1
|
Panahipoor Javaherdehi A, Ghanbari S, Mahdavi P, Zafarani A, Razizadeh MH. The role of alveolar macrophages in viral respiratory infections and their therapeutic implications. Biochem Biophys Rep 2024; 40:101826. [PMID: 39324036 PMCID: PMC11422589 DOI: 10.1016/j.bbrep.2024.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Alveolar macrophages are pivotal components of the lung's innate immune defense against respiratory virus infections. Their multifaceted role spans from viral clearance to modulation of immune responses, making them essential players in shaping disease outcomes. In this comprehensive review collection, we look into the intricate interplay between Alveolar macrophages and various respiratory viruses, shedding light on their dynamic contributions to immune resilience. From influenza to respiratory syncytial virus, Alveolar macrophages emerge as sentinels of the airways, actively participating in viral detection and initiating rapid antiviral responses. Their ability to recognize viral pathogens triggers a cascade of events, including cytokine and chemokine production that guides the recruitment and activation of immune effectors. Furthermore, Alveolar macrophages impact the fate of adaptive immune responses by modulating the activation of T lymphocytes and the secretion of key cytokines. These reviews encompass a range of insights, including the regulation of inflammasome activation, the influence of Alveolar macrophages on cytokine dysregulation, and their role in preventing secondary bacterial pneumonia post-infection. Collectively, they highlight the significance of Alveolar macrophages in preserving pulmonary integrity and immune homeostasis during viral challenges.
Collapse
Affiliation(s)
| | | | - Pooya Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Zafarani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Thiel BA, Lundberg KC, Schlatzer D, Jarvela J, Li Q, Shaw R, Reba SM, Fletcher S, Beckloff SE, Chance MR, Boom WH, Silver RF, Bebek G. Human alveolar macrophages display marked hypo-responsiveness to IFN-γ in both proteomic and gene expression analysis. PLoS One 2024; 19:e0295312. [PMID: 38300916 PMCID: PMC10833554 DOI: 10.1371/journal.pone.0295312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/21/2023] [Indexed: 02/03/2024] Open
Abstract
Alveolar macrophages (AM) perform a primary defense mechanism in the lung through phagocytosis of inhaled particles and microorganisms. AM are known to be relatively immunosuppressive consistent with the aim to limit alveolar inflammation and maintain effective gas exchange in the face of these constant challenges. How AM respond to T cell derived cytokine signals, which are critical to the defense against inhaled pathogens, is less well understood. For example, successful containment of Mycobacterium tuberculosis (Mtb) in lung macrophages is highly dependent on IFN-γ secreted by Th-1 lymphocytes, however, the proteomic IFN-γ response profile in AM remains mostly unknown. In this study, we measured IFN-γ induced protein abundance changes in human AM and autologous blood monocytes (MN). AM cells were activated by IFN-γ stimulation resulting in STAT1 phosphorylation and production of MIG/CXCL9 chemokine. However, the global proteomic response to IFN-γ in AM was dramatically limited in comparison to that of MN (9 AM vs 89 MN differentially abundant proteins). AM hypo-responsiveness was not explained by reduced JAK-STAT1 signaling nor increased SOCS1 expression. These findings suggest that AM have a tightly regulated response to IFN-γ which may prevent excessive pulmonary inflammation but may also provide a niche for the initial survival and growth of Mtb and other intracellular pathogens in the lung.
Collapse
Affiliation(s)
- Bonnie A. Thiel
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Kathleen C. Lundberg
- Department of Nutrition, Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Daniela Schlatzer
- Department of Nutrition, Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jessica Jarvela
- Division of Pulmonary, Critical Care, and Sleep Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Qing Li
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Rachel Shaw
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Scott M. Reba
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Shane Fletcher
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Sara E. Beckloff
- Biobot Analytics, Cambridge, Massachusetts, United States of America
| | - Mark R. Chance
- Department of Nutrition, Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - W. Henry Boom
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Richard F. Silver
- Division of Pulmonary, Critical Care, and Sleep Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Gurkan Bebek
- Department of Nutrition, Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
3
|
Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest 2023; 133:e170501. [PMID: 37781922 PMCID: PMC10541196 DOI: 10.1172/jci170501] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alveolar macrophages (AMs) are the sentinel cells of the alveolar space, maintaining homeostasis, fending off pathogens, and controlling lung inflammation. During acute lung injury, AMs orchestrate the initiation and resolution of inflammation in order to ultimately restore homeostasis. This central role in acute lung inflammation makes AMs attractive targets for therapeutic interventions. Single-cell RNA-Seq and spatial omics approaches, together with methodological advances such as the generation of human macrophages from pluripotent stem cells, have increased understanding of the ontogeny, function, and plasticity of AMs during infectious and sterile lung inflammation, which could move the field closer to clinical application. However, proresolution phenotypes might conflict with proinflammatory and antibacterial responses. Therefore, therapeutic targeting of AMs at vulnerable time points over the course of infectious lung injury might harbor the risk of serious side effects, such as loss of antibacterial host defense capacity. Thus, the identification of key signaling hubs that determine functional fate decisions in AMs is of the utmost importance to harness their therapeutic potential.
Collapse
Affiliation(s)
- Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Shifaa M. Abdin
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- RESIST (Resolving Infection Susceptibility), Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Matt
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
4
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
The Role of Mononuclear Phagocytes in the Testes and Epididymis. Int J Mol Sci 2022; 24:ijms24010053. [PMID: 36613494 PMCID: PMC9820352 DOI: 10.3390/ijms24010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The mononuclear phagocytic system (MPS) is the primary innate immune cell group in male reproductive tissues, maintaining the balance of pro-inflammatory and immune tolerance. This article aims to outline the role of mononuclear macrophages in the immune balance of the testes and epididymis, and to understand the inner immune regulation mechanism. A review of pertinent publications was performed using the PubMed and Google Scholar databases on all articles published prior to January 2021. Search terms were based on the following keywords: 'MPS', 'mononuclear phagocytes', 'testes', 'epididymis', 'macrophage', 'Mφ', 'dendritic cell', 'DC', 'TLR', 'immune', 'inflammation', and 'polarization'. Additionally, reference lists of primary and review articles were reviewed for other publications of relevance. This review concluded that MPS exhibits a precise balance in the male reproductive system. In the testes, MPS cells are mainly suppressed subtypes (M2 and cDC2) under physiological conditions, which maintain the local immune tolerance. Under pathological conditions, MPS cells will transform into M1 and cDC1, producing various cytokines, and will activate T cell specific immunity as defense to foreign pathogens or self-antigens. In the epididymis, MPS cells vary in the different segments, which express immune tolerance in the caput and pro-inflammatory condition in the cauda. Collectively, MPS is the control point for maintaining the immune tolerance of the testes and epididymis as well as for eliminating pathogens.
Collapse
|
6
|
Xie Y, Zhou X, Zhang J, Yu H, Song Z. Immunomodulatory responses of differentially polarized macrophages to fungal infections. Int Immunopharmacol 2022; 111:109089. [PMID: 35964406 DOI: 10.1016/j.intimp.2022.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
Macrophages, the first line of defense against invasive fungi in the innate immune system, are widely distributed in the blood and tissues of the body. In response to various internal and external stimulators, macrophages can polarize into classically activated macrophages (M1) and alternatively activated macrophages (M2). These two types of polarized macrophages play different roles in antifungal activity and in maintaining the steady-state balance between inflammation and tissue repair. However, the antifungal mechanisms of M1- and M2-type macrophages have not been fully described. In this review, the immune regulatory mechanisms against pathogenic fungi of these two classical types of macrophages in various tissues are summarized. The effects of antifungal factors on macrophage differentiation are also highlighted. The description of these data, on the one hand provides valuable insight for future investigations and also highlights new strategies for the treatment of pathogenic fungal infections.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| | - Hong Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, PR China.
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| |
Collapse
|
7
|
Agrawal S, Monteiro C, Baca CF, Mohammadi R, Subramanian V, de Melo Bento CA, Agrawal A. Metabolites and growth factors produced by airway epithelial cells induce tolerance in macrophages. Life Sci 2022; 302:120659. [PMID: 35623392 PMCID: PMC10081865 DOI: 10.1016/j.lfs.2022.120659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022]
Abstract
Macrophages play a role in preventing inflammation in the respiratory tract. To investigate the mechanisms that lead to tolerance in macrophages, we examined the crosstalk between airway epithelial cells (AECs) and macrophages using a 2D coculture model. Culture of macrophages with AECs led to a significant inhibition of LPS induced pro-inflammatory responses. More importantly, AECs induced the secretion of TGF-β and IL-10 from macrophages even in the absence of LPS stimulation. In addition, the expression of inhibitory molecule, CD200R was also upregulated on AEC exposed macrophages. Furthermore, the AECs exposed macrophages induced significantly increased level of T regulatory cells. Investigation into the possible mechanisms indicated that a combination of growth factor, G-CSF, and metabolites, Kynurenine and lactic acid produced by AECs is responsible for inducing tolerance in macrophages. Interestingly, all these molecules had differential effect on macrophages with G-CSF inducing TGF-β, Kynurenine elevating IL-10, and lactic acid upregulating CD200R. Furthermore, a cocktail of these factors/metabolites induced similar changes in macrophages as AEC exposure. Altogether, these data identify factors secreted by AECs that enhance tolerance in the respiratory tract. These mediators thus have the potential to be used for therapeutic purposes to modulate respiratory inflammation following local viral infections and lung diseases.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, CA, USA 92617
| | - Clarice Monteiro
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, CA, USA 92617; Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Rezaa Mohammadi
- Department of Materials Science and Engineering, University of California Irvine, CA 92617, USA; Sue and Bill Stem Cell Center, University of California Irvine, CA 92617, USA
| | - Veedamali Subramanian
- Division of Gastroenterology, Department of Medicine, University of California Irvine, CA 92617, USA
| | - Cleonice Alves de Melo Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, CA, USA 92617.
| |
Collapse
|
8
|
Melo EM, Oliveira VLS, Boff D, Galvão I. Pulmonary macrophages and their different roles in health and disease. Int J Biochem Cell Biol 2021; 141:106095. [PMID: 34653619 DOI: 10.1016/j.biocel.2021.106095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
Macrophages are a heterogeneous population of myeloid cells with phenotype and function modulated according to the microenvironment in which they are found. The lung resident macrophages known as Alveolar Macrophages (AM) and Interstitial Macrophages (IM) are localized in two different compartments. During lung homeostasis, macrophages can remove inhaled particulates, cellular debris and contribute to some metabolic processes. Macrophages may assume a pro-inflammatory phenotype after being classically activated (M1) or anti-inflammatory when being alternatively activated (M2). M1 and M2 have different transcription profiles and act by eliminating bacteria, viruses and fungi from the host or repairing the damage triggered by inflammation, respectively. Nevertheless, macrophages also may contribute to lung damage during persistent inflammation or continuous exposure to antigens. In this review, we discuss the origin and function of pulmonary macrophages in the context of homeostasis, infectious and non-infectious lung diseases.
Collapse
Affiliation(s)
- Eliza Mathias Melo
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Louise Soares Oliveira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daiane Boff
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Martin FP, Jacqueline C, Poschmann J, Roquilly A. Alveolar Macrophages: Adaptation to Their Anatomic Niche during and after Inflammation. Cells 2021; 10:cells10102720. [PMID: 34685700 PMCID: PMC8534884 DOI: 10.3390/cells10102720] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
At the early stages of life development, alveoli are colonized by embryonic macrophages, which become resident alveolar macrophages (ResAM) and self-sustain by local division. Genetic and epigenetic signatures and, to some extent, the functions of ResAM are dictated by the lung microenvironment, which uses cytokines, ligand-receptor interactions, and stroma cells to orchestrate lung homeostasis. In resting conditions, the lung microenvironment induces in ResAM a tolerogenic programming that prevents unnecessary and potentially harmful inflammation responses to the foreign bodies, which continuously challenge the airways. Throughout life, any episode of acute inflammation, pneumonia being likely the most frequent cause, depletes the pool of ResAM, leaving space for the recruitment of inflammatory monocytes that locally develop in monocyte-derived alveolar macrophages (InfAM). During lung infection, the local microenvironment induces a temporary inflammatory signature to the recruited InfAM to handle the tissue injury and eliminate the pathogens. After a few days, the recruited InfAM, which locally self-sustain and develop as new ResAM, gain profibrotic functions required for tissue healing. After the complete resolution of the infectious episode, the functional programming of both embryonic and monocyte-derived ResAM remains altered for months and possibly for the entire life. Adult lungs thus contain a wide diversity of ResAM since every infection brings new waves of InfAM which fill the room left open by the inflammatory process. The memory of these innate cells called trained immunity constitutes an immunologic scar left by inflammation, notably pneumonia. This memory of ResAM has advantages and drawbacks. In some cases, lung-trained immunity offers better defense capacities against autoimmune disorders and the long-term risk of infection. At the opposite, it can perpetuate a harmful process and lead to a pathological state, as is the case among critically ill patients who have immune paralysis and are highly susceptible to hospital-acquired pneumonia and acute respiratory distress syndrome. The progress in understanding the kinetics of response of alveolar macrophages (AM) to lung inflammation is paving the way to new treatments of pneumonia and lung inflammatory process.
Collapse
Affiliation(s)
- Florian Pierre Martin
- EA3826 Host Pathogen Interactions, Inflammation and Mucosal Immunity, Department of Anesthesiology and Intensive Medicine, Hôtel Dieu, CHU Nantes, University of Nantes, F-44000 Nantes, France; (F.P.M.); (C.J.)
| | - Cédric Jacqueline
- EA3826 Host Pathogen Interactions, Inflammation and Mucosal Immunity, Department of Anesthesiology and Intensive Medicine, Hôtel Dieu, CHU Nantes, University of Nantes, F-44000 Nantes, France; (F.P.M.); (C.J.)
| | - Jeremie Poschmann
- Centre de Recherche en Transplantation et Immunologie, University of Nantes, UMR 1064, ITUN, Inserm, F-44000 Nantes, France;
| | - Antoine Roquilly
- EA3826 Host Pathogen Interactions, Inflammation and Mucosal Immunity, Department of Anesthesiology and Intensive Medicine, Hôtel Dieu, CHU Nantes, University of Nantes, F-44000 Nantes, France; (F.P.M.); (C.J.)
- Correspondence: ; Tel.: +33-253482230
| |
Collapse
|
10
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Bissonnette EY, Lauzon-Joset JF, Debley JS, Ziegler SF. Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Front Immunol 2020; 11:583042. [PMID: 33178214 PMCID: PMC7593577 DOI: 10.3389/fimmu.2020.583042] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
The main function of the lung is to perform gas exchange while maintaining lung homeostasis despite environmental pathogenic and non-pathogenic elements contained in inhaled air. Resident cells must keep lung homeostasis and eliminate pathogens by inducing protective immune response and silently remove innocuous particles. Which lung cell type is crucial for this function is still subject to debate, with reports favoring either alveolar macrophages (AMs) or lung epithelial cells (ECs) including airway and alveolar ECs. AMs are the main immune cells in the lung in steady-state and their function is mainly to dampen inflammatory responses. In addition, they phagocytose inhaled particles and apoptotic cells and can initiate and resolve inflammatory responses to pathogens. Although AMs release a plethora of mediators that modulate immune responses, ECs also play an essential role as they are more than just a physical barrier. They produce anti-microbial peptides and can secrete a variety of mediators that can modulate immune responses and AM functions. Furthermore, ECs can maintain AMs in a quiescent state by expressing anti-inflammatory membrane proteins such as CD200. Thus, AMs and ECs are both very important to maintain lung homeostasis and have to coordinate their action to protect the organism against infection. Thus, AMs and lung ECs communicate with each other using different mechanisms including mediators, membrane glycoproteins and their receptors, gap junction channels, and extracellular vesicles. This review will revisit characteristics and functions of AMs and lung ECs as well as different communication mechanisms these cells utilize to maintain lung immune balance and response to pathogens. A better understanding of the cross-talk between AMs and lung ECs may help develop new therapeutic strategies for lung pathogenesis.
Collapse
Affiliation(s)
- Elyse Y Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jean-François Lauzon-Joset
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Department of Immunology, Benaroya Research Institute, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
12
|
Chauhan P, Dandapat J, Sarkar A, Saha B. March of Mycobacterium: miRNAs intercept host cell CD40 signalling. Clin Transl Immunology 2020; 9:e1179. [PMID: 33072321 PMCID: PMC7541823 DOI: 10.1002/cti2.1179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
The disease tuberculosis is fatal if untreated. It is caused by the acid-fast bacilli Mycobacterium tuberculosis. Mycobacterium resides and replicates within the alveolar macrophages, causing inflammation and granuloma, wherein macrophage-T cell interactions enhance the inflammation-causing pulmonary caseous lesions. The first interactions between Mycobacterium and the receptors on macrophages decide the fate of Mycobacterium because of phagolysosomal impairments and the expression of several miRNAs, which may regulate CD40 expression on macrophages. While the altered phagolysosomal functions impede antigen presentation to the T cell-expressed antigen receptor, the interactions between the macrophage-expressed CD40 and the T cell-expressed CD40-ligand (CD40L or CD154) provide signals to T cells and Mycobacterium-infected macrophages. These two functions significantly influence the resolution or persistence of Mycobacterium infection. CD40 controls T-cell polarisation and host-protective immunity by eliciting interleukin-12p40, nitric oxide, reactive oxygen species and IFN-γ production. Indeed, CD40-deficient mice succumb to low-dose aerosol infection with Mycobacterium because of deficient interleukin (IL)-12 production leading to impaired IFN-γ-secreting T-cell response. In contrast, despite generating fewer granulomas, the CD40L-deficient mice developed anti-mycobacterial T-cell responses to the levels observed in the wild-type mice. These host-protective responses are significantly subdued by the Mycobacterium-infected macrophage produced TGF-β and IL-10, which promote pro-mycobacterial T-cell responses. The CD40-CD40L-induced counteractive immune responses against Mycobacterium thus present a conundrum that we explain here with a reconciliatory hypothesis. Experimental validation of the hypothesis will provide a rationale for designing anti-tubercular immunotherapy.
Collapse
Affiliation(s)
| | | | - Arup Sarkar
- Trident Academy of Creative TechnologyBhubaneswarIndia
| | - Bhaskar Saha
- National Centre for Cell Science (NCCS)PuneIndia
- Trident Academy of Creative TechnologyBhubaneswarIndia
| |
Collapse
|
13
|
Hunegnaw R, Helmold Hait S, Enyindah-Asonye G, Rahman MA, Ko EJ, Hogge CJ, Hoang T, Robert-Guroff M. A Mucosal Adenovirus Prime/Systemic Envelope Boost Vaccine Regimen Elicits Responses in Cervicovaginal and Alveolar Macrophages of Rhesus Macaques Associated With Delayed SIV Acquisition and B Cell Help. Front Immunol 2020; 11:571804. [PMID: 33117363 PMCID: PMC7561428 DOI: 10.3389/fimmu.2020.571804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Vaccine strategies targeting the mucosal portal of entry may prevent HIV acquisition and systemic infection. Macrophages in cervicovaginal compartments are one of the first cell types to encounter virus upon vaginal exposure. Their activation can lead to recruitment of additional macrophages and CD4+ T-cells susceptible to viral infection. However, they are also critical in providing early protection against invading pathogens. Therefore, understanding their response to immunization is important for vaccine design. We immunized rhesus macaques twice mucosally with replicating adenovirus (Ad) SIV recombinants, followed by two intramuscular boosts with SIV gp120 protein. Macaques were subsequently challenged intravaginally with repeated low doses of SIVmac251. Using flow cytometry, we evaluated responses of cervicovaginal macrophages (CVM) and alveolar macrophages (AM) in bronchoalveolar lavage as initial immunization was to the upper respiratory tract. The frequency of CVM increased over the course of immunization; however, CCR5 expression significantly decreased. Significantly increased expression of the chemokines CCL3 (p < 0.01), CCL4, CCL5, and CXCL8 (p < 0.0001 for all) on CVM was seen post-1st Ad but their expression significantly decreased post-2nd boost. CD4+ T-cell frequency in the cervical mucosa remained unchanged. CVM FcγRIII expression was significantly increased at all time points post-immunization compared to naïve animals. FcγRIII expression post-2nd Ad positively correlated with the number of challenges needed for infection (r = 0.68; p = 0.0051). Vaccination increased AM FcγRIII expression which post-2nd boost correlated with antibody-dependent phagocytosis. Activation of AMs was evident by increased expression of CD40 and CD80 post-2nd Ad compared to naïve macaques. APRIL expression also significantly increased post-2nd Ad and correlated with B cell frequency in bronchoalveolar lavage (BAL) (r = 0.73; p = 0.0019) and total IgG in BAL-fluid (r = 0.53; p = 0.047). B cells cultured with SIV gp120-stimulated AM supernatant from vaccinated macaques exhibited significant increases in B cell activation markers CD38 and CD69 compared to B cells cultured alone or with AM supernatant from unvaccinated macaques. Overall, the vaccine regimen did not induce recruitment of susceptible cells to the vaginal mucosa but increased CVM FcγRIII expression which correlated with delayed SIV acquisition. Further, immunization induced expression of AM cytokines, including those associated with providing B cell help.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Patel VI, Metcalf JP. Airway Macrophage and Dendritic Cell Subsets in the Resting Human Lung. Crit Rev Immunol 2019; 38:303-331. [PMID: 30806245 DOI: 10.1615/critrevimmunol.2018026459] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dendritic cells (DCs) and macrophages (MΦs) are antigen-presenting phagocytic cells found in many peripheral tissues of the human body, including the blood, lymph nodes, skin, and lung. They are vital to maintaining steady-state respiration in the human lung based on their ability to clear airways while also directing tolerogenic or inflammatory responses based on specific stimuli. Over the past three decades, studies have determined that there are multiple subsets of these two general cell types that exist in the airways and interstitium. Identifying these numerous subsets has proven challenging, especially with the unique microenvironments present in the lung. Cells found in the vasculature are not the same subsets found in the skin or the lung, as demonstrated by surface marker expression. By transcriptional profiling, these subsets show similarities but also major differences. Primary human lung cells and/ or tissues are difficult to acquire, particularly in a healthy condition. Additionally, surface marker screening and transcriptional profiling are continually identifying new DC and MΦ subsets. While the overall field is moving forward, we emphasize that more attention needs to focus on replicating the steady-state microenvironment of the lung to reveal the physiological functions of these subsets.
Collapse
Affiliation(s)
- Vineet Indrajit Patel
- Pulmonary and Critical Care Division of the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jordan Patrick Metcalf
- Pulmonary and Critical Care Division of the Department of Medicine and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
15
|
Ayeni D, Miller B, Kuhlmann A, Ho PC, Robles-Oteiza C, Gaefele M, Levy S, de Miguel FJ, Perry C, Guan T, Krystal G, Lockwood W, Zelterman D, Homer R, Liu Z, Kaech S, Politi K. Tumor regression mediated by oncogene withdrawal or erlotinib stimulates infiltration of inflammatory immune cells in EGFR mutant lung tumors. J Immunother Cancer 2019; 7:172. [PMID: 31291990 PMCID: PMC6617639 DOI: 10.1186/s40425-019-0643-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) like erlotinib are effective for treating patients with EGFR mutant lung cancer; however, drug resistance inevitably emerges. Approaches to combine immunotherapies and targeted therapies to overcome or delay drug resistance have been hindered by limited knowledge of the effect of erlotinib on tumor-infiltrating immune cells. Methods Using mouse models, we studied the immunological profile of mutant EGFR-driven lung tumors before and after erlotinib treatment. Results We found that erlotinib triggered the recruitment of inflammatory T cells into the lungs and increased maturation of alveolar macrophages. Interestingly, this phenotype could be recapitulated by tumor regression mediated by deprivation of the EGFR oncogene indicating that tumor regression alone was sufficient for these immunostimulatory effects. We also found that further efforts to boost the function and abundance of inflammatory cells, by combining erlotinib treatment with anti-PD-1 and/or a CD40 agonist, did not improve survival in an EGFR-driven mouse model. Conclusions Our findings lay the foundation for understanding the effects of TKIs on the tumor microenvironment and highlight the importance of investigating targeted and immuno-therapy combination strategies to treat EGFR mutant lung cancer. Electronic supplementary material The online version of this article (10.1186/s40425-019-0643-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah Ayeni
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA
| | - Braden Miller
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Alexandra Kuhlmann
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Ping-Chih Ho
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA.,Present address: Department of Fundamental Oncology, University of Lausanne, Ludwig Cancer Research Lausanne Branch, Lausanne, Switzerland
| | | | - Mmaserame Gaefele
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stellar Levy
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Curtis Perry
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Gerald Krystal
- British Columbia Cancer Agency, B.C, Vancouver, V5Z 1L3, Canada
| | | | - Daniel Zelterman
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA.,VA Connecticut Healthcare System, Pathology and Laboratory Medicine Service, 950 Campbell Ave, West Haven, CT, 06516, USA
| | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA
| | - Susan Kaech
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA.,Present address: Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA. .,Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
16
|
Meinhardt A, Wang M, Schulz C, Bhushan S. Microenvironmental signals govern the cellular identity of testicular macrophages. J Leukoc Biol 2019; 104:757-766. [PMID: 30265772 DOI: 10.1002/jlb.3mr0318-086rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
Testicular macrophages (TM) comprise the largest immune cell population in the mammalian testis. They are characterized by a subdued proinflammatory response upon adequate stimulation, and a polarization toward the immunoregulatory and immunotolerant M2 phenotype. This enables them to play a relevant role in supporting the archetypical functions of the testis, namely spermatogenesis and steroidogenesis. During infection, the characteristic blunted immune response of TM reflects the need for a delicate balance between a sufficiently strong reaction to counteract invading pathogens, and the prevention of excessive proinflammatory cytokine levels with the potential to disturb or destroy spermatogenesis. Local microenvironmental factors that determine the special phenotype of TM have just begun to be unraveled, and are discussed in this review.
Collapse
Affiliation(s)
- Andreas Meinhardt
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ming Wang
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sudhanshu Bhushan
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
17
|
Allard B, Panariti A, Martin JG. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Front Immunol 2018; 9:1777. [PMID: 30108592 PMCID: PMC6079255 DOI: 10.3389/fimmu.2018.01777] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Pathogen persistence in the respiratory tract is an important preoccupation, and of particular relevance to infectious diseases such as tuberculosis. The equilibrium between elimination of pathogens and the magnitude of the host response is a sword of Damocles for susceptible patients. The alveolar macrophage is the first sentinel of the respiratory tree and constitutes the dominant immune cell in the steady state. This immune cell is a key player in the balance between defense against pathogens and tolerance toward innocuous stimuli. This review focuses on the role of alveolar macrophages in limiting lung tissue damage from potentially innocuous stimuli and from infections, processes that are relevant to appropriate tolerance of potential causes of lung disease. Notably, the different anti-inflammatory strategies employed by alveolar macrophages and lung tissue damage control are explored. These two properties, in addition to macrophage manipulation by pathogens, are discussed to explain how alveolar macrophages may drive pathogen persistence in the airways.
Collapse
Affiliation(s)
- Benoit Allard
- Department of Medicine, Meakins Christie Laboratories, Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Alice Panariti
- Department of Medicine, Meakins Christie Laboratories, Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Department of Medicine, Meakins Christie Laboratories, Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Xia M, Harb H, Saffari A, Sioutas C, Chatila TA. A Jagged 1-Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J Allergy Clin Immunol 2018; 142:1243-1256.e17. [PMID: 29627423 DOI: 10.1016/j.jaci.2018.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exposure to traffic-related particulate matter promotes asthma and allergic diseases. However, the precise cellular and molecular mechanisms by which particulate matter exposure acts to mediate these effects remain unclear. OBJECTIVE We sought to elucidate the cellular targets and signaling pathways critical for augmentation of allergic airway inflammation induced by ambient ultrafine particles (UFP). METHODS We used in vitro cell-culture assays with lung-derived antigen-presenting cells and allergen-specific T cells and in vivo mouse models of allergic airway inflammation with myeloid lineage-specific gene deletions, cellular reconstitution approaches, and antibody inhibition studies. RESULTS We identified lung alveolar macrophages (AM) as the key cellular target of UFP in promoting airway inflammation. Aryl hydrocarbon receptor-dependent induction of Jagged 1 (Jag1) expression in AM was necessary and sufficient for augmentation of allergic airway inflammation by UFP. UFP promoted TH2 and TH17 cell differentiation of allergen-specific T cells in a Jag1- and Notch 4-dependent manner. Treatment of mice with an anti-Notch 4 antibody abrogated exacerbation of allergic airway inflammation induced by UFP. CONCLUSION UFP exacerbate allergic airway inflammation by promoting a Jag1-Notch 4-dependent interaction between AM and allergen-specific T cells, leading to augmented TH cell differentiation.
Collapse
Affiliation(s)
- Mingcan Xia
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Hani Harb
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Arian Saffari
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, Calif
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, Calif
| | - Talal A Chatila
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
19
|
Activation of Porcine Alveolar Macrophages by Actinobacillus pleuropneumoniae Lipopolysaccharide via the Toll-Like Receptor 4/NF-κB-Mediated Pathway. Infect Immun 2018; 86:IAI.00642-17. [PMID: 29229731 DOI: 10.1128/iai.00642-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine contagious pleuropneumonia. Overproduction of proinflammatory cytokines, like interleukin-1β (IL-1β), IL-6, tumor necrosis factor alpha, and resistin, in the lung is an important feature of A. pleuropneumoniae infection. These proinflammatory cytokines enhance inflammatory and immunological responses. However, the mechanism that leads to cytokine production remains unclear. As a major virulence factor of A. pleuropneumoniae, lipopolysaccharide (LPS) may act as a potent stimulator of Toll-like receptor 4 (TLR4), triggering a number of intracellular signaling pathways that lead to the synthesis of proinflammatory cytokines. Porcine alveolar macrophages (PAMs) are the first line of defense against pathogenic microbes during pathogen invasion. The results of the present study demonstrate that A. pleuropneumoniae LPS induces PAMs to produce inflammatory cytokines in time- and dose-dependent manners. Moreover, PAMs were activated by A. pleuropneumoniae LPS, resulting in upregulation of signaling molecules, including TLR4, MyD88, TRIF-related adaptor molecule, and NF-κB. In contrast, the activation effects of A. pleuropneumoniae LPS on PAMs could be suppressed by specific inhibitors, like small interfering RNA and Bay11-7082. Taken together, our data indicate that A. pleuropneumoniae LPS can induce PAMs to produce proinflammatory cytokines via the TLR4/NF-κB-mediated pathway. These findings partially reveal the mechanism of the overproduction of proinflammatory cytokines in the lungs of swine with A. pleuropneumoniae infection and may provide targets for the prevention of A. pleuropneumoniae-induced pneumonia. All the data could be used as a reference for the pathogenesis of respiratory infection.
Collapse
|
20
|
Xu S, Shinohara ML. Tissue-Resident Macrophages in Fungal Infections. Front Immunol 2017; 8:1798. [PMID: 29312319 PMCID: PMC5732976 DOI: 10.3389/fimmu.2017.01798] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022] Open
Abstract
Invasive fungal infections result in high morbidity and mortality. Host organs targeted by fungal pathogens vary depending on the route of infection and fungal species encountered. Cryptococcus neoformans infects the respiratory tract and disseminates throughout the central nervous system. Candida albicans infects mucosal tissues and the skin, and systemic Candida infection in rodents has a tropism to the kidney. Aspergillus fumigatus reaches distal areas of the lung once inhaled by the host. Across different tissues in naïve hosts, tissue-resident macrophages (TRMs) are one of the most populous cells of the innate immune system. Although they function to maintain homeostasis in a tissue-specific manner during steady state, TRMs may function as the first line of defense against invading pathogens and may regulate host immune responses. Thus, in any organs, TRMs are uniquely positioned and specifically programmed to function. This article reviews the current understanding of the roles of TRMs during major fungal infections.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
21
|
Nayak DK, Zhou F, Xu M, Huang J, Tsuji M, Yu J, Hachem R, Gelman AE, Bremner RM, Smith MA, Mohanakumar T. Zbtb7a induction in alveolar macrophages is implicated in anti-HLA-mediated lung allograft rejection. Sci Transl Med 2017; 9:eaal1243. [PMID: 28701473 PMCID: PMC5846477 DOI: 10.1126/scitranslmed.aal1243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/24/2017] [Accepted: 05/05/2017] [Indexed: 12/28/2022]
Abstract
Chronic rejection significantly limits long-term success of solid organ transplantation. De novo donor-specific antibodies (DSAs) to mismatched donor human leukocyte antigen after human lung transplantation predispose lung grafts to chronic rejection. We sought to delineate mediators and mechanisms of DSA pathogenesis and to define early inflammatory events that trigger chronic rejection in lung transplant recipients and obliterative airway disease, a correlate of human chronic rejection, in mouse. Induction of transcription factor zinc finger and BTB domain containing protein 7a (Zbtb7a) was an early response critical in the DSA-induced chronic rejection. A cohort of human lung transplant recipients who developed DSA and chronic rejection demonstrated greater Zbtb7a expression long before clinical diagnosis of chronic rejection compared to nonrejecting lung transplant recipients with stable pulmonary function. Expression of DSA-induced Zbtb7a was restricted to alveolar macrophages (AMs), and selective disruption of Zbtb7a in AMs resulted in less bronchiolar occlusion, low immune responses to lung-restricted self-antigens, and high protection from chronic rejection in mice. Additionally, in an allogeneic cell transfer protocol, antigen presentation by AMs was Zbtb7a-dependent where AMs deficient in Zbtb7a failed to induce antibody and T cell responses. Collectively, we demonstrate that AMs play an essential role in antibody-induced pathogenesis of chronic rejection by regulating early inflammation and lung-restricted humoral and cellular autoimmunity.
Collapse
Affiliation(s)
- Deepak K Nayak
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | - Fangyu Zhou
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Min Xu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jing Huang
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA
| | - Jinsheng Yu
- Genome Technology Access Center, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramsey Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | | |
Collapse
|
22
|
Wang M, Fijak M, Hossain H, Markmann M, Nüsing RM, Lochnit G, Hartmann MF, Wudy SA, Zhang L, Gu H, Konrad L, Chakraborty T, Meinhardt A, Bhushan S. Characterization of the Micro-Environment of the Testis that Shapes the Phenotype and Function of Testicular Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 198:4327-4340. [DOI: 10.4049/jimmunol.1700162] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023]
|
23
|
Froidure A, Shen C, Pilette C. Dendritic cells revisited in human allergic rhinitis and asthma. Allergy 2016; 71:137-48. [PMID: 26427032 DOI: 10.1111/all.12770] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
Abstract
The role of dendritic cells (DCs) in airway allergy has been studied for 15 years; recent data has highlighted the cross talk with airway epithelial cells and environmental factors (allergens, virus) during the inception and exacerbation of allergic asthma. Although murine models have provided key information, it remains uncertain to what extent these basic mechanisms take place in human allergic disease, notably with regard to different clinical phenotypes. In the present review, we discuss new evidence regarding mechanisms of DC regulation in the mouse which could be important in human asthma. Finally, after discussing the effects of current therapies on DC biology, we focus on pathways that could represent targets for future therapies.
Collapse
Affiliation(s)
- A. Froidure
- Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain and Walloon Institute for Excellence in Lifesciences and Biotechnology; Brussels Belgium
- Cliniques Universitaires Saint-Luc, service de pneumologie; Brussels Belgium
| | - C. Shen
- Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain and Walloon Institute for Excellence in Lifesciences and Biotechnology; Brussels Belgium
| | - C. Pilette
- Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain and Walloon Institute for Excellence in Lifesciences and Biotechnology; Brussels Belgium
- Cliniques Universitaires Saint-Luc, service de pneumologie; Brussels Belgium
| |
Collapse
|
24
|
Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells. Ann Am Thorac Soc 2015; 11 Suppl 5:S306-13. [PMID: 25525738 DOI: 10.1513/annalsats.201401-028aw] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airway tolerance, a state of immunological surveillance, suppresses the development of lung inflammatory disorders that are driven by various pathological effector cells of the immune system. Tolerance in the lung to inhaled antigens is primarily mediated by regulatory T cells (Treg cells) that can inhibit effector T cells via a myriad of mechanisms. Accumulating evidence suggests that regulatory antigen-presenting cells are critical for generating Treg cells and/or maintaining the suppressive environment in the lung. This review focuses on the control of airway tolerance by Treg cells and the role of regulatory lung tissue and alveolar macrophages, and lung and lymph node dendritic cells, in contributing to airway tolerance that is associated with suppression of allergic asthmatic disease.
Collapse
|
25
|
Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 2015; 16:36-44. [PMID: 25521683 DOI: 10.1038/ni.3052] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022]
Abstract
Gas exchange is the vital function of the lungs. It occurs in the alveoli, where oxygen and carbon dioxide diffuse across the alveolar epithelium and the capillary endothelium surrounding the alveoli, separated only by a fused basement membrane 0.2-0.5 μm in thickness. This tenuous barrier is exposed to dangerous or innocuous particles, toxins, allergens and infectious agents inhaled with the air or carried in the blood. The lung immune system has evolved to ward off pathogens and restrain inflammation-mediated damage to maintain gas exchange. Lung-resident macrophages and dendritic cells are located in close proximity to the epithelial surface of the respiratory system and the capillaries to sample and examine the air-borne and blood-borne material. In communication with alveolar epithelial cells, they set the threshold and the quality of the immune response.
Collapse
Affiliation(s)
- Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Christoph Schneider
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Samuel P Nobs
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Beryllium increases the CD14(dim)CD16+ subset in the lung of chronic beryllium disease. PLoS One 2015; 10:e0117276. [PMID: 25689051 PMCID: PMC4331542 DOI: 10.1371/journal.pone.0117276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/19/2014] [Indexed: 12/03/2022] Open
Abstract
CD14dimCD16+ and CD14brightCD16+ cells, which compose a minor population of monocytes in human peripheral blood mononuclear cells (PBMC), have been implicated in several inflammatory diseases. The aim of this study was to investigate whether this phenotype was present as a subset of lung infiltrative alveolar macrophages (AMs) in the granulomatous lung disease, chronic beryllium disease (CBD). The monocytes subsets was determined from PBMC cells and bronchoalveolar lavage (BAL) cells from CBD, beryllium sensitized Non-smoker (BeS-NS) and healthy subjects (HS) using flow cytometry. The impact of smoking on the AMs cell phenotype was determined by using BAL cells from BeS smokers (BeS-S). In comparison with the other monocyte subpopulations, CD14dimCD16+ cells were at decreased frequency in PBMCs of both BeS-NS and CBD and showed higher HLA-DR expression, compared to HS. The AMs from CBD and BeS-NS demonstrated a CD14dimCD16+phenotype, while CD14brightCD16+ cells were found at increased frequency in AMs of BeS, compared to HS. Fresh AMs from BeS-NS and CBD demonstrated significantly greater CD16, CD40, CD86 and HLA-DR than HS and BeS-S. The expression of CD16 on AMs from both CBD and BeS-NS was downregulated significantly after 10μM BeSO4 stimulation. The phagocytic activity of AMs decreased after 10μM BeSO4 treatment in both BeS-NS and CBD, although was altered or reduced in HS and BeS-S. These results suggest that Be increases the CD14dimCD16+ subsets in the lung of CBD subjects. We speculate that Be-stimulates the compartmentalization of a more mature CD16+ macrophage phenotype and that in turn these macrophages are a source of Th1 cytokines and chemokines that perpetuate the Be immune response in CBD. The protective effect of cigarette smoking in BeS-S may be due to the low expression of co-stimulatory markers on AMs from smokers as well as the decreased phagocytic function.
Collapse
|
27
|
Jambo KC, Banda DH, Afran L, Kankwatira AM, Malamba RD, Allain TJ, Gordon SB, Heyderman RS, Russell DG, Mwandumba HC. Asymptomatic HIV-infected individuals on antiretroviral therapy exhibit impaired lung CD4(+) T-cell responses to mycobacteria. Am J Respir Crit Care Med 2014; 190:938-47. [PMID: 25225948 DOI: 10.1164/rccm.201405-0864oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE HIV-infected persons on antiretroviral therapy (ART) remain at higher risk of pulmonary tuberculosis (TB) than HIV-uninfected individuals. This increased susceptibility may be caused by impairment of alveolar macrophage (AM) function and/or mycobacteria-specific alveolar CD4(+) T-cell responses observed in HIV-infected ART-naive adults. OBJECTIVES To determine whether ART was associated with improvement in both AM function, assessed by phagosomal proteolysis, and alveolar CD4(+) T-cell responses to Mycobacterium in HIV-infected individuals. METHODS Peripheral blood was drawn and bronchoalveolar lavage (BAL) performed on healthy, 35 HIV-uninfected, 25 HIV-infected ART-naive, and 50 HIV-infected ART-treated asymptomatic adults. Phagosomal proteolysis of AM was assessed with fluorogenic beads. Mycobacteria-specific CD4(+) T-cell responses were measured by intracellular cytokine staining. MEASUREMENTS AND MAIN RESULTS HIV-infected adults on ART exhibited lower plasma HIV viral load and higher blood CD4(+) T-cell count than ART-naive adults. AM proteolysis and total mycobacteria-specific Th1 CD4(+) T-cell responses in individuals on ART for greater than or equal to 4 years were similar to HIV-uninfected control subjects but those on ART for less than 4 years had impaired responses. Total influenza-specific alveolar Th1 CD4(+) T-cell responses were intact in all individuals receiving ART. In contrast, BAL and blood mycobacteria-specific polyfunctional CD4(+) T-cell responses were impaired in adults on ART irrespective of duration. CONCLUSIONS AM and mycobacteria-specific alveolar CD4(+) T-cell responses in HIV-infected adults on ART for less than 4 years are impaired and may partly explain the high risk of TB in HIV-infected individuals on ART. Strategies to augment ART to improve lung immune cell function and reduce the high incidence of TB in HIV-infected adults who initiate ART should be investigated.
Collapse
Affiliation(s)
- Kondwani C Jambo
- 1 Malawi-Liverpool-Wellcome Trust Clinical Research Programme and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rajaram MVS, Ni B, Dodd CE, Schlesinger LS. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol 2014; 26:471-85. [PMID: 25453226 DOI: 10.1016/j.smim.2014.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022]
Abstract
Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Murugesan V S Rajaram
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Ni
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Claire E Dodd
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Macdonald DC, Singh H, Whelan MA, Escors D, Arce F, Bottoms SE, Barclay WS, Maini M, Collins MK, Rosenberg WMC. Harnessing alveolar macrophages for sustained mucosal T-cell recall confers long-term protection to mice against lethal influenza challenge without clinical disease. Mucosal Immunol 2014; 7:89-100. [PMID: 23715172 DOI: 10.1038/mi.2013.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/01/2013] [Indexed: 02/04/2023]
Abstract
Vaccines that induce T cells, which recognize conserved viral proteins, could confer universal protection against seasonal and pandemic influenza strains. An effective vaccine should generate sufficient mucosal T cells to ensure rapid viral control before clinical disease. However, T cells may also cause lung injury in influenza, so this approach carries inherent risks. Here we describe intranasal immunization of mice with a lentiviral vector expressing influenza nucleoprotein (NP), together with an NFκB activator, which transduces over 75% of alveolar macrophages (AM). This strategy recalls and expands NP-specific CD8+ T cells in the lung and airway of mice that have been immunized subcutaneously, or previously exposed to influenza. Granzyme B-high, lung-resident T-cell populations persist for at least 4 months and can control a lethal influenza challenge without harmful cytokine responses, weight loss, or lung injury. These data demonstrate that AM can be harnessed as effective antigen-presenting cells for influenza vaccination.
Collapse
Affiliation(s)
- D C Macdonald
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - H Singh
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - M A Whelan
- Division of Medicine, University College London, London, UK
| | - D Escors
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - F Arce
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - S E Bottoms
- Division of Medicine, University College London, London, UK
| | - W S Barclay
- Division of Virology, Imperial College London, St Mary's Campus, London, UK
| | - M Maini
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - M K Collins
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | | |
Collapse
|
30
|
Sanderson SD, Thoman ML, Kis K, Virts EL, Herrera EB, Widmann S, Sepulveda H, Phillips JA. Innate immune induction and influenza protection elicited by a response-selective agonist of human C5a. PLoS One 2012; 7:e40303. [PMID: 22792270 PMCID: PMC3391237 DOI: 10.1371/journal.pone.0040303] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 06/04/2012] [Indexed: 12/20/2022] Open
Abstract
The anaphylatoxin C5a is an especially potent mediator of both local and systemic inflammation. However, C5a also plays an essential role in mucosal host defense against bacterial, viral, and fungal infection. We have developed a response-selective agonist of human C5a, termed EP67, which retains the immunoenhancing activity of C5a at the expense of its inflammatory, anaphylagenic properties. EP67 insufflation results in the rapid induction of pulmonary cytokines and chemokines. This is followed by an influx of innate immune effector cells, including neutrophils, NK cells, and dendritic cells. EP67 exhibits both prophylactic and therapeutic protection when tested in a murine model of influenza A infection. Mice treated with EP67 within a twenty-four hour window of non-lethal infection were significantly protected from influenza-induced weight loss. Furthermore, EP67 delivered twenty-four hours after lethal infection completely blocked influenza-induced mortality (0% vs. 100% survival). Since protection based on innate immune induction is not restricted to any specific pathogen, EP67 may well prove equally efficacious against a wide variety of possible viral, bacterial, and fungal pathogens. Such a strategy could be used to stop the worldwide spread of emergent respiratory diseases, including but not limited to novel strains of influenza.
Collapse
Affiliation(s)
- Sam D. Sanderson
- School of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Marilyn L. Thoman
- Sidney Kimmel Cancer Center, San Diego, California, United States of America
- Biosciences Center, San Diego State University, San Diego, California, United States of America
| | - Kornelia Kis
- Biosciences Center, San Diego State University, San Diego, California, United States of America
| | - Elizabeth L. Virts
- Sidney Kimmel Cancer Center, San Diego, California, United States of America
- Biosciences Center, San Diego State University, San Diego, California, United States of America
| | - Edgar B. Herrera
- Biosciences Center, San Diego State University, San Diego, California, United States of America
| | | | | | - Joy A. Phillips
- Sidney Kimmel Cancer Center, San Diego, California, United States of America
- Biosciences Center, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
31
|
Bezemer GFG, Sagar S, van Bergenhenegouwen J, Georgiou NA, Garssen J, Kraneveld AD, Folkerts G. Dual role of Toll-like receptors in asthma and chronic obstructive pulmonary disease. Pharmacol Rev 2012; 64:337-58. [PMID: 22407613 DOI: 10.1124/pr.111.004622] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the last decade, significant research has been focused on Toll-like receptors (TLRs) in the pathogenesis of airway diseases. TLRs are pattern recognition receptors that play pivotal roles in the detection of and response to pathogens. Because of the involvement of TLRs in innate and adaptive immunity, these receptors are currently being exploited as possible targets for drug development. Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory airway diseases in which innate and adaptive immunity play an important role. To date, asthma is the most common chronic disease in children aged 5 years and older. COPD is prevalent amongst the elderly and is currently the fifth-leading cause of death worldwide with still-growing prevalence. Both of these inflammatory diseases result in shortness of breath, which is treated, often ineffectively, with bronchodilators and glucocorticosteroids. Symptomatic treatment approaches are similar for both diseases; however, the underlying immunological mechanisms differ greatly. There is a clear need for improved treatment specific for asthma and for COPD. This review provides an update on the role of TLRs in asthma and in COPD and discusses the merits and difficulties of targeting these proteins as novel treatment strategies for airway diseases. TLR agonist, TLR adjuvant, and TLR antagonist therapies could all be argued to be effective in airway disease management. Because of a possible dual role of TLRs in airway diseases with shared symptoms and risk factors but different immunological mechanisms, caution should be taken while designing pulmonary TLR-based therapies.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
32
|
Mendivil CO, Teeter JG, Finch GL, Schwartz PF, Riese RJ, Brain JD. Trough insulin levels in bronchoalveolar lavage following inhaled human insulin (Exubera) in patients with diabetes mellitus. Diabetes Technol Ther 2012; 14:50-8. [PMID: 21875362 DOI: 10.1089/dia.2011.0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND/AIM There are few data regarding insulin levels in the lungs during diabetes therapy with inhaled insulin. We examined the disposition of inhaled human insulin (Exubera(®) [EXU] human insulin [recombinant DNA origin], Pfizer, New York, NY) in the lungs by measuring trough insulin levels in bronchoalveolar lavage (BAL) fluid after 12 weeks of EXU treatment. METHODS After a 4-week run-in period of subcutaneous insulin therapy, 24 subjects with type 1 diabetes mellitus (T1DM) and 26 with type 2 diabetes mellitus (T2DM) continued their basal insulin regimen and received premeal subcutaneous (SC) insulin for 13 weeks, followed by 12 weeks of premeal EXU. BAL was performed approximately 12 h after the last insulin dose at (1) baseline, (2) following SC insulin, and (3) following EXU. RESULTS Twenty patients with T1DM and 24 patients with T2DM completed all three bronchoscopies. BAL trough insulin levels were undetectable at baseline or following SC insulin. After EXU therapy, they increased to a median of 4.5 nM (1.6-9.0 nM) and 2.3 nM (0.5-9.4 nM) in T1DM and T2DM, respectively. BAL trough insulin levels did not correlate with treatment efficacy, adverse effects, plasma insulin levels, or changes in pulmonary function. A larger proportion of previous EXU doses was present in the BAL in patients with T1DM. We found no correlation between average daily insulin doses and BAL trough insulin levels. CONCLUSIONS BAL trough insulin increased following EXU therapy, but this increase did not correlate with other clinical or laboratory parameters, suggesting no significant biological action. Further studies are warranted to better understand inhaled insulin deposition and clearance and possible effects of increased insulin levels on the lungs.
Collapse
Affiliation(s)
- Carlos O Mendivil
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
Snelgrove RJ, Godlee A, Hussell T. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol 2011; 32:328-34. [PMID: 21612981 DOI: 10.1016/j.it.2011.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
The lung is exposed to a myriad of innocuous antigens on a daily basis and must maintain a state of immune ignorance or tolerance to these harmless stimuli to retain pulmonary homeostasis and to prevent potentially fatal immunopathology. Here, we examine how, in the lower airways, resident cell populations contribute to the immune regulatory strategies that restrain inflammation. During influenza infection, these suppressive signals must be overcome to elicit a protective immune response that eliminates the virus. We also discuss how, after resolution of infection, the lung does not return to the original homeostatic state, and how the induced altered state can persist for long periods, which leaves the lung more susceptible to other infectious insults.
Collapse
Affiliation(s)
- Robert J Snelgrove
- Imperial College London, Leukocyte Biology Section, National Heart and Lung Institute, London, SW7 2AZ, UK
| | | | | |
Collapse
|
34
|
Wolff CHJ. Innate immunity and the pathogenicity of inhaled microbial particles. Int J Biol Sci 2011; 7:261-8. [PMID: 21448336 PMCID: PMC3065738 DOI: 10.7150/ijbs.7.261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/09/2011] [Indexed: 01/05/2023] Open
Abstract
Non-infectious inhaled microbial particles can cause illness by triggering an inappropriate immunological response. From the pathogenic point of view these illnesses can be seen to be related to on one hand autoimmune diseases and on the other infectious diseases. In this review three such illnesses are discussed in some detail. Hypersensitivity pneumonitis (HP) is the best known of these illnesses and it has also been widely studied in animal models and clinically. In contrast to HP Pulmonary mycotoxicosis (PM) is not considered to involve immunological memory, it is an acute self-limiting condition is caused by an immediate "toxic" effect. Damp building related illness (DBRI) is a controversial and from a diagnostic point poorly defined entity that is however causing, or attributed to cause, much more morbidity than the two other diseases. In the recent decade there has been a shift in the focus of immunology from the lymphocyte centered, adaptive immunity towards innate immunity. The archetypal cell in innate immunity is the macrophage although many other cell types participate. Innate immunity relies on a limited number of germline coded receptors for the recognition of pathogens and signs of cellular damage. The focus on innate immunity has opened new paths for the understanding of many chronic inflammatory diseases. The purpose of this review is to discuss the impact of some recent studies, that include aspects concerning innate immunity, on our understanding of the pathogenesis of inflammatory diseases associated with exposure to inhaled microbial matter.
Collapse
Affiliation(s)
- C Henrik J Wolff
- Finnish Institute of Occupational Health (FIOH), Biological Mechanisms and the Prevention of Work related Diseases, Topeliuksenkatu 41 a A, 00250 Helsinki, Finland.
| |
Collapse
|
35
|
Cellular targeting and trafficking of drug delivery systems for the prevention and treatment of MTb. Tuberculosis (Edinb) 2011; 91:93-7. [DOI: 10.1016/j.tube.2010.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 02/07/2023]
|
36
|
Patton JS, Brain JD, Davies LA, Fiegel J, Gumbleton M, Kim KJ, Sakagami M, Vanbever R, Ehrhardt C. The Particle has Landed—Characterizing the Fate of Inhaled Pharmaceuticals. J Aerosol Med Pulm Drug Deliv 2010; 23 Suppl 2:S71-87. [DOI: 10.1089/jamp.2010.0836] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | - Lee A. Davies
- Gene Medicine Group, University of Oxford, Oxford, United Kingdom
| | - Jennifer Fiegel
- Colleges of Pharmacy and Engineering, University of Iowa, Iowa City, Iowa
| | - Mark Gumbleton
- Welsh School of Pharmacy, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Masahiro Sakagami
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Rita Vanbever
- Unité de Pharmacie Galénique, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Grunewald J, Eklund A, Wahlström J. CD4+ T cells in sarcoidosis: targets and tools. Expert Rev Clin Immunol 2010; 2:877-86. [PMID: 20476976 DOI: 10.1586/1744666x.2.6.877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activated pulmonary T-helper type 1 lymphocytes are essential for the inflammatory process in sarcoidosis. Both the T cells and their mediators promoting inflammation may constitute possible targets for immunotherapy. A particular T-cell subset, the T-cell receptor AV2S3(+) CD4(+) T cells, are found at dramatically increased levels in the bronchoalveolar lavage fluid of a subpopulation of sarcoidosis patients with active disease. This particular T-cell subset may be used as a tool to reveal a sarcoidosis-specific antigen. Recent studies of natural killer T cells and T regulatory cells from patients with sarcoidosis have described abnormalities that may be relevant for the inflammatory process in this disease. These findings are exciting news and may be of help for designing new treatment strategies.
Collapse
Affiliation(s)
- Johan Grunewald
- Karolinska Institutet/Karolinska University Hospital, Lung Research Laboratory L4:01 Respiratory Medicine Unit, Department of Medicine, 171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
38
|
Hussell T, Goulding J. Structured regulation of inflammation during respiratory viral infection. THE LANCET. INFECTIOUS DISEASES 2010; 10:360-6. [PMID: 20417418 DOI: 10.1016/s1473-3099(10)70067-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Innate immune cells including macrophages, dendritic cells, and granulocytes are resident within or patrol very different microenvironments in the host. Their activity or responsiveness to antigen is dictated by site-specific factors. Because of the constant exposure to environmental antigens and commensal microorganisms, mucosal immunity needs to be more constrained than peripheral counterparts to prevent unnecessary inflammation. The epithelial surfaces that dominate all mucosal tissues provide an ideal regulator since innate immune cells are often in intimate contact with, or lie immediately beneath, them and a breach in epithelial integrity would signal a damaging event and release innate immunity from their influence. We discuss the role of the respiratory epithelium in raising the threshold of innate immune cell activation at homoeostasis, how its absence triggers innate immunity, and how inflammatory resolution often produces an altered homoeostatic environment that can affect the next inflammatory event at this site.
Collapse
Affiliation(s)
- Tracy Hussell
- Imperial College London, Leukocyte Biology Section, National Heart and Lung Institute, London, UK.
| | | |
Collapse
|
39
|
Shi X, LeCapitaine NJ, Rudner XL, Ruan S, Shellito JE. Lymphocyte apoptosis in murine Pneumocystis pneumonia. Respir Res 2009; 10:57. [PMID: 19558669 PMCID: PMC2714500 DOI: 10.1186/1465-9921-10-57] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 06/26/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Apoptosis of lymphocytes is important in the termination of an immune response to infection but has also been shown to have detrimental effects in animal models of systemic infection and sepsis. We sought to characterize lymphocyte apoptosis in an animal model of pneumonia due to Pneumocystis murina, an infection localized to the lungs. METHODS Control mice and mice depleted of CD4+ lymphocytes were inoculated with Pneumocystis. Apoptosis of lung and spleen lymphocytes was assayed by flow cytometry and PCR assay of apoptotic proteins. RESULTS In control mice, apoptosis of lung lymphocytes was maximal just after the infection was cleared from lung tissue and then declined. However, in CD4-depleted mice, apoptosis was also upregulated in recruited lymphocytes in spite of progressive infection. In splenic lymphocytes, apoptosis was observed early at 1 week after inoculation and then declined. Apoptosis of lung lymphocytes in control mice was associated with a decrease in mRNA for Bcl-2 and an increase in mRNA for Bim. In CD4-depleted mice, lavaged CD8+ cells did change intracellular Bcl-2 but showed increased mRNA for Bim. CONCLUSION Apoptosis of both pulmonary and extrapulmonary lymphocytes is part of the normal host response to Pneumocystis but is also triggered in CD4-deficient animals with progressive infection. In normal mice apoptosis of pulmonary lymphocytes may serve to terminate the immune response in lung tissue. Apoptosis of lung lymphocytes takes place via both the intrinsic and extrinsic apoptotic pathways and is associated with changes in both pro- and anti-apoptotic proteins.
Collapse
Affiliation(s)
- Xin Shi
- Section of Pulmonary/Critical Care Medicine, LSU Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
40
|
Wissinger E, Goulding J, Hussell T. Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol 2009; 21:147-55. [PMID: 19223202 DOI: 10.1016/j.smim.2009.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/20/2009] [Indexed: 02/07/2023]
Abstract
Innate immunity at mucosal surfaces requires additional restraint to prevent inflammation to innocuous antigens or commensal microorganisms. The threshold above which airway macrophages become activated is raised by site-specific factors including the receptors for transforming growth factor beta, interleukin 10 and CD200; the ligands for which are produced by, or expressed on, respiratory epithelium. We discuss such site-specific regulation and how this is continually altered by prior infections. Resetting of innate reactivity represents a strategy for limiting excessive inflammation, but in some may pre-dispose to secondary bacterial pneumonia.
Collapse
Affiliation(s)
- Erika Wissinger
- Imperial College London, National Heart and Lung Institute, Leukocyte Biology Section, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
41
|
Bissonnette EY, Tremblay GM, Turmel V, Pirotte B, Reboud-Ravaux M. Coumarinic derivatives show anti-inflammatory effects on alveolar macrophages, but their anti-elastase activity is essential to reduce lung inflammation in vivo. Int Immunopharmacol 2009; 9:49-54. [PMID: 18840548 DOI: 10.1016/j.intimp.2008.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/28/2008] [Accepted: 09/16/2008] [Indexed: 11/29/2022]
Affiliation(s)
- Elyse Y Bissonnette
- Centre de recherche de l'Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Québec, QC, Canada.
| | | | | | | | | |
Collapse
|
42
|
Eyles JE, Carpenter ZC, Alpar HO, Williamson ED. Immunological Aspects of Polymer Microsphere Vaccine Delivery Systems. J Drug Target 2008; 11:509-14. [PMID: 15203919 DOI: 10.1080/10611860410001670017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In vitro studies using dendritic cells have identified that microencapsulated antigens are taken up and processed differently as compared with soluble proteins, and these findings have been reviewed. Similarly, in vivo, it is evident that microencapsulated materials have different properties in terms of uptake and trafficking. Intranasal (IN) instillation of encapsulated protective antigen resulted in a significant increase in the percentage of activated CD4+ and B-cells in the spleens of immunised mice, whereas IN instillation of soluble antigen failed to do so. This corroborates earlier findings concerning the uptake and trafficking of microparticles following bronchopulmonary administration. These data support the tenet that microencapsulation serves to modify the uptake, trafficking and processing of antigens.
Collapse
Affiliation(s)
- J E Eyles
- Biomedical Sciences, Dstl, Porton Downs, Salisbury, UK.
| | | | | | | |
Collapse
|
43
|
Nichols D, Chmiel J, Berger M. Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling. Clin Rev Allergy Immunol 2008; 34:146-62. [PMID: 17960347 DOI: 10.1007/s12016-007-8039-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A vicious cycle of airway obstruction, infection, and inflammation continues to cause most of the morbidity and mortality in cystic fibrosis (CF). Mutations that result in decreased expression or function of the membrane Cl(-) channel, cystic fibrosis transmembrane regulator (CFTR), result in a decrease in the volume (and hence the depth) of liquid on the airway surface, impaired ciliary function, and dehydrated glandular secretions. In turn, these abnormalities contribute to a milieu, which promotes chronic infection with a limited but unique spectrum of microorganisms. Defects in CFTR also perturb regulation of several intracellular signaling pathways including signal transducers and activator of transcription, I-kappaB and nuclear factor-kappa B, and low molecular weight GTPases. Together, these abnormalities result in excessive production of NF-kappaB dependent cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF), IL-6, and IL-8. There are decreased responses to interferon gamma and transforming growth factor beta leading to decreased production of iNOS and NO. Abnormalities of lipid mediators and decreased secretion of counter/regulatory cytokines have also been reported. Together, these effects combine to create a chronic inflammatory process, which damages and obstructs the airways, and eventually claims the life of the patient.
Collapse
Affiliation(s)
- David Nichols
- Pulmonology and Allergy-Immunology Divisions, Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow, Babies and Children's Hospital, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
44
|
Goulding J, Snelgrove R, Saldana J, Didierlaurent A, Cavanagh M, Gwyer E, Wales J, Wissinger EL, Hussell T. Respiratory infections: do we ever recover? PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2007; 4:618-25. [PMID: 18073393 PMCID: PMC2647650 DOI: 10.1513/pats.200706-066th] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/21/2007] [Indexed: 01/09/2023]
Abstract
Although the outcome of respiratory infection alters with age, nutritional status, and immunologic competence, there is a growing body of evidence that we all develop a unique but subtle inflammatory profile. This uniqueness is determined by the sequence of infections or antigenic insults encountered that permanently mold our lungs through experience. This experience and learning process forms the basis of immunologic memory that is attributed to the acquired immune system. But what happens if the pathogen is not homologous to any preceding it? In the absence of cross-specific acquired immunity, one would expect a response similar to that of a subject who had never been infected with anything before. It is now clear that this is not the case. Prior inflammation in the respiratory tract alters immunity and pathology to subsequent infections even when they are antigenically distinct. Furthermore, the influence of the first infection is long lasting, not dependent on the presence of T and B cells, and effective against disparate pathogen combinations. We have used the term "innate imprinting" to explain this phenomenon, although innate education may be a closer description. This educational process, by sequential waves of infection, may be beneficial, as shown for successive viral infections, or significantly worse, as illustrated by the increased susceptibly to life-threatening bacterial pneumonia in patients infected with seasonal and pandemic influenza. We now examine what these long-term changes involve, the likely cell populations affected, and what this means to those studying inflammatory disorders in the lung.
Collapse
Affiliation(s)
- John Goulding
- Kennedy Institute for Rheumatology, Imperial College London, 1 Aspenlea Road, London W6 8LH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fainaru O, Shay T, Hantisteanu S, Goldenberg D, Domany E, Groner Y. TGFbeta-dependent gene expression profile during maturation of dendritic cells. Genes Immun 2007; 8:239-44. [PMID: 17330136 DOI: 10.1038/sj.gene.6364380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Primary immune response to pathogens involves the maturation of antigen-presenting dendritic cells (DC). Bacterial lipopolysacharride (LPS) is a potent inducer of DC maturation, whereas the transforming growth factor beta (TGFbeta) attenuates much of this process. Here, we analyzed the global gene expression pattern in LPS-treated bone marrow derived DC during inhibition of their maturation process by TGFbeta. Exposure of DC to LPS induces a pronounced cell response, manifested in altered expression of a large number of genes. Interestingly, TGFbeta did not affect most of the LPS responding genes. Nevertheless, analysis identified a subset of genes that did respond to TGFbeta, among them the two inflammatory cytokines interleukin (IL)-12 and IL-18. Expression of IL-12, the major proinflammatory cytokine secreted by mature DC, was downregulated by TGFbeta, whereas the expression level of the proinflammatory cytokine IL-18, known to potentiate the IL-12 effect, was upregulated. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) increased in response to TGFbeta, concomitantly with reduced expression of chemokine receptor 7 (CCR7). This finding supports the possibility that TGFbeta-dependent inhibition of CCR7 expression in DC is mediated by PPARgamma.
Collapse
Affiliation(s)
- O Fainaru
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
46
|
Löfdahl JM, Wahlström J, Sköld CM. Different inflammatory cell pattern and macrophage phenotype in chronic obstructive pulmonary disease patients, smokers and non-smokers. Clin Exp Immunol 2006; 145:428-37. [PMID: 16907910 PMCID: PMC1809704 DOI: 10.1111/j.1365-2249.2006.03154.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Smokers exhibit airway inflammation and increased number of alveolar macrophages (AM), but not all develop chronic obstructive pulmonary disease (COPD). We hypothesized that AMs in COPD patients have an altered functional capacity mirrored in a different phenotype. Sixteen steroid-naive COPD patients [forced expiratory volume in 1 s (FEV(1)) < 70% of predicted] underwent bronchoalveolar lavage (BAL). Age- and smoking-matched non-obstructive smokers (n = 10) and healthy non-smokers (n = 9) served as controls. Nine COPD patients had a BAL cell yield sufficient for flow cytometry analysis, where expression of AM cell surface markers reflecting various functions was determined. AMs from COPD patients showed decreased expression of CD86 (co-stimulation) and CD11a (adhesion) compared to smokers' AMs (P < 0.05). Furthermore, smokers' AMs showed lower (P < 0.05) expression of CD11a compared to non-smokers. AM expression of CD11c was higher in the COPD and smokers groups compared to non-smokers (P < 0.05). The expression of CD54 (adhesion) was lower in smokers' AMs compared to non-smokers (P < 0.05), whereas CD16 was lower (P < 0.05) in COPD patients compared to non-smokers. The AM expression of CD11b, CD14, CD58, CD71, CD80 and human leucocyte antigen (HLA) Class II did not differ between the three groups. The AM phenotype is altered in COPD and further research may develop disease markers. The lower AM expression of CD86 and CD11a in COPD implies a reduced antigen-presenting function. Some alterations were found in smokers compared to non-smokers, thus indicating that changes in AM phenotype may be associated with smoking per se. The functional relevance of our findings remains to be elucidated.
Collapse
Affiliation(s)
- J M Löfdahl
- Department of Medicine, Division of Respiratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
47
|
Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006; 355:1018-28. [PMID: 16908486 DOI: 10.1056/nejmoa063842] [Citation(s) in RCA: 1462] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Six healthy young male volunteers at a contract research organization were enrolled in the first phase 1 clinical trial of TGN1412, a novel superagonist anti-CD28 monoclonal antibody that directly stimulates T cells. Within 90 minutes after receiving a single intravenous dose of the drug, all six volunteers had a systemic inflammatory response characterized by a rapid induction of proinflammatory cytokines and accompanied by headache, myalgias, nausea, diarrhea, erythema, vasodilatation, and hypotension. Within 12 to 16 hours after infusion, they became critically ill, with pulmonary infiltrates and lung injury, renal failure, and disseminated intravascular coagulation. Severe and unexpected depletion of lymphocytes and monocytes occurred within 24 hours after infusion. All six patients were transferred to the care of the authors at an intensive care unit at a public hospital, where they received intensive cardiopulmonary support (including dialysis), high-dose methylprednisolone, and an anti-interleukin-2 receptor antagonist antibody. Prolonged cardiovascular shock and acute respiratory distress syndrome developed in two patients, who required intensive organ support for 8 and 16 days. Despite evidence of the multiple cytokine-release syndrome, all six patients survived. Documentation of the clinical course occurring over the 30 days after infusion offers insight into the systemic inflammatory response syndrome in the absence of contaminating pathogens, endotoxin, or underlying disease.
Collapse
Affiliation(s)
- Ganesh Suntharalingam
- Department of Intensive Care Medicine, Northwick Park and St. Mark's Hospital, Harrow, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
48
|
Garn H, Siese A, Stumpf S, Wensing A, Renz H, Gemsa D. Phenotypical and functional characterization of alveolar macrophage subpopulations in the lungs of NO2-exposed rats. Respir Res 2006; 7:4. [PMID: 16398938 PMCID: PMC1368986 DOI: 10.1186/1465-9921-7-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 01/06/2006] [Indexed: 11/25/2022] Open
Abstract
Background Alveolar macrophages (AM) are known to play an important role in the regulation of inflammatory reactions in the lung, e.g. during the development of chronic lung diseases. Exposure of rats to NO2 has recently been shown to induce a shift in the activation type of AM that is characterized by reduced TNF-α and increased IL-10 production. So far it is unclear, whether a functional shift in the already present AM population or the occurrence of a new, phenotypically different AM population is responsible for these observations. Methods AM from rat and mice were analyzed by flow cytometry for surface marker expression and in vivo staining with PKH26 was applied to characterize newly recruited macrophages. Following magnetic bead separation, AM subpopulations were further analyzed for cytokine, inducible NO synthase (iNOS) and matrix metalloproteinase (MMP) mRNA expression using quantitative RT-PCR. Following in vitro stimulation, cytokines were quantitated in the culture supernatants by ELISA. Results In untreated rats the majority of AM showed a low expression of the surface antigen ED7 (CD11b) and a high ED9 (CD172) expression (ED7-/ED9high). In contrast, NO2 exposure induced the occurrence of a subpopulation characterized by the marker combination ED7+/ED9low. Comparable changes were observed in mice and by in vivo labeling of resident AM using the dye PKH26 we could demonstrate that CD11b positive cells mainly comprise newly recruited AM. Subsequent functional analyses of separated AM subpopulations of the rat revealed that ED7+ cells showed an increased expression and production of the antiinflammatory cytokine IL-10 whereas TNF-α production was lower compared to ED7- AM. However, iNOS and IL-12 expression were also increased in the ED7+ subpopulation. In addition, these cells showed a significantly higher mRNA expression for the matrix metalloproteinases MMP-7, -8, -9, and -12. Conclusion NO2 exposure induces the infiltration of an AM subpopulation that, on the one hand may exert antiinflammatory functions by the production of high amounts of IL-10 but on the other hand may contribute to the pathology of NO2-induced lung damage by selective expression of certain matrix metalloproteinases.
Collapse
Affiliation(s)
- Holger Garn
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps University of Marburg, Biomedical Research Center, Hans-Meerwein-Str., 35043 Marburg, Germany
| | - Anette Siese
- Institute of Immunology, Philipps University of Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | - Sabine Stumpf
- Institute of Immunology, Philipps University of Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | - Anka Wensing
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps University of Marburg, Biomedical Research Center, Hans-Meerwein-Str., 35043 Marburg, Germany
| | - Harald Renz
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps University of Marburg, Biomedical Research Center, Hans-Meerwein-Str., 35043 Marburg, Germany
| | - Diethard Gemsa
- Institute of Immunology, Philipps University of Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| |
Collapse
|
49
|
Beharka AA, Crowther JE, McCormack FX, Denning GM, Lees J, Tibesar E, Schlesinger LS. Pulmonary Surfactant Protein A Activates a Phosphatidylinositol 3-Kinase/Calcium Signal Transduction Pathway in Human Macrophages: Participation in the Up-Regulation of Mannose Receptor Activity. THE JOURNAL OF IMMUNOLOGY 2005; 175:2227-36. [PMID: 16081790 DOI: 10.4049/jimmunol.175.4.2227] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Surfactant protein A (SP-A), a major component of lung surfactant, binds to macrophages and has been shown to alter several macrophage biological functions, including up-regulation of macrophage mannose receptor (MR) activity. In the present study, we show that SP-A induces signal transduction pathway(s) that impact on MR expression. The addition of human, rat, or recombinant rat SP-A to human monocyte-derived macrophages significantly raised the level of cytosolic Ca2+ above baseline within 10 s of SP-A addition, as measured by spectrofluorometric analysis. SP-A induced a refractory state specific for SP-A consistent with homologous desensitization of a receptor(s) linked to calcium mobilization because a second application of SP-A did not induce a rise in cytosolic Ca2+ whereas the addition of platelet-activating factor did. Using site-directed mutations in SP-A, we determined that both the attached sugars and the collagen-like domain of SP-A are necessary to optimize Ca2+ mobilization. SP-A triggered the increase in cytosolic Ca2+ by inducing activation of phospholipase C, which leads to the hydrolysis of membrane phospholipids, yielding inositol 1,4,5-trisphosphate and mobilizing intracellularly stored Ca2+ by inositol triphosphate-sensitive channels. Finally, inhibition of PI3Ks, which appear to act upstream of phospholipase C in Ca2+ mobilization, decreased the SP-A-induced rise in MR expression, providing evidence that SP-A induction of MR activity involves the activation of a pathway in which PI3K is a component. These studies provide further evidence that SP-A produced in the lung plays a role in modulating macrophage biology, thereby contributing to the alternative activation state of the alveolar macrophage.
Collapse
MESH Headings
- Adult
- Animals
- Binding Sites/immunology
- Calcium/metabolism
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Collagen/physiology
- Cytosol/metabolism
- Dose-Response Relationship, Immunologic
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/physiology
- Intracellular Fluid/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/metabolism
- Lipopolysaccharides/pharmacology
- Macrophage Activation/genetics
- Macrophage Activation/immunology
- Macrophages/enzymology
- Macrophages/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/biosynthesis
- Mannose-Binding Lectins/metabolism
- Monocytes/enzymology
- Monocytes/immunology
- Monocytes/metabolism
- Oligosaccharides/physiology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Protein Structure, Tertiary/physiology
- Pulmonary Surfactant-Associated Protein A/genetics
- Pulmonary Surfactant-Associated Protein A/pharmacology
- Pulmonary Surfactant-Associated Protein A/physiology
- Rats
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- U937 Cells
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Alison A Beharka
- Interdisciplinary Program in Immunology and Department of Internal Medicine, University of Iowa, Iowa City, IA 52240, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Nicod LP, Joudrier S, Isler P, Spiliopoulos A, Pache JC. Upregulation of CD40, CD80, CD83 or CD86 on alveolar macrophages after lung transplantation. J Heart Lung Transplant 2005; 24:1067-75. [PMID: 16102442 DOI: 10.1016/j.healun.2004.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 06/15/2004] [Accepted: 07/19/2004] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Alveolar macrophages (AMs) are known to be poor antigen-presenting cells, and lack the accessory molecules such as CD40, CD80 or CD86 to activate T cells. The question raised is about the potential changes in phenotypes after lung transplantation, particularly during acute rejection episodes. METHODS The present study analyzed the phenotype of AMs longitudinally in 45 lung transplant patients, between August 1997 and April 2002, with a follow-up period of 27.2 +/- 2.5 (mean +/- SEM) months. There were 7.7 +/- 0.6 bronchoalveolar lavage (BAL) assessments performed per patient (i.e., 345 BALs), simultaneously with transbronchial biopsies. Transplantation was soon followed by a progressive upregulation of CD40 on 49.7 +/- 8% of AMs during the first month, and this marker remained elevated at 60 +/- 8% after 5 years. RESULTS Both CD86 and CD80, as well as CD83, a marker of dendritic cells, were enhanced for most AMs during Grade A2 and A3 rejection episodes. A correlation was found between expression of CD83 and CD86, but not between CD1a and CD86. Immunohistology confirmed that CD40-positive cells in the alveoli corresponded to AMs and to some dendritic cells in the basal layers of the airways. In vitro studies showed that harvested AMs with these enhanced accessory molecules remained poor stimulators of allogeneic cells, a phenomenon that may be related to the ongoing immunosuppressive treatments. CONCLUSIONS AM phenotypes showed marked changes during early or late acute rejection episodes, acquiring CD80, CD83 and CD86, while CD40 expression was further enhanced. This finding may provide clues on how to monitor the tolerance of transplanted lungs and may also provide new insights into the pathophysiology of lung transplantation.
Collapse
Affiliation(s)
- Laurent P Nicod
- Pulmonary Division, University Hospital of Bern, Switzerland.
| | | | | | | | | |
Collapse
|