1
|
Jans K, Jöckel T, von Frieling J, Ipharraguerre IR, Roeder T, Lüersen K, Rimbach G. Lithium affects sodium balance but not intestinal microbiota - studies in Drosophila melanogaster. J Trace Elem Med Biol 2024; 86:127548. [PMID: 39442469 DOI: 10.1016/j.jtemb.2024.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The trace element lithium (Li) is known for its therapeutic mood-stabilizing application in humans, but also for its various bioactivities, which have been uncovered in model organisms. According to the literature, Li may interfere with the homeostasis of other minerals in mammals, namely sodium, calcium and magnesium. In addition, Li was found to influence the composition and diversity of the intestinal microbiota in vertebrates, an observation that may be related to the many bioactivities of Li. METHODS Based on these previous findings, we employed the model organism Drosophila melanogaster to decipher whether Li exhibits similar bioactivities in invertebrates. First, we examined the influence of increasing dietary Li supply (0 -100 mM LiCl) on the status of Li and ten other minerals via Inductively coupled plasma - mass spectrometry (ICP-MS) in heads and remaining body parts of the three wildtype strains w1118, Oregon-R-C and Canton-S. In addition, we investigated the potential impact of Li feeding (0, 0.1, 1 mM LiCl) on the total bacterial load, α- and β-diversity via real-time quantitative polymerase chain reaction (RT q-PCR) and 16S rDNA sequencing in the intestines of female w1118. RESULTS Our observations revealed that Li accumulates linearly in both sexes and all body parts of the three Drosophila strains as the dietary Li supply increases. While the status of most elements remained unchanged, the sodium levels of the fly also correlated positively with the Li content of the diet. The intestinal microbiota, however, remained largely unaffected by Li feeding in terms of both, bacterial load and diversity. CONCLUSION These findings support the hypothesis that elevating the Li supply affects sodium homeostasis in Drosophila, a finding coherent with observations in mammals. Furthermore, our data opposes a possible involvement of the bacterial intestinal colonization in the bioactivity of Li in Drosophila.
Collapse
Affiliation(s)
- Katharina Jans
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany.
| | - Tobias Jöckel
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| | - Jakob von Frieling
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel D-24118, Germany
| | - Ignacio R Ipharraguerre
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel D-24118, Germany
| | - Kai Lüersen
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| | - Gerald Rimbach
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| |
Collapse
|
2
|
Mom R, Mocquet V, Auguin D, Réty S. Aquaporin Modulation by Cations, a Review. Curr Issues Mol Biol 2024; 46:7955-7975. [PMID: 39194687 DOI: 10.3390/cimb46080470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network finely tuning cell membranes' water permeability. At the intersection between several transduction pathways (e.g., cell volume regulation, calcium signaling, potassium cycling, etc.), this wide and ancient protein family is considered an important therapeutic target for cancer treatment and many other pathophysiologies. However, a precise and isoform-specific modulation of these channels function is still challenging. Among the modulators of AQPs functions, cations have been shown to play a significant contribution, starting with mercury being historically associated with the inhibition of AQPs since their discovery. While the comprehension of AQPs modulation by cations has improved, a unifying molecular mechanism integrating all current knowledge is still lacking. In an effort to extract general trends, we reviewed all known modulations of AQPs by cations to capture a first glimpse of this regulatory network. We paid particular attention to the associated molecular mechanisms and pinpointed the residues involved in cation binding and in conformational changes tied up to the modulation of the channel function.
Collapse
Affiliation(s)
- Robin Mom
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Vincent Mocquet
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Daniel Auguin
- Laboratoire de Physiologie, Ecologie et Environnement (P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d'Orléans, F-45067 Orléans, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| |
Collapse
|
3
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
4
|
Mak A, Sung CC, Pisitkun T, Khositseth S, Knepper MA. 'Aquaporin-omics': mechanisms of aquaporin-2 loss in polyuric disorders. J Physiol 2024; 602:3191-3206. [PMID: 37114282 PMCID: PMC10603215 DOI: 10.1113/jp284634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Animal models of a variety of acquired nephrogenic diabetes insipidus (NDI) disorders have identified a common feature: all such models are associated with the loss of aquaporin-2 (AQP2) from collecting duct principal cells, explaining the associated polyuria. To discover mechanisms of AQP2 loss, previous investigators have carried out either transcriptomics (lithium-induced NDI, unilateral ureteral obstruction, endotoxin-induced NDI) or proteomics (hypokalaemia-associated NDI, hypercalcaemia-associated NDI, bilateral ureteral obstruction), yielding contrasting views. Here, to address whether there may be common mechanisms underlying loss of AQP2 in acquired NDI disorders, we have used bioinformatic data integration techniques to combine information from all transcriptomic and proteomic data sets. The analysis reveals roles for autophagy/apoptosis, oxidative stress and inflammatory signalling as key elements of the mechanism that results in loss of AQP2. These processes can cause AQP2 loss through the combined effects of repression of Aqp2 gene transcription, generalized translational repression, and increased autophagic degradation of proteins including AQP2. Two possible types of stress-sensor proteins, namely death receptors and stress-sensitive protein kinases of the EIF2AK family, are discussed as potential triggers for signalling processes that result in loss of AQP2. KEY POINTS: Prior studies have shown in a variety of animal models of acquired nephrogenic diabetes insipidus (NDI) that loss of the aquaporin-2 (AQP2) protein is a common feature. Investigations of acquired NDI using transcriptomics (RNA-seq) and proteomics (protein mass spectrometry) have led to differing conclusions regarding mechanisms of AQP2 loss. Bioinformatic integration of transcriptomic and proteomic data from these prior studies now reveals that acquired NDI models map to three core processes: oxidative stress, apoptosis/autophagy and inflammatory signalling. These processes cause loss of AQP2 through translational repression, accelerated degradation of proteins, and transcriptional repression.
Collapse
Affiliation(s)
- Angela Mak
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Trairak Pisitkun
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sookkasem Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Bangkok,Thailand
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
de Berny Q, Saint-Jacques C, Santin A, Mattioni S, Steichen O, Chieze R, Frochot V, Letavernier E, Lionnet F, Haymann JP. Urine concentration impairment in sickle cell anemia: genuine nephrogenic diabetes insipidus or osmotic diuresis? Am J Physiol Renal Physiol 2024; 326:F278-F284. [PMID: 38059298 PMCID: PMC11207532 DOI: 10.1152/ajprenal.00313.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023] Open
Abstract
The urine concentration impairment responsible for hyposthenuria in sickle cell nephropathy is currently thought to be a consequence of renal medulla lesions, which lead to nephrogenic diabetes insipidus. The objective of the present study was to investigate the mechanism of hyposthenuria in patients with sickle cell anemia. We performed an observational study of patients with homozygous SS sickle cell anemia and data available on the fasting plasma antidiuretic hormone (ADH) concentration. A total of 55 patients were analyzed. The fasting plasma ADH values ranged from 1.2 to 15.4 pg/mL, and 82% of the patients had elevated ADH values and low fasting urine osmolality (<505 mosmol/kgH2O). Plasma ADH was positively associated with plasma tonicity and natremia (P < 0.001). None of the patients experienced polyuria and fasting free water clearance was negative in all cases, thus, ruling out nephrogenic diabetes insipidus. The tertile groups did not differ with regard to fasting urine osmolality, plasma renin level, mGFR, or several hemolysis biomarkers. The negative fasting free water clearance in all cases and the strong association between 24-h osmolal clearance and 24-h diuresis favors the diagnosis of osmotic diuresis due to an impaired medullary gradient, rather than lesions to collecting tubule.NEW & NOTEWORTHY The urine concentration impairment in sickle cell anemia is an osmotic diuresis related to an impaired renal medullary gradient leading to an ADH plateau effect. The fasting plasma ADH was high in the context of a basic state of close-to-maximal urine concentration probably driven by short nephrons maintaining a cortex-outer medullary gradient (about 400 milliosmoles). The patients had a low daily osmoles intake without evidence of thirst dysregulation so no one experienced polyuria.
Collapse
Affiliation(s)
- Quentin de Berny
- Service de Néphrologie, Dialyse et Transplantation Rénale, Centre Hospitalier Universitaire d'Amiens, Amiens, France
| | - Camille Saint-Jacques
- Service d'Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, UMR-S 1155, Médecine Sorbonne Université, Paris, France
| | - Aline Santin
- Service de Médecine Interne, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Médecine Sorbonne Université, Paris, France
| | - Sarah Mattioni
- Service de Médecine Interne, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Médecine Sorbonne Université, Paris, France
| | - Olivier Steichen
- Service de Médecine Interne, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Médecine Sorbonne Université, Paris, France
| | - Rémi Chieze
- Service d'Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, UMR-S 1155, Médecine Sorbonne Université, Paris, France
| | - Vincent Frochot
- Service d'Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, UMR-S 1155, Médecine Sorbonne Université, Paris, France
| | - Emmanuel Letavernier
- Service d'Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, UMR-S 1155, Médecine Sorbonne Université, Paris, France
| | - François Lionnet
- Service de Médecine Interne, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Médecine Sorbonne Université, Paris, France
| | - Jean-Philippe Haymann
- Service d'Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, UMR-S 1155, Médecine Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Yousef Yengej FA, Pou Casellas C, Ammerlaan CME, Olde Hanhof CJA, Dilmen E, Beumer J, Begthel H, Meeder EMG, Hoenderop JG, Rookmaaker MB, Verhaar MC, Clevers H. Tubuloid differentiation to model the human distal nephron and collecting duct in health and disease. Cell Rep 2024; 43:113614. [PMID: 38159278 DOI: 10.1016/j.celrep.2023.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Organoid technology is rapidly gaining ground for studies on organ (patho)physiology. Tubuloids are long-term expanding organoids grown from adult kidney tissue or urine. The progenitor state of expanding tubuloids comes at the expense of differentiation. Here, we differentiate tubuloids to model the distal nephron and collecting ducts, essential functional parts of the kidney. Differentiation suppresses progenitor traits and upregulates genes required for function. A single-cell atlas reveals that differentiation predominantly generates thick ascending limb and principal cells. Differentiated human tubuloids express luminal NKCC2 and ENaC capable of diuretic-inhibitable electrolyte uptake and enable disease modeling as demonstrated by a lithium-induced tubulopathy model. Lithium causes hallmark AQP2 loss, induces proliferation, and upregulates inflammatory mediators, as seen in vivo. Lithium also suppresses electrolyte transport in multiple segments. In conclusion, this tubuloid model enables modeling of the human distal nephron and collecting duct in health and disease and provides opportunities to develop improved therapies.
Collapse
Affiliation(s)
- Fjodor A Yousef Yengej
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carla Pou Casellas
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Charlotte J A Olde Hanhof
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Emre Dilmen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Joep Beumer
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands; Institute of Human Biology, Roche Pharma Research and Early Development, 4058 Basel, Switzerland
| | - Harry Begthel
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands
| | - Elise M G Meeder
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute-KNAW, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
7
|
Guo X, Kong Y, Kwon TH, Li C, Wang W. Autophagy and regulation of aquaporins in the kidneys. Kidney Res Clin Pract 2023; 42:676-685. [PMID: 37098672 DOI: 10.23876/j.krcp.22.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 04/27/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins that facilitate the transport of water molecules across cell membranes. To date, seven AQPs have been found to be expressed in mammal kidneys. The cellular localization and regulation of the transport properties of AQPs in the kidney have been widely investigated. Autophagy is known as a highly conserved lysosomal pathway, which degrades cytoplasmic components. Through basal autophagy, kidney cells maintain their functions and structure. As a part of the adaptive responses of the kidney, autophagy may be altered in response to stress conditions. Recent studies revealed that autophagic degradation of AQP2 in the kidney collecting ducts leads to impaired urine concentration in animal models with polyuria. Therefore, the modulation of autophagy could be a therapeutic approach to treat water balance disorders. However, as autophagy is either protective or deleterious, it is crucial to establish an optimal condition and therapeutic window where autophagy induction or inhibition could yield beneficial effects. Further studies are needed to understand both the regulation of autophagy and the interaction between AQPs and autophagy in the kidneys in renal diseases, including nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Xiangdong Guo
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chunling Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Kirkegaard T, Riishede A, Tramm T, Nejsum LN. Aquaglyceroporins in Human Breast Cancer. Cells 2023; 12:2185. [PMID: 37681917 PMCID: PMC10486483 DOI: 10.3390/cells12172185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins are water channels that facilitate passive water transport across cellular membranes following an osmotic gradient and are essential in the regulation of body water homeostasis. Several aquaporins are overexpressed in breast cancer, and AQP1, AQP3 and AQP5 have been linked to spread to lymph nodes and poor prognosis. The subgroup aquaglyceroporins also facilitate the transport of glycerol and are thus involved in cellular metabolism. Transcriptomic analysis revealed that the three aquaglyceroporins, AQP3, AQP7 and AQP9, but not AQP10, are overexpressed in human breast cancer. It is, however, unknown if they are all expressed in the same cells or have a heterogeneous expression pattern. To investigate this, we employed immunohistochemical analysis of serial sections from human invasive ductal and lobular breast cancers. We found that AQP3, AQP7 and AQP9 are homogeneously expressed in almost all cells in both premalignant in situ lesions and invasive lesions. Thus, potential intervention strategies targeting cellular metabolism via the aquaglyceroporins should consider all three expressed aquaglyceroporins, namely AQP3, AQP7 and AQP9.
Collapse
Affiliation(s)
- Teresa Kirkegaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Lene N. Nejsum
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| |
Collapse
|
9
|
Qiu Z, Jiang T, Li Y, Wang W, Yang B. Aquaporins in Urinary System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:155-177. [PMID: 36717493 DOI: 10.1007/978-981-19-7415-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There are at least eight aquaporins (AQPs) expressed in the kidney. Including AQP1 expressed in proximal tubules, thin descending limb of Henle and vasa recta; AQP2, AQP3, AQP4, AQP5, and AQP6 expressed in collecting ducts; AQP7 expressed in proximal tubules; AQP8 expressed in proximal tubules and collecting ducts; and AQP11 expressed in the endoplasmic reticulum of proximal tubular epithelial cells. Over years, researchers have constructed different AQP knockout mice and explored the effect of AQP knockout on kidney function. Thus, the roles of AQPs in renal physiology are revealed, providing very useful information for addressing fundamental questions about transepithelial water transport and the mechanism of near isoosmolar fluid reabsorption. This chapter introduces the localization and function of AQPs in the kidney and their roles in different kidney diseases to reveal the prospects of AQPs in further basic and clinical studies.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Jiang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Lu HAJ, He J. Aquaporins in Diabetes Insipidus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:267-279. [PMID: 36717500 DOI: 10.1007/978-981-19-7415-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Disruption of water and electrolyte balance is frequently encountered in clinical medicine. Regulating water metabolism is critically important. Diabetes insipidus (DI) presented with excessive water loss from the kidney is a major disorder of water metabolism. To understanding the molecular and cellular mechanisms and pathophysiology of DI and rationales of clinical management of DI is important for both research and clinical practice. This chapter will first review various forms of DI focusing on central diabetes insipidus (CDI) and nephrogenic diabetes insipidus (NDI). This is followed by a discussion of regulatory mechanisms underlying CDI and NDI, with a focus on the regulatory axis of vasopressin, vasopressin receptor 2 (V2R) and the water channel molecule, aquaporin 2 (AQP2). The clinical manifestation, diagnosis, and management of various forms of DI will also be discussed with highlights of some of the latest therapeutic strategies that are developed from in vitro experiments and animal studies.
Collapse
Affiliation(s)
- H A Jenny Lu
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jinzhao He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Tabibzadeh N, Crambert G. Mechanistic insights into the primary and secondary alterations of renal ion and water transport in the distal nephron. J Intern Med 2023; 293:4-22. [PMID: 35909256 PMCID: PMC10087581 DOI: 10.1111/joim.13552] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kidneys, by equilibrating the outputs to the inputs, are essential for maintaining the constant volume, pH, and electrolyte composition of the internal milieu. Inability to do so, either because of internal kidney dysfunction (primary alteration) or because of some external factors (secondary alteration), leads to pathologies of varying severity, leading to modification of these parameters and affecting the functions of other organs. Alterations of the functions of the collecting duct (CD), the most distal part of the nephron, have been extensively studied and have led to a better diagnosis, better management of the related diseases, and the development of therapeutic tools. Thus, dysfunctions of principal cell-specific transporters such as ENaC or AQP2 or its receptors (mineralocorticoid or vasopressin receptors) caused by mutations or by compounds present in the environment (lithium, antibiotics, etc.) have been demonstrated in a variety of syndromes (Liddle, pseudohypoaldosteronism type-1, diabetes insipidus, etc.) affecting salt, potassium, and water balance. In parallel, studies on specific transporters (H+ -ATPase, anion exchanger 1) in intercalated cells have revealed the mechanisms of related tubulopathies like distal renal distal tubular acidosis or Sjögren syndrome. In this review, we will recapitulate the mechanisms of most of the primary and secondary alteration of the ion transport system of the CD to provide a better understanding of these diseases and highlight how a targeted perturbation may affect many different pathways due to the strong crosstalk and entanglements between the different actors (transporters, cell types).
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
- Assistance Publique Hôpitaux de ParisHôpital BichâtParisFrance
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
| |
Collapse
|
12
|
AQP2 trafficking in health and diseases: an updated overview. Int J Biochem Cell Biol 2022; 149:106261. [DOI: 10.1016/j.biocel.2022.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
|
13
|
Vaz de Castro PAS, Bitencourt L, de Oliveira Campos JL, Fischer BL, Soares de Brito SBC, Soares BS, Drummond JB, Simões E Silva AC. Nephrogenic diabetes insipidus: a comprehensive overview. J Pediatr Endocrinol Metab 2022; 35:421-434. [PMID: 35146976 DOI: 10.1515/jpem-2021-0566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Nephrogenic diabetes insipidus (NDI) is characterized by the inability to concentrate urine that results in polyuria and polydipsia, despite having normal or elevated plasma concentrations of arginine vasopressin (AVP). In this study, we review the clinical aspects and diagnosis of NDI, the various etiologies, current treatment options and potential future developments. NDI has different clinical manifestations and approaches according to the etiology. Hereditary forms of NDI are mainly caused by mutations in the genes that encode key proteins in the AVP signaling pathway, while acquired causes are normally associated with specific drug exposure, especially lithium, and hydroelectrolytic disorders. Clinical manifestations of the disease vary according to the degree of dehydration and hyperosmolality, being worse when renal water losses cannot be properly compensated by fluid intake. Regarding the diagnosis of NDI, it is important to consider the symptoms of the patient and the diagnostic tests, including the water deprivation test and the baseline plasma copeptin measurement, a stable surrogate biomarker of AVP release. Without proper treatment, patients may developcomplications leading to high morbidity and mortality, such as severe dehydration and hypernatremia. In that sense, the treatment of NDI consists in decreasing the urine output, while allowing appropriate fluid balance, normonatremia, and ensuring an acceptable quality of life. Therefore, therapeutic options include nonpharmacological interventions, including sufficient water intake and a low-sodium diet, and pharmacological treatment. The main medications used for NDI are thiazide diuretics, nonsteroidal anti-inflammatory drugs (NSAIDs), and amiloride, used isolated or in combination.
Collapse
Affiliation(s)
- Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Letícia Bitencourt
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Lacerda de Oliveira Campos
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruna Luisa Fischer
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Stephanie Bruna Camilo Soares de Brito
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Beatriz Santana Soares
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Juliana Beaudette Drummond
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
14
|
Ernstsen CV, Login FH, Schelde AB, Therkildsen J, Møller‐Jensen J, Nørregaard R, Prætorius H, Nejsum LN. Acute pyelonephritis: Increased plasma membrane targeting of renal aquaporin-2. Acta Physiol (Oxf) 2022; 234:e13760. [PMID: 34978750 DOI: 10.1111/apha.13760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
AIM Aquaporin-2 (AQP2) shuttling between intracellular vesicles and the apical plasma membrane is pivotal in arginine vasopressin-mediated urine concentration and is dysregulated in multiple diseases associated with water balance disorders. Children and adults with acute pyelonephritis have a urinary concentration defect and studies in children revealed increased AQP2 excretion in the urine. This study aimed to analyse AQP2 trafficking in response to acute pyelonephritis. METHODS Immunofluorescence analysis was used to evaluate subcellular localization of AQP2 and AQP2-S256A (mimicking non-phosphorylated AQP2 on serine 256) in cells stimulated with bacterial lysates and of AQP2 and pS256-AQP2 in a mouse model at day 5 of acute pyelonephritis. Western blotting was used to evaluate AQP2 levels and AQP2 phosphorylation on S256 upon incubation with bacterial lysates. Time-lapse imaging was used to measure intracellular cAMP levels in response to incubation with bacterial lysates. RESULTS In cell cultures, lysates from both uropathogenic and nonpathogenic bacteria-mediated AQP2 plasma membrane targeting and increased AQP2 phosphorylation on serine 256 (pS256) without increasing cAMP levels. Both bacterial lysates induced plasma membrane targeting of AQP2-S256A. Immunofluorescence analysis of renal sections from mice after 5 days of acute pyelonephritis revealed apical plasma membrane targeting of AQP2 and pS256-AQP2 in inner medullary collecting ducts. CONCLUSION Uropathogenic bacteria induce AQP2 plasma membrane targeting in vitro and in vivo. cAMP levels were not elevated by the bacterial lysates and AQP2 plasma membrane targeting could occur without S256 phosphorylation. This may explain increased AQP2 excretion in the urine during acute pyelonephritis.
Collapse
Affiliation(s)
- Christina V. Ernstsen
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Department of Molecular Biology and Genetics Aarhus University Aarhus Denmark
| | | | | | | | - Jakob Møller‐Jensen
- Department of Biochemistry and Molecular Biology University of Southern Denmark Odense Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| | | | - Lene N. Nejsum
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| |
Collapse
|
15
|
Kikuchi H, Jung HJ, Raghuram V, Leo KT, Park E, Yang CR, Chou CL, Chen L, Knepper MA. Bayesian identification of candidate transcription factors for the regulation of Aqp2 gene expression. Am J Physiol Renal Physiol 2021; 321:F389-F401. [PMID: 34308668 DOI: 10.1152/ajprenal.00204.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aquaporin-2 (Aqp2) gene transcription is strongly regulated by vasopressin in the renal collecting duct. However, the transcription factors (TFs) responsible for the regulation of expression of Aqp2 remain largely unknown. We used Bayes' theorem to integrate several -omics data sets to stratify the 1,344 TFs present in the mouse genome with regard to probabilities of regulating Aqp2 gene transcription. Also, we carried out new RNA sequencing experiments mapping the time course of vasopressin-induced changes in the transcriptome of mpkCCD cells to identify TFs that change in tandem with Aqp2. The analysis identified 17 of 1,344 TFs that are most likely to be involved in the regulation of Aqp2 gene transcription. These TFs included eight that have been proposed in prior studies to play a role in Aqp2 regulation, viz., Cebpb, Elf1, Elf3, Ets1, Jun, Junb, Nfkb1, and Sp1. The remaining nine represent new candidates for future studies (Atf1, Irf3, Klf5, Klf6, Mef2d, Nfyb, Nr2f6, Stat3, and Nr4a1). Conspicuously absent is CREB (Creb1), which has been widely proposed to mediate vasopressin-induced regulation of Aqp2 gene transcription (Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Physiol Rev 82: 205-244, 2002; Kortenoeven ML, Fenton RA. Biochim Biophys Acta 1840: 1533-1549, 2014; Bockenhauer D, Bichet DG. Nat Rev Nephrol 11: 576-588, 2015; Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. Clin J Am Soc Nephrol 10: 135-146, 2015). Instead, another CREB-like TF, Atf1, ranked fourth among all TFs. RNA sequencing time-course experiments showed a rapid increase in Aqp2 mRNA, within 3 h of vasopressin exposure. This response was matched by an equally rapid increase in the abundance of the mRNA coding for Cebpb, which we have shown by chromatin immunoprecipitation-sequencing studies to bind downstream from the Aqp2 gene. The identified TFs provide a roadmap for future studies to understand regulation of Aqp2 gene expression.NEW & NOTEWORTHY Abetted by the advent of systems biology-based ("-omics") techniques in the 21st century, there has been a massive expansion of published data relevant to virtually every physiological question. The authors have developed a large-scale data integration approach based on the application of Bayes'' theorem. In the current work, they integrated 12 different -omics data sets to identify the transcription factors most likely to mediate vasopressin-dependent regulation of transcription of the aquaporin-2 gene.
Collapse
Affiliation(s)
- Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chun-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Salhadar K, Matthews A, Raghuram V, Limbutara K, Yang CR, Datta A, Chou CL, Knepper MA. Phosphoproteomic Identification of Vasopressin/cAMP/Protein Kinase A-Dependent Signaling in Kidney. Mol Pharmacol 2021; 99:358-369. [PMID: 32245905 PMCID: PMC8058505 DOI: 10.1124/mol.120.119602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
Water excretion by the kidney is regulated by the neurohypophyseal peptide hormone vasopressin through actions in renal collecting duct cells to regulate the water channel protein aquaporin-2. Vasopressin signaling is initiated by binding to a G-protein-coupled receptor called V2R, which signals through heterotrimeric G-protein subunit Gs α, adenylyl cyclase 6, and activation of the cAMP-regulated protein kinase (PKA). Signaling events coupling PKA activation and aquaporin-2 regulation were largely unknown until the advent of modern protein mass spectrometry techniques that allow proteome-wide quantification of protein phosphorylation changes (phosphoproteomics). This short review documents phosphoproteomic findings in collecting duct cells describing the response to V2R-selective vasopressin agonists and antagonists, the response to CRISPR-mediated deletion of PKA, results from in vitro phosphorylation studies using recombinant PKA, the response to the broad-spectrum kinase inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulphonamide), and the responses underlying lithium-induced nephrogenic diabetes insipidus. These phosphoproteomic data sets have been made available online for modeling vasopressin signaling and signaling downstream from other G-protein-coupled receptors. SIGNIFICANCE STATEMENT: New developments in protein mass spectrometry are facilitating progress in identification of signaling networks. Using mass spectrometry, it is now possible to identify and quantify thousands of phosphorylation sites in a given cell type (phosphoproteomics). The authors describe the use of phosphoproteomics technology to identify signaling mechanisms downstream from a G-protein-coupled receptor, the vasopressin V2 subtype receptor, and its role of the regulation and dysregulation of water excretion in the kidney. Data from multiple phosphoproteomic data sets are provided as web-based resources.
Collapse
Affiliation(s)
- Karim Salhadar
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Allanah Matthews
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Arnab Datta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| |
Collapse
|
17
|
Abstract
The hormone arginine vasopressin (AVP) is a nonapeptide synthesized by hypothalamic magnocellular nuclei and secreted from the posterior pituitary into the bloodstream. It binds to AVP receptor 2 in the kidney to promote the insertion of aquaporin channels (AQP2) and antidiuretic responses. AVP secretion deficits produce central diabetes insipidus (CDI), while renal insensitivity to the antidiuretic effect of AVP causes nephrogenic diabetes insipidus (NDI). Hereditary and acquired forms of CDI and NDI generate hypotonic polyuria, polydipsia, hyperosmolality, and hypernatremia. The AVP mutant (Brattleboro) rat is the principal animal model of hereditary CDI, while neurohypophysectomy, pituitary stalk compression, hypophysectomy, and mediobasal hypothalamic lesions produce acquired CDI. In animals, hereditary NDI is mainly caused by mutations in AVP2R or AQP2 genes, while acquired NDI is most frequently induced by lithium. We report here on the determinants of the intake and excretion of water and mineral salts and on the different types of DI in humans. We then describe the hydromineral characteristics of these animal models and the responses observed after administration of hypertonic NaCl or when they are fed with low-sodium diets. Finally, we report on the effects of drugs such as AVP analogues and/or oxytocin, another neuropeptide that increases sodium excretion in animal models and humans with CDI, and sildenafil, a compound that increases the expression and function of AQP2 channels in animal models and humans with NDI.
Collapse
Affiliation(s)
- Javier Mahía
- Department of Psychobiology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain
| | - Antonio Bernal
- Department of Psychobiology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain
| |
Collapse
|
18
|
Abstract
In the pregnant patient, hypotonic polyuria in the setting of elevated serum osmolality and polydipsia should narrow the differential to causes related to diabetes insipidus (DI). Gestational DI, also called transient DI of pregnancy, is a distinct entity, unique from central DI or nephrogenic DI which may both become exacerbated during pregnancy. These three different processes relate to vasopressin, where increased metabolism, decreased production or altered renal sensitivity to this neuropeptide should be considered. Gestational DI involves progressively rising levels of placental vasopressinase throughout pregnancy, resulting in decreased endogenous vasopressin and resulting hypotonic polyuria worsening through the pregnancy. Gestational DI should be distinguished from central and nephrogenic DI that may be seen during pregnancy through use of clinical history, urine and serum osmolality measurements, response to desmopressin and potentially, the newer, emerging copeptin measurement. This review focuses on a brief overview of osmoregulatory and vasopressin physiology in pregnancy and how this relates to the clinical presentation, pathophysiology, diagnosis and management of gestational DI, with comparisons to the other forms of DI during pregnancy. Differentiating the subtypes of DI during pregnancy is critical in order to provide optimal management of DI in pregnancy and avoid dehydration and hypernatremia in this vulnerable population.
Collapse
Affiliation(s)
- Sonia Ananthakrishnan
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine/Boston Medical Center, 72 Concord Street, Evans 122, Boston, MA, 02118, United States.
| |
Collapse
|
19
|
Monaghan TF, Miller CD, Agudelo CW, Rahman SN, Everaert K, Birder LA, Wein AJ, Weiss JP, Lazar JM. Cardiovascular risk independently predicts small functional bladder storage capacity. Int Urol Nephrol 2020; 53:35-39. [PMID: 32808119 DOI: 10.1007/s11255-020-02616-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE We aimed to determine the potential relationship between atherosclerotic cardiovascular disease (ASCVD) score, which equates to 10-year risk of atherosclerotic cardiovascular events, and functional bladder capacity (FBC) among men in the outpatient urology setting. METHODS We secondarily analyzed voiding diaries from men aged 40 to 79 years with nocturia. Patients with a history of cardiovascular disease or who had nocturnal polyuria were excluded. Patients were stratified by whether they met the high-risk ASCVD threshold (≥ 20%) following current cardiology consensus guidelines and assessed for the presence of small FBC (24-h maximum voided volume ≤ 200 ml). Logistic regression analyses were employed to explore associations between small FBC and ASCVD. RESULTS Eighty-four men (median ASCVD score 18.4 [IQR 12.8-26.9] %, age 66 [61-71] years, body mass index [BMI] 29.4 [26.4-32.7] kg/m2) were included, of whom 36 (42.9%) were high-risk and 48 (57.1%) fell below the high-risk threshold. High-risk patients were more likely to have small FBC (23 [63.9%] vs. 14 [29.2%], p = 0.002). ASCVD risk predicted small FBC on univariate analysis (p = 0.002). No such effect was observed with age (p = 0.116), BMI (p = 0.523), or benign prostatic obstruction (p = 0.180). The association between ASCVD risk and small FBC persisted on multivariate analysis after controlling for BMI and benign prostatic obstruction (p = 0.002). No significant predictors of small FBC were observed when age, a major determinant of ASCVD risk and independent correlate of small FBC, was substituted for ASCVD score (p = 0.108). CONCLUSIONS Small FBC is related to a higher predicted cardiovascular event rate in men with nocturia.
Collapse
Affiliation(s)
- Thomas F Monaghan
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA.
| | - Connelly D Miller
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| | - Christina W Agudelo
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| | - Syed N Rahman
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| | - Karel Everaert
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Lori A Birder
- Departments of Medicine and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alan J Wein
- Division of Urology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey P Weiss
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| | - Jason M Lazar
- Division of Cardiovascular Medicine, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
20
|
Kaiser M, Edemir B. Lithium Chloride and GSK3 Inhibition Reduce Aquaporin-2 Expression in Primary Cultured Inner Medullary Collecting Duct Cells Due to Independent Mechanisms. Cells 2020; 9:cells9041060. [PMID: 32340354 PMCID: PMC7226097 DOI: 10.3390/cells9041060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
Abstract
Lithium chloride (LiCl) is a widely used drug for the treatment of bipolar disorders, but as a side effect, 40% of the patients develop diabetes insipidus. LiCl affects the activity of the glycogen synthase kinase 3 (GSK3), and mice deficient for GSK3β showed a reduction in the urine concentration capability. The cellular and molecular mechanisms are not fully understood. We used primary cultured inner medullary collecting duct cells to analyze the underlying mechanisms. LiCl and the inhibitor of GSK3 (SB216763) induced a decrease in the aquaporin-2 (Aqp2) protein level. LiCl induced downregulation of Aqp2 mRNA expression while SB216763 had no effect and TWS119 led to increase in expression. The inhibition of the lysosomal activity with bafilomycin or chloroquine prevented both LiCl- and SB216763-mediated downregulation of Aqp2 protein expression. Bafilomycin and chloroquine induced the accumulation of Aqp2 in lysosomal structures, which was prevented in cells treated with dibutyryl cyclic adenosine monophosphate (dbcAMP), which led to phosphorylation and membrane localization of Aqp2. Downregulation of Aqp2 was also evident when LiCl was applied together with dbcAMP, and dbcAMP prevented the SB216763-induced downregulation. We showed that LiCl and SB216763 induce downregulation of Aqp2 via different mechanisms. While LiCl also affected the mRNA level, SB216763 induced lysosmal degradation. Specific GSK3β inhibition had an opposite effect, indicating a more complex regulatory mechanism.
Collapse
Affiliation(s)
- Marc Kaiser
- Medizinische Klinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, 48143 Münster, Germany;
| | - Bayram Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-345-557-4890; Fax: +49-345-557-2950
| |
Collapse
|
21
|
Abstract
Aquaporin (AQP) water channels are important in the function of the kidney. Constitutively expressed AQP1 in the proximal tubule and descending limb is important in normal fluid absorption and in the counter-current multiplication system. The vasopressin-regulated shuttling of AQP2 is essential in antidiuresis and the regulation of water balance. Genetic damage to AQPs, or pathological changes in expression or function, impair renal water handling. The most striking examples of this involve disruption of AQP2 function, which can result in profound nephrogenic diabetes insipidus. Aquaporin 1 is present in capillaries and venules and appears to be important in peritoneal dialysis, where it appears to represent the “ultrasmall pores” of the three-pore model. Decreased expression or function of AQP1 may be responsible for some cases of ultrafiltration failure, but further evidence will be required to establish whether this is the case.
Collapse
Affiliation(s)
- David Marples
- School of Biomedical Science, University of Leeds, United Kingdom
| |
Collapse
|
22
|
Nielsen S. Aquaporin Water Channels in the Kidney: Localization and Regulation. Perit Dial Int 2020. [DOI: 10.1177/089686089601601s03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Søren Nielsen
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
23
|
Leader J, Bedford J, Walker RJ. Drowning in data: early responses of renal cortical collecting duct cells to lithium. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:S332. [PMID: 32016050 DOI: 10.21037/atm.2019.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John Leader
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Jennifer Bedford
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Robert J Walker
- Department of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Jobbagy S, Vitturi DA, Salvatore SR, Pires MF, Rowart P, Emlet DR, Ross M, Hahn S, St. Croix C, Wendell SG, Subramanya AR, Straub AC, Tan RJ, Schopfer FJ. Nrf2 activation protects against lithium-induced nephrogenic diabetes insipidus. JCI Insight 2020; 5:128578. [PMID: 31941842 PMCID: PMC7030822 DOI: 10.1172/jci.insight.128578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lithium (Li) is the mainstay pharmacotherapeutic mood stabilizer in bipolar disorder. Its efficacious use is complicated by acute and chronic renal side effects, including nephrogenic diabetes insipidus (NDI) and progression to chronic kidney disease (CKD). The nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway senses and coordinates cellular responses to oxidative and electrophilic stress. Here, we identify that graded genetic activation of Nrf2 protects against Li-induced NDI (Li-NDI) and volume wasting via an aquaporin 2-independent mechanism. Renal Nrf2 activity is differentially expressed on functional segments of the nephron, and its activation along the distal tubule and collecting duct directly modulates ion transporter expression, mimicking paradoxical effects of diuretics in mitigating Li-NDI. In addition, Nrf2 reduces cyclooxygenase expression and vasoactive prostaglandin biosynthesis. Pharmacologic activation of Nrf2 confers protective effects, confirming this pathway as a potentially novel druggable target for the prevention of acute and chronic renal sequelae of Li therapy.
Collapse
Affiliation(s)
| | - Dario A. Vitturi
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | | | | | - David R. Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine
| | | | - Scott Hahn
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology
- Health Sciences Metabolomics and Lipidomics Core, and
| | - Arohan R. Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | - Roderick J. Tan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
25
|
Emeruwa CJ, Gordon DJ, Weiss JP. Nocturia: Evaluation and Management. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Abstract
PURPOSE OF REVIEW Nocturia is defined as awakening due to the desire to void during a period of intended sleep. The pathophysiology of nocturia is multifactorial and management remains a challenge. Herein, we provide an overview of the management strategies for nocturia and summarize the existing evidence for treatment of nocturia across the condition's broad etiologic categories: nocturnal polyuria, diminished bladder capacity, and global polyuria. RECENT FINDINGS Treatment should begin with behavioral modification. A high level of evidence supports the efficacy of desmopressin in the treatment of nocturnal polyuria. Data supporting the efficacy of α-blockers, antimuscarinics, and surgical bladder outlet procedures in the treatment of nocturia remains limited. Treatment options for nocturia are determined by underlying mechanism. Desmopressin is effective in treating nocturnal polyuria. Surgical intervention, α-blockers, and antimuscarinics may improve nocturia when associated with lower urinary tract symptoms or overactive bladder in the setting of diminished bladder capacity.
Collapse
Affiliation(s)
- Danielle J Gordon
- Department of Urology, SUNY Downstate College of Medicine, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA.
| | - Curran J Emeruwa
- Department of Urology, SUNY Downstate College of Medicine, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| | - Jeffrey P Weiss
- Department of Urology, SUNY Downstate College of Medicine, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| |
Collapse
|
27
|
Su W, Cao R, Zhang XY, Guan Y. Aquaporins in the kidney: physiology and pathophysiology. Am J Physiol Renal Physiol 2019; 318:F193-F203. [PMID: 31682170 DOI: 10.1152/ajprenal.00304.2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The kidney is the central organ involved in maintaining water and sodium balance. In human kidneys, nine aquaporins (AQPs), including AQP1-8 and AQP11, have been found and are differentially expressed along the renal tubules and collecting ducts with distinct and critical roles in the regulation of body water homeostasis and urine concentration. Dysfunction and dysregulation of these AQPs result in various water balance disorders. This review summarizes current understanding of physiological and pathophysiological roles of AQPs in the kidney, with a focus on recent progress on AQP2 regulation by the nuclear receptor transcriptional factors. This review also provides an overview of AQPs as clinical biomarkers and therapeutic targets for renal diseases.
Collapse
Affiliation(s)
- Wen Su
- Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Rong Cao
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Xiao-Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Tingskov SJ, Mutsaers HAM, Nørregaard R. Estrogen regulates aquaporin-2 expression in the kidney. VITAMINS AND HORMONES 2019; 112:243-264. [PMID: 32061343 DOI: 10.1016/bs.vh.2019.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Estrogens are primarily identified as sex hormones that, for a long time, have been known as important regulators of female reproductive physiology. However, our understanding of the role of estrogens has changed over the past years. It is now well accepted that estrogens are also involved in other physiological and pathological processes in both genders. This is due to the fact that estrogen can act both local as well as on a systemic level. Next to its role in reproductive physiology, there is accumulating evidence that estrogen influences multiple systems involved in water homeostasis. This chapter will delineate the regulatory effects of estrogen on the water channel aquaporin-2 (AQP2) found in the renal collecting duct. We will first provide an introduction to estrogen, the estrogen receptors and their role in renal physiology as well as describe the effect of selective estrogen receptor modulators (SERMs) on the kidney. Subsequently, we will focus on how estrogen and SERMs influence water balance and regulate AQP2 expression in principal cells of the collecting duct. Finally, we will describe how estrogen regulates AQP2 functionality in other organ systems.
Collapse
Affiliation(s)
| | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
29
|
Şenocak Taşçi E, Eralp H, Kayataş K. LITHIUM-INDUCED NEPHROGENIC DIABETES INSIPIDUS RESPONSIVE TO DESMOPRESSIN. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; 15:270-271. [PMID: 31508188 DOI: 10.4183/aeb.2019.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nephrogenic diabetes insipidus (NDI) is the most common renal side effect seen with lithium therapy. Persisting cases after the cessation of the therapy may be seen when lithium therapy is continued for too long. Although desmopressin treatment is not one of the accepted treatment modalities for NDI, there are few reports using desmopressin treatment in unresponsive cases. Herein, we reported the fourth lithium-induced NDI case in the literature responsive to desmopressin therapy.
Collapse
Affiliation(s)
- E Şenocak Taşçi
- Department of Internal Medicine, Haydarpasa Numune Research and Teaching Hospital, Istanbul, Turkey
| | - H Eralp
- Department of Internal Medicine, Haydarpasa Numune Research and Teaching Hospital, Istanbul, Turkey
| | - K Kayataş
- Department of Internal Medicine, Haydarpasa Numune Research and Teaching Hospital, Istanbul, Turkey
| |
Collapse
|
30
|
Abstract
Diabetes insipidus (DI) is a disorder characterized by excretion of large amounts of hypotonic urine. Central DI results from a deficiency of the hormone arginine vasopressin (AVP) in the pituitary gland or the hypothalamus, whereas nephrogenic DI results from resistance to AVP in the kidneys. Central and nephrogenic DI are usually acquired, but genetic causes must be evaluated, especially if symptoms occur in early childhood. Central or nephrogenic DI must be differentiated from primary polydipsia, which involves excessive intake of large amounts of water despite normal AVP secretion and action. Primary polydipsia is most common in psychiatric patients and health enthusiasts but the polydipsia in a small subgroup of patients seems to be due to an abnormally low thirst threshold, a condition termed dipsogenic DI. Distinguishing between the different types of DI can be challenging and is done either by a water deprivation test or by hypertonic saline stimulation together with copeptin (or AVP) measurement. Furthermore, a detailed medical history, physical examination and imaging studies are needed to ensure an accurate DI diagnosis. Treatment of DI or primary polydipsia depends on the underlying aetiology and differs in central DI, nephrogenic DI and primary polydipsia.
Collapse
|
31
|
Sung CC, Chen L, Limbutara K, Jung HJ, Gilmer GG, Yang CR, Lin SH, Khositseth S, Chou CL, Knepper MA. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus. Kidney Int 2019; 96:363-377. [PMID: 31146973 PMCID: PMC6650374 DOI: 10.1016/j.kint.2019.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Lithium salts, used for treating bipolar disorder, frequently induce nephrogenic diabetes insipidus (NDI) thereby limiting therapeutic success. NDI is associated with loss of expression of the gene coding for the molecular water channel, aquaporin-2, in the renal collecting duct (CD). Here, we use systems biology methods in a well-established rat model of lithium-induced NDI to identify signaling pathways activated at the onset of polyuria. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts (CCDs) of rats after 72 hours without or with initiation of lithium chloride administration. Transcriptome-wide changes in mRNA abundances were mapped to gene sets associated with curated canonical signaling pathways, showing evidence for activation of NF-κB signaling with induction of genes coding for multiple chemokines and most components of the Major Histocompatibility Complex Class I antigen-presenting complex. Administration of anti-inflammatory doses of dexamethasone to lithium chloride-treated rats countered the loss of aquaporin-2. RNA-Seq also confirmed prior evidence of a shift from quiescence into the cell cycle with arrest. Time course studies demonstrated an early (12 hour) increase in multiple immediate early response genes including several transcription factors. Protein mass spectrometry in microdissected CCDs provided corroborative evidence and identified decreased abundance of several anti-oxidant proteins. Thus, in the context of prior observations, our study can be best explained by a model in which lithium increases ERK activation leading to induction of NF-κB signaling and an inflammatory-like response that represses Aqp2 transcription.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabrielle G Gilmer
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sookkasem Khositseth
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Pediatrics, Faculty of Medicine, Thammasat University (Rangsit Campus), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
32
|
Nguyen AK, Goering PL, Reipa V, Narayan RJ. Toxicity and photosensitizing assessment of gelatin methacryloyl-based hydrogels photoinitiated with lithium phenyl-2,4,6-trimethylbenzoylphosphinate in human primary renal proximal tubule epithelial cells. Biointerphases 2019; 14:021007. [PMID: 31053032 PMCID: PMC6499620 DOI: 10.1116/1.5095886] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Gelatin methacryloyl (GelMA) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator are commonly used in combination to produce a photosensitive polymer but there are concerns that must be addressed: the presence of unreacted monomer is well known to be cytotoxic, and lithium salts are known to cause acute kidney injury. In this study, acellular 10% GelMA hydrogels cross-linked with different LAP concentrations and cross-linking illumination times were evaluated for their cytotoxicity, photosensitizing potential, and elastic moduli. Alamar Blue and CyQuant Direct Cell viability assays were performed on human primary renal proximal tubule epithelial cells (hRPTECs) exposed to extracts of each formulation. UV exposure during cross-linking was not found to affect extract cytotoxicity in either assay. LAP concentration did not affect extract cytotoxicity as determined by the Alamar Blue assay but reduced hRPTEC viability in the CyQuant Direct cell assay. Photocatalytic activity of formulation extracts toward NADH oxidation was used as a screening method for photosensitizing potential; longer UV exposure durations yielded extracts with less photocatalytic activity. Finally, elastic moduli determined using nanoindentation was found to plateau to approximately 20-25 kPa after exposure to 342 mJ/cm2 at 2.87 mW of UV-A exposure regardless of LAP concentration. LAP at concentrations commonly used in bioprinting (<0.5% w/w) was not found to be cytotoxic although the differences in cytotoxicity evaluation determined from the two viability assays imply cell membrane damage and should be investigated further. Complete cross-linking of all formulations decreased photocatalytic activity while maintaining predictable final elastic moduli.
Collapse
Affiliation(s)
| | - Peter L. Goering
- Division of Biology, Chemistry, and Materials Science, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, Maryland 20993
| | - Vytas Reipa
- Biosystems and Biomaterials Division, National Institute for Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899
| | - Roger J. Narayan
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University, Campus Box 7115, 911 Oval Drive, Raleigh, North Carolina 27695
| |
Collapse
|
33
|
Verkerk AO, Lodder EM, Wilders R. Aquaporin Channels in the Heart-Physiology and Pathophysiology. Int J Mol Sci 2019; 20:ijms20082039. [PMID: 31027200 PMCID: PMC6514906 DOI: 10.3390/ijms20082039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0–AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. This review summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Abstract
Nephrogenic diabetes insipidus (NDI) results from the inability of the late distal tubules and collecting ducts to respond to vasopressin. The lack of ability to concentrate urine results in polyuria and polydipsia. Primary and acquired forms of NDI exist in children. Congenital NDI is a result of mutation in AVPR2 or AQP2 genes. Secondary NDI is associated with electrolyte abnormalities, obstructive uropathy, or certain medications. Management of NDI can be difficult with only symptomatic treatment available, using low-solute diet, diuretics, and prostaglandin inhibitors.
Collapse
Affiliation(s)
- Catherine Kavanagh
- Department of Pediatric Nephrology, Columbia University Medical Center, 3959 Broadway, CHN 1115, New York, NY 10032, USA
| | - Natalie S Uy
- Department of Pediatric Nephrology, Columbia University Medical Center, 3959 Broadway, CHN 1115, New York, NY 10032, USA.
| |
Collapse
|
35
|
Abstract
Besides its efficiency, lithium has a narrow therapeutic index and can result in considerable toxicity. Among the potential side effects, two types of renal toxicity are observed: a decreased renal concentrating ability and a chronic renal failure. Lithium-induced polyuria is frequent, estimated to affect up to 40% of patients, and develops usually early. It may be irreversible, especially if the treatment has been prescribed for more than 15 years. A chronic renal failure is observed in patients treated for more than 10 to 20 years. Its prevalence is estimated at 12% after 19 years of treatment. Some patients (0.5%) may reach end stage renal disease. The major risk factor is the duration of exposure to lithium. Discussion about stopping or not lithium in case of renal failure needs multidisciplinary expertise and depends on psychiatric status and renal function.
Collapse
Affiliation(s)
- Aude Servais
- Service de néphrologie adulte, hôpital Necker, université Paris Descartes, 149, rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
36
|
Kass-Iliyya A, Hashim H. Nocturnal polyuria: Literature review of definition, pathophysiology, investigations and treatment. JOURNAL OF CLINICAL UROLOGY 2019. [DOI: 10.1177/2051415818756792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nocturnal polyuria (NP) is characterised by increased urine production overnight in comparison to daytime. It has significant adverse events in adults including reduced quality of life, increased risk of falls and increased mortality.Although NP can be a manifestation of other significant conditions like heart failure and sleep apnoea, there are lots of unanswered questions about NP. What is the underlying pathophysiology? Is NP a physiological manifestation of ageing? Is the circadian change of vasopressin release the primary pathology? Or is it a secondary phenomenon to a low diurnal production of urine? Is the primary pathology at the kidney level or is there another humoral, cardiac, or endovascular element? In this article, we summarise the available English-language literature on the subject of NP, including its epidemiology, pathogenesis, diagnosis and treatment.Level of evidence: Not applicable for this multicentre audit.
Collapse
Affiliation(s)
- Antoine Kass-Iliyya
- Urology Department, Bristol Urological Institute, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Hashim Hashim
- Urology Department, Bristol Urological Institute, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
37
|
Abstract
Body fluid homeostasis is essential for normal life. In the maintenance of water balance, the most important factor and regulated process is the excretory function of the kidneys. The kidneys are capable to compensate not only the daily fluctuations of water intake but also the consequences of fluid loss (respiration, perspiration, sweating, hemorrhage). The final volume and osmolality of the excreted urine is set in the collecting duct via hormonal regulation. The hormone of water conservation is the vasopressin (AVP), and a large volume of urine is produced and excreted in the absence of AVP secretion or if AVP is ineffective in the kidneys. The aquaporin-2 water channel (AQP2) is expressed in the principal cells, and it plays an essential role in the reabsorption of water in the collecting ducts via type 2 vasopressin receptor (V2R)-mediated mechanism. If neural or hormonal regulation fails to operate the normal function of AVP-V2R-AQP2 system, it can result in various diseases such as diabetes insipidus (DI) or nephrogenic syndrome of inappropriate diuresis (NSIAD). The DI is characterized by excessive production of hyposmotic urine ("insipidus" means tasteless) due to the inability of the kidneys to concentrate urine. In this chapter, we focus and discuss the pathophysiology of nephrogenic DI (NDI) and the potential therapeutic interventions in the light of the current experimental data.
Collapse
Affiliation(s)
- András Balla
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
38
|
Zhang Y, Riquier-Brison A, Liu T, Huang Y, Carlson NG, Peti-Peterdi J, Kishore BK. Genetic Deletion of P2Y 2 Receptor Offers Long-Term (5 Months) Protection Against Lithium-Induced Polyuria, Natriuresis, Kaliuresis, and Collecting Duct Remodeling and Cell Proliferation. Front Physiol 2018; 9:1765. [PMID: 30618788 PMCID: PMC6304354 DOI: 10.3389/fphys.2018.01765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 11/15/2022] Open
Abstract
Chronic lithium administration for the treatment of bipolar disorder leads to nephrogenic diabetes insipidus (NDI), characterized by polyuria, natriuresis, kaliuresis, and collecting duct remodeling and cell proliferation among other features. Previously, using a 2-week lithium-induced NDI model, we reported that P2Y2 receptor (R) knockout mice are significantly resistant to polyuria, natriuresis, kaliuresis, and decrease in AQP2 protein abundance in the kidney relative to wild type mice. Here we show this protection is long-lasting, and is also associated with significant amelioration of lithium-induced collecting duct remodeling and cell proliferation. Age-matched wild type and knockout mice were fed regular (n = 5/genotype) or lithium-added (40 mmol/kg chow; n = 10/genotype) diet for 5 months and euthanized. Water intake, urine output and osmolality were monitored once in every month. Salt blocks were provided to mice on lithium-diet to prevent sodium loss. At the end of 5 months mice were euthanized and serum and kidney samples were analyzed. There was a steady increase in lithium-induced polyuria, natriuresis and kaliuresis in wild type mice over the 5-month period. Increases in these urinary parameters were very low in lithium-fed knockout mice, resulting in significantly widening differences between the wild type and knockout mice. Terminal AQP2 and NKCC2 protein abundances in the kidney were significantly higher in lithium-fed knockout vs. wild type mice. There were no significant differences in terminal serum lithium or sodium levels between the wild type and knockout mice. Confocal immunofluorescence microscopy revealed that lithium-induced marked remodeling of collecting duct with significantly increased proportion of [H+]-ATPase-positive intercalated cells and decreased proportion of AQP2-positive principal cells in the wild type, but not in knockout mice. Lithium-induced collecting duct cell proliferation (indicated by Ki67 labeling), was significantly lower in knockout vs. wild type mice. This is the first piece of evidence that purinergic signaling is potentially involved in lithium-induced collecting duct remodeling and cell proliferation. Our results demonstrate that genetic deletion of P2Y2-R protects against the key structural and functional alterations in Li-induced NDI, and underscore the potential utility of targeting this receptor for the treatment of NDI in bipolar patients on chronic lithium therapy.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Anne Riquier-Brison
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Tao Liu
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Yufeng Huang
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Noel G. Carlson
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
| | - János Peti-Peterdi
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Bellamkonda K. Kishore
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
| |
Collapse
|
39
|
Nawata CM, Pannabecker TL. Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. J Comp Physiol B 2018; 188:899-918. [PMID: 29797052 PMCID: PMC6186196 DOI: 10.1007/s00360-018-1164-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023]
Abstract
Mammalian kidneys play an essential role in balancing internal water and salt concentrations. When water needs to be conserved, the renal medulla produces concentrated urine. Central to this process of urine concentration is an osmotic gradient that increases from the corticomedullary boundary to the inner medullary tip. How this gradient is generated and maintained has been the subject of study since the 1940s. While it is generally accepted that the outer medulla contributes to the gradient by means of an active process involving countercurrent multiplication, the source of the gradient in the inner medulla is unclear. The last two decades have witnessed advances in our understanding of the urine-concentrating mechanism. Details of medullary architecture and permeability properties of the tubules and vessels suggest that the functional and anatomic relationships of these structures may contribute to the osmotic gradient necessary to concentrate urine. Additionally, we are learning more about the membrane transporters involved and their regulatory mechanisms. The role of medullary architecture and membrane transporters in the mammalian urine-concentrating mechanism are the focus of this review.
Collapse
Affiliation(s)
- C Michele Nawata
- Department of Physiology, Banner University Medical Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5051, USA.
| | - Thomas L Pannabecker
- Department of Physiology, Banner University Medical Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5051, USA
| |
Collapse
|
40
|
Channavajjhala SK, Bramley R, Peltz T, Oosthuyzen W, Jia W, Kinnear S, Sampson B, Martin N, Hall IP, Bailey MA, Dear JW, Glover M. Urinary Extracellular Vesicle Protein Profiling and Endogenous Lithium Clearance Support Excessive Renal Sodium Wasting and Water Reabsorption in Thiazide-Induced Hyponatremia. Kidney Int Rep 2018; 4:139-147. [PMID: 30596177 PMCID: PMC6308385 DOI: 10.1016/j.ekir.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction Thiazide diuretics are among the most widely used antihypertensive medications worldwide. Thiazide-induced hyponatremia (TIH) is 1 of their most clinically significant adverse effects. A priori TIH must result from excessive saliuresis and/or water reabsorption. We hypothesized that pathways regulating the thiazide-sensitive sodium-chloride cotransporter NCC and the water channel aquaporin-2 (AQP2) may be involved. Our aim was to assess whether patients with TIH would show evidence of altered NCC and AQP2 expression in urinary extracellular vesicles (UEVs), and also whether abnormalities of renal sodium reabsorption would be evident using endogenous lithium clearance (ELC). Methods Blood and urine samples were donated by patients admitted to hospital with acute symptomatic TIH, after recovery to normonatremia, and also from normonatremic controls on and off thiazides. Urinary extracellular vesicles were isolated and target proteins evaluated by western blotting and by nanoparticle tracking analysis. Endogenous lithium clearance was assessed by inductively coupled plasma mass spectrometry. Results Analysis of UEVs by western blotting showed that patients with acute TIH displayed reduced total NCC and increased phospho-NCC and AQP2 relative to appropriate control groups; smaller differences in NCC and AQP2 expression persisted after recovery from TIH. These findings were confirmed by nanoparticle tracking analysis. Renal ELC was lower in acute TIH compared to that in controls and convalescent case patients. Conclusion Reduced NCC expression and increased AQP2 expression would be expected to result in saliuresis and water reabsorption in TIH patients. This study raises the possibility that UEV analysis may be of diagnostic utility in less clear-cut cases of thiazide-associated hyponatremia, and may help to identify patients at risk for TIH before thiazide initiation.
Collapse
Affiliation(s)
- Sarath K Channavajjhala
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK.,NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| | - Roger Bramley
- Trace Element Laboratory, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Theresa Peltz
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Wilna Oosthuyzen
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Wenjing Jia
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK.,NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| | - Sue Kinnear
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK.,NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| | - Barry Sampson
- Trace Element Laboratory, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Nick Martin
- Trace Element Laboratory, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Ian P Hall
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK.,NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| | - Matthew A Bailey
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - James W Dear
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mark Glover
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK.,NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| |
Collapse
|
41
|
Tingskov SJ, Kwon TH, Frøkiær J, Nørregaard R. Tamoxifen Decreases Lithium-Induced Natriuresis in Rats With Nephrogenic Diabetes Insipidus. Front Physiol 2018; 9:903. [PMID: 30050465 PMCID: PMC6052323 DOI: 10.3389/fphys.2018.00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Lithium is widely used in the treatment of bipolar affective disorders, but often causes nephrogenic diabetes insipidus (NDI), a condition characterized by a severe urinary concentrating defect. Lithium-induced NDI is associated with dysregulation of the amiloride-sensitive epithelial sodium channel (ENaC), which is essential for renal sodium reabsorption. Sex hormones have been shown to affect the expression of aquaporin-2 (AQP2) and sodium transporters. Therefore, we evaluated whether tamoxifen (TAM), a selective estrogen receptor modulator (SERM), would affect lithium-induced dysregulation of ENaC subunits and natriuresis. Rats were fed with lithium-containing food for 2 weeks to induce NDI and natriuresis. TAM was administered daily via gastric gavage after 1 week of lithium administration. Lithium treatment alone resulted in increased urinary sodium excretion and significant reduction of βENaC and γENaC at both RNA and protein levels. In addition, the plasma sodium level reduced after lithium treatment. Administration of TAM prevented increased urinary sodium excretion as well as attenuated the downregulation of βENaC and γENaC. Consistent with these findings, immunohistochemistry (IHC) showed stronger labeling of βENaC and γENaC subunits in the apical domain of the collecting duct cells in the cortical tissue of lithium-fed rats treated with TAM. Other major sodium transporters including NaPi-2, NKCC2, Na/K-ATPase, and NHE3, are believed not to have an effect on the increased urinary sodium excretion since their expression increased or was unchanged after treatment with lithium. In conclusion, the results demonstrated that TAM rescued the adverse effects of the lithium-induced increase in fractional excretion of sodium after the establishment of lithium-induced NDI.
Collapse
Affiliation(s)
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Huang J, Montani JP, Verrey F, Feraille E, Ming XF, Yang Z. Arginase-II negatively regulates renal aquaporin-2 and water reabsorption. FASEB J 2018; 32:5520-5531. [PMID: 29718707 PMCID: PMC6405175 DOI: 10.1096/fj.201701209r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type-II l-arginine:ureahydrolase, arginase-II (Arg-II), is abundantly
expressed in the kidney. The physiologic role played by Arg-II in the kidney remains
unknown. Herein, we report that in mice that are deficient in Arg-II
(Arg-II−/−), total and membrane-associated aquaporin-2
(AQP2) protein levels were significantly higher compared with wild-type (WT)
controls. Water deprivation enhanced Arg-II expression, AQP2 levels, and membrane
association in collecting ducts. Effects of water deprivation on AQP2 were stronger
in Arg-II−/− mice than in WT mice. Accordingly, a decrease
in urine volume and an increase in urine osmolality under water deprivation were more
pronounced in Arg-II−/− mice than in WT mice, which
correlated with a weaker increase in plasma osmolality in
Arg-II−/− mice. There was no difference in vasopressin
release under water deprivation conditions between either genotype of mice. Although
total AQP2 and phosphorylated AQP2-S256 levels (mediated by PKA) in kidneys under
water deprivation conditions were significantly higher in
Arg-II−/− mice compared with WT animals, there is no
difference in the ratio of AQP2-S256:AQP2. In cultured mouse collecting duct
principal mCCDcl1 cells, expression of both Arg-II and AQP2 were enhanced
by the vasopressin type 2 receptor agonist, desamino-d-arginine
vasopressin (dDAVP). Silencing Arg-II enhanced the expression and membrane
association of AQP2 by dDAVP without influencing cAMP levels. In conclusion,
in vivo and in vitro experiments demonstrate
that Arg-II negatively regulates AQP2 and the urine-concentrating capability in
kidneys via a mechanism that is not associated with the modulation
of the cAMP pathway.—Huang, J., Montani, J.-P., Verrey, F., Feraille, E.,
Ming, X.-F., Yang, Z. Arginase-II negatively regulates renal aquaporin-2 and water
reabsorption.
Collapse
Affiliation(s)
- Ji Huang
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - Jean-Pierre Montani
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - François Verrey
- Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Eric Feraille
- Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland.,Department of Cell Biology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Xiu-Fen Ming
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - Zhihong Yang
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| |
Collapse
|
43
|
Macau RA, da Silva TN, Silva JR, Ferreira AG, Bravo P. Use of acetazolamide in lithium-induced nephrogenic diabetes insipidus: a case report. Endocrinol Diabetes Metab Case Rep 2018; 2018:EDM-17-0154. [PMID: 29479446 PMCID: PMC5820740 DOI: 10.1530/edm-17-0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 11/20/2022] Open
Abstract
Lithium-induced nephrogenic diabetes insipidus (Li-NDI) is a rare and difficult-to-treat condition. A study in mice and two recent papers describe the use of acetazolamide in Li-NDI in 7 patients (a case report and a 6 patient series). We describe the case of a 63-year-old woman with bipolar disorder treated with lithium and no previous history of diabetes insipidus. She was hospitalized due to a bowel obstruction and developed severe dehydration after surgery when she was water deprived. After desmopressin administration and unsuccessful thiazide and amiloride treatment, acetazolamide was administrated to control polyuria and hydroelectrolytic disorders without significant side effects. To our knowledge, this is the third publication on acetazolamide use in Li-NDI patients.
Collapse
Affiliation(s)
| | | | | | | | - Pedro Bravo
- Nephrology Department, Hospital Garcia de Orta
| |
Collapse
|
44
|
Tingskov SJ, Hu S, Frøkiær J, Kwon TH, Wang W, Nørregaard R. Tamoxifen attenuates development of lithium-induced nephrogenic diabetes insipidus in rats. Am J Physiol Renal Physiol 2018; 314:F1020-F1025. [PMID: 29357422 DOI: 10.1152/ajprenal.00604.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lithium is widely used in treatment of bipolar affective disorders but often causes nephrogenic diabetes insipidus (NDI), a disorder characterized by severe urinary-concentrating defects. Lithium-induced NDI is caused by lithium uptake by collecting duct principal cells and altered expression of aquaporin-2 (AQP2), which are essential for water reabsorption of tubular fluid in the collecting duct. Sex hormones have previously been shown to affect the regulation of AQP2, so we tested whether tamoxifen (TAM), a selective estrogen receptor modulator, would attenuate lithium-induced alterations on renal water homeostasis. Rats were treated for 14 days with lithium, and TAM treatment was initiated 1 wk after onset of lithium administration. Lithium treatment resulted in severe polyuria and reduced AQP2 expression, which were ameliorated by TAM. Consistent with this, TAM attenuated downregulation of AQP2 and increased phosphorylation of the cAMP-responsive element-binding protein, which induced AQP2 expression in freshly isolated inner-medullary collecting duct suspension prepared from lithium-treated rats. In conclusion, TAM attenuated polyuria dose dependently and impaired urine concentration and downregulation of AQP2 protein expression in rats with lithium-induced NDI. These findings suggest that TAM is likely to be a novel therapeutic option for lithium-induced NDI.
Collapse
Affiliation(s)
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangdong , China
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University , Daegu , Korea
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangdong , China
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| |
Collapse
|
45
|
Kalita-De Croft P, Bedford JJ, Leader JP, Walker RJ. Amiloride modifies the progression of lithium-induced renal interstitial fibrosis. Nephrology (Carlton) 2017; 23:20-30. [DOI: 10.1111/nep.12929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/07/2016] [Accepted: 09/25/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Priyakshi Kalita-De Croft
- Departments of Medicine; University of Otago; Dunedin New Zealand
- Departments of Physiology; University of Otago; Dunedin New Zealand
- Molecular Breast Pathology University of Queensland Centre for Clinical Research (UQCCR) Herston QLD; Australia
| | | | - John P Leader
- Departments of Medicine; University of Otago; Dunedin New Zealand
| | - Robert J Walker
- Departments of Medicine; University of Otago; Dunedin New Zealand
| |
Collapse
|
46
|
Yang KT, Wang F, Lu X, Peng K, Yang T, David Symons J. The soluble (Pro) renin receptor does not influence lithium-induced diabetes insipidus but does provoke beiging of white adipose tissue in mice. Physiol Rep 2017; 5:e13410. [PMID: 29138356 PMCID: PMC5688772 DOI: 10.14814/phy2.13410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Abstract
Earlier we reported that the recombinant soluble (pro) renin receptor sPRR-His upregulates renal aquoporin-2 (AQP2) expression, and attenuates polyuria associated with nephrogenic diabetes insipidus (NDI) induced by vasopressin type 2 receptor (V2R) antagonism. Patients that receive lithium therapy develop polyuria associated NDI that might be secondary to downregulation of renal AQP2. We hypothesized that sPRR-His attenuates indices of NDI associated with lithium treatment. Eight-week-old male C57/BL6 mice consumed chow supplemented with LiCl (40 mmol/kg diets) for 14 days. For the last 7 days mice received either sPRR-His [30 μg/(kg day), i.v.; sPRR] or vehicle (Veh) via minipump. Control (Con) mice consumed standard chow for 14 days. Compared to Con mice, 14-d LiCl treatment elevated water intake and urine volume, and decreased urine osmolality, regardless of sPRR-His or Veh administration. These data indicate that sPRR-His treatment does not attenuate indices of NDI evoked by lithium. Unexpectedly, epididymal fat mass was lower, adipocyte UCP1 mRNA and protein expression were higher, and multilocular lipid morphology was enhanced, in LiCl-fed mice treated with sPRR-His versus vehicle. The beiging of white adipose tissue is a novel metabolic benefit of manipulating the sPRR in the context of lithium-induced NDI.
Collapse
Affiliation(s)
- Kevin T Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- College of Health, University of Utah, Salt Lake City, Utah
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Fei Wang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Research Service, Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Research Service, Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Kexin Peng
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Research Service, Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Research Service, Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - J David Symons
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- College of Health, University of Utah, Salt Lake City, Utah
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
47
|
Chang Z, Zhang H, Wu X, Nabi F, Rehman MU, Yuan X, Mehmood K, Zhou D. Renal Dose Dopamine Mediates the Level of Aquaporin-2 Water Channel (Aqp2) in Broiler Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Z Chang
- Huazhong Agricultural University, China
| | - H Zhang
- Huazhong Agricultural University, China
| | - X Wu
- Huazhong Agricultural University, China
| | - F Nabi
- Huazhong Agricultural University, China
| | - MU Rehman
- Huazhong Agricultural University, China
| | - X Yuan
- Huazhong Agricultural University, China
| | - K Mehmood
- Huazhong Agricultural University, China; Islamia University of Bahawalpur, Pakistan
| | - D Zhou
- Huazhong Agricultural University, China
| |
Collapse
|
48
|
Hatem-Vaquero M, Griera M, Giermakowska W, Luengo A, Calleros L, Gonzalez Bosc LV, Rodríguez-Puyol D, Rodríguez-Puyol M, De Frutos S. Integrin linked kinase regulates the transcription of AQP2 by NFATC3. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:922-935. [PMID: 28736155 DOI: 10.1016/j.bbagrm.2017.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/01/2022]
Abstract
Two processes are associated with progressive loss of renal function: 1) decreased aquaporin-2 (AQP2) expression and urinary concentrating capacity (Nephrogenic Diabetes Insipidus, NDI); and 2) changes in extracellular matrix (ECM) composition, e.g. increased collagen I (Col I) deposition, characteristic of tubule-interstitial fibrosis. AQP2 expression is regulated by both the ECM-to-intracellular scaffold protein integrin-linked kinase (ILK) by NFATc/AP1 and other transcription factors. In the present work, we used in vivo and in vitro approaches to examine ILK participation in NFATc3/AP-1-mediated increases in AQP2 gene expression. Both NFATc3 knock-out mice and ILK conditional-knockdown mice (cKD-ILK) display symptoms of NDI (polyuria and reduced AQP2 expression). NFATc3 is upregulated in the renal medulla tubular cells of cKD-ILK mice but with reduced nuclear localization. Inner medullary collecting duct mIMCD3 cells were subjected to ILK depletion and transfected with reporter plasmids. Pharmacological activators or inhibitors determined the effect of ILK activity on NFATc/AP-1-dependent increases in transcription of AQP2. Finally, mIMCD3 cultured on Col I showed reduced activity of the ILK/GSK3β/NFATc/AQP2 axis, suggesting this pathway is a potential target for therapeutic treatment of NDI.
Collapse
Affiliation(s)
- Marco Hatem-Vaquero
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Mercedes Griera
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Wieslawa Giermakowska
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Alicia Luengo
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Calleros
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Diego Rodríguez-Puyol
- Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain; Biomedical Research Foundation and Nephrology Department, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Manuel Rodríguez-Puyol
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Sergio De Frutos
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
49
|
Foulser P, Abbasi Y, Mathilakath A, Nilforooshan R. Do not treat the numbers: lithium toxicity. BMJ Case Rep 2017; 2017:bcr-2017-220079. [PMID: 28576914 DOI: 10.1136/bcr-2017-220079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We describe the case of a 62-year-old man with a history of bipolar disorder, previously stable on lithium for over 20 years, who presented with a manic relapse and signs of lithium toxicity in the form of a coarse tremor. Serum lithium levels were in the normal range, and the patient had stage 3 chronic kidney disease. He was admitted for treatment under Section 2 of the Mental Health Act, and after stopping lithium was started on olanzapine. Signs of lithium toxicity improved after withdrawal of lithium. This case highlights the need to treat normal serum lithium levels with caution in patients showing signs of clinical lithium toxicity.
Collapse
Affiliation(s)
- Peter Foulser
- Department of Psychiatry, Surrey and Borders Partnership NHS Foundation Trust, Leatherhead, Surrey, UK
| | - Yasmin Abbasi
- Department of Psychiatry, Surrey and Borders Partnership NHS Foundation Trust, Leatherhead, Surrey, UK
| | - Anand Mathilakath
- Department of Psychiatry, Surrey and Borders Partnership NHS Foundation Trust, Leatherhead, Surrey, UK
| | - Ramin Nilforooshan
- Department of Psychiatry, Surrey and Borders Partnership NHS Foundation Trust, Leatherhead, Surrey, UK
| |
Collapse
|
50
|
Poulsen SB, Kristensen TB, Brooks HL, Kohan DE, Rieg T, Fenton RA. Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus. JCI Insight 2017; 2:e91042. [PMID: 28405619 DOI: 10.1172/jci.insight.91042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Psychiatric patients treated with lithium (Li+) may develop nephrogenic diabetes insipidus (NDI). Although the etiology of Li+-induced NDI (Li-NDI) is poorly understood, it occurs partially due to reduced aquaporin-2 (AQP2) expression in the kidney collecting ducts. A mechanism postulated for this is that Li+ inhibits adenylyl cyclase (AC) activity, leading to decreased cAMP, reduced AQP2 abundance, and less membrane targeting. We hypothesized that Li-NDI would not develop in mice lacking AC6. Whole-body AC6 knockout (AC6-/-) mice and potentially novel connecting tubule/principal cell-specific AC6 knockout (AC6loxloxCre) mice had approximately 50% lower urine osmolality and doubled water intake under baseline conditions compared with controls. Dietary Li+ administration increased water intake and reduced urine osmolality in control, AC6-/-, and AC6loxloxCre mice. Consistent with AC6-/- mice, medullary AQP2 and pS256-AQP2 abundances were lower in AC6loxloxCre mice compared with controls under standard conditions, and levels were further reduced after Li+ administration. AC6loxloxCre and control mice had a similar increase in the numbers of proliferating cell nuclear antigen-positive cells in response to Li+. However, AC6loxloxCre mice had a higher number of H+-ATPase B1 subunit-positive cells under standard conditions and after Li+ administration. Collectively, AC6 has a minor role in Li-NDI development but may be important for determining the intercalated cell-to-principal cell ratio.
Collapse
Affiliation(s)
- Søren Brandt Poulsen
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,VA San Diego Healthcare System, San Diego, California, USA
| | | | - Heddwen L Brooks
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Timo Rieg
- VA San Diego Healthcare System, San Diego, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Robert A Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|