1
|
Xu Y, Huang C, Xu H, Xu J, Cheng KW, Mok HL, Lyu C, Zhu L, Lin C, Tan HY, Bian Z. Modified Zhenwu Decoction improved intestinal barrier function of experimental colitis through activation of sGC-mediated cGMP/PKG signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118570. [PMID: 39002824 DOI: 10.1016/j.jep.2024.118570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The invasion of luminal antigens and an aberrant immune response resulting from a disrupted physical epithelial barrier are the key characteristics of ulcerative colitis (UC). The restoration of damaged epithelial function is crucial for maintaining mucosal homeostasis and disease quiescence. Current therapies for UC primarily focus on suppressing inflammation. However, most patients fail to respond to therapy or develop secondary resistance over time, emphasizing the need to develop novel therapeutic targets for UC. Our study aimed to identify the potential targets of a novel modified herbal formula from the Zhen Wu Decoction, namely CDD-2103, which has demonstrated promising efficacy in treating chronic colitis. METHODS The effect of CDD-2103 on epithelial barrier function was examined using in vitro and ex vivo models of tissue injury, as well as a chronic colitis C57BL/6 mouse model. Transcriptomic analysis was employed to profile gene expression changes in colonic tissues following treatment with CDD-2103. RESULTS Our in vivo experiments demonstrated that CDD-2103 dose-dependently reduced disease severity in mice with chronic colitis. The efficacy of CDD-2103 was mediated by a reduction in goblet cell loss and the enhancement of tight junction protein integrity. Mechanistically, CDD-2103 suppressed epithelial cell apoptosis and tight junction protein breakdown by activating the soluble guanynyl cyclase (sGC)-mediated cyclic guanosine monophosphate (cGMP)/PKG signaling cascade. Molecular docking analysis revealed strong sGC ligand recognition by the CDD-2103-derived molecules, warranting further investigation. CONCLUSION Our study revealed a novel formulation CDD-2103 that restores intestinal barrier function through the activation of sGC-regulated cGMP/PKG signaling. Furthermore, our findings suggest that targeting sGC can be an effective approach for promoting mucosal healing in the management of UC.
Collapse
Affiliation(s)
- Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiaruo Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Heung Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Islam BN, Sharman SK, Hou Y, Wang R, Ashby J, Li H, Liu K, Vega KJ, Browning DD. Type-2 cGMP-dependent protein kinase suppresses proliferation and carcinogenesis in the colon epithelium. Carcinogenesis 2022; 43:584-593. [PMID: 35188962 PMCID: PMC9234760 DOI: 10.1093/carcin/bgac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
A large body of evidence has demonstrated that cyclic-guanosine monophosphate (cGMP), signaling has anti-tumor effects that might be used for colon cancer prevention. The tumor-suppressive mechanism and the signaling components downstream of cGMP remain largely unknown. The present study has characterized the expression of cGMP-dependent protein kinases (PKG1, PKG2) in normal and cancerous tissue from human colon. PKG1 was detected in both normal and tumor tissue, where it localized exclusively to the lamina propria and stroma (respectively). In contrast, PKG2 localized specifically to the epithelium where its expression decreased markedly in tumors compared to matched normal tissue. Neither PKG isoform was detected at the RNA or protein level in established colon cancer cell lines. To test for a potential tumor-suppressor role of PKG2 in the colon epithelium, Prkg2 knockout (KO) mice were subjected to azoxymethane/dextran sulfate-sodium (AOM/DSS) treatment. PKG2 deficiency was associated with crypt hyperplasia (Ki67) and almost twice the number of polyps per mouse as wild-type (WT) siblings. In vitro culture of mouse colon epithelium as organoids confirmed that PKG2 was the only isoform expressed, and it was detected in both proliferating and differentiating epithelial compartments. Colon organoids derived from Prkg2 KO mice proliferated more rapidly and exhibited a reduced ability to differentiate compared to WT controls. Taken together our results highlight PKG2 as the central target of cGMP in the colon, where it suppresses carcinogenesis by controlling proliferation in an epithelial-cell intrinsic manner.
Collapse
Affiliation(s)
- Bianca N Islam
- Department of Internal Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yali Hou
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Justin Ashby
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kenneth J Vega
- Department of Medicine, Section of Gastroenterology and Hepatology, Augusta University, Augusta, GA, USA
| | - Darren D Browning
- To whom correspondence should be addressed. Tel: +1 706 7219526; Fax: +1 706 7216608;
| |
Collapse
|
3
|
Prasad H, Mathew JKK, Visweswariah SS. Receptor Guanylyl Cyclase C and Cyclic GMP in Health and Disease: Perspectives and Therapeutic Opportunities. Front Endocrinol (Lausanne) 2022; 13:911459. [PMID: 35846281 PMCID: PMC9276936 DOI: 10.3389/fendo.2022.911459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor Guanylyl Cyclase C (GC-C) was initially characterized as an important regulator of intestinal fluid and ion homeostasis. Recent findings demonstrate that GC-C is also causally linked to intestinal inflammation, dysbiosis, and tumorigenesis. These advances have been fueled in part by identifying mutations or changes in gene expression in GC-C or its ligands, that disrupt the delicate balance of intracellular cGMP levels and are associated with a wide range of clinical phenotypes. In this review, we highlight aspects of the current knowledge of the GC-C signaling pathway in homeostasis and disease, emphasizing recent advances in the field. The review summarizes extra gastrointestinal functions for GC-C signaling, such as appetite control, energy expenditure, visceral nociception, and behavioral processes. Recent research has expanded the homeostatic role of GC-C and implicated it in regulating the ion-microbiome-immune axis, which acts as a mechanistic driver in inflammatory bowel disease. The development of transgenic and knockout mouse models allowed for in-depth studies of GC-C and its relationship to whole-animal physiology. A deeper understanding of the various aspects of GC-C biology and their relationships with pathologies such as inflammatory bowel disease, colorectal cancer, and obesity can be leveraged to devise novel therapeutics.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | - Sandhya S. Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- *Correspondence: Sandhya S. Visweswariah,
| |
Collapse
|
4
|
Hofmann F. The cGMP system: components and function. Biol Chem 2021; 401:447-469. [PMID: 31747372 DOI: 10.1515/hsz-2019-0386] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of a variety of physiological and pathophysiological processes in many mammalian and non-mammalian tissues. Targeting this pathway by increasing cGMP levels has been a very successful approach in pharmacology as shown for nitrates, phosphodiesterase (PDE) inhibitors and stimulators of nitric oxide-guanylyl cyclase (NO-GC) and particulate GC (pGC). This is an introductory review to the cGMP signaling system intended to introduce those readers to this system, who do not work in this area. This article does not intend an in-depth review of this system. Signal transduction by cGMP is controlled by the generating enzymes GCs, the degrading enzymes PDEs and the cGMP-regulated enzymes cyclic nucleotide-gated ion channels, cGMP-dependent protein kinases and cGMP-regulated PDEs. Part A gives a very concise introduction to the components. Part B gives a very concise introduction to the functions modulated by cGMP. The article cites many recent reviews for those who want a deeper insight.
Collapse
Affiliation(s)
- Franz Hofmann
- Pharmakologisches Institut, Technische Universität München, Biedersteiner Str. 29, D-80802 München, Germany
| |
Collapse
|
5
|
Entezari AA, Snook AE, Waldman SA. Guanylyl cyclase 2C (GUCY2C) in gastrointestinal cancers: recent innovations and therapeutic potential. Expert Opin Ther Targets 2021; 25:335-346. [PMID: 34056991 DOI: 10.1080/14728222.2021.1937124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Gastrointestinal (GI) cancers account for the second leading cause of cancer-related deaths in the United States. Guanylyl cyclase C (GUCY2C) is an intestinal signaling system that regulates intestinal fluid and electrolyte secretion as well as intestinal homeostasis. In recent years, it has emerged as a promising target for chemoprevention and therapy for GI malignancies. AREAS COVERED The loss of GUCY2C signaling early in colorectal tumorigenesis suggests it could have a significant impact on tumor initiation. Recent studies highlight the importance of GUCY2C signaling in preventing colorectal tumorigenesis using agents such as linaclotide, plecanatide, and sildenafil. Furthermore, GUCY2C is a novel target for immunotherapy and a diagnostic marker for primary and metastatic diseases. EXPERT OPINION There is an unmet need for prevention and therapy in GI cancers. In that context, GUCY2C is a promising target for prevention, although the precise mechanisms by which GUCY2C signaling affects tumorigenesis remain to be defined. Furthermore, clinical trials are exploring its role as an immunotherapeutic target for vaccines to prevent metastatic disease. Indeed, GUCY2C is an emerging target across the disease continuum from chemoprevention, to diagnostic management, through the treatment and prevention of metastatic diseases.
Collapse
Affiliation(s)
- Ariana A Entezari
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Flickinger JC, Rappaport JA, Barton JR, Baybutt TR, Pattison AM, Snook AE, Waldman SA. Guanylyl cyclase C as a biomarker for immunotherapies for the treatment of gastrointestinal malignancies. Biomark Med 2021; 15:201-217. [PMID: 33470843 PMCID: PMC8293028 DOI: 10.2217/bmm-2020-0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancers encompass a diverse class of tumors arising in the GI tract, including esophagus, stomach, pancreas and colorectum. Collectively, gastrointestinal cancers compose a high fraction of all cancer deaths, highlighting an unmet need for novel and effective therapies. In this context, the transmembrane receptor guanylyl cyclase C (GUCY2C) has emerged as an attractive target for the prevention, detection and treatment of many gastrointestinal tumors. GUCY2C is an intestinally-restricted protein implicated in tumorigenesis that is universally expressed by primary and metastatic colorectal tumors as well as ectopically expressed by esophageal, gastric and pancreatic cancers. This review summarizes the current state of GUCY2C-targeted modalities in the management of gastrointestinal malignancies, with special focus on colorectal cancer, the most incident gastrointestinal malignancy.
Collapse
Affiliation(s)
- John C Flickinger
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joshua R Barton
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Trevor R Baybutt
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amanda M Pattison
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Foulke-Abel J, Yu H, Sunuwar L, Lin R, Fleckenstein JM, Kaper JB, Donowitz M. Phosphodiesterase 5 (PDE5) restricts intracellular cGMP accumulation during enterotoxigenic Escherichia coli infection. Gut Microbes 2020; 12:1752125. [PMID: 32378997 PMCID: PMC7524150 DOI: 10.1080/19490976.2020.1752125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) has a continuing impact on residents and travelers in underdeveloped countries. Both heat-labile (LT) and heat-stable (ST) enterotoxins contribute to pathophysiology via induction of cyclic nucleotide synthesis, and previous investigations focused on intracellular signal transduction rather than possible intercellular second messenger signaling. We modeled ETEC infection in human jejunal enteroid/organoid monolayers (HEM) and evaluated cyclic nucleotide pools, finding that intracellular cAMP was significantly increased but also underwent apical export, whereas cGMP was minimally retained intracellularly and predominantly effluxed into the basolateral space. LT and virulence factors including EatA, EtpA, and CfaE promoted ST release and enhanced ST-stimulated cGMP production. Intracellular cGMP was regulated by MK-571-sensitive export in addition to degradation by phosphodiesterase 5. HEMs had limited ST-induced intracellular cGMP accumulation compared to T84 or Caco-2 models. Cyclic nucleotide export/degradation demonstrates additional complexity in the mechanism of ETEC infection and may redirect understanding of diarrheal onset.
Collapse
Affiliation(s)
- Jennifer Foulke-Abel
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Huimin Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Laxmi Sunuwar
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Ruxian Lin
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine , St. Louis, MO, USA
| | - James B Kaper
- Department of Microbiology & Immunology, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
8
|
Deciphering ion transporters, kinases and PDZ-adaptor molecules that mediate guanylate cyclase C agonist-dependent intestinal fluid loss in vivo. Biochem Pharmacol 2020; 178:114040. [DOI: 10.1016/j.bcp.2020.114040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023]
|
9
|
Rappaport JA, Waldman SA. The Guanylate Cyclase C-cGMP Signaling Axis Opposes Intestinal Epithelial Injury and Neoplasia. Front Oncol 2018; 8:299. [PMID: 30131940 PMCID: PMC6091576 DOI: 10.3389/fonc.2018.00299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Guanylate cyclase C (GUCY2C) is a transmembrane receptor expressed on the luminal aspect of the intestinal epithelium. Its ligands include bacterial heat-stable enterotoxins responsible for traveler's diarrhea, the endogenous peptide hormones uroguanylin and guanylin, and the synthetic agents, linaclotide, plecanatide, and dolcanatide. Ligand-activated GUCY2C catalyzes the synthesis of intracellular cyclic GMP (cGMP), initiating signaling cascades underlying homeostasis of the intestinal epithelium. Mouse models of GUCY2C ablation, and recently, human populations harboring GUCY2C mutations, have revealed the diverse contributions of this signaling axis to epithelial health, including regulating fluid secretion, microbiome composition, intestinal barrier integrity, epithelial renewal, cell cycle progression, responses to DNA damage, epithelial-mesenchymal cross-talk, cell migration, and cellular metabolic status. Because of these wide-ranging roles, dysregulation of the GUCY2C-cGMP signaling axis has been implicated in the pathogenesis of bowel transit disorders, inflammatory bowel disease, and colorectal cancer. This review explores the current understanding of cGMP signaling in the intestinal epithelium and mechanisms by which it opposes intestinal injury. Particular focus will be applied to its emerging role in tumor suppression. In colorectal tumors, endogenous GUCY2C ligand expression is lost by a yet undefined mechanism conserved in mice and humans. Further, reconstitution of GUCY2C signaling through genetic or oral ligand replacement opposes tumorigenesis in mice. Taken together, these findings suggest an intriguing hypothesis that colorectal cancer arises in a microenvironment of functional GUCY2C inactivation, which can be repaired by oral ligand replacement. Hence, the GUCY2C signaling axis represents a novel therapeutic target for preventing colorectal cancer.
Collapse
Affiliation(s)
- Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Ahsan MK, Tchernychev B, Kessler MM, Solinga RM, Arthur D, Linde CI, Silos-Santiago I, Hannig G, Ameen NA. Linaclotide activates guanylate cyclase-C/cGMP/protein kinase-II-dependent trafficking of CFTR in the intestine. Physiol Rep 2018; 5:5/11/e13299. [PMID: 28592587 PMCID: PMC5471438 DOI: 10.14814/phy2.13299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/10/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
The transmembrane receptor guanylyl cyclase‐C (GC‐C), expressed on enterocytes along the intestine, is the molecular target of the GC‐C agonist peptide linaclotide, an FDA‐approved drug for treatment of adult patients with Irritable Bowel Syndrome with Constipation and Chronic Idiopathic Constipation. Polarized human colonic intestinal cells (T84, CaCo‐2BBe) rat and human intestinal tissues were employed to examine cellular signaling and cystic fibrosis transmembrane conductance regulator (CFTR)‐trafficking pathways activated by linaclotide using confocal microscopy, in vivo surface biotinylation, and protein kinase‐II (PKG‐II) activity assays. Expression and activity of GC‐C/cGMP pathway components were determined by PCR, western blot, and cGMP assays. Fluid secretion as a marker of CFTR cell surface translocation was determined using in vivo rat intestinal loops. Linaclotide treatment (30 min) induced robust fluid secretion and translocation of CFTR from subapical compartments to the cell surface in rat intestinal loops. Similarly, linaclotide treatment (30 min) of T84 and CaCo‐2BBe cells increased cell surface CFTR levels. Linaclotide‐induced activation of the GC‐C/cGMP/PKGII signaling pathway resulted in elevated intracellular cGMP and pVASPser239 phosphorylation. Inhibition or silencing of PKGII significantly attenuated linaclotide‐induced CFTR trafficking to the apical membrane. Inhibition of protein kinase‐A (PKA) also attenuated linaclotide‐induced CFTR cell surface trafficking, implying cGMP‐dependent cross‐activation of PKA pathway. Together, these findings support linaclotide‐induced activation of the GC‐C/cGMP/PKG‐II/CFTR pathway as the major pathway of linaclotide‐mediated intestinal fluid secretion, and that linaclotide‐dependent CFTR activation and recruitment/trafficking of CFTR from subapical vesicles to the cell surface is an important step in this process.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut
| | - Boris Tchernychev
- Department of Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Marco M Kessler
- Department of Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Robert M Solinga
- Department of Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | - Gerhard Hannig
- Department of Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Nadia A Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut .,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals. Int J Mol Sci 2018; 19:ijms19030881. [PMID: 29547542 PMCID: PMC5877742 DOI: 10.3390/ijms19030881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/23/2022] Open
Abstract
Transepithelial fluid and salt re-absorption in epithelial tissues play an important role in fluid and salt homeostasis. In absorptive epithelium, fluid and salt flux is controlled by machinery mainly composed of epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), Na⁺/H⁺ exchanger (NHE), aquaporin, and sodium potassium adenosine triphosphatase (Na⁺/K⁺-ATPase). Dysregulation of fluid and salt transport across epithelium contributes to the pathogenesis of many diseases, such as pulmonary edema and cystic fibrosis. Intracellular and extracellular signals, i.e., hormones and protein kinases, regulate fluid and salt turnover and resolution. Increasing evidence demonstrates that transepithelial fluid transport is regulated by cyclic guanosine monophosphate-dependent protein kinase (cGK) signals. cGK2 was originally identified and cloned from intestinal specimens, the presence of which has also been confirmed in the kidney and the lung. cGK2 regulates fluid and salt through ENaC, CFTR and NHE. Deficient cGK2 regulation of transepithelial ion transport was seen in acute lung injury, and cGK2 could be a novel druggable target to restore edematous disorder in epithelial tissues.
Collapse
|
12
|
Sharman SK, Islam BN, Hou Y, Usry M, Bridges A, Singh N, Sridhar S, Rao S, Browning DD. Sildenafil normalizes bowel transit in preclinical models of constipation. PLoS One 2017; 12:e0176673. [PMID: 28448580 PMCID: PMC5407793 DOI: 10.1371/journal.pone.0176673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/16/2017] [Indexed: 12/12/2022] Open
Abstract
Guanylyl cyclase-C (GC-C) agonists increase cGMP levels in the intestinal epithelium to promote secretion. This process underlies the utility of exogenous GC-C agonists such as linaclotide for the treatment of chronic idiopathic constipation (CIC) and irritable bowel syndrome with constipation (IBS-C). Because GC-C agonists have limited use in pediatric patients, there is a need for alternative cGMP-elevating agents that are effective in the intestine. The present study aimed to determine whether the PDE-5 inhibitor sildenafil has similar effects as linaclotide on preclinical models of constipation. Oral administration of sildenafil caused increased cGMP levels in mouse intestinal epithelium demonstrating that blocking cGMP-breakdown is an alternative approach to increase cGMP in the gut. Both linaclotide and sildenafil reduced proliferation and increased differentiation in colon mucosa, indicating common target pathways. The homeostatic effects of cGMP required gut turnover since maximal effects were observed after 3 days of treatment. Neither linaclotide nor sildenafil treatment affected intestinal transit or water content of fecal pellets in healthy mice. To test the effectiveness of cGMP elevation in a functional motility disorder model, mice were treated with dextran sulfate sodium (DSS) to induce colitis and were allowed to recover for several weeks. The recovered animals exhibited slower transit, but increased fecal water content. An acute dose of sildenafil was able to normalize transit and fecal water content in the DSS-recovery animal model, and also in loperamide-induced constipation. The higher fecal water content in the recovered animals was due to a compromised epithelial barrier, which was normalized by sildenafil treatment. Taken together our results show that sildenafil can have similar effects as linaclotide on the intestine, and may have therapeutic benefit to patients with CIC, IBS-C, and post-infectious IBS.
Collapse
Affiliation(s)
- Sarah K. Sharman
- Department of Biochemistry and Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Bianca N. Islam
- Department of Biochemistry and Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Yali Hou
- Department of Biochemistry and Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Margaux Usry
- Department of Biochemistry and Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Allison Bridges
- Department of Biochemistry and Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Subbaramiah Sridhar
- Department of Medicine, Division of Gastroenterology and Hepatology, Augusta University, Augusta, Georgia, United States of America
| | - Satish Rao
- Department of Medicine, Division of Gastroenterology and Hepatology, Augusta University, Augusta, Georgia, United States of America
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
cGMP Signaling Increases Antioxidant Gene Expression by Activating Forkhead Box O3A in the Colon Epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:377-389. [PMID: 27998725 DOI: 10.1016/j.ajpath.2016.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022]
Abstract
Signaling through cGMP has therapeutic potential in the colon, where it has been implicated in the suppression of colitis and colon cancer. In this study, we tested the ability of cGMP and type 2 cGMP-dependent protein kinase (PKG2) to activate forkhead box O (FoxO) in colon cancer cells and in the colon epithelium of mice. We show that activation of PKG2 in colon cancer cells inhibited cell proliferation, inhibited AKT, and activated FoxO. Treatment of colon explants with 8Br-cGMP also activated FoxO target gene expression at both RNA and protein levels, and reduced epithelial reduction-oxidation (redox) stress. FoxO3a was the most prominent isoform in the distal colon epithelium, with prominent luminal staining. FoxO3a levels were reduced in Prkg2-/- animals, and FoxO target genes were unaffected by 8Br-cGMP challenge in vitro. Treatment of mice with the phosphodiesterase-5 inhibitor vardenafil (Levitra) mobilized FoxO3a to the nucleus of luminal epithelial cells, which corresponded to increased FoxO target gene expression, reduced redox stress, and increased epithelial barrier integrity. Treatment of human colonic biopsy specimens with 8Br-cGMP also activated catalase and manganese superoxide dismutase expression, indicating that this pathway is conserved in humans. Taken together, these results identify a novel signaling pathway in the colon epithelium, where FoxO tumor suppressors could provide protection from redox stress. Moreover, this pathway is regulated by endogenous cGMP/PKG2 signaling, and can be targeted using phosphodiesterase-5 inhibitors.
Collapse
|
14
|
In JG, Foulke-Abel J, Estes MK, Zachos NC, Kovbasnjuk O, Donowitz M. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat Rev Gastroenterol Hepatol 2016; 13:633-642. [PMID: 27677718 PMCID: PMC5079760 DOI: 10.1038/nrgastro.2016.142] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5+ intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.
Collapse
Affiliation(s)
- Julie G In
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| |
Collapse
|
15
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Chalmers JA, Jang JJ, Belsham DD. Glucose sensing mechanisms in hypothalamic cell models: glucose inhibition of AgRP synthesis and secretion. Mol Cell Endocrinol 2014; 382:262-270. [PMID: 24145125 DOI: 10.1016/j.mce.2013.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/23/2013] [Accepted: 10/11/2013] [Indexed: 12/11/2022]
Abstract
Glucose-sensing neurons play a role in energy homeostasis, yet how orexigenic neurons sense glucose remains unclear. As models of glucose-inhibited (GI) neurons, mHypoE-29/1 and mHypoA-NPY/GFP cells express the essential orexigenic neuropeptide AgRP and glucose sensing machinery. Exposure to increasing concentrations of glucose or the glucose analog 2-deoxyglucose (2-DG) results in a decrease in AgRP mRNA levels. Taste receptor, Tas1R2 mRNA expression was reduced by glucose, whereas 2-DG reduced Tas1R3 mRNA levels. Increasing glucose concentrations elicited a rise in Akt and neuronal nitric oxide synthase (nNOS) phosphorylation, CaMKKβ levels, and a reduction of AMP-kinase alpha phosphorylation. Inhibitors of NOS and the cystic fibrosis transmembrane conductance regulator (CFTR) prevented a decrease in AgRP secretion with glucose, suggesting a pivotal role for nNOS and the CFTR in glucose-sensing. These models possess the hallmark characteristics of GI neurons, and can be used to disentangle the mechanisms by which orexigenic neurons sense glucose.
Collapse
Affiliation(s)
- Jennifer A Chalmers
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Janet J Jang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
17
|
Type 2 cGMP-dependent protein kinase regulates homeostasis by blocking c-Jun N-terminal kinase in the colon epithelium. Cell Death Differ 2013; 21:427-37. [PMID: 24270408 DOI: 10.1038/cdd.2013.163] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 01/26/2023] Open
Abstract
Analysis of knockout animals indicates that 3',5'cyclic guanosine monophosphate (cGMP) has an important role in gut homeostasis but the signaling mechanism is not known. The goals of this study were to test whether increasing cGMP could affect colon homeostasis and determine the mechanism. We increased cGMP in the gut of Prkg2(+/+) and Prkg2(-/-) mice by treating with the PDE5 inhibitor Vardenafil (IP). Proliferation, differentiation and apoptosis in the colon mucosa were then quantitated. Vardenafil (Vard) treatment increased cGMP in colon mucosa of all mice, but reduced proliferation and apoptosis, and increased differentiation only in Prkg2(+/+) mice. Vard and cGMP treatment also increased dual specificity protein phosphatase 10 (DUSP10) expression and reduced phospho-c-Jun N-terminal kinase (JNK) levels in the colon mucosa of Prkg2(+/+) but not Prkg2(-/-) mice. Treatment of Prkg2(-/-) mice with the JNK inhibitor SP600125 reversed the defective homeostasis observed in these animals. Activation of protein kinase G2 (PKG2) in goblet-like LS174T cells increased DUSP10 expression and reduced JNK activity. PKG2 also increased goblet cell-specific MUC2 expression in LS174T cells, and this process was blocked by DUSP10-specific siRNA. The ability of cGMP signaling to inhibit JNK-induced apoptosis in vivo was demonstrated using dextran sodium sulfate (DSS) to stress the colon epithelium. Vard was a potent inhibitor of DSS-induced epithelial apoptosis, and significantly blocked pathological endpoints in this model of experimental colitis. In conclusion, Vard treatment activates cGMP signaling in the colon epithelium. Increased PKG2 activity alters homeostasis by suppressing proliferation and apoptosis while promoting differentiation. The PKG2-dependent mechanism was shown to involve increased DUSP10 and subsequent inhibition of JNK activity.
Collapse
|
18
|
Tao Y, Gu YJ, Cao ZH, Bian XJ, Lan T, Sang JR, Jiang L, Wang Y, Qian H, Chen YC. Endogenous cGMP-dependent protein kinase reverses EGF-induced MAPK/ERK signal transduction through phosphorylation of VASP at Ser239. Oncol Lett 2012; 4:1104-1108. [PMID: 23162660 DOI: 10.3892/ol.2012.851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/25/2012] [Indexed: 11/06/2022] Open
Abstract
In our previous study, we demonstrated that type II cGMP-dependent protein kinase (PKG II) was expressed at lower levels in different human cancer cell lines and that exogenous PKG II inhibited epidermal growth factor (EGF)-induced MAPK/ERK signaling. In order to investigate its functions further in this signaling pathway, it is necessary to elucidate whether endogenous PKG has the same effect or not. This study aimed to investigate the possible inhibitory effect of endogenous PKG activity on EGF-induced MAPK/ERK signal transduction in human lung cancer cells and its mechanism. Human small cell lung carcinoma cells (SCLCs) were treated with the PKG-selective cGMP analog 8-pCPT-cGMP to activate endogenous PKG, EGF and cGMP followed by EGF, respectively. The results showed that increased endogenous PKG activity inhibited the EGF-induced phosphorylation of the epidermal growth factor receptor (EGFR) and the binding between Sos1 and Grb2. In addition, EGF-triggered Ras activation was reversed by increased endogenous PKG activity. While the EGF-induced phosphorylation of MEK and ERK were inhibited by increased endogenous PKG activity, there was a significant increase of phosphorylated vasodilator-stimulated phosphoprotein (p-VASP) at Ser239. Furthermore, we investigated whether endogenous PKG exerted its effects on EGF-induced MAPK/ERK signaling through phosphorylation of VASP at Ser239. Downregulation of the levels of p-VASP Ser239 by point mutation blocked the effects of endogenous PKG on EGF-induced MAPK/ERK signal transduction. The data shown here suggest that endogenous PKG reverses the EGF-induced MAPK/ERK signaling pathway by phosphorylating VASP at Ser239.
Collapse
Affiliation(s)
- Yan Tao
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang R, Kwon IK, Thangaraju M, Singh N, Liu K, Jay P, Hofmann F, Ganapathy V, Browning DD. Type 2 cGMP-dependent protein kinase regulates proliferation and differentiation in the colonic mucosa. Am J Physiol Gastrointest Liver Physiol 2012; 303:G209-19. [PMID: 22556146 DOI: 10.1152/ajpgi.00500.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Signaling through cGMP has emerged as an important regulator of tissue homeostasis in the gastrointestinal tract, but the mechanism is not known. Type 2 cGMP-dependent protein kinase (PKG2) is a major cGMP effector in the gut epithelium, and the present studies have tested its importance in the regulation of proliferation and differentiation in the mouse colon and in colon cancer cell lines. Tissue homeostasis was examined in the proximal colon of Prkg2(-/-) mice using histological markers of proliferation and differentiation. The effect of ectopic PKG2 on proliferation and differentiation was tested in vitro using inducible colon cancer cell lines. PCR and luciferase reporter assays were used to determine the importance of Sox9 downstream of PKG2. The colons of Prkg2(-/-) mice exhibited crypt hyperplasia, increased epithelial apoptosis, and reduced numbers of differentiated goblet and enteroendocrine cells. Ectopic PKG2 was able to inhibit proliferation and induce Muc2 and CDX2 expression in colon cancer cells, but did not significantly affect cell death. PKG2 reduced Sox9 levels and signaling, suggesting possible involvement of this pathway downstream of cGMP in the colon. The work presented here demonstrates a novel antiproliferative and prodifferentiation role for PKG2 in the colon. These homeostatic functions of PKG2 were reproducible in colon cancer cells lines where downregulation of Sox9 is a possible mechanism. The similarities in phenotype between PKG2 and GCC knockout mice positions PKG2 as a likely mediator of the homeostatic effects of cGMP signaling in the colon.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, Georgia, GA 30912-2100, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 2012; 45:1132-44. [PMID: 22698459 DOI: 10.1016/j.clinbiochem.2012.05.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis is the most common life-threatening recessively inherited disease in Caucasians. Due to early provision of care in specialized reference centers and more comprehensive care, survival has improved over time. Despite great advances in supportive care and in our understanding of its pathophysiology, there is still no cure for the disease. Therapeutic strategies aimed at rescuing the abnormal protein are either being sought after or under investigation. This review highlights salient insights into pathophysiology and candidate molecules suitable for CFTR pharmacotherapy. Clinical trials using Ataluren, VX-809 and ivacaftor have provided encouraging data. Preclinical data with inhibitors of phosphodiesterase type 5, such as sildenafil and analogs, have highlighted their potential for CFTR pharmacotherapy. Because sildenafil and analogs are in clinical use for other clinical applications, research on this class of drugs might speed up the development of new therapies for CF.
Collapse
|
21
|
Kobsar A, Siauw C, Gambaryan S, Hebling S, Speer C, Schubert-Unkmeir A, Eigenthaler M. Neisseria meningitidis induces platelet inhibition and increases vascular endothelial permeability via nitric oxide regulated pathways. Thromb Haemost 2011; 106:1127-38. [PMID: 22072136 DOI: 10.1160/th11-07-0491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/17/2011] [Indexed: 12/23/2022]
Abstract
Despite antibiotic therapy, infections with Neisseria meningitidis still demonstrate a high rate of morbidity and mortality even in developed countries. The fulminant septicaemic course, named Waterhouse-Friderichsen syndrome, with massive haemorrhage into the adrenal glands and widespread petechial bleeding suggest pathophysiological inhibition of platelet function. Our data show that N. meningitidis produces the important physiological platelet inhibitor and cardiovascular signalling molecule nitric oxide (NO), also known as endothelium-derived relaxing factor (EDRF). N. meningitidis -derived NO inhibited ADP-induced platelet aggregation through the activation of soluble guanylyl cyclase (sGC) followed by an increase in platelet cyclic nucleotide levels and subsequent activation of platelet cGMP- and cAMP- dependent protein kinases (PKG and PKA). Furthermore, direct measurement of horseradish peroxidase (HRP) passage through a vascular endothelial cell monolayer revealed that N. meningitidis significantly increased endothelial monolayer permeability. Immunfluorescence analysis demonstrated NO dependent disturbances in the structure of endothelial adherens junctions after co-incubation with N. meningitidis . In contrast to platelet inhibition, the NO effects on HBMEC were not mediated by cyclic nucleotides. Our study provides evidence that NO plays an essential role in the pathophysiology of septicaemic meningococcal infection.
Collapse
Affiliation(s)
- Anna Kobsar
- Institute of Clinical Biochemistry and Pathobiochemistry /Central Laboratory, University of Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Sarker R, Valkhoff VE, Zachos NC, Lin R, Cha B, Chen TE, Guggino S, Zizak M, de Jonge H, Hogema B, Donowitz M. NHERF1 and NHERF2 are necessary for multiple but usually separate aspects of basal and acute regulation of NHE3 activity. Am J Physiol Cell Physiol 2010; 300:C771-82. [PMID: 21191106 DOI: 10.1152/ajpcell.00119.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+)/H(+) exchanger 3 (NHE3) is expressed in the brush border (BB) of intestinal epithelial cells and accounts for the majority of neutral NaCl absorption. It has been shown that the Na(+)/H(+) exchanger regulatory factor (NHERF) family members of multi-PDZ domain-containing scaffold proteins bind to the NHE3 COOH terminus and play necessary roles in NHE3 regulation in intestinal epithelial cells. Most studies of NHE3 regulation have been in cell models in which NHERF1 and/or NHERF2 were overexpressed. We have now developed an intestinal Na(+) absorptive cell model in Caco-2/bbe cells by expressing hemagglutinin (HA)-tagged NHE3 with an adenoviral infection system. Roles of NHERF1 and NHERF2 in NHE3 regulation were determined, including inhibition by cAMP, cGMP, and Ca(2+) and stimulation by EGF, with knockdown (KD) approaches with lentivirus (Lenti)-short hairpin RNA (shRNA) and/or adenovirus (Adeno)-small interfering RNA (siRNA). Stable infection of Caco-2/bbe cells by NHERF1 or NHERF2 Lenti-shRNA significantly and specifically reduced NHERF protein expression by >80%. NHERF1 KD reduced basal NHE3 activity, while NHERF2 KD stimulated NHE3 activity. siRNA-mediated (transient) and Lenti-shRNA-mediated (stable) gene silencing of NHERF2 (but not of NHERF1) abolished cGMP- and Ca(2+)-dependent inhibition of NHE3. KD of NHERF1 or NHERF2 alone had no effect on cAMP inhibition of NHE3, but KD of both simultaneously abolished the effect of cAMP. The stimulatory effect of EGF on NHE3 was eliminated in NHERF1-KD but occurred normally in NHERF2-KD cells. These findings show that both NHERF2 and NHERF1 are involved in setting NHE3 activity. NHERF2 is necessary for cGMP-dependent protein kinase (cGK) II- and Ca(2+)-dependent inhibition of NHE3. cAMP-dependent inhibition of NHE3 activity requires either NHERF1 or NHERF2. Stimulation of NHE3 activity by EGF is NHERF1 dependent.
Collapse
Affiliation(s)
- Rafiquel Sarker
- Gastroenterology and Hepatology Division, Department of Medicine, Johns Hopkins Univ. School of Medicine, Baltimore, MD 21205-2195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bacterial heat-stable enterotoxins: translation of pathogenic peptides into novel targeted diagnostics and therapeutics. Toxins (Basel) 2010; 2:2028-54. [PMID: 22069671 PMCID: PMC3153287 DOI: 10.3390/toxins2082028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 08/03/2010] [Indexed: 12/13/2022] Open
Abstract
Heat-stable toxins (STs) produced by enterotoxigenic bacteria cause endemic and traveler’s diarrhea by binding to and activating the intestinal receptor guanylyl cyclase C (GC-C). Advances in understanding the biology of GC-C have extended ST from a diarrheagenic peptide to a novel therapeutic agent. Here, we summarize the physiological and pathophysiological role of GC-C in fluid-electrolyte regulation and intestinal crypt-villus homeostasis, as well as describe translational opportunities offered by STs, reflecting the unique characteristics of GC-C, in treating irritable bowel syndrome and chronic constipation, and in preventing and treating colorectal cancer.
Collapse
|
24
|
Liu CY, Fraser SE, Koos DS. Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway. J Comp Neurol 2009; 516:36-48. [PMID: 19565523 DOI: 10.1002/cne.22096] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian olfactory sense employs several olfactory subsystems situated at characteristic locations in the nasal cavity to detect and report on different classes of odors. These olfactory subsystems use different neuronal signal transduction pathways, receptor expression repertoires, and axonal projection targets. The Grueneberg ganglion (GG) is a newly appreciated olfactory subsystem with receptor neurons located just inside of the nostrils that project axons to a unique domain of interconnected glomeruli in the caudal olfactory bulb. It is not well understood how the GG relates to other olfactory subsystems in contributing to the olfactory sense. Furthermore, the range of chemoreceptors and the signal transduction cascade utilized by the GG have remained mysterious. To resolve these unknowns, we explored the molecular relationship between the GG and the GC-D neurons, another olfactory subsystem that innervates similarly interconnected glomeruli in the same bulbar region. We found that mouse GG neurons express the cGMP-associated signaling proteins phosphodiesterase 2a, cGMP-dependent kinase II, and cyclic nucleotide gated channel subunit A3 coupled to a chemoreceptor repertoire of cilia-localized particulate guanylyl cyclases (pGC-G and pGC-A). The primary cGMP signaling pathway of the GG is shared with the GC-D neurons, unifying their target glomeruli as a unique center of olfactory cGMP signal transduction. However, the distinct chemoreceptor repertoire in the GG suggests that the GG is an independent olfactory subsystem. This subsystem is well suited to detect a unique set of odors and to mediate behaviors that remained intact in previous olfactory perturbations.
Collapse
Affiliation(s)
- Cambrian Y Liu
- Biological Imaging Center, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
25
|
Abstract
Signalling of cGK (cGMP-dependent protein kinases) are mediated through phosphorylation of specific substrates. Several substrates of cGKI and cGKII were identified meanwhile. Some cGKI substrates are specifically regulated by the cGKIalpha or the cGKIbeta isozyme. In various cells and tissues, different cGK substrates exist that are essential for the regulation of diverse functions comprising tissue contractility, cell motility, cell contact, cellular secretion, cell proliferation, and cell differentiation. On the molecular level, cGKI substrates fulfill various cellular functions regulating e.g. the intracellular calcium and potassium concentration, the calcium sensitivity, and the organisation of the intracellular cytoskeleton. cGKII substrates are involved e.g. in chloride transport, sodium/proton transport and transcriptional regulation. The understanding of cGK signalling and function depends strongly on the identification of further specific substrates. In the last years, diverse approaches ranging from biochemistry to genetic deletion lead to the identification and establishment of several substrates, which raised new insights in the molecular mechanisms of cGK functions and elucidated new cellular cGK functions. However, the analysis of the dynamic signalling of cGK in tissues and cells will be necessary to discover new signalling pathways and substrates.
Collapse
Affiliation(s)
- Jens Schlossmann
- Institut für Pharmakologie und Toxikologie, Universität Regensburg, Regensburg, 93055, Germany.
| | | |
Collapse
|
26
|
Tsuchida A, Yokoi N, Namae M, Fuse M, Masuyama T, Sasaki M, Kawazu S, Komeda K. Phenotypic characterization of the Komeda miniature rat Ishikawa, an animal model of dwarfism caused by a mutation in Prkg2. Comp Med 2008; 58:560-567. [PMID: 19149413 PMCID: PMC2710756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/10/2008] [Accepted: 07/04/2008] [Indexed: 05/27/2023]
Abstract
The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, heterozygous (mri/+) animals in regard to body length, weight, and naso-occipital length of the calvarium, and the retroperitoneal fat of mri/mri rats was reduced greatly. In addition, among progeny of the (BNxKMI-mri/mri)F1xKMI-mri/mri backcross, animals with the KMI phenotype (mri/mri) were easily distinguished from those showing the wild-type phenotype (mri/+) by using growth traits such as body length and weight. Genetic analysis revealed that all of the backcrossed progeny exhibiting the KMI phenotype were homozygous for the KMI allele in the 1.2-cM region between D14Rat5 and D14Rat80 on chromosome 14, suggesting strongly that mri acts in a completely recessive manner. The KMI strain is the first and only rat model with a confirmed mutation in Prkg2 and is a valuable model for studying dwarfism and longitudinal growth traits in humans and for functional studies of cGKII.
Collapse
Affiliation(s)
- Atsuko Tsuchida
- Division of Endocrinology and Diabetes, Saitama Medical Center, Saitama Medical University, Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Broere N, Hillesheim J, Tuo B, Jorna H, Houtsmuller AB, Shenolikar S, Weinman EJ, Donowitz M, Seidler U, de Jonge HR, Hogema BM. Cystic fibrosis transmembrane conductance regulator activation is reduced in the small intestine of Na+/H+ exchanger 3 regulatory factor 1 (NHERF-1)- but Not NHERF-2-deficient mice. J Biol Chem 2007; 282:37575-84. [PMID: 17947234 DOI: 10.1074/jbc.m704878200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Binding of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel to the Na(+)/H(+) exchanger 3 regulatory factor 1 (NHERF-1) and NHERF-2 scaffolding proteins has been shown to affect its localization and activation. We have for the first time studied the physiological role of these proteins in CFTR regulation in native tissue by determining CFTR-dependent chloride current in NHERF-1- and NHERF-2-deficient mice. The cAMP- and cGMP-activated chloride current and the basal chloride current in basolaterally permeabilized jejunum were reduced by approximately 30% in NHERF-1-deficient mice but not in NHERF-2-deficient mice. The duodenal bicarbonate secretion was affected in a similar way, whereas no significant differences in CFTR activity were observed in ileum. CFTR abundance as determined by Western blotting was unaltered in jejunal epithelial cells and brush border membranes of NHERF-1 and NHERF-2 mutant mice. However, semi-quantitative detection of CFTR by confocal microscopy showed that the level of apically localized CFTR in jejunal crypts was reduced by approximately 35% in NHERF-1-deficient and NHERF-1/2 double deficient mice but not in NHERF-2 null mice. Together our results indicate that NHERF-1 is required for full activation of CFTR in murine duodenal and jejunal mucosa and that NHERF-1 affects the local distribution of CFTR in or near the plasma membrane. These studies provide the first evidence in native intestinal epithelium that NHERF-1 but not NHERF-2 is involved in the formation of CFTR-containing functional complexes that serve to position CFTR in the crypt apical membrane and/or to optimize its function as a cAMP- and cGMP-regulated anion channel.
Collapse
Affiliation(s)
- Nellie Broere
- Department of Biochemistry, Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kirsch M, Kemp-Harper B, Weissmann N, Grimminger F, Schmidt HHHW. Sildenafil in hypoxic pulmonary hypertension potentiates a compensatory up‐regulation of NO‐cGMP signaling. FASEB J 2007; 22:30-40. [PMID: 17679609 DOI: 10.1096/fj.06-7526com] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The availability of inhibitors of cGMP-specific phosphodiesterase 5 (PDE 5), such as sildenafil, has revolutionized the treatment of pulmonary hypertension (PH). Sildenafil may exert its protective effects in a mechanism-based fashion by targeting a pathophysiologically attenuated NO-cGMP signaling pathway. To elucidate this, we analyzed changes in the pulmonary expression and activity of key enzymes of NO-cGMP signaling as well as the functional pulmonary responses to sildenafil in the 5 or 21 day hypoxia mouse model of PH. Surprisingly, we found doubled NO synthase (NOS) II and III levels, no evidence for attenuated NO bioavailability as evidenced by the nitrosative/oxidative stress marker protein nitro tyrosine, and no changes in the expression and activity of the NO receptor, soluble guanylyl cyclase (sGC). PDE 5 was either unchanged at day 5 or, after 21 days of hypoxia, even significantly decreased along with unchanged activity. Biochemically, these changes were mirrored by increased cGMP spillover into the lung perfusate and cGMP-dependent phosphorylation of the vasodilator-stimulated phosphoprotein, VASP. Sildenafil further augmented cGMP and phospho-VASP levels in lungs of mice exposed for 5 or 21 days and decreased pulmonary arterial pressure in mice after 5 days but not 21 days of hypoxia. In conclusion, NO-cGMP signaling is compensatorily up-regulated in the hypoxic mouse model of PH, and sildenafil further augments this pathway to functionally alleviate pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Mark Kirsch
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, Germany
| | | | | | | | | |
Collapse
|
29
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
30
|
Fiedler B, Feil R, Hofmann F, Willenbockel C, Drexler H, Smolenski A, Lohmann SM, Wollert KC. cGMP-dependent protein kinase type I inhibits TAB1-p38 mitogen-activated protein kinase apoptosis signaling in cardiac myocytes. J Biol Chem 2006; 281:32831-40. [PMID: 16943189 DOI: 10.1074/jbc.m603416200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac myocyte apoptosis during ischemia and reperfusion (I/R) is tightly controlled by a complex network of stress-responsive signaling pathways. One pro-apoptotic pathway involves the interaction of the scaffold protein TAB1 with p38 mitogen-activated protein kinase (p38 MAPK) leading to the autophosphorylation and activation of p38 MAPK. Conversely, NO and its second messenger cGMP protect cardiac myocytes from apoptosis during I/R. We provide evidence that the cGMP target cGMP-dependent protein kinase type I (PKG I) interferes with TAB1-p38 MAPK signaling to protect cardiac myocytes from I/R injury. In isolated neonatal cardiac myocytes, activation of PKG I inhibited the interaction of TAB1 with p38 MAPK, p38 MAPK phosphorylation, and apoptosis induced by simulated I/R. During I/R in vivo, mice with a cardiac myocyte-restricted deletion of PKG I displayed a more pronounced interaction of TAB1 with p38 MAPK and a stronger phosphorylation of p38 MAPK in the myocardial area at risk during reperfusion and more apoptotic cardiac myocytes in the infarct border zone as compared with wild-type littermates. Notably, adenoviral expression of a constitutively active PKG I mutant truncated at the N terminus(PKGI-DeltaN1-92) did not inhibit p38 MAPK phosphorylation and apoptosis induced by simulated I/R in vitro, indicating that the N terminus of PKG I is required. As shown by co-immunoprecipitation experiments in HEK293 cells, cGMP-activated PKG I, but not constitutively active PKG I-DeltaN1-92 or PKG I mutants carrying point mutations in the N-terminal leucine-isoleucine zipper, interacted with p38 MAPK, and prevented the binding of TAB1 to p38 MAPK. Together, our data identify a novel interaction between the cGMP target PKG I and the TAB1-p38 MAPK signaling pathway that serves as a defense mechanism against myocardial I/R injury.
Collapse
Affiliation(s)
- Beate Fiedler
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gillespie JI, Markerink-van Ittersum M, De Vente J. Endogenous nitric oxide/cGMP signalling in the guinea pig bladder: evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res 2006; 325:325-32. [PMID: 16598501 DOI: 10.1007/s00441-005-0146-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 12/13/2005] [Indexed: 01/25/2023]
Abstract
We have examined structures that may operate by using nitric oxide (NO)/soluble guanylyl cyclase (sGC) signalling in the lamina propria of the guinea pig bladder. Cells on the luminal surface of the urothelium and sub-urothelial interstitial cells (SU-ICs) responded to NO with a rise in cGMP. The distribution of these different cells varied between the base, lateral wall and dome. In the base, two regions were identified: areas with sparse surface urothelial cells and areas with a complete covering. A layer of cGMP-positive (cGMP(+)) cells (up to 10 cells deep) was found in the base. cGMP(+)/SU-ICs were also observed in the lateral wall. However, here, the cGMP(+) cells were confined to a layer of only 1-2 cells immediately below the basal urothelial layer (basal cGMP(+)/SU-ICs). Below these cGMP(+)/SU-ICs lay cells that had a similar structure but that showed little cGMP accumulation (deep cGMP(-)/SU-ICs). Both basal and deep SU-ICs expressed the beta1 subunit of sGC and the cGMP-dependent protein kinase I (cGKI), suggesting that the deep SU-ICs can sense NO and signal via cGMP. By using BAY 41-2272, a sensor of endogenous NO production, NO-dependent cGMP synthesis was observed primarily in the basal SU-ICs. A third population of cGKI(+)/cGMP(-) cells was seen to lie immediately below the basal urothelial layer. These cells ("necklace" cells) were less numerous than SU-ICs and extended linking processes suggesting a network. The specific functions of these structures are not known but they may contribute to the emerging multiple roles of the urothelium associated with the generation of bladder sensation.
Collapse
Affiliation(s)
- J I Gillespie
- The Urophysiology Research Group, School of Surgical and Reproductive Sciences, The Medical School, The University, NE2 4HH, Newcastle upon Tyne, England, UK.
| | | | | |
Collapse
|
32
|
van de Graaf SFJ, Hoenderop JGJ, van der Kemp AWCM, Gisler SM, Bindels RJM. Interaction of the epithelial Ca2+ channels TRPV5 and TRPV6 with the intestine- and kidney-enriched PDZ protein NHERF4. Pflugers Arch 2006; 452:407-17. [PMID: 16565876 DOI: 10.1007/s00424-006-0051-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/01/2006] [Indexed: 02/06/2023]
Abstract
The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) influx pathway in epithelial Ca(2+) transport. PDZ proteins have been demonstrated to play a crucial role in the targeting or anchoring of ion channels and transporters in the apical domain of the cell. In this study, we describe the identification of NHERF4 (Na-P(i) Cap2/IKEPP/PDZK2) as a novel TRPV5- and TRPV6-associated PDZ protein. NHERF4 was identified using two separate yeast two-hybrid screens with the carboxyl termini of TRPV5 and TRPV6 as bait. Binding of the carboxyl termini of TRPV5 and TRPV6 with NHERF4 was confirmed by GST pull-down assays using in-vitro-translated NHERF4 or lysates of Xenopus laevis oocytes expressing NHERF4. Furthermore, the interaction was confirmed by GST pull-down and co-immunoprecipitation assays using in-vitro-translated full-length TRPV5 and Xenopus oocytes or HEK293 cells co-expressing NHERF4 and TRPV5/TRPV6, respectively. The fourth PDZ domain of NHERF4 was sufficient for the interaction, although PDZ domain 1 also contributed to the binding. The binding site for NHERF4 localized in a conserved region in the carboxyl terminus of TRPV5 and was distinct from the binding site of the PDZ protein NHERF2. NHERF4 predominantly localized at the plasma membrane of X. laevis oocytes and HeLa cells. This localization was independent of the presence of TRPV5. Therefore, we hypothesize a role for this novel PDZ protein as a putative plasma membrane scaffold for the epithelial Ca(2+) channels.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Cell Physiology, Department of Physiology, 286, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, NL-6500 HB, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Sriraman V, Rudd MD, Lohmann SM, Mulders SM, Richards JS. Cyclic Guanosine 5′-Monophosphate-Dependent Protein Kinase II Is Induced by Luteinizing Hormone and Progesterone Receptor-Dependent Mechanisms in Granulosa Cells and Cumulus Oocyte Complexes of Ovulating Follicles. Mol Endocrinol 2006; 20:348-61. [PMID: 16210344 DOI: 10.1210/me.2005-0317] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractCyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.
Collapse
Affiliation(s)
- Venkataraman Sriraman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Taniguchi M, Kwak YL, Jones KA, Warner DO, Perkins WJ. Nitric oxide sensitivity in pulmonary artery and airway smooth muscle: a possible role for cGMP responsiveness. Am J Physiol Lung Cell Mol Physiol 2005; 290:L1018-27. [PMID: 16326756 DOI: 10.1152/ajplung.00402.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We aimed to assess intrinsic smooth muscle mechanisms contributing to greater nitric oxide (NO) responsiveness in pulmonary vascular vs. airway smooth muscle. Porcine pulmonary artery smooth muscle (PASM) and tracheal smooth muscle (TSM) strips were used in concentration-response studies to the NO donor (Z)-1-[N-2-aminoethyl-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO). PASM consistently exhibited greater relaxation at a given DETA-NO concentration (NO responsiveness) than TSM NO responsiveness, with DETA-NO log EC(50) being -6.55 +/- 0.11 and -5.37 +/- 0.13 for PASM and TSM, respectively (P < 0.01). We determined relationships between tissue cGMP concentration ([cGMP](i)) and relaxation using the particulate guanylyl cyclase agonist atrial natriuretic peptide. Atrial natriuretic peptide resulted in nearly complete relaxation, with no detectable increase in [cGMP](i) in PASM and only 20% relaxation (10-fold increase in [cGMP](i)) in TSM, indicating that TSM is less cGMP responsive than PASM. Total cGMP-dependent protein kinase I (cGKI) mRNA expression was greater in PASM than in TSM (2.23 +/- 0.36 vs. 0.93 +/- 0.31 amol mRNA/mug total RNA, respectively; P < 0.01), but total cGKI protein expression was not significantly different (0.56 +/- 0.07 and 0.49 +/- 0.04 ng cGKI/mug protein, respectively). The phosphotransferase assay for the soluble fraction of tissue homogenates demonstrated no difference in the cGMP EC(50) between PASM and TSM. The maximal phosphotransferase activity indexed to the amount of total cGKI in the homogenate differed significantly between PASM and TSM (1.61 +/- 0.15 and 1.04 +/- pmol.min(-1).ng cGKI(-1), respectively; P < 0.05), suggesting that cGKI may be regulated differently in the two tissues. A novel intrinsic smooth muscle mechanism accounting for greater NO responsiveness in PASM vs. TSM is thus greater cGMP responsiveness from increased cGKI-specific activity in PASM.
Collapse
Affiliation(s)
- Miwa Taniguchi
- Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
35
|
Bijvelds MJC, Jorna H, Verkade HJ, Bot AGM, Hofmann F, Agellon LB, Sinaasappel M, de Jonge HR. Activation of CFTR by ASBT-mediated bile salt absorption. Am J Physiol Gastrointest Liver Physiol 2005; 289:G870-9. [PMID: 16037545 DOI: 10.1152/ajpgi.00226.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal ileum might also modulate intestinal fluid secretion. Taurocholate (TC) induced a biphasic rise in the short circuit current across ileal tissue, reflecting transepithelial electrogenic ion transport. This response was sensitive to bumetanide and largely abrogated in Cftr-null mice, indicating that it predominantly reflects CFTR-mediated Cl- secretion. The residual response in Cftr-null mice could be attributed to electrogenic ASBT activity, as it matched the TC-coupled absorptive Na+ flux. TC-evoked Cl- secretion required ASBT-mediated TC uptake, because it was blocked by a selective ASBT inhibitor and was restricted to the distal ileum. Suppression of neurotransmitter or prostaglandin release, blocking of the histamine H1 receptor, or pretreatment with 5-hydroxytryptamine did not abrogate the TC response, suggesting that neurocrine or immune mediators of Cl- secretion are not involved. Responses to TC were retained after carbachol treatment and after permeabilization of the basolateral membrane with nystatin, indicating that BS modulate CFTR channel gating rather than the driving force for Cl- exit. TC-induced Cl- secretion was maintained in cGMP-dependent protein kinase II-deficient mice and only partially inhibited by the cAMP-dependent protein kinase inhibitor H89, suggesting a mechanism of CFTR activation different from cAMP or cGMP signaling. We conclude that active BS absorption in the ileum triggers CFTR activation and, consequently, local salt and water secretion, which may serve to prevent intestinal obstruction in the postprandial state.
Collapse
Affiliation(s)
- Marcel J C Bijvelds
- Dept. of Biochemistry, Erasmus MC, PO Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gillespie JI, Markerink-van Ittersum M, de Vente J. Expression of neuronal nitric oxide synthase (nNOS) and nitric-oxide-induced changes in cGMP in the urothelial layer of the guinea pig bladder. Cell Tissue Res 2005; 321:341-51. [PMID: 15965654 DOI: 10.1007/s00441-005-1151-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
The urothelium plays a sensory role responding to deformation of the bladder wall; this involves the release of adenosine trisphosphate (ATP) and nitric oxide (NO), which affect afferent nerve discharge and bladder sensation. The urothelial cells responsible for producing ATP and NO and the cellular targets, other than afferent nerves, for ATP and NO remain largely unexplored. Sub-urothelial interstitial cells (SU-ICs) lie immediately below the urothelium and respond to NO with a rise in cGMP. To determine which cells might target SU-ICs by producing NO, areas of dome, lateral wall and base wall were treated with isobutyl-methyl-xanthine, exposed to the NO donor diethylamino NONOate and then fixed for immunohistochemistry. Surface urothelial cells (SUCs) in the base and dome expressed neuronal nitric oxide synthase (nNOS), whereas those in the lateral wall did not. Distinct populations of SUCs were present in the bladder base. SUCs with significant amounts of nNOS lay adjacent to cells with low levels of nNOS. In specific base regions, the few SUCs present contained nNOS within discrete intracellular particles. In the basal urothelial cell (BUC) layer of the lateral wall, nNOS-positive (NOS(+)) BUCs neither showed an elevation in cGMP in response to NO, nor expressed the beta1 sub-unit of soluble guanylate cyclase, protein kinase I or protein kinase II. Thus, they produced but did not respond to NO. The BUC layer also stained for the stem cell factor c-Kit suggesting its involvement in urothelial cell development. No NOS(+) BUCs were present in the SUC-sparse region in the bladder base. Exogenous NO produced an elevation in cGMP in SUCs and SU-ICs. The distribution and proportion of these target cells varied between the dome, lateral wall and base. cGMP(+) SU-ICs were present as a dense layer in the bladder base but were rarely seen in the lateral wall, which contained nNOS(+) BUCs. No nNOS(+) BUCs and cGMP(+) SU-ICs were apparent in the dome. The degree of complexity in nNOS distribution and NO target cells is therefore greater than has previously been described and may reflect distinct physiological functions that have yet to be identified.
Collapse
Affiliation(s)
- J I Gillespie
- The Urophysiology Research Group, School of Surgical and Reproductive Sciences, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | | | | |
Collapse
|
37
|
Golin-Bisello F, Bradbury N, Ameen N. STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol 2005; 289:C708-16. [PMID: 15872007 DOI: 10.1152/ajpcell.00544.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is critical to cAMP- and cGMP-activated intestinal anion secretion and the pathogenesis of secretory diarrhea. Enterotoxins released by Vibrio cholerae (cholera toxin) and Escherichia coli (heat stable enterotoxin, or STa) activate intracellular cAMP and cGMP and signal CFTR on the apical plasma membrane of small intestinal enterocytes to elicit chloride and fluid secretion. cAMP activates PKA, whereas cGMP signals a cGMP-dependent protein kinase (cGKII) to phosphorylate CFTR in the intestine. In the jejunum, cAMP also regulates CFTR and fluid secretion by insertion of CFTR from subapical vesicles to the surface of enterocytes. It is unknown whether cGMP signaling or phosphorylation regulates the insertion of CFTR associated vesicles from the cytoplasm to the surface of enterocytes. We used STa, cell-permeant cGMP, and cAMP agonists in conjunction with PKG and PKA inhibitors, respectively, in rat jejunum to examine whether 1) cGMP and cGK II regulate the translocation of CFTR to the apical membrane and its relevance to fluid secretion, and 2) PKA regulates cAMP-dependent translocation of CFTR because this intestinal segment is a primary target for toxigenic diarrhea. STa and cGMP induced a greater than fourfold increase in surface CFTR in enterocytes in association with fluid secretion that was inhibited by PKG inhibitors. cAMP agonists induced a translocation of CFTR to the cell surface of enterocytes that was prevented by PKA inhibitors. We conclude that cAMP and cGMP-dependent phosphorylation regulates fluid secretion and CFTR trafficking to the surface of enterocytes in rat jejunum.
Collapse
Affiliation(s)
- Franca Golin-Bisello
- Dept. of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
38
|
Wang HG, Lu FM, Jin I, Udo H, Kandel ER, de Vente J, Walter U, Lohmann SM, Hawkins RD, Antonova I. Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 2005; 45:389-403. [PMID: 15694326 DOI: 10.1016/j.neuron.2005.01.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 12/06/2004] [Accepted: 01/09/2005] [Indexed: 11/21/2022]
Abstract
Recent results suggest that long-lasting potentiation at hippocampal synapses involves the rapid formation of clusters or puncta of presynaptic as well as postsynaptic proteins, both of which are blocked by antagonists of NMDA receptors and an inhibitor of actin polymerization. We have investigated whether the increase in puncta involves retrograde signaling through the NO-cGMP-cGK pathway and also examined the possible roles of two classes of molecules that regulate the actin cytoskeleton: Ena/VASP proteins and Rho GTPases. Our results suggest that NO, cGMP, cGK, actin, and Rho GTPases including RhoA play important roles in the potentiation and act directly in both the presynaptic and postsynaptic neurons, where they contribute to the increase in puncta of synaptic proteins. cGK phosphorylates synaptic VASP during the potentiation, whereas Rho GTPases act both in parallel and upstream of cGMP, in part by maintaining the synaptic localization of soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Hong-Gang Wang
- Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sopory S, Kaur T, Visweswariah SS. The cGMP-binding, cGMP-specific phosphodiesterase (PDE5): intestinal cell expression, regulation and role in fluid secretion. Cell Signal 2005; 16:681-92. [PMID: 15093609 DOI: 10.1016/j.cellsig.2003.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 11/12/2003] [Accepted: 11/12/2003] [Indexed: 11/26/2022]
Abstract
The expression and regulation of the cGMP-binding, cGMP-specific phosphodiesterase, PDE5, was studied in intestinal cells. Both PDE5A1 and PDE5A2 splice forms were cloned from the cDNA prepared from human colonic T84 cells, and PDE5 activity was dependent on increases in intracellular cGMP levels which correlated with increased phosphorylation of the enzyme. PDE5 expression was monitored in different regions of the gastrointestinal tract and nearly 50% of the phosphodiesterase activity in the duodenum, jejunum, ileum and colon was inhibited by sildenafil citrate. Administration of the stable toxin to intestinal loops resulted in activation of PDE5. Inhibition of PDE5 by sildenafil citrate led to fluid accumulation in loops, suggesting a possible explanation for the side effect of diarrhoea observed in individuals administered sildenafil citrate. Our results therefore represent the first study on the expression and regulation of PDE5 in intestinal tissue, and indicate that mechanisms to control its activity may have important consequences in intestinal physiology.
Collapse
Affiliation(s)
- Shailaja Sopory
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Malleswaram, Bangalore 560012, India
| | | | | |
Collapse
|
40
|
Cha B, Kim JH, Hut H, Hogema BM, Nadarja J, Zizak M, Cavet M, Lee-Kwon W, Lohmann SM, Smolenski A, Tse CM, Yun C, de Jonge HR, Donowitz M. cGMP inhibition of Na+/H+ antiporter 3 (NHE3) requires PDZ domain adapter NHERF2, a broad specificity protein kinase G-anchoring protein. J Biol Chem 2005; 280:16642-50. [PMID: 15722341 DOI: 10.1074/jbc.m500505200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electroneutral NaCl absorption mediated by Na+/H+ exchanger 3 (NHE3) is important in intestinal and renal functions related to water/Na+ homeostasis. cGMP inhibits NHE3 in intact epithelia. However, unexpectedly it failed to inhibit NHE3 stably transfected in PS120 cells, even upon co-expression of cGMP-dependent protein kinase type II (cGKII). Additional co-expression of NHERF2, the tandem PDZ domain adapter protein involved in cAMP inhibition of NHE3, restored cGMP as well as cAMP inhibition, whereas NHERF1 solely restored cAMP inhibition. In vitro conditions were identified in which NHERF2 but not NHERF1 bound cGKII. The NHERF2 PDZ2 C terminus, which binds NHE3, also bound cGKII. A non-myristoylated mutant of cGKII did not support cGMP inhibition of NHE3. Although cGKI also bound NHERF2 in vitro, it did not evoke inhibition of NHE3 unless a myristoylation site was added. These results show that NHERF2, acting as a novel protein kinase G-anchoring protein, is required for cGMP inhibition of NHE3 and that cGKII must be bound both to the plasma membrane by its myristoyl anchor and to NHERF2 to inhibit NHE3.
Collapse
Affiliation(s)
- Boyoung Cha
- Department of Physiology, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamamoto T, Suzuki N. Expression and function of cGMP-dependent protein kinase type I during medaka fish embryogenesis. J Biol Chem 2005; 280:16979-86. [PMID: 15710621 DOI: 10.1074/jbc.m412433200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated and characterized cDNA clones (PKG Ialpha and PKG Ibeta) for medaka fish cGMP-dependent protein kinase (PKG) Ialpha and Ibeta, and demonstrated that both are expressed in the embryos after late gastrula stage. Whole-mount in situ hybridization using each isoform-specific probe revealed that the transcripts of the PKG Ialpha gene were present in the spinal cord and gill arch, whereas those of the PKG Ibeta gene were only weakly expressed in these organs, but highly expressed in the otic vesicles. Injection of PKG Ialpha-specific morpholino antisense oligonucleotides (Ialpha-MO) into two-cell stage medaka fish embryos caused severe abnormalities in the developing embryos, such as the development of a hammer-like head, fusion of the developing eyes, and degeneration of cells around the eyes, whereas injection of PKG Ibeta-specific morpholino antisense oligonucleotides (Ibeta-MO) caused fewer abnormalities in the embryos, even when injected at higher concentrations than Ialpha-MO. The PKG I-overexpressing embryos exhibited smaller eyes and enlargement of the forebrain, a phenotype similar to that observed in the cAMP-dependent protein kinase (PKA)-depressed embryos. In the PKG-deficient embryos, a sonic hedgehog (shh)-target gene, HNF-3beta, was expressed weakly, and this phenotype was similar to that observed in the PKA-overexpressing embryos suggesting that the cGMP/PKG signaling pathway is involved in some steps of shh signaling. We also demonstrated that Gli proteins, shh-downstream molecules, are phosphorylated by the NO/cGMP signaling pathway, probably by PKG in NG108-15 neuroblastoma cells. These results imply that PKG and PKA share common substrates and work in an opposite manner during the early embryogenesis of medaka fish.
Collapse
Affiliation(s)
- Takehiro Yamamoto
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | |
Collapse
|
42
|
Melichar VO, Behr-Roussel D, Zabel U, Uttenthal LO, Rodrigo J, Rupin A, Verbeuren TJ, Kumar H S A, Schmidt HHHW. Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. Proc Natl Acad Sci U S A 2004; 101:16671-6. [PMID: 15546990 PMCID: PMC534521 DOI: 10.1073/pnas.0405509101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is associated with alterations in nitric oxide (NO)/cGMP signaling. In early stages of the disease, inflammatory and possibly other cells produce reactive oxygen species that scavenge vasoprotective NO. In addition to the oxidative stress, expression and activity of enzymes downstream to NO formation may also be affected. Here, we show in the aortas of chronically hypercholesterolemic rabbits (a model of late-stage atherosclerosis), both subunits and specific activity of the NO receptor soluble guanylyl cyclase (sGC) were significantly reduced, whereas overall NO synthase activity was unaffected. These changes were most prominent in the neointimal layer, wherein cGMP-dependent protein kinase I (cGK) levels also were reduced. Additionally, a protein (p38(nt)) that was constitutively tyrosine-nitrated was detected, and its expression was significantly reduced in atherosclerotic aorta. Phosphorylation of the cGK substrate vasodilator-stimulated phosphoprotein (VASP) at Ser-239, an established biochemical endpoint of NO/cGMP signaling, also was reduced. Thus, late-stage atherosclerosis is associated not only with enhanced NO breakdown but also with altered NO reception and cGMP signaling. Preferential down-regulation in neointima suggests a direct connection of these changes to neointimal proliferation and vascular dysfunction and provides a rationale for future pharmacotherapy using classical and novel sGC activators.
Collapse
Affiliation(s)
- Volker O Melichar
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Smolenski A, Schultess J, Danielewski O, Garcia Arguinzonis MI, Thalheimer P, Kneitz S, Walter U, Lohmann SM. Quantitative analysis of the cardiac fibroblast transcriptome-implications for NO/cGMP signaling. Genomics 2004; 83:577-87. [PMID: 15028281 DOI: 10.1016/j.ygeno.2003.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 10/06/2003] [Indexed: 11/22/2022]
Abstract
Cardiac fibroblasts regulate tissue repair and remodeling in the heart. To quantify transcript levels in these cells we performed a comprehensive gene expression study using serial analysis of gene expression (SAGE). Among 110,169 sequenced tags we could identify 30,507 unique transcripts. A comparison of SAGE data from cardiac fibroblasts with data derived from total mouse heart revealed a number of fibroblast-specific genes. Cardiac fibroblasts expressed a specific collection of collagens, matrix proteins and metalloproteinases, growth factors, and components of signaling pathways. The NO/cGMP signaling pathway was represented by the mRNAs for alpha(1) and beta(1) subunits of guanylyl cyclase, cGMP-dependent protein kinase type I (cGK I), and, interestingly, the G-kinase-anchoring protein GKAP42. The expression of cGK I was verified by RT-PCR and Western blot. To establish a functional role for cGK I in cardiac fibroblasts we studied its effect on cell proliferation. Selective activation of cGK I with a cGMP analog inhibited the proliferation of serum-stimulated cardiac fibroblasts, which express cGK I, but not higher passage fibroblasts, which contain no detectable cGK I. Currently, our data suggest that cGK I mediates the inhibitory effects of the NO/cGMP pathway on cardiac fibroblast growth. Furthermore the SAGE library of transcripts expressed in cardiac fibroblasts provides a basis for future investigations into the pathological regulatory mechanisms underlying cardiac fibrosis.
Collapse
Affiliation(s)
- Albert Smolenski
- Institute of Biochemistry II, Medical Faculty, University of Frankfurt, Theodor-Stern-Kai 7, Building 75, D-60590 Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
MacPherson MR, Lohmann SM, Davies SA. Analysis of Drosophila cGMP-dependent Protein Kinases and Assessment of Their in Vivo Roles by Targeted Expression in a Renal Transporting Epithelium. J Biol Chem 2004; 279:40026-34. [PMID: 15218025 DOI: 10.1074/jbc.m405619200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cGMP-dependent protein kinase (cGK) forms encoded by the dg2 (for) gene are implicated in behavior and epithelial transport in Drosophila melanogaster. Here, we provide the first biochemical characterization and cellular localization of cGKs encoded by the major transcripts of dg2: dg2P1 and dg2P2. cGMP stimulates kinase activity of DG2P1 (EC(50): 0.13 +/- 0.039 microm) and DG2P2 (EC(50): 0.32 +/- 0.14 microm) in Malpighian tubule and S2 cell extracts. DG2P1 and DG2P2 are magnesium-requiring enzymes and were inhibited by 10 and 100 microm of a cGK inhibitor, 8-(4-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate, Rp isomer; whereas DG1, the cGK encoded by the D. melanogaster dg1 gene, was unaffected. DG2P1 and DG2P2 were localized in the plasma membrane in S2 cells, whereas DG1 was localized in the cytosol. The D. melanogaster fluid-transporting Malpighian tubule was used as an organotypic model to analyze cGK localization and function in vivo. Targeted expression of DG2P2, DG2P1, and DG1 in tubule cells via the UAS/GAL4 system in transgenic flies revealed differential localization of all three cGKs in vivo: DG2P2 expression at the apical membrane; DG2P1 expression at both the apical and basolateral membranes; and DG1 expression at the basolateral membrane and in the cytosol. Transgenic tubules for all three cGKs displayed enhanced cGK activity compared with wild-type tubules. The physiological impact of targeted expression of individual cGKs in tubule principal cells was assessed by measuring basal and stimulated rates of fluid transport. DG1 expression greatly enhanced fluid transport by the tubule in response to exogenous cGMP, whereas DG2P2 expression significantly increased fluid transport in response to the nitridergic neuropeptide, capa-1. Thus, dg2-encoded proteins are bona fide cGKs, which have differential roles in epithelial fluid transport, as assessed by in vivo studies. Furthermore, a novel epithelial role is suggested for DG1, which is considerably more responsive to cGMP than to capa-1 stimulation.
Collapse
Affiliation(s)
- Matthew R MacPherson
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Anderson College, Dumbarton Rd., Glasgow G11 6NU, United Kingdom
| | | | | |
Collapse
|
45
|
Rao SP, Sellers Z, Crombie DL, Hogan DL, Mann EA, Childs D, Keely S, Sheil-Puopolo M, Giannella RA, Barrett KE, Isenberg JI, Pratha VS. A role for guanylate cyclase C in acid-stimulated duodenal mucosal bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 2004; 286:G95-G101. [PMID: 12881226 DOI: 10.1152/ajpgi.00087.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Luminal acidification provides the strongest physiological stimulus for duodenal HCO3- secretion. Various neurohumoral mechanisms are believed to play a role in acid-stimulated HCO3- secretion. Previous studies in the rat and human duodenum have shown that guanylin and Escherichia coli heat-stable toxin, both ligands of the transmembrane guanylyl cyclase receptor [guanylate cyclase C (GC-C)], are potent stimulators for duodenal HCO3- secretion. We postulated that the GC-C receptor plays an important role in acid-stimulated HCO3- secretion. In vivo perfusion studies performed in wild-type (WT) and GC-C knockout (KO) mice indicated that acid-stimulated duodenal HCO3- secretion was significantly decreased in the GC-C KO animals compared with the WT counterparts. Pretreatment with PD-98059, an MEK inhibitor, resulted in attenuation of duodenal HCO3- secretion in response to acid stimulation in the WT mice with no further effect in the KO mice. In vitro cGMP generation studies demonstrated a significant and comparable increase in cGMP levels on acid exposure in the duodenum of both WT and KO mice. In addition, a rapid, time-dependent phosphorylation of ERK was observed with acid exposure in the duodenum of WT mice, whereas a marked attenuation in ERK phosphorylation was observed in the KO animals despite equivalent levels of ERK in both groups of animals. On the basis of these studies, we conclude that transmembrane GC-C is a key mediator of acid-stimulated duodenal HCO3- secretion. Furthermore, ERK phosphorylation may be an important intracellular mediator of duodenal HCO3- secretion.
Collapse
Affiliation(s)
- S P Rao
- Division of Gastroenterology, Department of Medicine, University of California San Diego, San Diego, California 92103, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wollert KC, Yurukova S, Kilic A, Begrow F, Fiedler B, Gambaryan S, Walter U, Lohmann SM, Kuhn M. Increased effects of C-type natriuretic peptide on contractility and calcium regulation in murine hearts overexpressing cyclic GMP-dependent protein kinase I. Br J Pharmacol 2003; 140:1227-36. [PMID: 14609817 PMCID: PMC1574150 DOI: 10.1038/sj.bjp.0705567] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. C-type natriuretic peptide (CNP) and its receptor guanylyl cyclase (GC-B) are expressed in the heart and modulate cardiac contractility in a cGMP-dependent manner. Since the distal cellular signalling pathways remain unclear, we evaluated the peptide effects on cardiac function and calcium regulation in wild-type (WT) and transgenic mice with cardiac overexpression of cGMP-dependent protein kinase I (PKG ITG). 2. In isolated, perfused working WT hearts, CNP (10 nm) provoked an immediate increase in the maximal rates of contraction and relaxation, a small increase in the left ventricular systolic pressure and a decrease in the time of relaxation. These changes in cardiac function were accompanied by a marked increase in the levels of Ser16-phosphorylated phospholamban (PLB). 3. In PKG ITG hearts, the effects of CNP on cardiac contractility and relaxation as well as on PLB phosphorylation were markedly enhanced. 4. CNP increased cell shortening and systolic Cai2+ levels, and accelerated Cai2+ decay in isolated, Indo-1/AM-loaded WT cardiomyocytes, and these effects were enhanced in PKG I-overexpressing cardiomyocytes. 5. 8-pCPT-cGMP, a membrane-permeable PKG activator, mimicked the contractile and molecular actions of CNP, the effects again being more pronounced in PKG ITG hearts. In contrast, the cardiac responses to beta-adrenergic stimulation were not different between genotypes. 6. Taken together, our data indicate that PKG I is a downstream target activated by the CNP/GC-B/cGMP-signalling pathway in cardiac myocytes. cGMP/PKG I-stimulated phosphorylation of PLB and subsequent activation of the sarcoplasmic reticulum Ca2+ pump appear to mediate the positive inotropic and lusitropic responses to CNP.
Collapse
Affiliation(s)
- Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Sevdalina Yurukova
- Institute of Pharmacology and Toxicology, Universitäts Klinikum Münster, Domagkstrasse 12, Münster D-48129, Germany
| | - Ana Kilic
- Institute of Pharmacology and Toxicology, Universitäts Klinikum Münster, Domagkstrasse 12, Münster D-48129, Germany
| | - Frank Begrow
- Institute of Pharmacology and Toxicology, Universitäts Klinikum Münster, Domagkstrasse 12, Münster D-48129, Germany
| | - Beate Fiedler
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
| | - Ulrich Walter
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
| | - Suzanne M Lohmann
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
| | - Michaela Kuhn
- Institute of Pharmacology and Toxicology, Universitäts Klinikum Münster, Domagkstrasse 12, Münster D-48129, Germany
- Author for correspondence:
| |
Collapse
|
47
|
Ahmed FE. Colon cancer: prevalence, screening, gene expression and mutation, and risk factors and assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2003; 21:65-131. [PMID: 15845222 DOI: 10.1081/gnc-120026233] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Colon cancer detection at an early stage and identifying susceptible individuals can result in reduced mortality from this prevalent cancer. Genetic events leading to the development of this cancer involve a multistage progression of adenoma polyps to invasive metastatic carcinomas. Currently, there is no satisfactory screening method that is highly specific, sensitive, or reliable. Dietary patterns associated with the greatest increase in colon cancer risk are the ones that typify a diet rich in fat and calories, and low in vegetable, fruits, and fibers. Genetic susceptibility to environmental carcinogenesis must be factored into the risk assessment for this cancer. Many genes have been shown to be associated with increased expression and mutations in colorectal cancer patients. These genes have been reviewed; it is hoped that by carefully selecting a number of them, a molecular approach that is suitable for arriving at a tumorigenic expression index is developed, which will reliably detect this cancer at an early stage (i.e., before it metastasizes), especially in exfoliated samples (e.g., stool and blood), so that appropriate intervention strategies can be implemented. Illustrated herein is the utility of employing real-time reverse transcriptase polymerase chain reaction (RT-PCR) to quantitatively measure gene expression, and develop an index that is specific for this cancer, which if perfected may result in a reliable and sensitive screening technique for colorectal cancer detection.
Collapse
Affiliation(s)
- Farid E Ahmed
- Department of Radiation Oncology, Leo W. Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA.
| |
Collapse
|
48
|
Gambaryan S, Butt E, Marcus K, Glazova M, Palmetshofer A, Guillon G, Smolenski A. cGMP-dependent protein kinase type II regulates basal level of aldosterone production by zona glomerulosa cells without increasing expression of the steroidogenic acute regulatory protein gene. J Biol Chem 2003; 278:29640-8. [PMID: 12775716 DOI: 10.1074/jbc.m302143200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays a pivotal role in the regulation of salt and water homeostasis. Here, we demonstrate the expression and functional role of cGMP-dependent protein kinases (PKGs) in rat adrenal cortex. Expression of PKG II is restricted to adrenal zona glomerulosa (ZG) cells, whereas PKG I is localized to the adrenal capsule and blood vessels. Activation of the aldosterone system by a low sodium diet up-regulated the expression of PKG II, however, it did not change PKG I expression in adrenal cortex. Both, activation of PKG II in isolated ZG cell and adenoviral gene transfer of wild type PKG II into ZG cells enhanced aldosterone production. In contrast, inhibition of PKG II as well as infection with a PKG II catalytically inactive mutant had an inhibitory effect on aldosterone production. Steroidogenic acute regulatory (StAR) protein that regulates the rate-limiting step in steroidogenesis is a new substrate for PKG II and can be phosphorylated by PKG II in vitro at serine 55/56 and serine 99. Stimulation of aldosterone production by PKG II in contrast to stimulation by PKA did not activate StAR gene expression in ZG cells. The results presented indicate that PKG II activity in ZG cells is important for maintaining basal aldosterone production.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry Medical University Clinic Wuerzburg, Josef Schneider Strasse 2, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen Y, Zhuang S, Cassenaer S, Casteel DE, Gudi T, Boss GR, Pilz RB. Synergism between calcium and cyclic GMP in cyclic AMP response element-dependent transcriptional regulation requires cooperation between CREB and C/EBP-beta. Mol Cell Biol 2003; 23:4066-82. [PMID: 12773552 PMCID: PMC156132 DOI: 10.1128/mcb.23.12.4066-4082.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Calcium induces transcriptional activation of the fos promoter by activation of the cyclic AMP response element (CRE)-binding protein (CREB), and in some cells its effect is enhanced synergistically by cyclic GMP (cGMP) through an unknown mechanism. We observed calcium-cGMP synergism in neuronal and osteogenic cells which express type II cGMP-dependent protein kinase (G-kinase); the effect on the fos promoter was mediated by the CRE and proportional to G-kinase activity. Dominant negative transcription factors showed involvement of CREB- and C/EBP-related proteins but not of AP-1. Expression of C/EBP-beta but not C/EBP-alpha or -delta enhanced the effects of calcium and cGMP on a CRE-dependent reporter gene. The transactivation potential of full-length CREB fused to the DNA-binding domain of Gal4 was increased synergistically by calcium and cGMP, and overexpression of C/EBP-beta enhanced the effect, while a dominant negative C/EBP inhibited it. With a mammalian two-hybrid system, coimmunoprecipitation experiments, and in vitro binding studies, we demonstrated that C/EBP-beta and CREB interacted directly; this interaction involved the C terminus of C/EBP-beta but occurred independently of CREB's leucine zipper domain. CREB Ser(133) phosphorylation was stimulated by calcium but not by cGMP; in cGMP-treated cells, (32)PO(4) incorporation into C/EBP-beta was decreased and C/EBP-beta/CRE complexes were increased, suggesting regulation of C/EBP-beta functions by G-kinase-dependent dephosphorylation. C/EBP-beta and CREB associated with the fos promoter in intact cells, and the amount of promoter-associated C/EBP-beta was increased by calcium and cGMP. We conclude that calcium and cGMP transcriptional synergism requires cooperation of CREB and C/EBP-beta, with calcium and cGMP modulating the phosphorylation states of CREB and C/EBP-beta, respectively.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Blotting, Northern
- Blotting, Western
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- COS Cells
- Calcium/metabolism
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclic GMP/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation
- Genes, Dominant
- Genes, Reporter
- Genes, fos/genetics
- Genetic Vectors
- Mice
- Phosphorylation
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Response Elements
- Signal Transduction
- Subcellular Fractions/metabolism
- Time Factors
- Transcription, Genetic
- Transcriptional Activation
- Tumor Cells, Cultured
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Yongchang Chen
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093-0652, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Sabrane K, Gambaryan S, Brandes RP, Holtwick R, Voss M, Kuhn M. Increased sensitivity to endothelial nitric oxide (NO) contributes to arterial normotension in mice with vascular smooth muscle-selective deletion of the atrial natriuretic peptide (ANP) receptor. J Biol Chem 2003; 278:17963-8. [PMID: 12637561 DOI: 10.1074/jbc.m213113200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atrial natriuretic peptide (ANP) plays a key regulatory role in arterial blood pressure homeostasis. We recently generated mice with selective deletion of the ANP receptor, guanylyl cyclase-A (GC-A), in vascular smooth muscle (SMC GC-A knockout (KO) mice) and reported that resting arterial blood pressure was completely normal in spite of clear abolition of the direct vasodilating effects of ANP (Holtwick, R., Gotthardt, M., Skryabin, B., Steinmetz, M., Potthast, R., Zetsche, B., Hammer, R. E., Herz, J., and Kuhn M. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7142-7147). The purpose of this study was to clarify mechanisms compensating for the missing vasodilator responses to ANP. In particular, we analyzed the effect of the endothelial, cGMP-mediated vasodilators C-type natriuretic peptide and nitric oxide (NO). In isolated arteries from SMC GC-A KO mice, the vasorelaxing sensitivity to sodium nitroprusside and the endothelium-dependent vasodilator, acetylcholine, was significantly greater than in control mice. There was no difference in responses to C-type natriuretic peptide or to the activator of cGMP-dependent protein kinase I, 8-para-chlorophenylthio-cGMP. The aortic expression of soluble GC (sGC), but not of endothelial NO synthase or cGMP-dependent protein kinase I, was significantly increased in SMC GC-A KO mice. Chronic oral treatment with the NO synthase inhibitor N(w)-nitro-l-arginine methyl ester increased arterial blood pressure, the effect being significantly enhanced in SMC GC-A KO mice. We conclude that SMC GC-A KO mice exhibit a higher vasodilating sensitivity to NO. This can be attributed to an enhanced expression of sGC, whereas the expression and/or activity levels of downstream cGMP-effector pathways are not involved. Increased vasodilating responsiveness to endothelial NO contributes to compensate for the missing vasodilating effect of ANP in SMC GC-A KO mice.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Administration, Oral
- Animals
- Aorta/pathology
- Arteries/cytology
- Blood Pressure/drug effects
- Blotting, Western
- Cyclic GMP/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/metabolism
- Guanylate Cyclase/metabolism
- Mice
- Mice, Knockout
- Molsidomine/analogs & derivatives
- Molsidomine/pharmacology
- Muscle, Smooth, Vascular/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitroprusside/pharmacology
- Protein Structure, Tertiary
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Karim Sabrane
- Institute of Pharmacology and Toxicology, Universitätsklinikum Münster, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|