically cholesterol and low-density lipoprotein cholesterol (LDL-C). PCSK9 is an enzyme that controls the metabolism of LDL-C by degrading the low-density lipoprotein receptor (LDLR), which in turn affects the metabolism of LDL-C. A newly discovered Long Non-coding RNA named LASER, which affects the homeostasis of cholesterol, has been identified through the evaluation of bioinformatics. The objective of this study was to assess the levels of gene expression related to cholesterol balance, specifically LDLR, PCSK9, and LASER, in peripheral blood mononuclear cells (PBMCs) of Iranian CAD patients in comparison to controls. EXPERIMENTAL APPROACH This case-control study included 49 CAD patients, with 81.63 % receiving statins, compared to 40 control subjects, of whom 40 % received statins. The qRT-PCR was used to analyze the expression levels of LDLR, PCSK9, and LASER in PBMCs. Additionally, the ELISA method was employed to determine the blood concentration of PCSK9. FINDINGS / RESULTS CAD patients demonstrated a significant reduction in PBMC gene expression levels of LDLR (P < 0.01) and a significant rise in gene expression of PCSK9 and LASER, as well as blood concentration of PCSK9 (P < 0.05) compared to controls. The gene expression of PCSK9 showed a strong positive relationship with LDLR expression in patients (P = 0.0003). Furthermore, a strong correlation was seen between PCSK9 and LASER, as well as LASER and LDLR expression (P < 0.0001) in two groups. CONCLUSION AND IMPLICATIONS PCSK9 and LASER are potential therapeutic targets for atherosclerosis-related disorders, including CAD. Given that patients receiving statins were twice that of the control subjects, and the effect of statins on the LDLR, PCSK9 and LASER, further research is required to delineate the distinct effects of coronary artery disease conditions and statin usage on the expression of the aforementioned genes.
Collapse
Affiliation(s)
- Tayebe Ghiasvand
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amirhossein Yazdi
- Department of Cardiology, Faculty of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Abedi Kichi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University, Munich 80336, Germany
| | - Seyed Kianoosh Hosseini
- Department of Cardiology, Faculty of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
8
|
Vieira RF, Sanchez SR, Arumugam M, Mower PD, Curtin MC, Gallop MR, Wright J, Bowles A, Ducker GS, Hilgendorf KI, Chaix A. Hyperlipidemia drives tumor growth in a mouse model of obesity-accelerated breast cancer growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637542. [PMID: 39990404 PMCID: PMC11844410 DOI: 10.1101/2025.02.10.637542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Obesity is an established risk factor for breast cancer (BC), yet the specific mechanisms driving this association remain unclear. Dysregulated lipid metabolism has emerged as a key factor in cancer cell biology. While obesity is often accompanied by hyperlipidemia, the isolated impact of elevated lipid levels on BC growth has not been experimentally tested. Using the E0771 orthotopic model of obesity-accelerated BC growth in immune-competent mice, we investigated the direct role of systemic lipids in tumor growth. Combining dietary and genetic mouse models, we show that elevated circulating lipids are sufficient to accelerate BC tumor growth even in the absence of obesity or alterations in blood glucose and/or insulin levels. Pharmacological lowering of systemic lipid levels attenuates BC growth in obese mice, suggesting a direct role for lipids in fueling tumor expansion. Notably, we also show that weight loss alone, without a corresponding reduction in lipid levels such as that induced by a ketogenic diet, fails to protect against BC, highlighting the necessity of targeting lipid metabolism in obesity-associated BC. Our findings establish hyperlipidemia as a critical driver of BC progression and suggest that lipid-lowering interventions may be a promising strategy to mitigate BC risk in obese individuals.
Collapse
|
9
|
Sun Z, Torphy RJ, Miller EN, Darehshouri A, Vigil I, Terai T, Eck E, Sun Y, Guo Y, Yee EJ, Hu J, Kedl RM, Lasda EL, Hesselberth JR, MacLean P, Bruce KD, Randolph GJ, Schulick RD, Zhu Y. GPR182 is a lipoprotein receptor for dietary fat absorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.634329. [PMID: 39975353 PMCID: PMC11838411 DOI: 10.1101/2025.02.03.634329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The lymphatic system plays a central role in lipid absorption, which transports chylomicrons from the small intestine to the circulation. However, the molecular mechanism by which chylomicrons get into the intestinal lymphatics is unknown. Here we demonstrated that GPR182, a receptor in lymphatic endothelial cells (LECs), mediates dietary fat absorption. GPR182 knockout mice are resistant to dietary-induced obesity. GPR182 ablation in mice leads to poor lipid absorption and thereby a delay in growth during development. GPR182 binds and endocytoses lipoproteins broadly. Mechanistically, loss of GPR182 prevents chylomicrons from entering the lacteal lumen of the small intestine. GPR182 blockage with a monoclonal antibody (mAb) protects mice from dietary induced obesity. Together, our study identifies GPR182 as a lipoprotein receptor that mediates dietary fat absorption.
Collapse
|
10
|
Park HB, Kim H, Han D. In-Depth Proteome Profiling of the Hippocampus of LDLR Knockout Mice Reveals Alternation in Synaptic Signaling Pathway. Proteomics 2025; 25:e202400152. [PMID: 39548955 DOI: 10.1002/pmic.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
The low-density lipoprotein receptor (LDLR) is a major apolipoprotein receptor that regulates cholesterol homeostasis. LDLR deficiency is associated with cognitive impairment by the induction of synaptopathy in the hippocampus. Despite the close relationship between LDLR and neurodegenerative disorders, proteomics research for protein profiling in the LDLR knockout (KO) model remains insufficient. Therefore, understanding LDLR KO-mediated differential protein expression within the hippocampus is crucial for elucidating a role of LDLR in neurodegenerative disorders. In this study, we conducted first-time proteomic profiling of hippocampus tissue from LDLR KO mice using tandem mass tag (TMT)-based MS analysis. LDLR deficiency induces changes in proteins associated with the transport of diverse molecules, and activity of kinase and catalyst within the hippocampus. Additionally, significant alterations in the expression of components in the major synaptic pathways were found. Furthermore, these synaptic effects were verified using a data-independent acquisition (DIA)-based proteomic method. Our data will serve as a valuable resource for further studies to discover the molecular function of LDLR in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, South Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, South Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Gengatharan JM, Handzlik MK, Chih ZY, Ruchhoeft ML, Secrest P, Ashley EL, Green CR, Wallace M, Gordts PLSM, Metallo CM. Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis. Cell Metab 2025; 37:274-290.e9. [PMID: 39547233 DOI: 10.1016/j.cmet.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Dietary fat drives the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), particularly through circulating cholesterol and triglyceride-rich lipoprotein remnants. Industrially produced trans-unsaturated fatty acids (TFAs) incorporated into food supplies significantly promote ASCVD. However, the molecular trafficking of TFAs responsible for this association is not well understood. Here, we demonstrate that TFAs are preferentially incorporated into sphingolipids by serine palmitoyltransferase (SPT) and secreted from cells in vitro. Administering high-fat diets (HFDs) enriched in TFAs to Ldlr-/- mice accelerated hepatic very-low-density lipoprotein (VLDL) and sphingolipid secretion into circulation to promote atherogenesis compared with a cis-unsaturated fatty acid (CFA)-enriched HFD. SPT inhibition mitigated these phenotypes and reduced circulating atherogenic VLDL enriched in TFA-derived polyunsaturated sphingomyelin. Transcriptional analysis of human liver revealed distinct regulation of SPTLC2 versus SPTLC3 subunit expression, consistent with human genetic correlations in ASCVD, further establishing sphingolipid metabolism as a critical node mediating the progression of ASCVD in response to specific dietary fats.
Collapse
Affiliation(s)
- Jivani M Gengatharan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Michal K Handzlik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zoya Y Chih
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maureen L Ruchhoeft
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Patrick Secrest
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ethan L Ashley
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Courtney R Green
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Nath D, Barbhuiya PA, Sen S, Pathak MP. A Review on In-vivo and In-vitro Models of Obesity and Obesity-Associated Co-Morbidities. Endocr Metab Immune Disord Drug Targets 2025; 25:458-478. [PMID: 39136512 DOI: 10.2174/0118715303312932240801073903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Obesity is becoming a global pandemic with pandemic proportions. According to the WHO estimates, there were over 1.9 billion overweight individuals and over 650 million obese adults in the globe in 2016. In recent years, scientists have encountered difficulties in choosing acceptable animal models, leading to a multitude of contradicting aspects and incorrect outcomes. This review comprehensively evaluates different screening models of obesity and obesity-associated comorbidities to reveal the advantages and disadvantages/limitations of each model while also mentioning the time duration each model requires to induce obesity. METHODS For this review, the authors have gone through a vast number of article sources from different scientific databases, such as Google Scholar, Web of Science, Medline, and PubMed. RESULTS In-vivo models used to represent a variety of obesity-inducing processes, such as diet-induced, drug-induced, surgical, chemical, stress-induced, and genetic models, are discussed. Animal cell models are examined with an emphasis on their use in understanding the molecular causes of obesity, for which we discussed in depth the important cell lines, including 3T3-L1, OP9, 3T3-F442A, and C3H10T1/2. Screening models of obesity-associated co-morbidities like diabetes, asthma, cardiovascular disorders, cancer, and polycystic ovarian syndrome (PCOS) were discussed, which provided light on the complex interactions between obesity and numerous health problems. CONCLUSION Mimicking obesity in an animal model reflects multifactorial aspects is a matter of challenge. Future studies could address the ethical issues surrounding the use of animals in obesity research as well as investigate newly developed models, such as non-mammalian models. In conclusion, improving our knowledge and management of obesity and related health problems will require ongoing assessment and improvement of study models.
Collapse
Affiliation(s)
- Digbijoy Nath
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| |
Collapse
|
13
|
Sato N, Goyama S, Chang YH, Miyawaki M, Fujino T, Koide S, Denda T, Liu X, Ueda K, Yamamoto K, Asada S, Takeda R, Yonezawa T, Tanaka Y, Honda H, Ota Y, Shibata T, Sekiya M, Isobe T, Lamagna C, Masuda E, Iwama A, Shimano H, Inoue JI, Miyake K, Kitamura T. Clonal hematopoiesis-related mutant ASXL1 promotes atherosclerosis in mice via dysregulated innate immunity. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1568-1583. [PMID: 39653824 DOI: 10.1038/s44161-024-00579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Certain somatic mutations provide a fitness advantage to hematopoietic stem cells and lead to clonal expansion of mutant blood cells, known as clonal hematopoiesis (CH). Among the most common CH mutations, ASXL1 mutations pose the highest risk for cardiovascular diseases (CVDs), yet the mechanisms by which they contribute to CVDs are unclear. Here we show that hematopoietic cells harboring C-terminally truncated ASXL1 mutant (ASXL1-MT) accelerate the development of atherosclerosis in Ldlr-/- mice. Transcriptome analyses of plaque cells showed that monocytes and macrophages expressing ASXL1-MT exhibit inflammatory signatures. Mechanistically, we demonstrate that wild-type ASXL1 has an unexpected non-epigenetic role by suppressing innate immune signaling through the inhibition of IRAK1-TAK1 interaction in the cytoplasm. This regulatory function is lost in ASXL1-MT, resulting in NF-κB activation. Inhibition of IRAK1/4 alleviated atherosclerosis driven by ASXL1-MT and decreased inflammatory monocytes. The present work provides a mechanistic and cellular explanation linking ASXL1 mutations, CH and CVDs.
Collapse
Affiliation(s)
- Naru Sato
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yu-Hsuan Chang
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan
| | - Masashi Miyawaki
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tamami Denda
- Department of Pathology, The Institute of Medical Science Research Hospital, University of Tokyo, Tokyo, Japan
| | - Xiaoxiao Liu
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Centre, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Taishi Yonezawa
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroaki Honda
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, The Institute of Medical Science Research Hospital, University of Tokyo, Tokyo, Japan
| | - Takuma Shibata
- Department of Microbiology and Immunology, Division of Infectious Genetics, University of Tokyo, Tokyo, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomoya Isobe
- Department of Hematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Esteban Masuda
- Rigel Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kensuke Miyake
- Department of Microbiology and Immunology, Division of Infectious Genetics, University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan.
- Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.
| |
Collapse
|
14
|
Staršíchová A. SR-B1-/-ApoE-R61h/h Mice Mimic Human Coronary Heart Disease. Cardiovasc Drugs Ther 2024; 38:1123-1137. [PMID: 37273155 PMCID: PMC10240136 DOI: 10.1007/s10557-023-07475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Cardiovascular diseases are the leading cause of death in the modern world. Atherosclerosis underlies the majority of these pathologies and may result in sudden life-threatening events such as myocardial infarction or stroke. Current concepts consider a rupture (resp. erosion) of "unstable/vulnerable" atherosclerotic plaques as a primary cause leading to thrombus formation and subsequent occlusion of the artery lumen finally triggering an acute clinical event. We and others described SR-B1-/-ApoE-R61h/h mice mimicking clinical coronary heart disease in all major aspects: from coronary atherosclerosis through vulnerable plaque ruptures leading to thrombus formation/coronary artery occlusion, finally resulting in myocardial infarction/ischemia. SR-B1-/-ApoE-R61h/h mouse provides a valuable model to study vulnerable/occlusive plaques, to evaluate bioactive compounds as well as new anti-inflammatory and "anti-rupture" drugs, and to test new technologies in experimental cardiovascular medicine. This review summarizes and discuss our knowledge about SR-B1-/-ApoE-R61h/h mouse model based on recent publications and experimental observations from the lab.
Collapse
Affiliation(s)
- Andrea Staršíchová
- Graduate School Cell Dynamics and Disease, University of Muenster, Muenster, Germany.
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany.
- Novogenia Covid GmbH, Eugendorf, Austria.
| |
Collapse
|
15
|
Zhang S, Ayemoba CE, Di Staulo AM, Joves K, Patel CM, Leung EHW, Ong SG, Nerlov C, Maryanovich M, Chronis C, Pinho S. Platelet Factor 4 (PF4) Regulates Hematopoietic Stem Cell Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625252. [PMID: 39651177 PMCID: PMC11623642 DOI: 10.1101/2024.11.25.625252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hematopoietic stem cells (HSCs) responsible for blood cell production and their bone marrow regulatory niches undergo age-related changes, impacting immune responses and predisposing individuals to hematologic malignancies. Here, we show that the age-related alterations of the megakaryocytic niche and associated downregulation of Platelet Factor 4 (PF4) are pivotal mechanisms driving HSC aging. PF4-deficient mice display several phenotypes reminiscent of accelerated HSC aging, including lymphopenia, increased myeloid output, and DNA damage, mimicking physiologically aged HSCs. Remarkably, recombinant PF4 administration restored old HSCs to youthful functional phenotypes characterized by improved cell polarity, reduced DNA damage, enhanced in vivo reconstitution capacity, and balanced lineage output. Mechanistically, we identified LDLR and CXCR3 as the HSC receptors transmitting the PF4 signal, with double knockout mice showing exacerbated HSC aging phenotypes similar to PF4-deficient mice. Furthermore, human HSCs across various age groups also respond to the youthful PF4 signaling, highlighting its potential for rejuvenating aged hematopoietic systems. These findings pave the way for targeted therapies aimed at reversing age-related HSC decline with potential implications in the prevention or improvement of the course of age-related hematopoietic diseases. Key Points Age-related attrition of the megakaryocytic niche and associated PF4 downregulation is a central mechanism in HSC aging.PF4 supplementation, acting on LDLR and CXCR3 receptors, rejuvenates the function of aged HSCs.
Collapse
|
16
|
Zierden M, Berghausen EM, Gnatzy-Feik L, Millarg C, Picard FSR, Kiljan M, Geißen S, Polykratis A, Zimmermann L, Nies RJ, Pasparakis M, Baldus S, Valasarajan C, Pullamsetti SS, Winkels H, Vantler M, Rosenkranz S. Hematopoietic PI3Kδ deficiency aggravates murine atherosclerosis through impairment of Tregs. JCI Insight 2024; 9:e155626. [PMID: 39378110 PMCID: PMC11601942 DOI: 10.1172/jci.insight.155626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Chronic activation of the adaptive immune system is a hallmark of atherosclerosis. As PI3Kδ is a key regulator of T and B cell differentiation and function, we hypothesized that alleviation of adaptive immunity by PI3Kδ inactivation may represent an attractive strategy counteracting atherogenesis. As expected, lack of hematopoietic PI3Kδ in atherosclerosis-prone Ldlr-/- mice resulted in lowered T and B cell numbers, CD4+ effector T cells, Th1 response, and immunoglobulin levels. However, despite markedly impaired peripheral pro-inflammatory Th1 cells and atheromatous CD4+ T cells, the unexpected net effect of hematopoietic PI3Kδ deficiency was aggravated vascular inflammation and atherosclerosis. Further analyses revealed that PI3Kδ deficiency impaired numbers, immunosuppressive functions, and stability of regulatory CD4+ T cells (Tregs), whereas macrophage biology remained largely unaffected. Adoptive transfer of wild-type Tregs fully restrained the atherosclerotic plaque burden in Ldlr-/- mice lacking hematopoietic PI3Kδ, whereas PI3Kδ-deficient Tregs failed to mitigate disease. Numbers of atheroprotective B-1 and pro-atherogenic B-2 cells as well as serum immunoglobulin levels remained unaffected by adoptively transferred wild-type Tregs. In conclusion, we demonstrate that hematopoietic PI3Kδ ablation promotes atherosclerosis. Mechanistically, we identified PI3Kδ signaling as a powerful driver of atheroprotective Treg responses, which outweigh PI3Kδ-driven pro-atherogenic effects of adaptive immune cells like Th1 cells.
Collapse
Affiliation(s)
- Mario Zierden
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Eva Maria Berghausen
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Leoni Gnatzy-Feik
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Christopher Millarg
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
| | - Felix Simon Ruben Picard
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | | | - Simon Geißen
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Apostolos Polykratis
- Institute for Genetics; and
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - Lea Zimmermann
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Richard Julius Nies
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Manolis Pasparakis
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
- Institute for Genetics; and
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Chanil Valasarajan
- Center for Infection and Genomics of the Lung (CIGL), Justus Liebig University, Giessen, Germany
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Center for Infection and Genomics of the Lung (CIGL), Justus Liebig University, Giessen, Germany
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Holger Winkels
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Marius Vantler
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Stephan Rosenkranz
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| |
Collapse
|
17
|
Momi S, Gresele P. The Role of Platelets in Atherosclerosis: A Historical Review. Semin Thromb Hemost 2024. [PMID: 39561814 DOI: 10.1055/s-0044-1795097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Atherosclerosis is a chronic, multifactorial inflammatory disorder of large and medium-size arteries, which is the leading cause of cardiovascular mortality and morbidity worldwide. Although platelets in cardiovascular disease have mainly been studied for their crucial role in the thrombotic event triggered by atherosclerotic plaque rupture, over the last two decades it has become clear that platelets participate also in the development of atherosclerosis, owing to their ability to interact with the damaged arterial wall and with leukocytes. Platelets participate in all phases of atherogenesis, from the initial functional damage to endothelial cells to plaque unstabilization. Platelets deposit at atherosclerosis predilection sites before the appearance of manifest lesions to the endothelium and contribute to induce endothelial dysfunction, thus supporting leukocyte adhesion to the vessel wall. In particular, platelets release matrix metalloproteinases, which interact with protease-activated receptor 1 on endothelial cells triggering adhesion molecule expression. Moreover, P-selectin and glycoprotein Ibα expressed on the surface of vessel wall-adhering platelets bind PSGL-1 and β2 integrins on leukocytes, favoring their arrest and transendothelial migration. Platelet-leukocyte interactions promote the formation of radical oxygen species which are strongly involved in the lipid peroxidation associated with atherosclerosis. Platelets themselves actively migrate through the endothelium toward the plaque core where they release chemokines that modify the microenvironment by modulating the function of other inflammatory cells, such as macrophages. While current antiplatelet agents seem unable to prevent the contribution of platelets to atherogenesis, the inhibition of platelet secretion, of the release of MMPs, and of some specific pathways of platelet adhesion to the vessel wall may represent promising future strategies for the prevention of atheroprogression.
Collapse
Affiliation(s)
- Stefania Momi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Liu D, Mai D, Jahn AN, Murray TA, Aitchison JD, Gern BH, Urdahl KB, Aderem A, Diercks AH, Gold ES. APOE Protects Against Severe Infection with Mycobacterium tuberculosis by Restraining Production of Neutrophil Extracellular Traps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616580. [PMID: 39605723 PMCID: PMC11601580 DOI: 10.1101/2024.10.04.616580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
While neutrophils are the predominant cell type in the lungs of humans with active tuberculosis (TB), they are relatively scarce in the lungs of most strains of mice that are used to study the disease. However, similar to humans, neutrophils account for approximately 45% of CD45+ cells in the lungs of Apoe -/- mice on a high-cholesterol (HC) diet following infection with Mycobacterium tuberculosis (Mtb). We hypothesized that the susceptibility of Apoe -/- HC mice might arise from an unrestrained feed-forward loop in which production of neutrophil extracellular traps (NETs) stimulates production of type I interferons by pDCs which in turn leads to the recruitment and activation of more neutrophils, and demonstrated that depleting neutrophils, depleting plasmacytoid dendritic cells (pDCs), or blocking type I interferon signaling, improved the outcome of infection. In concordance with these results, we found that Mtb-infected in Apoe -/- HC mice produce high levels of LTB4 and 12-HETE, two eicosanoids known to act as neutrophil chemoattractants and showed that blocking leukotriene B4 (LTB4) receptor signaling also improved the outcome of tuberculosis. While production of NETs has been associated with severe tuberculosis in other mouse models and in humans, a causative role for NETs in the pathology has not been directly established. We demonstrate that blocking the activation of peptidylarginine deiminase 4 (PAD4), an enzyme critical to NET formation, leads to fewer NETs in the lungs and, strikingly, completely reverses the hypersusceptibility of Apoe -/- HC mice to tuberculosis.
Collapse
Affiliation(s)
- Dong Liu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Ana N. Jahn
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Tara A. Murray
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Benjamin H. Gern
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
- University of Washington, Dept. of Pediatrics; Seattle, Washington, USA
| | - Kevin B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
- University of Washington, Dept. of Immunology; Seattle, Washington, USA
- University of Washington, Dept. of Pediatrics; Seattle, Washington, USA
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
| | - Elizabeth S. Gold
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA 98109, USA
- Virginia Mason Franciscan Health; Seattle, WA, 98101, USA
| |
Collapse
|
19
|
Fernández-Gallego N, Castillo-González R, Moreno-Serna L, García-Cívico AJ, Sánchez-Martínez E, López-Sanz C, Fontes AL, Pimentel LL, Gradillas A, Obeso D, Neuhaus R, Ramírez-Huesca M, Ruiz-Fernández I, Nuñez-Borque E, Carrasco YR, Ibáñez B, Martín P, Blanco C, Barbas C, Barber D, Rodríguez-Alcalá LM, Villaseñor A, Esteban V, Sánchez-Madrid F, Jiménez-Saiz R. Allergic inflammation triggers dyslipidemia via IgG signalling. Allergy 2024; 79:2680-2699. [PMID: 38864116 DOI: 10.1111/all.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Allergic diseases begin early in life and are often chronic, thus creating an inflammatory environment that may precede or exacerbate other pathologies. In this regard, allergy has been associated to metabolic disorders and with a higher risk of cardiovascular disease, but the underlying mechanisms remain incompletely understood. METHODS We used a murine model of allergy and atherosclerosis, different diets and sensitization methods, and cell-depleting strategies to ascertain the contribution of acute and late phase inflammation to dyslipidemia. Untargeted lipidomic analyses were applied to define the lipid fingerprint of allergic inflammation at different phases of allergic pathology. Expression of genes related to lipid metabolism was assessed in liver and adipose tissue at different times post-allergen challenge. Also, changes in serum triglycerides (TGs) were evaluated in a group of 59 patients ≥14 days after the onset of an allergic reaction. RESULTS We found that allergic inflammation induces a unique lipid signature that is characterized by increased serum TGs and changes in the expression of genes related to lipid metabolism in liver and adipose tissue. Alterations in blood TGs following an allergic reaction are independent of T-cell-driven late phase inflammation. On the contrary, the IgG-mediated alternative pathway of anaphylaxis is sufficient to induce a TG increase and a unique lipid profile. Lastly, we demonstrated an increase in serum TGs in 59 patients after undergoing an allergic reaction. CONCLUSION Overall, this study reveals that IgG-mediated allergic inflammation regulates lipid metabolism.
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Moreno-Serna
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Antonio J García-Cívico
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Elisa Sánchez-Martínez
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Luiza Fontes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Lígia L Pimentel
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - René Neuhaus
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | | | - Emilio Nuñez-Borque
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Luis M Rodríguez-Alcalá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), Schroeder Allergy and Immunology Research Institute (SAIRI), McMaster University, Hamilton, Ontario, Canada
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| |
Collapse
|
20
|
Borràs C, Canyelles M, Girona J, Ibarretxe D, Santos D, Revilla G, Llorente-Cortes V, Rotllan N, Kovanen PT, Jauhiainen M, Lee-Rueckert M, Masana L, Arrieta F, Martínez-Botas J, Gómez-Coronado D, Ribalta J, Tondo M, Blanco-Vaca F, Escolà-Gil JC. PCSK9 Antibodies Treatment Specifically Enhances the Macrophage-specific Reverse Cholesterol Transport Pathway in Heterozygous Familial Hypercholesterolemia. JACC Basic Transl Sci 2024; 9:1195-1210. [PMID: 39534644 PMCID: PMC11551875 DOI: 10.1016/j.jacbts.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 11/16/2024]
Abstract
We investigated the potential of proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies to restore macrophage cholesterol efflux in subjects with heterozygous familial hypercholesterolemia (FH) and to enhance the macrophage-specific reverse cholesterol transport pathway in mice. Analyses of macrophage-derived cholesterol distribution of plasma from FH patients revealed that low-density lipoprotein (LDL) particles contained less, and high-density lipoprotein particles contained more radiolabeled cholesterol after treatment with either PCSK9 inhibitor. PCSK9 antibodies facilitated the transfer of macrophage-derived cholesterol and LDL-derived cholesterol to feces exclusively in heterozygous LDL receptor-deficient mice expressing human APOB100. PCSK9 inhibitors act as positive regulators of the macrophage-specific reverse cholesterol transport pathway in individuals with heterozygous FH.
Collapse
Affiliation(s)
- Carla Borràs
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Marina Canyelles
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Josefa Girona
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain
| | - Daiana Ibarretxe
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain
| | - David Santos
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Giovanna Revilla
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenta Llorente-Cortes
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemí Rotllan
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and Finnish Institute for Health and Welfare, Department of Public Health and Welfare, Biomedicum, Helsinki, Finland
| | | | - Luis Masana
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain
| | - Francisco Arrieta
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Josep Ribalta
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain
| | - Mireia Tondo
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Francisco Blanco-Vaca
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| |
Collapse
|
21
|
Miller AP, Monroy WC, Soria G, Amengual J. The low-density lipoprotein receptor contributes to carotenoid homeostasis by regulating tissue uptake and fecal elimination. Mol Metab 2024; 88:102007. [PMID: 39134303 PMCID: PMC11382122 DOI: 10.1016/j.molmet.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVE Carotenoids are lipophilic plant molecules with antioxidant properties. Some carotenoids such as β-carotene also serve as vitamin A precursors, playing a key role in human health. Carotenoids are transported in lipoproteins with other lipids such as cholesterol, however, the mechanisms responsible for carotenoid storage in tissues and their non-enzymatic elimination remain relatively unexplored. The goal of this study was to examine the contribution of the low-density lipoprotein receptor (LDLR) in the bodily distribution and disposal of carotenoids. METHODS We employed mice lacking one or both carotenoid-cleaving enzymes as suitable models for carotenoid accumulation. We examined the contribution of LDLR in carotenoid distribution by crossbreeding these mice with Ldlr-/- mice or overexpressing LDLR in the liver. RESULTS Our results show that LDLR plays a dual role in carotenoid homeostasis by simultaneously favoring carotenoid storage in the liver and adipose tissue while facilitating their fecal elimination. CONCLUSIONS Our results highlight a novel role of the LDLR in carotenoid homeostasis, and unveil a previously unrecognized disposal pathway for these important bioactive molecules.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Walter C Monroy
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Gema Soria
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA.
| |
Collapse
|
22
|
Lorant V, Klein M, Garçon D, Sotin T, Frey S, Cheminant MA, Ayer A, Croyal M, Flet L, Rimbert A, Colas L, Cariou B, Bouchaud G, Le May C. PCSK9 inhibition protects mice from food allergy. Transl Res 2024; 272:151-161. [PMID: 38471633 DOI: 10.1016/j.trsl.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The Proprotein Convertase Subtilisin Kexin of type 9 (PCSK9) has been identified in 2003 as the third gene involved in familial hypercholesterolemia. PCSK9 binds to the membrane low-density lipoprotein receptor (LDLR) and promotes its cellular internalization and lysosomal degradation. Beyond this canonical role, PCSK9 was recently described to be involved in several immune responses. However, to date, the contribution of PCSK9 in food allergy remains unknown. Here, we showed that Pcsk9 deficiency or pharmacological inhibition of circulating PCSK9 with a specific monoclonal antibody (m-Ab) protected mice against symptoms of gliadin-induced-food allergy, such as increased intestinal transit time and ear oedema. Furthermore, specific PCSK9 inhibition during the elicitation steps of allergic process was sufficient to ensure anti-allergic effects in mice. Interestingly, the protective effect of PCSK9 inhibition against food allergy symptoms was independent of the LDLR as PCSK9 inhibitors remained effective in Ldlr deficient mice. In vitro, we showed that recombinant gain of function PCSK9 (PCSK9 D374Y) increased the percentage of mature bone marrow derived dendritic cells (BMDCs), promoted naïve T cell proliferation and potentiated the gliadin induced basophils degranulation. Altogether, our data demonstrate that PCSK9 inhibition is protective against gliadin induced food allergy in a LDLR-independent manner.
Collapse
Affiliation(s)
- Victoria Lorant
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Martin Klein
- Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - Damien Garçon
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Thibaud Sotin
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Samuel Frey
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Marie-Aude Cheminant
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Audrey Ayer
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France; CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Laurent Flet
- Department of Pharmacy, CHU Nantes, Nantes Université, Nantes, France
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Luc Colas
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes F-44000, France; CHU Nantes, Nantes Université, Plateforme transversale d'allergologie et d'immunologie clinique, clinique dermatologique, Nantes, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | | | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France.
| |
Collapse
|
23
|
Lin C, Jans A, Wolters JC, Mohamed MR, Van der Vorst EPC, Trautwein C, Bartneck M. Targeting Ligand Independent Tropism of siRNA-LNP by Small Molecules for Directed Therapy of Liver or Myeloid Immune Cells. Adv Healthc Mater 2024; 13:e2202670. [PMID: 36617516 DOI: 10.1002/adhm.202202670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/15/2022] [Indexed: 01/10/2023]
Abstract
Hepatic clearance of lipid nanoparticles (LNP) with encapsulated nucleic acids restricts their therapeutic applicability. Therefore, tools for regulating hepatic clearance are of high interest for nucleic acid delivery. To this end, this work employs wild-type (WT) and low-density lipoprotein receptor (Ldlr)-/- mice pretreated with either a leukotriene B4 receptor inhibitor (BLT1i) or a high-density lipoprotein receptor inhibitor (HDLRi) prior to the injection of siRNA-LNP. This work is able to demonstrate significantly increased hepatic uptake of siRNA-LNP by the BLT1i in Ldlr-/- mice by in vivo imaging and discover an induction of specific uptake-related proteins. Irrespective of the inhibitors and Ldlr deficiency, the siRNA-LNP induced RNA-binding and transport-related proteins in liver, including haptoglobin (HP) that is also identified as most upregulated serum protein. This work observes a downregulation of proteins functioning in hepatic detoxification and of serum opsonins. Most strikingly, the HDLRi reduces hepatic uptake and increases siRNA accumulation in spleen and myeloid immune cells of blood and liver. RNA sequencing demonstrates leukocyte recruitment by the siRNA-LNP and the HDLRi through induction of chemokine ligands in liver tissue. The data provide insights into key mechanisms of siRNA-LNP biodistribution and indicate that the HDLRi has potential for extrahepatic and leukocyte targeting.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alexander Jans
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Justina Clarinda Wolters
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Mohamed Ramadan Mohamed
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Emiel P C Van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336, Munich, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Matthias Bartneck
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
24
|
Smith TKT, Ghorbani P, LeBlond ND, Nunes JRC, O'Dwyer C, Ambursley N, Fong-McMaster C, Minarrieta L, Burkovsky LA, El-Hakim R, Trzaskalski NA, Locatelli CAA, Stotts C, Pember C, Rayner KJ, Kemp BE, Loh K, Harper ME, Mulvihill EE, St-Pierre J, Fullerton MD. AMPK-mediated regulation of endogenous cholesterol synthesis does not affect atherosclerosis in a murine Pcsk9-AAV model. Atherosclerosis 2024; 397:117608. [PMID: 38880706 DOI: 10.1016/j.atherosclerosis.2024.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND AND AIMS Dysregulated cholesterol metabolism is a hallmark of atherosclerotic cardiovascular diseases, yet our understanding of how endogenous cholesterol synthesis affects atherosclerosis is not clear. The energy sensor AMP-activated protein kinase (AMPK) phosphorylates and inhibits the rate-limiting enzyme in the mevalonate pathway HMG-CoA reductase (HMGCR). Recent work demonstrated that when AMPK-HMGCR signaling was compromised in an Apoe-/- model of hypercholesterolemia, atherosclerosis was exacerbated due to elevated hematopoietic stem and progenitor cell mobilization and myelopoiesis. We sought to validate the significance of the AMPK-HMGCR signaling axis in atherosclerosis using a non-germline hypercholesterolemia model with functional ApoE. METHODS Male and female HMGCR S871A knock-in (KI) mice and wild-type (WT) littermate controls were made atherosclerotic by intravenous injection of a gain-of-function Pcsk9D374Y-adeno-associated virus followed by high-fat and high-cholesterol atherogenic western diet feeding for 16 weeks. RESULTS AMPK activation suppressed endogenous cholesterol synthesis in primary bone marrow-derived macrophages from WT but not HMGCR KI mice, without changing other parameters of cholesterol regulation. Atherosclerotic plaque area was unchanged between WT and HMGCR KI mice, independent of sex. Correspondingly, there were no phenotypic differences observed in hematopoietic progenitors or differentiated immune cells in the bone marrow, blood, or spleen, and no significant changes in systemic markers of inflammation. When lethally irradiated female mice were transplanted with KI bone marrow, there was similar plaque content relative to WT. CONCLUSIONS Given previous work, our study demonstrates the importance of preclinical atherosclerosis model comparison and brings into question the importance of AMPK-mediated control of cholesterol synthesis in atherosclerosis.
Collapse
Affiliation(s)
- Tyler K T Smith
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Nicholas D LeBlond
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julia R C Nunes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Nia Ambursley
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Lucía Minarrieta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Leah A Burkovsky
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rama El-Hakim
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Natasha A Trzaskalski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Cassandra A A Locatelli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Cameron Stotts
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ciara Pember
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Kim Loh
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Centre for Catalysis Research and Innovation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Cousineau JP, Dawe AM, Alpaugh M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. BIOLOGY 2024; 13:764. [PMID: 39452073 PMCID: PMC11505144 DOI: 10.3390/biology13100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Neurological diseases, including neurodegenerative diseases (NDDs), are the primary cause of disability worldwide and the second leading cause of death. The chronic nature of these conditions and the lack of disease-modifying therapies highlight the urgent need for developing effective therapies. To accomplish this, effective models of NDDs are required to increase our understanding of underlying pathophysiology and for evaluating treatment efficacy. Traditionally, models of NDDs have focused on the central nervous system (CNS). However, evidence points to a relationship between systemic factors and the development of NDDs. Cardiovascular disease and related risk factors have been shown to modify the cerebral vasculature and the risk of developing Alzheimer's disease. These findings, combined with reports of changes to vascular density and blood-brain barrier integrity in other NDDs, such as Huntington's disease and Parkinson's disease, suggest that cardiovascular health may be predictive of brain function. To evaluate this, we explore evidence for disruptions to the circulatory system in murine models of NDDs, evidence of disruptions to the CNS in cardiovascular disease models and summarize models combining cardiovascular disruption with models of NDDs. In this study, we aim to increase our understanding of cardiovascular disease and neurodegeneration interactions across multiple disease states and evaluate the utility of combining model systems.
Collapse
Affiliation(s)
| | | | - Melanie Alpaugh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.C.); (A.M.D.)
| |
Collapse
|
26
|
Del Bianco V, Ferreira GDS, Bochi APG, Pinto PR, Rodrigues LG, Furukawa LNS, Okamoto MM, Almeida JA, da Silveira LKR, Santos AS, Bispo KCS, Capelozzi VL, Correa-Giannella ML, da Silva AA, Velosa APP, Nakandakare ER, Machado UF, Teodoro WPR, Passarelli M, Catanozi S. Aerobic Exercise Training Protects Against Insulin Resistance, Despite Low-Sodium Diet-Induced Increased Inflammation and Visceral Adiposity. Int J Mol Sci 2024; 25:10179. [PMID: 39337664 PMCID: PMC11432465 DOI: 10.3390/ijms251810179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Dietary sodium restriction increases plasma triglycerides (TG) and total cholesterol (TC) concentrations as well as causing insulin resistance and stimulation of the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system. Stimulation of the angiotensin II type-1 receptor (AT1) is associated with insulin resistance, inflammation, and the inhibition of adipogenesis. The current study investigated whether aerobic exercise training (AET) mitigates or inhibits the adverse effects of dietary sodium restriction on adiposity, inflammation, and insulin sensitivity in periepididymal adipose tissue. LDL receptor knockout mice were fed either a normal-sodium (NS; 1.27% NaCl) or a low-sodium (LS; 0.15% NaCl) diet and were either subjected to AET for 90 days or kept sedentary. Body mass, blood pressure (BP), hematocrit, plasma TC, TG, glucose and 24-hour urinary sodium (UNa) concentrations, insulin sensitivity, lipoprotein profile, histopathological analyses, and gene and protein expression were determined. The results were evaluated using two-way ANOVA. Differences were not observed in BP, hematocrit, diet consumption, and TC. The LS diet was found to enhance body mass, insulin resistance, plasma glucose, TG, LDL-C, and VLDL-TG and reduce UNa, HDL-C, and HDL-TG, showing a pro-atherogenic lipid profile. In periepididymal adipose tissue, the LS diet increased tissue mass, TG, TC, AT1 receptor, pro-inflammatory macro-phages contents, and the area of adipocytes; contrarily, the LS diet decreased anti-inflammatory macrophages, protein contents and the transcription of genes related to insulin sensitivity. The AET prevented insulin resistance, but did not protect against dyslipidemia, adipose tissue pro-inflammatory profile, increased tissue mass, AT1 receptor expression, TG, and TC induced by the LS diet.
Collapse
Affiliation(s)
- Vanessa Del Bianco
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Guilherme da Silva Ferreira
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Ana Paula Garcia Bochi
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Paula Ramos Pinto
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Letícia Gomes Rodrigues
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Luzia Naoko Shinohara Furukawa
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo 01246 000, Brazil;
| | - Maristela Mitiko Okamoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508 000, Brazil; (M.M.O.); (U.F.M.)
| | - Jaíne Alves Almeida
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo 01246 000, Brazil; (J.A.A.); (L.K.R.d.S.); (A.P.P.V.); (W.P.R.T.)
| | - Lizandre Keren Ramos da Silveira
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo 01246 000, Brazil; (J.A.A.); (L.K.R.d.S.); (A.P.P.V.); (W.P.R.T.)
| | - Aritania Sousa Santos
- Laboratorio de Carboidratos e Radioimunoensaios (Laboratorio de Investigações Médicas, LIM-18), Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo 01246 000, Brazil; (A.S.S.); (M.L.C.-G.)
| | - Kely Cristina Soares Bispo
- Department of Pathology of the Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, FMUSP, Sao Paulo 01246 000, Brazil; (K.C.S.B.); (V.L.C.)
| | - Vera Luiza Capelozzi
- Department of Pathology of the Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, FMUSP, Sao Paulo 01246 000, Brazil; (K.C.S.B.); (V.L.C.)
| | - Maria Lucia Correa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaios (Laboratorio de Investigações Médicas, LIM-18), Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo 01246 000, Brazil; (A.S.S.); (M.L.C.-G.)
| | - Alexandre Alves da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo 01246 000, Brazil; (J.A.A.); (L.K.R.d.S.); (A.P.P.V.); (W.P.R.T.)
| | - Edna Regina Nakandakare
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508 000, Brazil; (M.M.O.); (U.F.M.)
| | - Walcy Paganelli Rosolia Teodoro
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo 01246 000, Brazil; (J.A.A.); (L.K.R.d.S.); (A.P.P.V.); (W.P.R.T.)
| | - Marisa Passarelli
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
- Programa de Pós Graduação em Medicina, Universidade Nove de Julho, Sao Paulo 01525 000, Brazil
| | - Sergio Catanozi
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| |
Collapse
|
27
|
Fiamingo M, Toler S, Lee K, Oshiro W, Krantz T, Evansky P, Davies D, Gilmour MI, Farraj A, Hazari MS. Depleted Housing Elicits Cardiopulmonary Dysfunction After a Single Flaming Eucalyptus Wildfire Smoke Exposure in a Sex-Specific Manner in ApoE Knockout Mice. Cardiovasc Toxicol 2024; 24:852-869. [PMID: 39044058 PMCID: PMC11335910 DOI: 10.1007/s12012-024-09897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
Although it is well established that wildfire smoke exposure can increase cardiovascular morbidity and mortality, the combined effects of non-chemical stressors and wildfire smoke remains understudied. Housing is a non-chemical stressor that is a major determinant of cardiovascular health, however, disparities in neighborhood and social status have exacerbated the cardiovascular health gaps within the United States. Further, pre-existing cardiovascular morbidities, such as atherosclerosis, can worsen the response to wildfire smoke exposures. This represents a potentially hazardous interaction between inadequate housing and stress, cardiovascular morbidities, and worsened responses to wildfire smoke exposures. The purpose of this study was to examine the effects of enriched (EH) versus depleted (DH) housing on pulmonary and cardiovascular responses to a single flaming eucalyptus wildfire smoke (WS) exposure in male and female apolipoprotein E (ApoE) knockout mice, which develop an atherosclerosis-like phenotype. The results of this study show that cardiopulmonary responses to WS exposure occur in a sex-specific manner. EH blunts adverse WS-induced ventilatory responses, specifically an increase in tidal volume (TV), expiratory time (Te), and relaxation time (RT) after a WS exposure, but only in females. EH also blunted an increase in isovolumic relaxation time (IVRT) and the myocardial performance index (MPI) 1-week after exposures, also only in females. Our results suggest that housing alters the cardiovascular response to a single WS exposure, and that DH might cause increased susceptibility to environmental exposures that manifest in altered ventilation patterns and diastolic dysfunction in a sex-specific manner.
Collapse
Affiliation(s)
- Michelle Fiamingo
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina -Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sydnie Toler
- Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaleb Lee
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Wendy Oshiro
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Todd Krantz
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Paul Evansky
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - David Davies
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Aimen Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Mehdi S Hazari
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
28
|
Mullis DM, Padilla-Lopez A, Wang H, Zhu Y, Elde S, Bonham SA, Yajima S, Kocher ON, Krieger M, Woo YJ. Stromal cell-derived factor-1 alpha improves cardiac function in a novel diet-induced coronary atherosclerosis model, the SR-B1ΔCT/LDLR KO mouse. Atherosclerosis 2024; 395:117518. [PMID: 38627162 PMCID: PMC11254567 DOI: 10.1016/j.atherosclerosis.2024.117518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIMS There are a limited number of pharmacologic therapies for coronary artery disease, and few rodent models of occlusive coronary atherosclerosis and consequent myocardial infarction with which one can rapidly test new therapeutic approaches. Here, we characterize a novel, fertile, and easy-to-use HDL receptor (SR-B1)-based model of atherogenic diet-inducible, fatal coronary atherosclerosis, the SR-B1ΔCT/LDLR KO mouse. Additionally, we test intramyocardial injection of Stromal Cell-Derived Factor-1 alpha (SDF-1α), a potent angiogenic cytokine, as a possible therapy to rescue cardiac function in this mouse. METHODS SR-B1ΔCT/LDLR KO mice were fed the Paigen diet or standard chow diet, and we determined the effects of the diets on cardiac function, histology, and survival. After two weeks of feeding either the Paigen diet (n = 24) or standard chow diet (n = 20), the mice received an intramyocardial injection of either SDF-1α or phosphate buffered saline (PBS). Cardiac function and angiogenesis were assessed two weeks later. RESULTS When six-week-old mice were fed the Paigen diet, they began to die as early as 19 days later and 50% had died by 38 days. None of the mice maintained on the standard chow diet died by day 72. Hearts from mice on the Paigen diet showed evidence of cardiomegaly, myocardial infarction, and occlusive coronary artery disease. For the five mice that survived until day 28 that underwent an intramyocardial injection of PBS on day 15, the average ejection fraction (EF) decreased significantly from day 14 (the day before injection, 52.1 ± 4.3%) to day 28 (13 days after the injection, 30.6 ± 6.8%) (paired t-test, n = 5, p = 0.0008). Of the 11 mice fed the Paigen diet and injected with SDF-1α on day 15, 8 (72.7%) survived to day 28. The average EF for these 8 mice increased significantly from 48.2 ± 7.2% on day 14 to63.6 ± 6.9% on day 28 (Paired t-test, n = 8, p = 0.003). CONCLUSIONS This new mouse model and treatment with the promising angiogenic cytokine SDF-1α may lead to new therapeutic approaches for ischemic heart disease.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Disease Models, Animal
- Mice, Knockout
- Coronary Artery Disease
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Scavenger Receptors, Class B/genetics
- Male
- Neovascularization, Physiologic/drug effects
- Mice, Inbred C57BL
- Diet, Atherogenic
- Mice
- Ventricular Function, Left
- Myocardium/pathology
- Myocardium/metabolism
- Diet, High-Fat
Collapse
Affiliation(s)
- Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Spencer A Bonham
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Olivier N Kocher
- Department of Pathology, Beth Israel Hospital, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, MA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
29
|
Ferraro B. The SR-B1ΔCT/LDLR KO mouse: A new tool to shed light on coronary artery disease. Atherosclerosis 2024; 395:117564. [PMID: 38796408 DOI: 10.1016/j.atherosclerosis.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Bartolo Ferraro
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig- Maximilian-University Munich, Planegg-Martinsried, Germany; Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
30
|
Xie H, Linning-Duffy K, Demireva EY, Toh H, Abolibdeh B, Shi J, Zhou B, Iwase S, Yan L. CRISPR-based genome editing of a diurnal rodent, Nile grass rat (Arvicanthis niloticus). BMC Biol 2024; 22:144. [PMID: 38956550 PMCID: PMC11218167 DOI: 10.1186/s12915-024-01943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Diurnal and nocturnal mammals have evolved distinct pathways to optimize survival for their chronotype-specific lifestyles. Conventional rodent models, being nocturnal, may not sufficiently recapitulate the biology of diurnal humans in health and disease. Although diurnal rodents are potentially advantageous for translational research, until recently, they have not been genetically tractable. The present study aims to address this major limitation by developing experimental procedures necessary for genome editing in a well-established diurnal rodent model, the Nile grass rat (Arvicanthis niloticus). RESULTS A superovulation protocol was established, which yielded nearly 30 eggs per female grass rat. Fertilized eggs were cultured in a modified rat 1-cell embryo culture medium (mR1ECM), in which grass rat embryos developed from the 1-cell stage into blastocysts. A CRISPR-based approach was then used for gene editing in vivo and in vitro, targeting Retinoic acid-induced 1 (Rai1), the causal gene for Smith-Magenis Syndrome, a neurodevelopmental disorder. The CRISPR reagents were delivered in vivo by electroporation using an improved Genome-editing via Oviductal Nucleic Acids Delivery (i-GONAD) method. The in vivo approach produced several edited founder grass rats with Rai1 null mutations, which showed stable transmission of the targeted allele to the next generation. CRISPR reagents were also microinjected into 2-cell embryos in vitro. Large deletion of the Rai1 gene was confirmed in 70% of the embryos injected, demonstrating high-efficiency genome editing in vitro. CONCLUSION We have established a set of methods that enabled the first successful CRISPR-based genome editing in Nile grass rats. The methods developed will guide future genome editing of this and other diurnal rodent species, which will promote greater utility of these models in basic and translational research.
Collapse
Affiliation(s)
- Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA.
| | | | - Elena Y Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, USA
| | - Bana Abolibdeh
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaming Shi
- Department of Psychology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bo Zhou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI, 48824, USA.
- Neuroscience Program, Michigan State University, East Lansing, USA.
| |
Collapse
|
31
|
Butt E, Günder T, Stürzebecher P, Kowalski I, Schneider P, Buschmann N, Schäfer S, Bender A, Hermanns HM, Zernecke A. Cholesterol uptake in the intestine is regulated by the LASP1-AKT-NPC1L1 signaling pathway. Am J Physiol Gastrointest Liver Physiol 2024; 327:G25-G35. [PMID: 38713618 DOI: 10.1152/ajpgi.00222.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.
Collapse
Affiliation(s)
- Elke Butt
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Günder
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Paulina Stürzebecher
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Isabel Kowalski
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Pia Schneider
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Nils Buschmann
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Schäfer
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Alicia Bender
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike M Hermanns
- Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Zhang X, Blumenthal RM, Cheng X. Keep Fingers on the CpG Islands. EPIGENOMES 2024; 8:23. [PMID: 38920624 PMCID: PMC11202855 DOI: 10.3390/epigenomes8020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The post-genomic era has ushered in the extensive application of epigenetic editing tools, allowing for precise alterations of gene expression. The use of reprogrammable editors that carry transcriptional corepressors has significant potential for long-term epigenetic silencing for the treatment of human diseases. The ideal scenario involves precise targeting of a specific genomic location by a DNA-binding domain, ensuring there are no off-target effects and that the process yields no genetic remnants aside from specific epigenetic modifications (i.e., DNA methylation). A notable example is a recent study on the mouse Pcsk9 gene, crucial for cholesterol regulation and expressed in hepatocytes, which identified synthetic zinc-finger (ZF) proteins as the most effective DNA-binding editors for silencing Pcsk9 efficiently, specifically, and persistently. This discussion focuses on enhancing the specificity of ZF-array DNA binding by optimizing interactions between specific amino acids and DNA bases across three promoters containing CpG islands.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Robert M. Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
33
|
Yigit E, Deger O, Korkmaz K, Huner Yigit M, Uydu HA, Mercantepe T, Demir S. Propolis Reduces Inflammation and Dyslipidemia Caused by High-Cholesterol Diet in Mice by Lowering ADAM10/17 Activities. Nutrients 2024; 16:1861. [PMID: 38931216 PMCID: PMC11206409 DOI: 10.3390/nu16121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis on atherosclerosis. In our study, C57BL/6J mice (n = 16) were used in the control and sham groups. In contrast, ApoE-/- mice (n = 48) were used in the case, water extract of propolis (WEP), ethanolic extract of propolis (EEP), GW280264X (GW-synthetic inhibitor), and solvent (DMSO and ethanol) groups. The control group was fed a control diet, and all other groups were fed a high-cholesterol diet for 16 weeks. WEP (400 mg/kg/day), EEP (200 mg/kg/day), and GW (100 µg/kg/day) were administered intraperitoneally for the last four weeks. Animals were sacrificed, and blood, liver, aortic arch, and aortic root tissues were collected. In serum, total cholesterol (TC), triglycerides (TGs), and glucose (Glu) were measured by enzymatic colorimetric method, while interleukin-1β (IL-1β), paraoxonase-1 (PON-1), and lipoprotein-associated phospholipase-A2 (Lp-PLA2) were measured by ELISA. Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12) levels were measured in aortic arch by ELISA and ADAM10/17 activities were measured fluorometrically. In addition, aortic root and liver tissues were examined histopathologically and immunohistochemically (ADAM10 and sortilin primary antibody). In the WEP, EEP, and GW groups compared to the case group, TC, TG, TNF-α, IL-1β, IL-6, IL-12, PLA2, MPO, ADAM10/17 activities, plaque burden, lipid accumulation, ADAM10, and sortilin levels decreased, while IL-10 and PON-1 levels increased (p < 0.003). Our study results show that propolis can effectively reduce atherosclerosis-related inflammation and dyslipidemia through ADAM10/17 inhibition.
Collapse
Affiliation(s)
- Ertugrul Yigit
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey;
| | - Orhan Deger
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey;
| | - Katip Korkmaz
- Department of Nutrition and Dietetics, Faculty of Health Science, Karadeniz Technical University, 61080 Trabzon, Turkey; (K.K.); (S.D.)
| | - Merve Huner Yigit
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey;
| | - Huseyin Avni Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Samsun University, 55080 Samsun, Turkey;
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey;
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Science, Karadeniz Technical University, 61080 Trabzon, Turkey; (K.K.); (S.D.)
| |
Collapse
|
34
|
Getz GS, Reardon CA. Insights from Murine Studies on the Site Specificity of Atherosclerosis. Int J Mol Sci 2024; 25:6375. [PMID: 38928086 PMCID: PMC11204064 DOI: 10.3390/ijms25126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
35
|
Monteil VM, Wright SC, Dyczynski M, Kellner MJ, Appelberg S, Platzer SW, Ibrahim A, Kwon H, Pittarokoilis I, Mirandola M, Michlits G, Devignot S, Elder E, Abdurahman S, Bereczky S, Bagci B, Youhanna S, Aastrup T, Lauschke VM, Salata C, Elaldi N, Weber F, Monserrat N, Hawman DW, Feldmann H, Horn M, Penninger JM, Mirazimi A. Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells. Nat Microbiol 2024; 9:1499-1512. [PMID: 38548922 PMCID: PMC11153131 DOI: 10.1038/s41564-024-01672-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 06/07/2024]
Abstract
Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.
Collapse
Affiliation(s)
- Vanessa M Monteil
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Sebastian W Platzer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Hyesoo Kwon
- National Veterinary Institute, Uppsala, Sweden
| | | | - Mattia Mirandola
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Stephanie Devignot
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | | | | | | | - Binnur Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Nazif Elaldi
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Cumhuriyet University, Sivas, Turkey
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Gießen, Germany
| | - Nuria Monserrat
- University of Barcelona, Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - David W Hawman
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Heinz Feldmann
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Moritz Horn
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ali Mirazimi
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Public Health Agency of Sweden, Solna, Sweden.
- National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
36
|
Rodems BJ, Sharma S, Baker CD, Kaszuba CM, Ito T, Liesveld JL, Calvi LM, Becker MW, Jordan CT, Ashton JM, Bajaj J. Temporal Single Cell Analysis of Leukemia Microenvironment Identifies Taurine-Taurine Transporter Axis as a Key Regulator of Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593633. [PMID: 38798540 PMCID: PMC11118281 DOI: 10.1101/2024.05.11.593633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Signals from the microenvironment are known to be critical for development, sustaining adult stem cells, and for oncogenic progression. While candidate niche-driven signals that can promote cancer progression have been identified1-6, concerted efforts to comprehensively map microenvironmental ligands for cancer stem cell specific surface receptors have been lacking. Here, we use temporal single cell RNA-sequencing to identify molecular cues from the bone marrow stromal niche that engage leukemia stem cells (LSC) during oncogenic progression. We integrate these data with our RNA-seq analysis of human LSCs from distinct aggressive myeloid cancer subtypes and our CRISPR based in vivo LSC dependency map7 to develop a temporal receptor-ligand interactome essential for disease progression. These analyses identify the taurine transporter (TauT)-taurine axis as a critical dependency of myeloid malignancies. We show that taurine production is restricted to the osteolineage population during cancer initiation and expansion. Inhibiting taurine synthesis in osteolineage cells impairs LSC growth and survival. Our experiments with the TauT genetic loss of function murine model indicate that its loss significantly impairs the progression of aggressive myeloid leukemias in vivo by downregulating glycolysis. Further, TauT inhibition using a small molecule strongly impairs the growth and survival of patient derived myeloid leukemia cells. Finally, we show that TauT inhibition can synergize with the clinically approved oxidative phosphorylation inhibitor venetoclax8, 9 to block the growth of primary human leukemia cells. Given that aggressive myeloid leukemias continue to be refractory to current therapies and have poor prognosis, our work indicates targeting the taurine transporter may be of therapeutic significance. Collectively, our data establishes a temporal landscape of stromal signals during cancer progression and identifies taurine-taurine transporter signaling as an important new regulator of myeloid malignancies.
Collapse
Affiliation(s)
- Benjamin J. Rodems
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sonali Sharma
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cameron D. Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christina M. Kaszuba
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Takashi Ito
- Department of Bioscience and Technology, Graduate School of Bioscience and Technology, Fukui Prefectural University, Fukui, Japan
| | - Jane L. Liesveld
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laura M. Calvi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael W. Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Craig T. Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John M. Ashton
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeevisha Bajaj
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
37
|
Chandy M, Hill T, Jimenez-Tellez N, Wu JC, Sarles SE, Hensel E, Wang Q, Rahman I, Conklin DJ. Addressing Cardiovascular Toxicity Risk of Electronic Nicotine Delivery Systems in the Twenty-First Century: "What Are the Tools Needed for the Job?" and "Do We Have Them?". Cardiovasc Toxicol 2024; 24:435-471. [PMID: 38555547 PMCID: PMC11485265 DOI: 10.1007/s12012-024-09850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Cigarette smoking is positively and robustly associated with cardiovascular disease (CVD), including hypertension, atherosclerosis, cardiac arrhythmias, stroke, thromboembolism, myocardial infarctions, and heart failure. However, after more than a decade of ENDS presence in the U.S. marketplace, uncertainty persists regarding the long-term health consequences of ENDS use for CVD. New approach methods (NAMs) in the field of toxicology are being developed to enhance rapid prediction of human health hazards. Recent technical advances can now consider impact of biological factors such as sex and race/ethnicity, permitting application of NAMs findings to health equity and environmental justice issues. This has been the case for hazard assessments of drugs and environmental chemicals in areas such as cardiovascular, respiratory, and developmental toxicity. Despite these advances, a shortage of widely accepted methodologies to predict the impact of ENDS use on human health slows the application of regulatory oversight and the protection of public health. Minimizing the time between the emergence of risk (e.g., ENDS use) and the administration of well-founded regulatory policy requires thoughtful consideration of the currently available sources of data, their applicability to the prediction of health outcomes, and whether these available data streams are enough to support an actionable decision. This challenge forms the basis of this white paper on how best to reveal potential toxicities of ENDS use in the human cardiovascular system-a primary target of conventional tobacco smoking. We identify current approaches used to evaluate the impacts of tobacco on cardiovascular health, in particular emerging techniques that replace, reduce, and refine slower and more costly animal models with NAMs platforms that can be applied to tobacco regulatory science. The limitations of these emerging platforms are addressed, and systems biology approaches to close the knowledge gap between traditional models and NAMs are proposed. It is hoped that these suggestions and their adoption within the greater scientific community will result in fresh data streams that will support and enhance the scientific evaluation and subsequent decision-making of tobacco regulatory agencies worldwide.
Collapse
Affiliation(s)
- Mark Chandy
- Robarts Research Institute, Western University, London, N6A 5K8, Canada
| | - Thomas Hill
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nerea Jimenez-Tellez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - S Emma Sarles
- Biomedical and Chemical Engineering PhD Program, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Edward Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel J Conklin
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 S. Preston St., Delia Baxter, Rm. 404E, Louisville, KY, 40202, USA.
| |
Collapse
|
38
|
Fiamingo M, Toler S, Lee K, Oshiro W, Krantz T, Evansky P, Davies D, Gilmour MI, Farraj A, Hazari MS. Depleted housing elicits cardiopulmonary dysfunction after a single flaming eucalyptus wildfire smoke exposure in a sex-specific manner in ApoE knockout mice. RESEARCH SQUARE 2024:rs.3.rs-4237383. [PMID: 38659910 PMCID: PMC11042425 DOI: 10.21203/rs.3.rs-4237383/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although it is well established that wildfire smoke exposure can increase cardiovascular morbidity and mortality, the combined effects of non-chemical stressors and wildfire smoke remains understudied. Housing is a non-chemical stressor that is a major determinant of cardiovascular health, however, disparities in neighborhood and social status have exacerbated the cardiovascular health gaps within the United States. Further, pre-existing cardiovascular morbidities, such as atherosclerosis, can worsen the response to wildfire smoke exposures. This represents a potentially hazardous interaction between inadequate housing and stress, cardiovascular morbidities, and worsened responses to wildfire smoke exposures. The purpose of this study was to examine the effects of enriched (EH) versus depleted (DH) housing on pulmonary and cardiovascular responses to a single flaming eucalyptus wildfire smoke (WS) exposure in male and female apolipoprotein E (ApoE) knockout mice, which develop an atherosclerosis-like phenotype. The results of this study show that cardiopulmonary responses to WS exposure occur in a sex-specific manner. EH blunts adverse WS-induced ventilatory responses, specifically an increase in tidal volume (TV), expiratory time (Te), and relaxation time (RT) after a WS exposure, but only in females. EH also blunted a WS-induced increase in isovolumic relaxation time (IVRT) and the myocardial performance index (MPI) 1-wk after exposures, also only in females. Our results suggest that housing alters the cardiovascular response to a single WS exposure, and that DH might cause increased susceptibility to environmental exposures that manifest in altered ventilation patterns and diastolic dysfunction in a sex-specific manner.
Collapse
Affiliation(s)
| | | | - Kaleb Lee
- Oak Ridge Institute for Science and Education
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Christ C, Ocskay Z, Kovács G, Jakus Z. Characterization of Atherosclerotic Mice Reveals a Sex-Dependent Susceptibility to Plaque Calcification but No Major Changes in the Lymphatics in the Arterial Wall. Int J Mol Sci 2024; 25:4046. [PMID: 38612867 PMCID: PMC11012298 DOI: 10.3390/ijms25074046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lymphatics participate in reverse cholesterol transport, and their presence in the arterial wall of the great vessels and prior experimental results suggest their possible role in the development of atherosclerosis. The aim of this study was to characterize the lymphatic vasculature of the arterial wall in atherosclerosis. Tissue sections and tissue-cleared aortas of wild-type mice unveiled significant differences in the density of the arterial lymphatic network throughout the arterial tree. Male and female Ldlr-/- and ApoE-/- mice on a Western diet showed sex-dependent differences in plaque formation and calcification. Female mice on a Western diet developed more calcification of atherosclerotic plaques than males. The lymphatic vessels within the aortic wall of these mice showed no major changes regarding the number of lymphatic junctions and end points or the lymphatic area. However, female mice on a Western diet showed moderate dilation of lymphatic vessels in the abdominal aorta and exhibited indications of increased peripheral lymphatic function, findings that require further studies to understand the role of lymphatics in the arterial wall during the development of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; (C.C.); (Z.O.); (G.K.)
| |
Collapse
|
40
|
Shao B, Shimizu-Albergine M, Kramer F, Kanter JE, Heinecke JW, Vaisar T, Mittendorfer B, Patterson BW, Bornfeldt KE. A targeted proteomics method for quantifying plasma apolipoprotein kinetics in individual mice using stable isotope labeling. J Lipid Res 2024; 65:100531. [PMID: 38490635 PMCID: PMC11002879 DOI: 10.1016/j.jlr.2024.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024] Open
Abstract
Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 μl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.
Collapse
Affiliation(s)
- Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Masami Shimizu-Albergine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jay W Heinecke
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Bettina Mittendorfer
- Division of Nutritional Science and Obesity Medicine, Department of Medicine, Washington University, St Louis, MO, USA; Departments of Medicine and Nutrition & Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Bruce W Patterson
- Division of Nutritional Science and Obesity Medicine, Department of Medicine, Washington University, St Louis, MO, USA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Liu J, Yang F, Shang L, Cai S, Wu Y, Liu Y, Zhang L, Fei C, Wang M, Gu F. Recapitulating familial hypercholesterolemia in a mouse model by knock-in patient-specific LDLR mutation. FASEB J 2024; 38:e23573. [PMID: 38526846 DOI: 10.1096/fj.202301216rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Familial hypercholesterolemia (FH) is one of the most prevalent monogenetic disorders leading to cardiovascular disease (CVD) worldwide. Mutations in Ldlr, encoding a membrane-spanning protein, account for the majority of FH cases. No effective and safe clinical treatments are available for FH. Adenine base editor (ABE)-mediated molecular therapy is a promising therapeutic strategy to treat genetic diseases caused by point mutations, with evidence of successful treatment in mouse disease models. However, due to the differences in the genomes between mice and humans, ABE with specific sgRNA, a key gene correction component, cannot be directly used to treat FH patients. Thus, we generated a knock-in mouse model harboring the partial patient-specific fragment and including the Ldlr W490X mutation. LdlrW490X/W490X mice recapitulated cholesterol metabolic disorder and clinical manifestations of atherosclerosis associated with FH patients, including high plasma low-density lipoprotein cholesterol levels and lipid deposition in aortic vessels. Additionally, we showed that the mutant Ldlr gene could be repaired using ABE with the cellular model. Taken together, these results pave the way for ABE-mediated molecular therapy for FH.
Collapse
Affiliation(s)
- Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Fayu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Shuo Cai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yuting Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
42
|
Imamura-Uehara Y, Yasuda-Yamahara M, Kuwagata S, Yamahara K, Yoshibayashi M, Tanaka-Sasaki Y, Shimizu A, Ogita H, Chin-Kanasaki M, Kume S. Establishment of a novel mouse model of renal artery coiling-based chronic hypoperfusion-related kidney injury. Biochem Biophys Rep 2024; 37:101607. [PMID: 38178924 PMCID: PMC10764247 DOI: 10.1016/j.bbrep.2023.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Renal artery stenosis-induced chronic renal ischemia is an important cause of renal dysfunction, especially in older adults, and its incidence is currently increasing. To elucidate the mechanisms underlying chronic renal hypoperfusion-induced kidney damage, we developed a novel mouse model of renal artery coiling-based chronic hypoperfusion-related kidney injury. This model exhibits decreased renal blood flow and function, atrophy, and parenchymal injury in the coiled kidney, along with compensatory hypertrophy in the non-coiled kidney, without chronic hypertension. The availability of this mouse model, which can develop renal ischemia without genetic modification, will enhance kidney disease research by serving as a new tool to investigate the effects of acquired factors (e.g., obesity and aging) and genetic factors on renal artery stenosis-related renal parenchymal damage.
Collapse
Affiliation(s)
- Yoshimi Imamura-Uehara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Shogo Kuwagata
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Mamoru Yoshibayashi
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Yuki Tanaka-Sasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
43
|
McQueen P, Molina D, Pinos I, Krug S, Taylor AJ, LaFrano MR, Kane MA, Amengual J. Finasteride delays atherosclerosis progression in mice and is associated with a reduction in plasma cholesterol in men. J Lipid Res 2024; 65:100507. [PMID: 38272355 PMCID: PMC10899056 DOI: 10.1016/j.jlr.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Finasteride is commonly prescribed to treat benign prostate hyperplasia and male-pattern baldness in cis men and, more recently, trans individuals. However, the effect of finasteride on cardiovascular disease remains elusive. We evaluated the role of finasteride on atherosclerosis using low-density lipoprotein (LDL) receptor-deficient (Ldlr-/-) mice. Next, we examined the relevance to humans by analyzing the data deposited between 2009 and 2016 in the National Health and Nutrition Examination Survey. We show that finasteride reduces total plasma cholesterol and delays the development of atherosclerosis in Ldlr-/- mice. Finasteride reduced monocytosis, monocyte recruitment to the lesion, macrophage lesion content, and necrotic core area, the latter of which is an indicator of plaque vulnerability in humans. RNA sequencing analysis revealed a downregulation of inflammatory pathways and an upregulation of bile acid metabolism, oxidative phosphorylation, and cholesterol pathways in the liver of mice taking finasteride. Men reporting the use of finasteride showed lower plasma levels of cholesterol and LDL-cholesterol than those not taking the drug. Our data unveil finasteride as a potential treatment to delay cardiovascular disease in people by improving the plasma lipid profile.
Collapse
Affiliation(s)
- Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Samuel Krug
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Anna J Taylor
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Michael R LaFrano
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA.
| |
Collapse
|
44
|
Votava JA, John SV, Li Z, Chen S, Fan J, Parks BW. Mining cholesterol genes from thousands of mouse livers identifies aldolase C as a regulator of cholesterol biosynthesis. J Lipid Res 2024; 65:100525. [PMID: 38417553 PMCID: PMC10965479 DOI: 10.1016/j.jlr.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
The availability of genome-wide transcriptomic and proteomic datasets is ever-increasing and often not used beyond initial publication. Here, we applied module-based coexpression network analysis to a comprehensive catalog of 35 mouse genome-wide liver expression datasets (encompassing more than 3800 mice) with the goal of identifying and validating unknown genes involved in cholesterol metabolism. From these 35 datasets, we identified a conserved module of genes enriched with cholesterol biosynthetic genes. Using a systematic approach across the 35 datasets, we identified three genes (Rdh11, Echdc1, and Aldoc) with no known role in cholesterol metabolism. We then performed functional validation studies and show that each gene is capable of regulating cholesterol metabolism. For the glycolytic gene, Aldoc, we demonstrate that it contributes to de novo cholesterol biosynthesis and regulates cholesterol and triglyceride levels in mice. As Aldoc is located within a genome-wide significant genome-wide association studies locus for human plasma cholesterol levels, our studies establish Aldoc as a causal gene within this locus. Through our work, we develop a framework for leveraging mouse genome-wide liver datasets for identifying and validating genes involved in cholesterol metabolism.
Collapse
Affiliation(s)
- James A Votava
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Zhonggang Li
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Shuyang Chen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
45
|
Duivenvoorden WC, Margel D, Subramony Gayathri V, Duceppe E, Yousef S, Naeim M, Khajehei M, Hopmans S, Popovic S, Ber Y, Heels-Ansdell D, Devereaux PJ, Pinthus JH. Follicle-Stimulating Hormone Exacerbates Cardiovascular Disease in the Presence of Low or Castrate Testosterone Levels. JACC Basic Transl Sci 2024; 9:364-379. [PMID: 38559622 PMCID: PMC10978407 DOI: 10.1016/j.jacbts.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 04/04/2024]
Abstract
Low testosterone (T), common in aging men, associates with cardiovascular disease. We investigated whether follicle-stimulating hormone (FSH), which is affected by T, modulates the cardiovascular effects associated with low T or castration. FSHβ-/-:low-density lipoprotein receptor (LDLR)-/- mice, untreated or castrated (orchiectomy, gonadotropin-releasing hormone agonist or antagonist), demonstrated significantly less atherogenesis compared with similarly treated LDLR-/- mice, but not following FSH delivery. Smaller plaque burden in LDLR-/- mice receiving gonadotropin-releasing hormone antagonists vs agonists were nullified in FSHβ-/-:LDLR-/- mice. Atherosclerotic and necrotic plaque size and macrophage infiltration correlated with serum FSH/T. In patients with prostate cancer, FSH/T following androgen-deprivation therapy initiation predicted cardiovascular events. FSH facilitates cardiovascular disease when T is low or eliminated.
Collapse
Affiliation(s)
- Wilhelmina C.M. Duivenvoorden
- Department of Surgery, Division of Urology, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
- Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - David Margel
- Department of Urology, Rabin Medical Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Emmanuelle Duceppe
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Centre Hospitalier de l'Universite de Montréal, Montréal, Québec, Canada
| | - Sadiya Yousef
- Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Magda Naeim
- Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Mohammad Khajehei
- Department of Surgery, Division of Urology, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sarah Hopmans
- Department of Surgery, Division of Urology, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Snezana Popovic
- Department of Pathology and Molecular Medicine, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yaara Ber
- Department of Urology, Rabin Medical Center, Petach Tikva, Israel
| | - Diane Heels-Ansdell
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Philip J. Devereaux
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Centre Hospitalier de l'Universite de Montréal, Montréal, Québec, Canada
| | - Jehonathan H. Pinthus
- Department of Surgery, Division of Urology, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
- Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
46
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
47
|
Brown MS, Goldstein JL. How the JCI's most-cited paper sparked the field of lipoprotein research. J Clin Invest 2024; 134:e177475. [PMID: 38357920 PMCID: PMC10866646 DOI: 10.1172/jci177475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
|
48
|
Kotsovilis S, Salagianni M, Varela A, Davos CH, Galani IE, Andreakos E. Comprehensive Analysis of 1-Year-Old Female Apolipoprotein E-Deficient Mice Reveals Advanced Atherosclerosis with Vulnerable Plaque Characteristics. Int J Mol Sci 2024; 25:1355. [PMID: 38279355 PMCID: PMC10816800 DOI: 10.3390/ijms25021355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Apolipoprotein E-knockout (Apoe-/-) mice constitute the most widely employed animal model of atherosclerosis. Deletion of Apoe induces profound hypercholesterolemia and promotes the development of atherosclerosis. However, despite its widespread use, the Apoe-/- mouse model remains incompletely characterized, especially at late time points and advanced disease stages. Thus, it is unclear how late atherosclerotic plaques compare to earlier ones in terms of lipid deposition, calcification, macrophage accumulation, smooth muscle cell presence, or plaque necrosis. Additionally, it is unknown how cardiac function and hemodynamic parameters are affected at late disease stages. Here, we used a comprehensive analysis based on histology, fluorescence microscopy, and Doppler ultrasonography to show that in normal chow diet-fed Apoe-/- mice, atherosclerotic lesions at the level of the aortic valve evolve from a more cellular macrophage-rich phenotype at 26 weeks to an acellular, lipid-rich, and more necrotic phenotype at 52 weeks of age, also marked by enhanced lipid deposition and calcification. Coronary artery atherosclerotic lesions are sparse at 26 weeks but ubiquitous and extensive at 52 weeks; yet, left ventricular function was not significantly affected. These findings demonstrate that atherosclerosis in Apoe-/- mice is a highly dynamic process, with atherosclerotic plaques evolving over time. At late disease stages, histopathological characteristics of increased plaque vulnerability predominate in combination with frequent and extensive coronary artery lesions, which nevertheless may not necessarily result in impaired cardiac function.
Collapse
Affiliation(s)
- Sotirios Kotsovilis
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| | - Maria Salagianni
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| | - Aimilia Varela
- Cardiovascular Research Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (A.V.); (C.H.D.)
| | - Constantinos H. Davos
- Cardiovascular Research Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (A.V.); (C.H.D.)
| | - Ioanna E. Galani
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| |
Collapse
|
49
|
de Oliveira J, Moreira ELG, de Bem AF. Beyond cardiovascular risk: Implications of Familial hypercholesterolemia on cognition and brain function. Ageing Res Rev 2024; 93:102149. [PMID: 38056504 DOI: 10.1016/j.arr.2023.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a metabolic condition caused mainly by a mutation in the low-density lipoprotein (LDL) receptor gene (LDLR), which is highly prevalent in the population. Besides being an important causative factor of cardiovascular diseases, FH has been considered an early risk factor for Alzheimer's disease. Cognitive and emotional behavioral impairments in LDL receptor knockout (LDLr-/-) mice are associated with neuroinflammation, blood-brain barrier dysfunction, impaired neurogenesis, brain oxidative stress, and mitochondrial dysfunction. Notably, today, LDLr-/- mice, a widely used animal model for studying cardiovascular diseases and atherosclerosis, are also considered an interesting tool for studying dementia. Here, we reviewed the main findings in LDLr-/- mice regarding the relationship between FH and brain dysfunctions and dementia development.
Collapse
Affiliation(s)
- Jade de Oliveira
- Laboratory of investigation on metabolic disorders and neurodegenerative diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| | - Eduardo Luiz Gasnhar Moreira
- Neuroscience Coworking Lab, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, University of Brasilia, Brasília, Federal District, DF 70910-900, Brazil; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040360, Brazil.
| |
Collapse
|
50
|
Braun H, Hauke M, Petermann M, Eckenstaler R, Ripperger A, Schwedhelm E, Ludwig-Kraus B, Bernhard Kraus F, Jalal Ahmed Shawon M, Dubourg V, Zernecke A, Schreier B, Gekle M, Benndorf RA. Deletion of vascular thromboxane A 2 receptors and its impact on angiotensin II-induced hypertension and atherosclerotic lesion formation in the aorta of Ldlr-deficient mice. Biochem Pharmacol 2024; 219:115916. [PMID: 37979705 DOI: 10.1016/j.bcp.2023.115916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The thromboxane A2 receptor (TP) has been shown to play a role in angiotensin II (Ang II)-mediated hypertension and pathological vascular remodeling. To assess the impact of vascular TP on Ang II-induced hypertension, atherogenesis, and pathological aortic alterations, i.e. aneurysms, we analysed Western-type diet-fed and Ang II-infused TPVSMC KO/Ldlr KO, TPEC KO/Ldlr KO mice and their respective wild-type littermates (TPWT/Ldlr KO). These analyses showed that neither EC- nor VSMC-specific deletion of the TP significantly affected basal or Ang II-induced blood pressure or aortic atherosclerotic lesion area. In contrast, VSMC-specific TP deletion abolished and EC-specific TP deletion surprisingly reduced the ex vivo reactivity of aortic rings to the TP agonist U-46619, whereas VSMC-specific TP knockout also diminished the ex vivo response of aortic rings to Ang II. Furthermore, despite similar systemic blood pressure, there was a trend towards less atherogenesis in the aortic arch and a trend towards fewer pathological aortic alterations in Ang II-treated female TPVSMC KO/Ldlr KO mice. Survival was impaired in male mice after Ang II infusion and tended to be higher in TPVSMC KO/Ldlr KO mice than in TPWT/Ldlr KO littermates. Thus, our data may suggest a deleterious role of the TP expressed in VSMC in the pathogenesis of Ang II-induced aortic atherosclerosis in female mice, and a surprising role of the endothelial TP in TP-mediated aortic contraction. However, future studies are needed to substantiate and further elucidate the role of the vascular TP in the pathogenesis of Ang II-induced hypertension, aortic atherosclerosis and aneurysm formation.
Collapse
Affiliation(s)
- Heike Braun
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Hauke
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany; Center for Translational Medicine, Department of Neurology and Pain Therapy, Brandenburg Medical School, Rüdersdorf, Germany
| | - Markus Petermann
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Robert Eckenstaler
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Anne Ripperger
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | | | | | - Md Jalal Ahmed Shawon
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg 97080, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|