1
|
Moideen FM, Rahamathulla MP, Charavu R, Alghofaili F, Sha M, Bhandary YP. PAI-1 influences and curcumin destabilizes MMP-2, MMP-9 and basement membrane proteins during lung injury and fibrosis. Int Immunopharmacol 2024; 143:113587. [PMID: 39549545 DOI: 10.1016/j.intimp.2024.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
One of the characteristic feature of idiopathic pulmonary fibrosis is an imbalanced fibrinolytic system. Plasminogen activator inhibitor-1 (PAI-1), an essential serine protease in the fibrinolytic system, has an anti-fibrotic tendency in some organs and a pro-fibrotic nature in others. Curcumin is reported to regulate the fibrinolytic system. In this study, we sought to determine how curcumin affected alterations in tissue remodelling mediated by PAI-1 in lung fibrosis. For in vitro studies, NIH3T3 fibroblasts were either exposed to TGF-β or overexpressed with PAI-1, and/or treated with curcumin. For in vivo studies, C57BL/6 mice were either instilled with bleomycin, overexpressed with PAI-1, and/or intervened with curcumin. Protein and gene expression studies were performed by western blotting and RT-PCR techniques, respectively. Curcumin intervention, in vitro and in vivo, could inhibit the the expression of collagen, fibronectin, MMP-2, and MMP-9, which was otherwise elevated by TGF-β or bleomycin. In conclusion, curcumin reduces pulmonary fibrosis by suppressing excessive basement membrane protein deposition and, likely, preventing the thickening of the alveolar septum.
Collapse
Affiliation(s)
- Fathimath Muneesa Moideen
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, Karnataka, India
| | - Mohamudha Parveen Rahamathulla
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia.
| | - Rakshitha Charavu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, Karnataka, India
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mohemmed Sha
- Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Yashodhar P Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, Karnataka, India.
| |
Collapse
|
2
|
Sisson TH, Osterholzer JJ, Leung L, Basrur V, Nesvizhskii A, Subbotina N, Warnock M, Torrente D, Virk AQ, Horowitz JC, Migliorini M, Strickland DK, Kim KK, Huang SK, Lawrence DA. PAI-1 Interaction with Sortilin Related Receptor-1 is Required for Lung Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606812. [PMID: 39211273 PMCID: PMC11361096 DOI: 10.1101/2024.08.06.606812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) has been previously shown to promote lung fibrosis via a mechanism that requires an intact vitronectin (VTN) binding site. In the present study, employing two distinct murine fibrosis models, we find that VTN is not required for PAI-1 to drive lung scarring. This result suggested the existence of a previously unrecognized profibrotic PAI-1-protein interaction involving the VTN-binding site for PAI-1. Using an unbiased proteomic approach, we identified sortilin related receptor 1 (SorlA) as the most highly enriched PAI-1 interactor in the fibrosing lung. We next investigated the role of SorlA in pulmonary fibrosis and found that SorlA deficiency protected against lung scarring in a murine model. We further show that, while VTN deficiency does not influence fibrogenesis in the presence or absence of PAI-1, SorlA is required for PAI-1 to promote scarring. These results, together with data showing increased SorlA levels in human IPF lung tissue, support a novel mechanism through which the potent profibrotic mediator PAI-1 drives lung fibrosis and implicate SorlA as a new therapeutic target in IPF treatment.
Collapse
|
3
|
Doyle AJ, Retter A, Parmar K, Mayger K, Barrett N, Camporota L, Breen KA, Hunt BJ. Temporal changes in markers of coagulation and fibrinolysis in adults during extracorporeal membrane oxygenation. Perfusion 2024:2676591241267218. [PMID: 39051475 DOI: 10.1177/02676591241267218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Bleeding and thrombotic events (BTE) are frequent during extracorporeal membrane oxygenation (ECMO). They occur at varying timepoints and may be affected by temporal changes in coagulation and fibrinolysis. We aimed to assess various coagulation and fibrinolytic markers over time and their relationship with BTE. METHODS A single-centre prospective study was performed in 17 patients with severe respiratory failure receiving veno-venous ECMO. Blood samples were collected before and during ECMO, and around circuit decannulation. RESULTS Prior to ECMO, D-Dimer, Plasmin-Antiplasmin complexes (PAP), Plasminogen-Activator Inhibitor-1 (PAI-1) and fibrinogen were elevated. There was an increase in D-Dimer and Prothrombin Fragments 1+2 (PF1+2) (729 to 1305pmol/L, p = .034) by day 1 and PAP increased by day 2 from baseline levels (median 1022 to 1797 µg/L, p = .023). There was a strong positive correlation in PAP, PF1+2 and thrombin-antithrombin complexes (TAT) to D-Dimer. BTE were frequent - 18% had major extracranial haemorrhage and 24% had intracranial haemorrhage. Over time, there was a progressive elevation PAP in patients developing subsequent extracranial haemorrhage, whereas D-Dimer, PAP and PF1+2 increased after intracranial haemorrhage. CONCLUSIONS There were early changes in coagulation activity during ECMO by PF1+2 followed by subsequent fibrinolysis by PAP. Changes in PAP, PF1+2 and TAT were associated with major haemorrhage.
Collapse
Affiliation(s)
- Andrew J Doyle
- Centre for Thrombosis and Haemostasis, St Thomas' Hospital, London, UK
| | - Andrew Retter
- Centre for Thrombosis and Haemostasis, St Thomas' Hospital, London, UK
- Department of Critical Care, St Thomas' Hospital, London, UK
| | - Kiran Parmar
- Thrombosis and Vascular Biology Research Laboratory, St Thomas' Hospital, London, UK
| | | | - Nicholas Barrett
- Department of Critical Care, St Thomas' Hospital, London, UK
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Luigi Camporota
- Department of Critical Care, St Thomas' Hospital, London, UK
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Karen A Breen
- Centre for Thrombosis and Haemostasis, St Thomas' Hospital, London, UK
| | - Beverley J Hunt
- Centre for Thrombosis and Haemostasis, St Thomas' Hospital, London, UK
| |
Collapse
|
4
|
Ngai YT, Briggs MT, Mittal P, Young C, Parkinson-Lawrence E, Klingler-Hoffmann M, Orgeig S, Hoffmann P. Mass spectrometry imaging protocol for spatial mapping of lipids, N-glycans and peptides in murine lung tissue. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9721. [PMID: 38525810 DOI: 10.1002/rcm.9721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 03/26/2024]
Abstract
RATIONALE The application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to murine lungs is challenging due to the spongy nature of the tissue. Lungs consist of interconnected air sacs (alveoli) lined by a single layer of flattened epithelial cells, which requires inflation to maintain its natural structure. Therefore, a protocol that is compatible with both lung instillation and high spatial resolution is essential to enable multi-omic studies on murine lung disease models using MALDI-MSI. METHODS AND RESULTS To maintain the structural integrity of the tissue, murine lungs were inflated with 8% (w/v) gelatin for lipid MSI of fresh frozen tissues or 4% (v/v) paraformaldehyde neutral buffer for N-glycan and peptide MSI of FFPE tissues. Tissues were sectioned and prepared for enzymatic digestion and/or matrix deposition. Glycerol-free PNGase F was applied for N-glycan MSI, while Trypsin Gold was applied for peptide MSI using the iMatrixSpray and ImagePrep Station, respectively. For lipid, N-glycan and peptide MSI, α-cyano-4-hydroxycinnamic acid matrix was deposited using the iMatrixSpray. MS data were acquired with 20 μm spatial resolution using a timsTOF fleX MS instrument followed by MS fragmentation of lipids, N-glycans and peptides. For lipid MSI, trapped ion mobility spectrometry was used to separate isomeric/isobaric lipid species. SCiLS™ Lab was used to visualize all MSI data. For analyte identification, MetaboScape®, GlycoMod and Mascot were used to annotate MS fragmentation spectra of lipids, N-glycans and tryptic peptides, respectively. CONCLUSIONS Our protocol provides instructions on sample preparation for high spatial resolution MALDI-MSI, MS/MS data acquisition and lipid, N-glycan and peptide annotation and identification from murine lungs. This protocol will allow non-biased analyses of diseased lungs from preclinical murine models and provide further insight into disease models.
Collapse
Affiliation(s)
- Yuen T Ngai
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Matthew T Briggs
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Parul Mittal
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Clifford Young
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | | | | | - Sandra Orgeig
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Peter Hoffmann
- Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
5
|
Maina TW, McDonald PO, Rani Samuel BE, Sardi MI, Yoon I, Rogers A, McGill JL. Feeding Saccharomyces cerevisiae fermentation postbiotic products alters immune function and the lung transcriptome of preweaning calves with an experimental viral-bacterial coinfection. J Dairy Sci 2024; 107:2253-2267. [PMID: 37806633 DOI: 10.3168/jds.2023-23866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Bovine respiratory disease causes morbidity and mortality in cattle of all ages. Supplementing with postbiotic products from Saccharomyces cerevisiae fermentation (SCFP) has been reported to improve growth and provide metabolic support required for immune activation in calves. The objective of this study was to determine effects of SCFP supplementation on the transcriptional response to coinfection with bovine respiratory syncytial virus (BRSV) and Pasteurella multocida in the lung using RNA sequencing. Twenty-three calves were enrolled and assigned to 2 treatment groups: control (n = 12) or SCFP-treated (n = 11, fed 1 g/d SmartCare in milk and 5 g/d NutriTek on starter grain; both from Diamond V Mills Inc.). Calves were infected with ∼104 median tissue culture infectious dose per milliliter of BRSV, followed 6 d later by intratracheal inoculation with ∼1010 cfu of Pasteurella multocida (strain P1062). Calves were euthanized on d 10 after viral infection. Blood cells were collected and assayed on d 0 and 10 after viral infection. Bronchoalveolar lavage (BAL) cells were collected and assayed on d 14 of the feeding period (preinfection) and d 10 after viral infection. Blood and BAL cells were assayed for proinflammatory cytokine production in response to stimulation with lipopolysaccharide (LPS) or a combination of polyinosinic:polycytidylic acid and imiquimod, and BAL cells were evaluated for phagocytic and reactive oxygen species production capacity. Antemortem and postmortem BAL and lesioned and nonlesioned lung tissue samples collected at necropsy were subjected to RNA extraction and sequencing. Sequencing reads were aligned to the bovine reference genome (UMD3.1) and edgeR version 3.32.1 used for differential gene expression analysis. Supplementation with SCFP did not affect the respiratory burst activity or phagocytic activity of either lung or blood immune cells. Immune cells from the peripheral blood of SCFP-supplemented calves produced increased quantities of IL-6 in response to toll-like receptor stimulation, whereas cells from the BAL of SCFP-treated calves secreted fewer proinflammatory cytokines and less tumor necrosis factor-α (TNF-α) and IL-6 in response to the same stimuli. Transcriptional responses in lung tissues and BAL samples from SCFP-fed calves differed from the control group. The top enriched pathways in SCFP-treated lungs were associated with decreased expression of inflammatory responses and increased expression of plasminogen and genes involved in glutathione metabolism, supporting effective lung repair. Our results indicate that supplementing with SCFP postbiotics modulates both systemic and mucosal immune responses, leading to increased resistance to bovine respiratory disease.
Collapse
Affiliation(s)
- Teresia W Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50010
| | - Paiton O McDonald
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - Beulah E Rani Samuel
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50010
| | | | - Ilkyu Yoon
- Diamond V Mills Inc., Cedar Rapids, IA 52404
| | - Adam Rogers
- Diamond V Mills Inc., Cedar Rapids, IA 52404
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50010.
| |
Collapse
|
6
|
Park SJ, Hahn HJ, Oh SR, Lee HJ. Theophylline Attenuates BLM-Induced Pulmonary Fibrosis by Inhibiting Th17 Differentiation. Int J Mol Sci 2023; 24:ijms24021019. [PMID: 36674533 PMCID: PMC9860752 DOI: 10.3390/ijms24021019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and refractory interstitial lung disease. Although there are two approved drugs for IPF, they were not able to completely cure the disease. Therefore, the development of new drugs is required for the effective treatment of IPF. In this study, we investigated the effect of theophylline, which has long been used for the treatment of asthma, on pulmonary fibrosis. The administration of theophylline attenuated the fibrotic changes of lung tissues and improved mechanical pulmonary functions in bleomycin (BLM)-induced pulmonary fibrosis. Theophylline treatment suppressed IL-17 production through inhibiting cytokines controlling Th17 differentiation; TGF-β, IL-6, IL-1β, and IL-23. The inhibition of IL-6 and IL-1β by theophylline is mediated by suppressing BLM-induced ROS production and NF-κB activation in epithelial cells. We further demonstrated that theophylline inhibited TGF-β-induced epithelial-to-mesenchymal transition in epithelial cells through suppressing the phosphorylation of Smad2/3 and AKT. The inhibitory effects of theophylline on the phosphorylation of Smad2/3 and AKT were recapitulated in BLM-treated lung tissues. Taken together, these results demonstrated that theophylline prevents pulmonary fibrosis by inhibiting Th17 differentiation and TGF-β signaling.
Collapse
|
7
|
Pawelec KM, Varnum M, Harkema JR, Auerbach B, Larsen SD, Neubig RR. Prevention of bleomycin-induced lung fibrosis via inhibition of the MRTF/SRF transcription pathway. Pharmacol Res Perspect 2022; 10:e01028. [PMID: 36426895 PMCID: PMC9695093 DOI: 10.1002/prp2.1028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
Bleomycin-induced lung fibrosis is a debilitating disease, linked to high morbidity and mortality in chemotherapy patients. The MRTF/SRF transcription pathway has been proposed as a potential therapeutic target, as it is critical for myofibroblast differentiation, a hallmark of fibrosis. In human lung fibroblasts, the MRTF/SRF pathway inhibitor, CCG-257081, effectively decreased mRNA levels of downstream genes: smooth muscle actin and connective tissue growth factor, with IC50 s of 4 and 15 μM, respectively. The ability of CCG-257081 to prevent inflammation and fibrosis, measured via pulmonary collagen content and histopathology, was tested in a murine model of bleomycin-induced lung fibrosis. Animals were given intraperitoneal bleomycin for 4 weeks and concurrently dosed with CCG-257081 (0, 10, 30, and 100 mg/kg PO), a clinical anti-fibrotic (nintedanib) or the clinical standard of care (prednisolone). Mice treated with 100 mg/kg CCG-257081 gained weight vs. vehicle-treated control mice, while those receiving nintedanib and prednisolone lost significant weight. Hydroxyproline content and histological findings in tissue of animals on 100 mg/kg CCG-257081 were not significantly different from naive tissue, indicating successful prevention. Measures of tissue fibrosis were comparable between CCG-257081 and nintedanib, but only the MRTF/SRF inhibitor decreased plasminogen activator inhibitor-1 (PAI-1), a marker linked to fibrosis, in bronchoalveolar lavage fluid. In contrast, prednisolone led to marked increases in lung fibrosis by all metrics. This study demonstrates the potential use of MRTF/SRF inhibitors to prevent bleomycin-induced lung fibrosis in a clinically relevant model of the disease.
Collapse
Affiliation(s)
| | - Megan Varnum
- FibrosIXEast LansingMichiganUSA
- BBC Entrepreneurial Training and ConsultingChelseaMichiganUSA
| | - Jack R. Harkema
- Department of Pathology and Diagnostic InvestigationMichigan State UniversityEast LansingMichiganUSA
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Bruce Auerbach
- Office of Technology TransferUniversity of MichiganAnn ArborMichiganUSA
| | - Scott D. Larsen
- FibrosIXEast LansingMichiganUSA
- Department of Medicinal ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Richard R. Neubig
- FibrosIXEast LansingMichiganUSA
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
8
|
Saito S, Deskin B, Rehan M, Yadav S, Matsunaga Y, Lasky JA, Thannickal VJ. Novel mediators of idiopathic pulmonary fibrosis. Clin Sci (Lond) 2022; 136:1229-1240. [PMID: 36043396 DOI: 10.1042/cs20210878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Fibrosis involving the lung may occur in many settings, including in association with known environmental agents, connective tissue diseases, and exposure to drugs or radiation therapy. The most common form is referred to as 'idiopathic' since a causal agent or specific association has not been determined; the strongest risk factor for idiopathic pulmonary fibrosis is aging. Emerging studies indicate that targeting certain components of aging biology may be effective in mitigating age-associated fibrosis. While transforming growth factor-β1 (TGF-β1) is a central mediator of fibrosis in almost all contexts, and across multiple organs, it is not feasible to target this canonical pathway at the ligand-receptor level due to the pleiotropic nature of its actions; importantly, its homeostatic roles as a tumor-suppressor and immune-modulator make this an imprudent strategy. However, defining targets downstream of its receptor(s) that mediate fibrogenesis, while relatively dispenable for tumor- and immune-suppressive functions may aid in developing safer and more effective therapies. In this review, we explore molecular targets that, although TGF-β1 induced/activated, may be relatively more selective in mediating tissue fibrosis. Additionally, we explore epigenetic mechanisms with global effects on the fibrogenic process, as well as metabolic pathways that regulate aging and fibrosis.
Collapse
Affiliation(s)
- Shigeki Saito
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Brian Deskin
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Mohammad Rehan
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Santosh Yadav
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Yasuka Matsunaga
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Joseph A Lasky
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| |
Collapse
|
9
|
Kapoor R, Saini A, Sharma D. Indispensable role of microbes in anticancer drugs and discovery trends. Appl Microbiol Biotechnol 2022; 106:4885-4906. [PMID: 35819512 DOI: 10.1007/s00253-022-12046-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Recent years have seen an increased focus on the advancement of naturally derived products for the treatment of cancer. Since the beginning of recorded history, nature has provided a variety of medicinal agents, and an overwhelming number of drugs that we have today are derived from natural sources. Such natural agents are prominently used to treat several diseases such as diabetes, malaria, Alzheimer's, pulmonary disorders, etc. with cancer being the highlight of this review. Due to the rapid development of resistance to chemotherapeutic drugs, the hunt for effective novel drugs is still a paramount concern in cancer treatment. Moreover, many chemotherapy drugs typically have high toxicity and adverse side effects, which necessitates the need to develop anti-tumor drugs that can be employed to treat deadly tumors with fewer negative effects on health and better efficacy. Isolation of several chemotherapeutic drugs has been conducted from a wide range of natural sources which include plants, microbes, fungi, and marine microorganisms. Considering the trends of previous decades, microbial diversity has grown to play a significant role in the formulation of pharmaceuticals and drugs, especially antibiotics and anti-cancer medications. Microbe-derived antitumor antibiotics such as anthracycline, epothilones, bleomycin, actinomycin, and staurosporine are amongst the widely used cancer chemotherapeutic agents. This review deals majorly with microbe-derived anticancer drugs taking into account their derivatives, mechanism of action, isolation procedures, limitations, and tumors targeted by them. This article also reports the phase of clinical study these drugs are undergoing. Moreover, it intends to portray the indispensable part that these microbes have been playing since time immemorial in the odyssey of chemotherapeutic agents. KEY POINTS: • Microbial diversity contributes heavily towards the formulation of anticancer drugs. • Polypeptides, carbohydrates, and alkaloids are prevalent microbe-based drug classes. • Microbe-derived anticancer agents target various sarcomas, carcinomas, and lymphomas.
Collapse
Affiliation(s)
- Ridam Kapoor
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, 302006, India.,Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
10
|
Fathimath Muneesa M, Barki RR, Shaikh SB, Bhandary YP. Curcumin intervention during progressive fibrosis controls inflammatory cytokines and the fibrinolytic system in pulmonary fibrosis. Toxicol Appl Pharmacol 2022; 449:116116. [PMID: 35716765 DOI: 10.1016/j.taap.2022.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Persistent injuries and chronic inflammation paired with dysregulated healing process in the lungs leads to scarring and stiffening of the tissue leading to a condition called pulmonary fibrosis. There is no efficacious therapy against the condition because of the poorly understood pathophysiology of the disease. Curcumin is well known anti-inflammatory natural compound and is shown to have beneficial effects in many diseases. It is also reported to show antifibrotic activities in pulmonary fibrosis. There are evidences that fibrinolytic system plays a crucial role in the development of pulmonary fibrosis. We aimed to see whether curcumin could regulate inflammation and fibrinolysis in murine model of pulmonary fibrosis. We prepared BLM induced pulmonary fibrosis model by administering BLM at a dose of 2 mg/ kg bodyweight. Curcumin (75 mg/kg body wt) was instilled intraperitoneally on different time points. The effect of curcumin on inflammatory cytokines and fibrinolytic system was studied using molecular biology techniques like RT-PCR, western blot and immunohistochemistry/immunofluorescence. We observed that BLM brought changes in the expressions of components in the fibrinolytic system, i.e. BLM favoured fibrin deposition by increasing the expression of PAI-1 (plasminogen activator inhibitor) and decreasing the expression of uPA (Urokinase plasminogen activator) and uPAR (Urokinase plasminogen activator receptor). We also demonstrate that curcumin could restore the normal expression of fibrinolytic components, uPA, uPAR and PAI-1. Curcumin could also minimize the expression of key enzymes in tissue remodeling in pulmonary fibrosis, MMP-2 and MMP-9, which were elevated in the BLM treated group. Our data suggest that curcumin exerts an anti-inflammatory and antifibrotic effect in lungs. We highlight curcumin as a feasible adjuvant therapy option against pulmonary fibrosis.
Collapse
Affiliation(s)
- M Fathimath Muneesa
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India
| | - Rashmi R Barki
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India
| | - Sadiya Bi Shaikh
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India; Rahman Lab, Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Yashodhar P Bhandary
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
11
|
Aschner Y, Correll KA, Beke K, Foster DG, Roybal HM, Nelson MR, Meador CL, Strand M, Anderson KC, Moore CM, Reynolds PR, Kopf KW, Burnham EL, Downey GP. PTPα Promotes Fibroproliferative Responses After Acute Lung Injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L69-L83. [PMID: 35670474 DOI: 10.1152/ajplung.00436.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Acute Respiratory Distress Syndrome (ARDS) is a major healthcare problem, accounting for significant mortality and long-term disability. Approximately 25% of patients with ARDS will develop an over-exuberant fibrotic response, termed fibroproliferative ARDS (FP-ARDS) that portends a poor prognosis and increased mortality. The cellular pathologic processes that drive FP-ARDS remain incompletely understood. We have previously shown that the transmembrane receptor-type tyrosine phosphatase Protein Tyrosine Phosphatase-a (PTPa) promotes pulmonary fibrosis in preclinical murine models through regulation of TGF-b signaling. In this study, we examine the role of PTPa in the pathogenesis of FP-ARDS in a preclinical murine model of acid (HCl)-induced acute lung injury. We demonstrate that while mice genetically deficient in PTPa (Ptpra-/-) are susceptible to early HCl-induced lung injury, they exhibit markedly attenuated fibroproliferative responses. Additionally, early pro-fibrotic gene expression is reduced in lung tissue after acute lung injury in Ptpra-/- mice, and stimulation of naïve lung fibroblasts with the BAL fluid from these mice results in attenuated fibrotic outcomes compared to wild type littermate controls. Transcriptomic analyses demonstrates reduced Extracellular Matrix (ECM) deposition and remodeling in mice genetically deficient in PTPa. Importantly, human lung fibroblasts modified with a CRISPR-targeted deletion of PTPRA exhibit reduced expression of profibrotic genes in response to TGF-β stimulation, demonstrating the importance of PTPa in human lung fibroblasts. Together, these findings demonstrate that PTPa is a key regulator of fibroproliferative processes following acute lung injury and could serve as a therapeutic target for patients at risk for poor long-term outcomes in ARDS.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Kelly A Correll
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Keriann Beke
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Daniel G Foster
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Helen M Roybal
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Meghan R Nelson
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Carly L Meador
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Matthew Strand
- Division of Biostatistics, National Jewish Health, Denver, CO, United States
| | - Kelsey C Anderson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Paul R Reynolds
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Katrina W Kopf
- Office of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Office of Academic Affairs, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
12
|
RNA Sequencing of Epithelial Cell/Fibroblastic Foci Sandwich in Idiopathic Pulmonary Fibrosis: New Insights on the Signaling Pathway. Int J Mol Sci 2022; 23:ijms23063323. [PMID: 35328744 PMCID: PMC8954546 DOI: 10.3390/ijms23063323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by irreversible scarring of the distal lung. IPF is best described by its histopathological pattern of usual interstitial pneumonia (UIP), characterized by spatial heterogeneity with alternating interstitial fibrosis and areas of normal lung, and temporal heterogeneity of fibrosis characterized by scattered fibroblastic foci (FF), dense acellular collagen and honeycomb changes. FF, comprising aggregated fibroblasts/myofibroblasts surrounded by metaplastic epithelial cells (EC), are the cardinal pathological lesion and their presence strongly correlates with disease progression and mortality. We hypothesized that the EC/FF sandwich from patients with UIP/IPF has a distinct molecular signature which could offer new insights into the crosstalk of these two crucial actors in the disease. Laser capture microdissection with RNAseq was used to investigate the transcriptome of the EC/FF sandwich from IPF patients versus controls (primary spontaneous pneumothorax). Differentially expressed gene analysis identified 23 up-regulated genes mainly related to epithelial dysfunction. Gene ontology analysis highlighted the activation of different pathways, mainly related to EC, immune response and programmed cell death. This study provides novel insights into the IPF pathogenetic pathways and suggests that targeting some of these up-regulated pathways (particularly those related to secreto-protein/mucin dysfunction) may be beneficial in IPF. Further studies in a larger number of lung samples, ideally from patients with early and advanced disease, are needed to validate these findings.
Collapse
|
13
|
Sharma S, Watanabe T, Nishimoto T, Takihara T, Mlakar L, Nguyen XX, Sanderson M, Su Y, Chambers RA, Feghali-Bostwick C. E4 engages uPAR and enolase-1 and activates urokinase to exert antifibrotic effects. JCI Insight 2021; 6:144935. [PMID: 34935642 PMCID: PMC8783693 DOI: 10.1172/jci.insight.144935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroproliferative disorders such as systemic sclerosis (SSc) have no effective therapies and result in significant morbidity and mortality. We recently demonstrated that the C-terminal domain of endostatin, known as E4, prevented and reversed both dermal and pulmonary fibrosis. Our goal was to identify the mechanism by which E4 abrogates fibrosis and its cell surface binding partner(s). Our findings show that E4 activated the urokinase pathway and increased the urokinase plasminogen activator (uPA) to type 1 plasminogen activator inhibitor (PAI-1) ratio. In addition, E4 substantially increased MMP-1 and MMP-3 expression and activity. In vivo, E4 reversed bleomycin induction of PAI-1 and increased uPA activity. In patients with SSc, the uPA/PAI-1 ratio was decreased in both lung tissues and pulmonary fibroblasts compared with normal donors. Proteins bound to biotinylated-E4 were identified as enolase-1 (ENO) and uPA receptor (uPAR). The antifibrotic effects of E4 required uPAR. Further, ENO mediated the fibrotic effects of TGF-β1 and exerted TGF-β1–independent fibrotic effects. Our findings suggest that the antifibrotic effect of E4 is mediated, in part, by regulation of the urokinase pathway and induction of MMP-1 and MMP-3 levels and activity in a uPAR-dependent manner, thus promoting extracellular matrix degradation. Further, our findings identify a moonlighting function for the glycolytic enzyme ENO in fibrosis.
Collapse
Affiliation(s)
- Shailza Sharma
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tomoya Watanabe
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tetsuya Nishimoto
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Takahisa Takihara
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Logan Mlakar
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xinh-Xinh Nguyen
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew Sanderson
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yunyun Su
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Roger A Chambers
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
14
|
Droebner K, Pavkovic M, Grundmann M, Hartmann E, Goea L, Nordlohne J, Klar J, Eitner F, Kolkhof P. Direct Blood Pressure-Independent Anti-Fibrotic Effects by the Selective Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone in Progressive Models of Kidney Fibrosis. Am J Nephrol 2021; 52:588-601. [PMID: 34515038 DOI: 10.1159/000518254] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone and sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated clinical benefits in chronic kidney disease patients with type 2 diabetes. Precise molecular mechanisms responsible for these benefits are incompletely understood. Here, we investigated potential direct anti-fibrotic effects and mechanisms of nonsteroidal MR antagonism by finerenone or SGLT2 inhibition by empagliflozin in 2 relevant mouse kidney fibrosis models: unilateral ureter obstruction and sub-chronic ischemia reperfusion injury. METHODS Kidney fibrosis was induced in mice via unilateral ureteral obstruction or ischemia. In a series of experiments, mice were treated orally with the MR antagonist finerenone (3 or 10 mg/kg), the SGLT2 inhibitor empagliflozin (10 or 30 mg/kg), or in a direct comparison of both drugs. Interstitial myofibroblast accumulation was quantified via alpha-smooth muscle actin and interstitial collagen deposition via Sirius Red/Fast Green staining in both models. Secondary analyses included the assessment of inflammatory cells, kidney mRNA expression of fibrotic markers as well as functional parameters (serum creatinine and albuminuria) in the ischemic model. Blood pressure was measured via telemetry in healthy conscious compound-treated animals. RESULTS Finerenone dose-dependently decreased pathological myofibroblast accumulation and collagen deposition with no effects on systemic blood pressure and inflammatory markers in the tested dose range. Reduced kidney fibrosis was paralleled by reduced kidney plasminogen activator inhibitor-1 (PAI-1) and naked cuticle 2 (NKD2) expression in finerenone-treated mice. In contrast, treatment with empagliflozin strongly increased urinary glucose excretion in both models and reduced ischemia-induced albuminuria but had no effects on kidney myofibroblasts or collagen deposition. DISCUSSION/CONCLUSION Finerenone has direct anti-fibrotic properties resulting in reduced myofibroblast and collagen deposition accompanied by a reduction in renal PAI-1 and NKD2 expression in mouse models of progressive kidney fibrosis at blood pressure-independent dosages.
Collapse
Affiliation(s)
- Karoline Droebner
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Mira Pavkovic
- Biomarker Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Manuel Grundmann
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Elke Hartmann
- Research Pathology, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Laura Goea
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Johannes Nordlohne
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Jürgen Klar
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Frank Eitner
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Peter Kolkhof
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| |
Collapse
|
15
|
Park SJ, Kim TH, Lee K, Kang MA, Jang HJ, Ryu HW, Oh SR, Lee HJ. Kurarinone Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting TGF-β Signaling Pathways. Int J Mol Sci 2021; 22:8388. [PMID: 34445094 PMCID: PMC8395032 DOI: 10.3390/ijms22168388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a refractory interstitial lung disease for which there is no effective treatment. Although the pathogenesis of IPF is not fully understood, TGF-β and epithelial-mesenchymal transition (EMT) have been shown to be involved in the fibrotic changes of lung tissues. Kurarinone is a prenylated flavonoid isolated from Sophora Flavescens with antioxidant and anti-inflammatory properties. In this study, we investigated the effect of kurarinone on pulmonary fibrosis. Kurarinone suppressed the TGF-β-induced EMT of lung epithelial cells. To assess the therapeutic effects of kurarinone in bleomycin (BLM)-induced pulmonary fibrosis, mice were treated with kurarinone daily for 2 weeks starting 7 days after BLM instillation. Oral administration of kurarinone attenuated the fibrotic changes of lung tissues, including accumulation of collagen and improved mechanical pulmonary functions. Mechanistically, kurarinone suppressed phosphorylation of Smad2/3 and AKT induced by TGF-β1 in lung epithelial cells, as well as in lung tissues treated with BLM. Taken together, these results suggest that kurarinone has a therapeutic effect on pulmonary fibrosis via suppressing TGF-β signaling pathways and may be a novel drug candidate for pulmonary fibrosis.
Collapse
Affiliation(s)
- Soo-Jin Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Korea; (S.-J.P.); (T.-h.K.); (K.L.); (M.-A.K.); (H.-J.J.); (H.-W.R.); (S.-R.O.)
| | - Tae-hyoun Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Korea; (S.-J.P.); (T.-h.K.); (K.L.); (M.-A.K.); (H.-J.J.); (H.-W.R.); (S.-R.O.)
| | - Kiram Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Korea; (S.-J.P.); (T.-h.K.); (K.L.); (M.-A.K.); (H.-J.J.); (H.-W.R.); (S.-R.O.)
- Department of Biomolecular Science, University of Science & Technology (UST), Daejeon 341113, Korea
| | - Min-Ah Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Korea; (S.-J.P.); (T.-h.K.); (K.L.); (M.-A.K.); (H.-J.J.); (H.-W.R.); (S.-R.O.)
| | - Hyun-Jae Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Korea; (S.-J.P.); (T.-h.K.); (K.L.); (M.-A.K.); (H.-J.J.); (H.-W.R.); (S.-R.O.)
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Korea; (S.-J.P.); (T.-h.K.); (K.L.); (M.-A.K.); (H.-J.J.); (H.-W.R.); (S.-R.O.)
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Korea; (S.-J.P.); (T.-h.K.); (K.L.); (M.-A.K.); (H.-J.J.); (H.-W.R.); (S.-R.O.)
- Department of Biomolecular Science, University of Science & Technology (UST), Daejeon 341113, Korea
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Korea; (S.-J.P.); (T.-h.K.); (K.L.); (M.-A.K.); (H.-J.J.); (H.-W.R.); (S.-R.O.)
| |
Collapse
|
16
|
Wei Y, Tanaka M, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Cui N, Kakihara S, Zhao Y, Aruga K, Sanjo H, Shindo T. Adrenomedullin Ameliorates Pulmonary Fibrosis by Regulating TGF-ß-Smads Signaling and Myofibroblast Differentiation. Endocrinology 2021; 162:bqab090. [PMID: 33955458 DOI: 10.1210/endocr/bqab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/19/2022]
Abstract
Pulmonary fibrosis is an irreversible, potentially fatal disease. Adrenomedullin (AM) is a multifunctional peptide whose activity is regulated by receptor activity-modifying protein 2 (RAMP2). In the present study, we used the bleomycin (BLM)-induced mouse pulmonary fibrosis model to investigate the pathophysiological significance of the AM-RAMP2 system in the lung. In heterozygous AM knockout mice (AM+/-), hydroxyproline content and Ashcroft scores reflecting the fibrosis severity were significantly higher than in wild-type mice (WT). During the acute phase after BLM administration, FACS analysis showed significant increases in eosinophil, monocyte, and neutrophil infiltration into the lungs of AM+/-. During the chronic phase, fibrosis-related molecules were upregulated in AM+/-. Notably, nearly identical changes were observed in RAMP2+/-. AM administration reduced fibrosis severity. In the lungs of BLM-administered AM+/-, the activation level of Smad3, a receptor-activated Smad, was higher than in WT. In addition, Smad7, an antagonistic Smad, was downregulated and microRNA-21, which targets Smad7, was upregulated compared to WT. Isolated AM+/- lung fibroblasts showed less proliferation and migration capacity than WT fibroblasts. Stimulation with TGF-β increased the numbers of α-SMA-positive myofibroblasts, which were more prominent among AM+/- cells. TGF-β-stimulated AM+/- myofibroblasts were larger and exhibited greater contractility and extracellular matrix production than WT cells. These cells were α-SMA (+), F-actin (+), and Ki-67(-) and appeared to be nonproliferating myofibroblasts (non-p-MyoFbs), which contribute to the severity of fibrosis. Our findings suggest that in addition to suppressing inflammation, the AM-RAMP2 system ameliorates pulmonary fibrosis by suppressing TGF-β-Smad3 signaling, microRNA-21 activity and differentiation into non-p-MyoFbs.
Collapse
Affiliation(s)
- Yangxuan Wei
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Nanqi Cui
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shinji Kakihara
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yunlu Zhao
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Kohsuke Aruga
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
17
|
Jiang C, Liu G, Cai L, Deshane J, Antony V, Thannickal VJ, Liu RM. Divergent Regulation of Alveolar Type 2 Cell and Fibroblast Apoptosis by Plasminogen Activator Inhibitor 1 in Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1227-1239. [PMID: 33887217 PMCID: PMC8351125 DOI: 10.1016/j.ajpath.2021.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 01/14/2023]
Abstract
Increased apoptosis sensitivity of alveolar type 2 (ATII) cells and increased apoptosis resistance of (myo)fibroblasts, the apoptosis paradox, contributes to the pathogenesis of idiopathic pulmonary fibrosis (IPF). The mechanism underlying the apoptosis paradox in IPF lungs, however, is unclear. Aging is the greatest risk factor for IPF. In this study, we show, for the first time, that ATII cells from old mice are more sensitive, whereas fibroblasts from old mice are more resistant, to apoptotic challenges, compared with the corresponding cells from young mice. The expression of plasminogen activator inhibitor 1 (PAI-1), an important profibrogenic mediator, was significantly increased in both ATII cells and lung fibroblasts from aged mice. In vitro studies using PAI-1 siRNA and active PAI-1 protein indicated that PAI-1 promoted ATII cell apoptosis but protected fibroblasts from apoptosis, likely through dichotomous regulation of p53 expression. Deletion of PAI-1 in adult mice led to a reduction in p53, p21, and Bax protein expression, as well as apoptosis sensitivity in ATII cells, and their increase in the lung fibroblasts, as indicated by in vivo studies. This increase was associated with an attenuation of lung fibrosis after bleomycin challenge. Since PAI-1 is up-regulated in both ATII cells and fibroblasts in IPF, the results suggest that increased PAI-1 may underlie the apoptosis paradox of ATII cells and fibroblasts in IPF lungs.
Collapse
Affiliation(s)
- Chunsun Jiang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville School of Medicine, Louisville, Kentucky
| | - Jessy Deshane
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena Antony
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
18
|
Doni A, Mantovani A, Bottazzi B, Russo RC. PTX3 Regulation of Inflammation, Hemostatic Response, Tissue Repair, and Resolution of Fibrosis Favors a Role in Limiting Idiopathic Pulmonary Fibrosis. Front Immunol 2021; 12:676702. [PMID: 34276664 PMCID: PMC8284251 DOI: 10.3389/fimmu.2021.676702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells in response to infection or tissue injury. PTX3 interacts with microbial moieties and selected pathogens, with molecules of the complement and hemostatic systems, and with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair. Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown origin, associated with excessive ECM deposition affecting tissue architecture, with irreversible loss of lung function and impact on the patient's life quality. Maccarinelli et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair. However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be investigated. Herein, we provide new insights on the possible role of PTX3 in the development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was associated with worsening of the disease and with impaired fibrin removal and subsequently increased collagen deposition. In IPF patients, microarray data indicated a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the development of disease. Therefore, we provide new insights for considering PTX3 as a possible target molecule underlying therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Andrea Doni
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Alberto Mantovani
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University of Milan, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Barbara Bottazzi
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
The Serpin Superfamily and Their Role in the Regulation and Dysfunction of Serine Protease Activity in COPD and Other Chronic Lung Diseases. Int J Mol Sci 2021; 22:ijms22126351. [PMID: 34198546 PMCID: PMC8231800 DOI: 10.3390/ijms22126351] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating heterogeneous disease characterised by unregulated proteolytic destruction of lung tissue mediated via a protease-antiprotease imbalance. In COPD, the relationship between the neutrophil serine protease, neutrophil elastase, and its endogenous inhibitor, alpha-1-antitrypsin (AAT) is the best characterised. AAT belongs to a superfamily of serine protease inhibitors known as serpins. Advances in screening technologies have, however, resulted in many members of the serpin superfamily being identified as having differential expression across a multitude of chronic lung diseases compared to healthy individuals. Serpins exhibit a unique suicide-substrate mechanism of inhibition during which they undergo a dramatic conformational change to a more stable form. A limitation is that this also renders them susceptible to disease-causing mutations. Identification of the extent of their physiological/pathological role in the airways would allow further expansion of knowledge regarding the complexity of protease regulation in the lung and may provide wider opportunity for their use as therapeutics to aid the management of COPD and other chronic airways diseases.
Collapse
|
20
|
Medcalf RL, Keragala CB. The Fibrinolytic System: Mysteries and Opportunities. Hemasphere 2021; 5:e570. [PMID: 34095754 PMCID: PMC8171360 DOI: 10.1097/hs9.0000000000000570] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The deposition and removal of fibrin has been the primary role of coagulation and fibrinolysis, respectively. There is also little doubt that these 2 enzyme cascades influence each other given they share the same serine protease family ancestry and changes to 1 arm of the hemostatic pathway would influence the other. The fibrinolytic system in particular has also been known for its capacity to clear various non-fibrin proteins and to activate other enzyme systems, including complement and the contact pathway. Furthermore, it can also convert a number of growth factors into their mature, active forms. More recent findings have extended the reach of this system even further. Here we will review some of these developments and also provide an account of the influence of individual players of the fibrinolytic (plasminogen activating) pathway in relation to physiological and pathophysiological events, including aging and metabolism.
Collapse
Affiliation(s)
- Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Victoria, Australia
| | - Charithani B. Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Victoria, Australia
| |
Collapse
|
21
|
Hirani N, MacKinnon AC, Nicol L, Ford P, Schambye H, Pedersen A, Nilsson UJ, Leffler H, Sethi T, Tantawi S, Gravelle L, Slack RJ, Mills R, Karmakar U, Humphries D, Zetterberg F, Keeling L, Paul L, Molyneaux PL, Li F, Funston W, Forrest IA, Simpson AJ, Gibbons MA, Maher TM. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur Respir J 2021; 57:13993003.02559-2020. [PMID: 33214209 PMCID: PMC8156151 DOI: 10.1183/13993003.02559-2020] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Galectin (Gal)-3 is a profibrotic β-galactoside-binding lectin that plays a key role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and IPF exacerbations. TD139 is a novel and potent small-molecule inhibitor of Gal-3. A randomised, double-blind, multicentre, placebo-controlled, phase 1/2a study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of inhaled TD139 in 36 healthy subjects and 24 patients with IPF. Six dose cohorts of six healthy subjects were evaluated (4:2 TD139:placebo ratio) with single doses of TD139 (0.15–50 mg) and three dose cohorts of eight patients with IPF (5:3 TD139:placebo ratio) with once-daily doses of TD139 (0.3–10 mg) for 14 days. Inhaled TD139 was well tolerated with no significant treatment-related side-effects. TD139 was rapidly absorbed, with mean time taken to reach maximum plasma concentration (Cmax) values ranging from 0.6 to 3 h and a plasma half-life (T1/2) of 8 h. The concentration of TD139 in the lung was >567-fold higher than in the blood, with systemic exposure predicting exposure in the target compartment. Gal-3 expression on alveolar macrophages was reduced in the 3 and 10 mg dose groups compared with placebo, with a concentration-dependent inhibition demonstrated. Inhibition of Gal-3 expression in the lung was associated with reductions in plasma biomarkers centrally relevant to IPF pathobiology (platelet-derived growth factor-BB, plasminogen activator inhibitor-1, Gal-3, CCL18 and YKL-40). TD139 is safe and well tolerated in healthy subjects and IPF patients. It was shown to suppress Gal-3 expression on bronchoalveolar lavage macrophages and, in a concerted fashion, decrease plasma biomarkers associated with IPF progression. TD139 is a potent inhibitor of galectin-3, a key driver of fibrosis in the lung. In this phase 1/2a clinical study, inhaled TD139 was safe, well tolerated, and demonstrated target engagement and decreased plasma biomarkers associated with IPF progression.https://bit.ly/2JREKx6
Collapse
Affiliation(s)
- Nikhil Hirani
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alison C MacKinnon
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Galecto, Copenhagen, Denmark
| | - Lisa Nicol
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | - Hakon Leffler
- Dept of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | - Ross Mills
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Utsa Karmakar
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Duncan Humphries
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Lyn Paul
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Philip L Molyneaux
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Feng Li
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Wendy Funston
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ian A Forrest
- Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael A Gibbons
- Respiratory Dept, Institute of Biomedical and Clinical Science, Royal Devon and Exeter NHS Foundation Trust, Medical School, University of Exeter, Exeter, UK
| | - Toby M Maher
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Tucker TA, Idell S. The Contribution of the Urokinase Plasminogen Activator and the Urokinase Receptor to Pleural and Parenchymal Lung Injury and Repair: A Narrative Review. Int J Mol Sci 2021; 22:ijms22031437. [PMID: 33535429 PMCID: PMC7867090 DOI: 10.3390/ijms22031437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Pleural and parenchymal lung injury have long been characterized by acute inflammation and pathologic tissue reorganization, when severe. Although transitional matrix deposition is a normal part of the injury response, unresolved fibrin deposition can lead to pleural loculation and scarification of affected areas. Within this review, we present a brief discussion of the fibrinolytic pathway, its components, and their contribution to injury progression. We review how local derangements of fibrinolysis, resulting from increased coagulation and reduced plasminogen activator activity, promote extravascular fibrin deposition. Further, we describe how pleural mesothelial cells contribute to lung scarring via the acquisition of a profibrotic phenotype. We also discuss soluble uPAR, a recently identified biomarker of pleural injury, and its diagnostic value in the grading of pleural effusions. Finally, we provide an in-depth discussion on the clinical importance of single-chain urokinase plasminogen activator (uPA) for the treatment of loculated pleural collections.
Collapse
Affiliation(s)
| | - Steven Idell
- Correspondence: ; Tel.: +1-903-877-7556; Fax: +1-903-877-7316
| |
Collapse
|
23
|
Sillen M, Declerck PJ. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front Cardiovasc Med 2020; 7:622473. [PMID: 33415130 PMCID: PMC7782431 DOI: 10.3389/fcvm.2020.622473] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) superfamily with antiprotease activity, is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being crucially involved in fibrinolysis and wound healing, PAI-1 plays a pivotal role in various acute and chronic pathophysiological processes, including cardiovascular disease, tissue fibrosis, cancer, and age-related diseases. In the prospect of treating the broad range of PAI-1-related pathologies, many efforts have been devoted to developing PAI-1 inhibitors. The use of these inhibitors, including low molecular weight molecules, peptides, antibodies, and antibody fragments, in various animal disease models has provided ample evidence of their beneficial effect in vivo and moved forward some of these inhibitors in clinical trials. However, none of these inhibitors is currently approved for therapeutic use in humans, mainly due to selectivity and toxicity issues. Furthermore, the conformational plasticity of PAI-1, which is unique among serpins, poses a real challenge in the identification and development of PAI-1 inhibitors. This review will provide an overview of the structural insights into PAI-1 functionality and modulation thereof and will highlight diverse approaches to inhibit PAI-1 activity.
Collapse
Affiliation(s)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Xia Y, Lei C, Yang D, Luo H. Identification of key modules and hub genes associated with lung function in idiopathic pulmonary fibrosis. PeerJ 2020; 8:e9848. [PMID: 33194355 PMCID: PMC7485506 DOI: 10.7717/peerj.9848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, characterized by a decline in lung function. To date, the pathophysiologic mechanisms associated with lung dysfunction remain unclear, and no effective therapy has been identified to improve lung function. Methods In the present study, we used weighted gene co-expression network analysis (WGCNA) to identify key modules and hub genes associated with lung function in IPF. Three datasets, containing clinical information, were downloaded from Gene Expression Omnibus. WGCNA was performed on the GSE32537 dataset. Differentially expressed gene s (DEGs) between IPF patients and healthy controls were also identified to filter hub genes. The relationship between hub genes and lung function was then validated using the GSE47460 and GSE24206 datasets. Results The red module, containing 267 genes, was positively correlated with the St. George’s Respiratory Questionnaire score (r = 0.37, p < 0.001) and negatively correlated with the percent predicted forced vital capacity (FVC% predicted) (r = − 0.46, p < 0.001) and the percent predicted diffusion capacity of the lung for carbon monoxide (Dlco% predicted) (r = − 0.42, p < 0.001). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that the genes in the red module were primarily involved in inflammation and immune pathways. Based on Module Membership and Gene Significance, 32 candidate hub genes were selected in the red module to construct a protein-protein interaction network . Based on the identified DEGs and the degree of connectivity in the network, we identified three hub genes, including interleukin 6 (IL6), suppressor of cytokine signaling-3 (SOCS3), and serpin family E member 1 (SERPINE1). In the GSE47460 dataset, Spearman correlation coefficients between Dlco% predicted and expression levels of IL6, SERPINE1, SOCS3 were –0.32, –0.41, and –0.46, respectively. Spearman correlation coefficients between FVC% predicted and expression levels of IL6, SERPINE1, SOCS3 were –0.29, –0.33, and –0.27, respectively. In the GSE24206 dataset, all three hub genes were upregulated in patients with advanced IPF. Conclusion We identified three hub genes that negatively correlated with the lung function of IPF patients. Our results provide insights into the pathogenesis underlying the progressive disruption of lung function, and the identified hub genes may serve as biomarkers and potential therapeutictargets for the treatment of IPF patients.
Collapse
Affiliation(s)
- Yuechong Xia
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, China
| | - Cheng Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, China
| | - Danhui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, China
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, China
| |
Collapse
|
25
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
26
|
Johnson S, Shaikh SB, Muneesa F, Rashmi B, Bhandary YP. Radiation induced apoptosis and pulmonary fibrosis: curcumin an effective intervention? Int J Radiat Biol 2020; 96:709-717. [PMID: 32149561 DOI: 10.1080/09553002.2020.1739773] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by interstitial remodeling, leading to compromised lung function. Extra vascular fibrin deposition and abnormalities in the fibrinolysis are the major clinical manifestations of lung diseases such as acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS). ALI progresses to pulmonary fibrosis (PF) and makes patient's life miserable. Anti-fibrinolysis and apoptosis are involved in the progression of PF. Apoptotic markers are detectable within IPF lung tissue and senescent cell deletion can rejuvenate pulmonary health. Enhanced expression of p53 due to DNA damage is seen in irradiated lung tissue. The role of fibrinolytic components such as Urokinase Plasminogen activator (uPA), uPA receptor (uPAR) and Plasminogen activator inhibitor-1 (PAI-1) has been detailed in I. Curcumin is known to possess anti-inflammatory and anti-fibrotic effects. Radioprotective effect of curcumin enables it to attenuate radiation-induced inflammation and fibrosis. Understanding the mechanism of radioprotective effect of curcumin in radiation-induced PF and apoptosis can lead to the development of an effective therapeutic to combat acute lung injury and fibrosis.
Collapse
Affiliation(s)
- Shilpa Johnson
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sadiya B Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Fatheema Muneesa
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Barki Rashmi
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
27
|
Nanri Y, Nunomura S, Terasaki Y, Yoshihara T, Hirano Y, Yokosaki Y, Yamaguchi Y, Feghali-Bostwick C, Ajito K, Murakami S, Conway SJ, Izuhara K. Cross-Talk between Transforming Growth Factor-β and Periostin Can Be Targeted for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2020; 62:204-216. [PMID: 31505128 PMCID: PMC6993541 DOI: 10.1165/rcmb.2019-0245oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized as progressive and irreversible fibrosis in the interstitium of lung tissues. There is still an unmet need to develop a novel therapeutic drug for IPF. We have previously demonstrated that periostin, a matricellular protein, plays an important role in the pathogenesis of pulmonary fibrosis. However, the underlying mechanism of how periostin causes pulmonary fibrosis remains unclear. In this study, we sought to learn whether the cross-talk between TGF-β (transforming growth factor-β), a central mediator in pulmonary fibrosis, and periostin in lung fibroblasts leads to generation of pulmonary fibrosis and whether inhibitors for integrin αVβ3, a periostin receptor, can block pulmonary fibrosis in model mice and the TGF-β signals in fibroblasts from patients with IPF. We found that cross-talk exists between TGF-β and periostin signals via αVβ3/β5 converging into Smad3. This cross-talk is necessary for the expression of TGF-β downstream effector molecules important for pulmonary fibrosis. Moreover, we identified several potent integrin low-molecular-weight inhibitors capable of blocking cross-talk with TGF-β signaling. One of the compounds, CP4715, attenuated bleomycin-induced pulmonary fibrosis in vivo in mice and the TGF-β signals in vitro in fibroblasts from patients with IPF. These results suggest that the cross-talk between TGF-β and periostin can be targeted for pulmonary fibrosis and that CP4715 can be a potential therapeutic agent to block this cross-talk.
Collapse
Affiliation(s)
- Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Tomohito Yoshihara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yusuke Hirano
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuyuki Yokosaki
- Cell-Matrix Frontier Lab, Health Administration Office, Hiroshima University, Hiroshima, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Keiichi Ajito
- Pharmaceutical Research Center, Meiji Seika Pharma Co. Ltd., Tokyo, Japan; and
| | - Shoichi Murakami
- Pharmaceutical Research Center, Meiji Seika Pharma Co. Ltd., Tokyo, Japan; and
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
28
|
He F, Wang Y, Li Y, Yu L. Human amniotic mesenchymal stem cells alleviate paraquat-induced pulmonary fibrosis in rats by inhibiting the inflammatory response. Life Sci 2020; 243:117290. [PMID: 31923420 DOI: 10.1016/j.lfs.2020.117290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
AIMS To investigate the therapeutic effects of human amniotic mesenchymal stem cells (hAMSCs) on paraquat (PQ)-induced pulmonary fibrosis in rats and investigate the inflammatory mechanisms. MAIN METHODS hAMSCs were identified by morphological, flow cytometry and immunocytochemistry. A pulmonary fibrosis model was induced by administering PQ to rats. The hAMSCs group was treated with hAMSCs after 6 h of PQ poisoning. At 21 days after hAMSCs transplantation, lungs were harvested for H&E, Masson and immunohistochemical staining to evaluate pulmonary histopathology, collagen deposition, CD3+ cell infiltration and hAMSCs colonization. Arterial blood was used for lactic acid analysis and venous blood was used to detect TNF-α, IL-6, and TGF-β1 by ELISA method. KEY FINDINGS hAMSCs can improve the lung structure and decrease collagen deposition induced by PQ. The membranes of CD3+ T cell in the PQ group were round and complete, while that in the hAMSCs group rats exhibited punctate or diffuse staining. In addition, the CD3+ cell was decreased by hAMSCs administration, and MAB1281-positive cells were detected in lung of hAMSCs group rats. The survival rate of the hAMSCs group was significantly higher than that of the PQ group at 21 days after injection. TNF-α, IL-6, TGF-β1 and lactic acid were significantly decreased by hAMSCs administration. SIGNIFICANCE hAMSCs have a significant therapeutic effect on pulmonary fibrosis induced by acute PQ poisoning and can improve survival rate in rats. Furthermore, hAMSCs administration can improve lung histopathology and reduce collagen deposition by reducing inflammatory CD3+ T cell infiltration, inflammatory cytokine expression and lactic acid levels.
Collapse
Affiliation(s)
- Fang He
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| | - Yuying Wang
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| | - Yuxiang Li
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| |
Collapse
|
29
|
Horowitz JC, Tschumperlin DJ, Kim KK, Osterholzer JJ, Subbotina N, Ajayi IO, Teitz-Tennenbaum S, Virk A, Dotson M, Liu F, Sicard D, Jia S, Sisson TH. Urokinase Plasminogen Activator Overexpression Reverses Established Lung Fibrosis. Thromb Haemost 2019; 119:1968-1980. [PMID: 31705517 DOI: 10.1055/s-0039-1697953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Impaired plasminogen activation (PA) is causally related to the development of lung fibrosis. Prior studies demonstrate that enhanced PA in the lung limits the severity of scarring following injury and in vitro studies indicate that PA promotes matrix degradation and fibroblast apoptosis. These findings led us to hypothesize that increased PA in an in vivo model would enhance the resolution of established lung fibrosis in conjunction with increased myofibroblast apoptosis. METHODS Transgenic C57BL/6 mice with doxycycline inducible lung-specific urokinase plasminogen activator (uPA) expression or littermate controls were treated (day 0) with bleomycin or saline. Doxycycline was initiated on days 1, 9, 14, or 21. Lung fibrosis, stiffness, apoptosis, epithelial barrier integrity, and inflammation were assessed. RESULTS Protection from fibrosis with uPA upregulation from day 1 through day 28 was associated with reduced parenchymal stiffness as determined by atomic force microscopy. Initiation of uPA expression beginning in the late inflammatory or the early fibrotic phase reduced stiffness and fibrosis at day 28. Induction of uPA activity in mice with established fibrosis decreased lung collagen and lung stiffness while increasing myofibroblast apoptosis. Upregulation of uPA did not alter lung inflammation but was associated with improved epithelial cell homeostasis. CONCLUSION Restoring intrapulmonary PA activity diminishes lung fibrogenesis and enhances the resolution of established lung fibrosis. This PA-mediated resolution is associated with increased myofibroblast apoptosis and improved epithelial cell homeostasis. These studies support the potential capacity of the lung to resolve existing scar in murine models.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States.,Veterans Affairs Medical Center, Ann Arbor, Michigan, United States
| | - Natalya Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Iyabode O Ajayi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Seagal Teitz-Tennenbaum
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States.,Veterans Affairs Medical Center, Ann Arbor, Michigan, United States
| | - Ammara Virk
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Megan Dotson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fei Liu
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Shijing Jia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
30
|
Klarin D, Busenkell E, Judy R, Lynch J, Levin M, Haessler J, Aragam K, Chaffin M, Haas M, Lindström S, Assimes TL, Huang J, Min Lee K, Shao Q, Huffman JE, Kabrhel C, Huang Y, Sun YV, Vujkovic M, Saleheen D, Miller DR, Reaven P, DuVall S, Boden WE, Pyarajan S, Reiner AP, Trégouët DA, Henke P, Kooperberg C, Gaziano JM, Concato J, Rader DJ, Cho K, Chang KM, Wilson PWF, Smith NL, O'Donnell CJ, Tsao PS, Kathiresan S, Obi A, Damrauer SM, Natarajan P. Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease. Nat Genet 2019; 51:1574-1579. [PMID: 31676865 PMCID: PMC6858581 DOI: 10.1038/s41588-019-0519-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
Venous thromboembolism is a significant cause of mortality1, yet its genetic determinants are incompletely defined. We performed a discovery genome-wide association study in the Million Veteran Program and UK Biobank, with testing of approximately 13 million DNA sequence variants for association with venous thromboembolism (26,066 cases and 624,053 controls) and meta-analyzed both studies, followed by independent replication with up to 17,672 venous thromboembolism cases and 167,295 controls. We identified 22 previously unknown loci, bringing the total number of venous thromboembolism-associated loci to 33, and subsequently fine-mapped these associations. We developed a genome-wide polygenic risk score for venous thromboembolism that identifies 5% of the population at an equivalent incident venous thromboembolism risk to carriers of the established factor V Leiden p.R506Q and prothrombin G20210A mutations. Our data provide mechanistic insights into the genetic epidemiology of venous thromboembolism and suggest a greater overlap among venous and arterial cardiovascular disease than previously thought.
Collapse
Affiliation(s)
- Derek Klarin
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Vascular Surgery and Endovascular Therapy, University of Florida School of Medicine, Gainesville, FL, USA
| | - Emma Busenkell
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Renae Judy
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie Lynch
- Veterans Affairs Informatics and Computing Infrastructure, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Massachusetts College of Nursing & Health Sciences, Boston, MA, USA
| | - Michael Levin
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffery Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Krishna Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mary Haas
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara Lindström
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Themistocles L Assimes
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jie Huang
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Kyung Min Lee
- Veterans Affairs Informatics and Computing Infrastructure, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
- Boston University School of Public Health, Department of Health Law, Policy & Management, Boston, MA, USA
| | - Qing Shao
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Christopher Kabrhel
- Center for Vascular Emergencies, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunfeng Huang
- Department of Epidemiology, Emory University Rollins School of Public Health, Department of Biomedical Informatics Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Department of Biomedical Informatics Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Marijana Vujkovic
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Danish Saleheen
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald R Miller
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
- Boston University School of Public Health, Department of Health Law, Policy & Management, Boston, MA, USA
| | - Peter Reaven
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Scott DuVall
- Veterans Affairs Informatics and Computing Infrastructure, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - William E Boden
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David-Alexandre Trégouët
- Bordeaux Population Health Research Center (INSERM UMR S 1219), University of Bordeaux, Bordeaux, France
| | - Peter Henke
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Concato
- Clinical Epidemiology Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyong-Mi Chang
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter W F Wilson
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
- Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Nicholas L Smith
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Christopher J O'Donnell
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
- Cardiovascular Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Verve Therapeutics, Cambridge, MA, USA
| | - Andrea Obi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Damrauer
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pradeep Natarajan
- Veterans Affairs Boston Healthcare System, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Wang Y, Ding L, Li Z, Chen G, Sun M, Oupicky D. Treatment of acute lung injury and early- and late-stage pulmonary fibrosis with combination emulsion siRNA polyplexes. J Control Release 2019; 314:12-24. [PMID: 31644934 DOI: 10.1016/j.jconrel.2019.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 01/05/2023]
Abstract
Acute lung injury (ALI) and idiopathic pulmonary fibrosis (IPF) are severe lung diseases causing irreversible lung damage and premature death. Both diseases share multiple pathological features, including overexpression of C-X-C chemokine receptor type 4 (CXCR4) and upregulation of plasminogen activator inhibitor-1 (PAI-1). The goal of the present study was to evaluate therapeutic potential of pulmonary treatment with combined inhibition of CXCR4 and PAI-1 in ALI and various disease stages of IPF. We report preparation of perfluorocarbon emulsion polyplexes containing a fluorinated polymeric CXCR4 antagonist (F-PAMD) as an siRNA carrier suitable for pulmonary delivery. In vitro testing of the emulsion polyplexes in primary lung fibroblasts from IPF mice showed high cellular uptake and promising antifibrotic effect as indicated by the decreased expression of α smooth muscle actin, when compared with conventional siRNA polyplexes. Biodistribution analysis in mice with IPF showed prolonged lung retention and widespread lung distribution following intratracheal administration of the formulations. The emulsion polyplexes showed promising therapeutic efficacy in ALI and in early fibrinogenic stage of IPF. Increased survival was observed in the model of late-stage IPF. The use of perfluorocarbon emulsion polyplexes to achieve combined CXCR4 antagonism and PAI-1 inhibition is a promising strategy for treatment of ALI and IPF.
Collapse
Affiliation(s)
- Yixin Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Zhaoting Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Gang Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA.
| |
Collapse
|
32
|
Hematopoietic protease nexin-1 protects against lung injury by preventing thrombin signaling in mice. Blood Adv 2019; 2:2389-2399. [PMID: 30254103 DOI: 10.1182/bloodadvances.2018018283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/24/2018] [Indexed: 01/24/2023] Open
Abstract
Coagulation and fibrinolytic system deregulation has been implicated in the development of idiopathic pulmonary fibrosis, a devastating form of interstitial lung disease. We used intratracheal instillation of bleomycin to induce pulmonary fibrosis in mice and analyzed the role of serine protease inhibitor E2 (serpinE2)/protease nexin-1 (PN-1), a tissue serpin that exhibits anticoagulant and antifibrinolytic properties. PN-1 deficiency was associated, after bleomycin challenge, with a significant increase in mortality, as well as a marked increase in active thrombin in bronchoalveolar lavage fluids, an overexpression of extracellular matrix proteins, and an accumulation of inflammatory cells in the lungs. Bone marrow transplantation experiments showed that protective PN-1 was derived from hematopoietic cell compartment. A pharmacological strategy using the direct thrombin inhibitor argatroban reversed the deleterious effects of PN-1 deficiency. Concomitant deficiency of the thrombin receptor protease-activated receptor 4 (PAR4) abolished the deleterious effects of PN-1 deficiency in hematopoietic cells. These data demonstrate that prevention of thrombin signaling by PN-1 constitutes an important endogenous mechanism of protection against lung fibrosis and associated mortality. Our findings suggest that appropriate doses of thrombin inhibitors or PAR4 antagonists may provide benefit against progressive lung fibrosis with evidence of deregulated thrombin activity.
Collapse
|
33
|
Veteskova J, Kmecova Z, Malikova E, Doka G, Radik M, Vavrinec P, Krenek P, Klimas J. Opposite alterations of endothelin-1 in lung and pulmonary artery mirror gene expression of bone morphogenetic protein receptor 2 in experimental pulmonary hypertension. Exp Lung Res 2019; 45:30-41. [PMID: 31012341 DOI: 10.1080/01902148.2019.1605426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim of the Study: Endothelin-1 (ET-1) overexpression was suggested to play a role in pulmonary hypertension (PH). However, the roles of ET-1 in early stages of PH remain unexplored. We examined the expression of ET-1 and relevant disease progression markers in the pulmonary artery and the lungs during the development of PH induced by monocrotaline (MCT). Material and Methods: Male 12-weeks-old Wistar rats were administered with MCT (60 mg/kg, s.c.) or saline (CON). We measured right ventricular pressure (RVP) by catheterization under tribromoethanol anesthesia; hemoglobin oxygen saturation, breathing rate were measured by pulse oximetry in conscious animals. Rats were sacrificed 1, 2 or 4 weeks after MCT. mRNA levels of ET-1, its receptors, inflammatory markers IL-1beta, TNFalpha, IL-6 and genes related to VSMC proliferation or lung damage (Bmpr2, nestin, Pim1, PAI-1, TGFbeta-1) were analyzed by RT-qPCR. Results: RVP and breathing rate increased and hemoglobin oxygen saturation decreased after MCT only at week 4. Lung weight was increased at all time points. ET-1 was upregulated in the pulmonary artery at weeks 1 and 4, while being clearly suppressed in the lungs at all times. Bone morphogenetic protein receptor 2 followed a similar pattern to ET-1. PAI-1 markedly increased in the MCT lungs (but not pulmonary artery) from week 1 to 4. Nestin peaked at week 2 in both tissues. TGFbeta-1 increased in both tissues at week 4. ET-1 expression did not correlate with other genes, however, Bmpr2 tightly negatively correlated with PAI-1 in the lungs, but not pulmonary artery of MCT groups. Conclusions: ET-1 overexpression in the pulmonary artery preceded development of PH, but it was clearly and unexpectedly downregulated in the lungs of monocrotaline-treated rats and showed no correlation to disease progression markers. We speculate that endothelin-1 may play opposing roles in the lungs vs pulmonary artery in monocrotaline-induced PH.
Collapse
Affiliation(s)
- Jana Veteskova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Zuzana Kmecova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Eva Malikova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Gabriel Doka
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Michal Radik
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Peter Vavrinec
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Peter Krenek
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Jan Klimas
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| |
Collapse
|
34
|
Reinke AA, Li SH, Warnock M, Shaydakov ME, Guntaka NS, Su EJ, Diaz JA, Emal CD, Lawrence DA. Dual-reporter high-throughput screen for small-molecule in vivo inhibitors of plasminogen activator inhibitor type-1 yields a clinical lead candidate. J Biol Chem 2018; 294:1464-1477. [PMID: 30510136 DOI: 10.1074/jbc.ra118.004885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is a serine protease inhibitor (serpin) implicated in numerous pathological processes, including coronary heart disease, arterial and venous thrombosis, and chronic fibrotic diseases. These associations have made PAI-1 an attractive pharmaceutical target. However, the complexity of the serpin inhibitory mechanism, the inherent metastability of serpins, and the high-affinity association of PAI-1 with vitronectin in vivo have made it difficult to identify pharmacologically effective small-molecule inhibitors. Moreover, the majority of current small-molecule PAI-1 inhibitors are poor pharmaceutical candidates. To this end and to find leads that can be efficiently applied to in vivo settings, we developed a dual-reporter high-throughput screen (HTS) that reduced the rate of nonspecific and promiscuous hits and identified leads that inhibit human PAI-1 in the high-protein environments present in vivo Using this system, we screened >152,000 pure compounds and 27,000 natural product extracts (NPEs), reducing the apparent hit rate by almost 10-fold compared with previous screening approaches. Furthermore, screening in a high-protein environment permitted the identification of compounds that retained activity in both ex vivo plasma and in vivo Following lead identification, subsequent medicinal chemistry and structure-activity relationship (SAR) studies identified a lead clinical candidate, MDI-2268, having excellent pharmacokinetics, potent activity against vitronectin-bound PAI-1 in vivo, and efficacy in a murine model of venous thrombosis. This rigorous HTS approach eliminates promiscuous candidate leads, significantly accelerates the process of identifying PAI-1 inhibitors that can be rapidly deployed in vivo, and has enabled identification of a potent lead compound.
Collapse
Affiliation(s)
- Ashley A Reinke
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Shih-Hon Li
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Mark Warnock
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Maxim E Shaydakov
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Enming J Su
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Jose A Diaz
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
35
|
Sieber P, Schäfer A, Lieberherr R, Le Goff F, Stritt M, Welford RWD, Gatfield J, Peter O, Nayler O, Lüthi U. Novel high-throughput myofibroblast assays identify agonists with therapeutic potential in pulmonary fibrosis that act via EP2 and EP4 receptors. PLoS One 2018; 13:e0207872. [PMID: 30485339 PMCID: PMC6261607 DOI: 10.1371/journal.pone.0207872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Pathological features of pulmonary fibrosis include accumulation of myofibroblasts and increased extracellular matrix (ECM) deposition in lung tissue. Contractile α–smooth muscle actin (α–SMA)–expressing myofibroblasts that produce and secrete ECM are key effector cells of the disease and therefore represent a viable target for potential novel anti–fibrotic treatments. We used primary normal human lung fibroblasts (NHLF) in two novel high–throughput screening assays to discover molecules that inhibit or revert fibroblast–to–myofibroblast differentiation. A phenotypic high–content assay (HCA) quantified the degree of myofibroblast differentiation, whereas an impedance–based assay, multiplexed with MS / MS quantification of α–SMA and collagen 1 alpha 1 (COL1) protein, provided a measure of contractility and ECM formation. The synthetic prostaglandin E1 (PGE1) alprostadil, which very effectively and potently attenuated and even reversed TGF–β1–induced myofibroblast differentiation, was identified by screening a library of approved drugs. In TGF–β1–induced myofibroblasts the effect of alprostadil was attributed to activation of prostanoid receptor 2 and 4 (EP2 and EP4, respectively). However, selective activation of the EP2 or the EP4 receptor was already sufficient to prevent or reverse TGF–β1–induced NHLF myofibroblast transition. Our high–throughput assays identified chemical structures with potent anti–fibrotic properties acting through potentially novel mechanisms.
Collapse
Affiliation(s)
- Patrick Sieber
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
- * E-mail:
| | - Anny Schäfer
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | - Manuel Stritt
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | - John Gatfield
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Oliver Peter
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Oliver Nayler
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Urs Lüthi
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|
36
|
Development of a best-practice clinical guideline for the use of bleomycin in the treatment of germ cell tumours in the UK. Br J Cancer 2018; 119:1044-1051. [PMID: 30356125 PMCID: PMC6219480 DOI: 10.1038/s41416-018-0300-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/06/2018] [Accepted: 09/20/2018] [Indexed: 11/08/2022] Open
Abstract
Bleomycin, a cytotoxic chemotherapy agent, forms a key component of curative regimens for lymphoma and germ cell tumours. It can be associated with severe toxicity, long-term complications and even death in extreme cases. There is a lack of evidence or consensus on how to prevent and monitor bleomycin toxicity. We surveyed 63 germ cell cancer physicians from 32 cancer centres across the UK to understand their approach to using bleomycin. Subsequent guideline development was based upon current practice, best available published evidence and expert consensus. We observed heterogeneity in practice in the following areas: monitoring; route of administration; contraindications to use; baseline and follow-up investigations performed, and advice given to patients. A best-practice clinical guideline for the use of bleomycin in the treatment of germ cell tumours has been developed and includes recommendations regarding baseline investigations, the use of pulmonary function tests, route of administration, monitoring and patient advice. It is likely that existing heterogeneity in clinical practice of bleomycin prescribing has significant economic, safety and patient experience implications. The development of an evidence-based consensus guideline was supported by 93% of survey participants and aims to address these issues and homogenise practice across the UK.
Collapse
|
37
|
Shioya S, Masuda T, Senoo T, Horimasu Y, Miyamoto S, Nakashima T, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Plasminogen activator inhibitor-1 serves an important role in radiation-induced pulmonary fibrosis. Exp Ther Med 2018; 16:3070-3076. [PMID: 30214528 PMCID: PMC6125865 DOI: 10.3892/etm.2018.6550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Radiation-induced pulmonary fibrosis is a serious complication. Plasminogen activator inhibitor-1 (PAI-1) has been indicated to be a key factor in the progression of pulmonary fibrosis. In the present study, the effect of PAI-1 deficiency on radiation-induced pulmonary fibrosis was analyzed. Wild-type (WT) and PAI-1-deficient (PAI-1−/−) mice were treated with thoracic irradiation of 15 Gy to induce pulmonary fibrosis. Analyses of bronchoalveolar lavage (BAL) fluids were performed 0, 4, 12, 18, and 24 weeks after irradiation. The degree of pulmonary fibrosis was assessed according to the histology of lung tissues and hydroxyproline contents. The results demonstrated that the irradiation of WT mice increased PAI-1 expression in the lungs after 18 weeks and established lung fibrosis at 24 weeks. The number of total cells and transforming growth factor-β levels in BAL fluid were significantly lower at 24 weeks after irradiation in PAI-1−/− mice compared with WT mice. Furthermore, histological examination revealed that the extent of pulmonary fibrosis was attenuated in PAI-1−/− mice compared with that in WT mice. Hydroxyproline content was also significantly lower in PAI-1−/− mice compared with WT mice at 24 weeks after irradiation. In conclusion, PAI-1 serves an important role in the development of radiation-induced pulmonary fibrosis and may represent a novel therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Sachiko Shioya
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takeshi Masuda
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Tadashi Senoo
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yasushi Horimasu
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Taku Nakashima
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
38
|
Imai-Matsushima A, Martin-Sancho L, Karlas A, Imai S, Zoranovic T, Hocke AC, Mollenkopf HJ, Berger H, Meyer TF. Long-Term Culture of Distal Airway Epithelial Cells Allows Differentiation Towards Alveolar Epithelial Cells Suited for Influenza Virus Studies. EBioMedicine 2018; 33:230-241. [PMID: 29937069 PMCID: PMC6085545 DOI: 10.1016/j.ebiom.2018.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022] Open
Abstract
As the target organ for numerous pathogens, the lung epithelium exerts critical functions in health and disease. However, research in this area has been hampered by the quiescence of the alveolar epithelium under standard culture conditions. Here, we used human distal airway epithelial cells (DAECs) to generate alveolar epithelial cells. Long-term, robust growth of human DAECs was achieved using co-culture with feeder cells and supplementation with epidermal growth factor (EGF), Rho-associated protein kinase inhibitor Y27632, and the Notch pathway inhibitor dibenzazepine (DBZ). Removal of feeders and priming with DBZ and a cocktail of lung maturation factors prevented the spontaneous differentiation into airway club cells and instead induced differentiation to alveolar epithelial cells. We successfully transferred this approach to chicken distal airway cells, thus generating a zoonotic infection model that enables studies on influenza A virus replication. These cells are also amenable for gene knockdown using RNAi technology, indicating the suitability of the model for mechanistic studies into lung function and disease.
Collapse
Affiliation(s)
- Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Laura Martin-Sancho
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alexander Karlas
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Seiichiro Imai
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tamara Zoranovic
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Max Planck Institute for Infection Biology, Core Facility Microarray/Genomics, Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
39
|
Serpine1 Knockdown Enhances MMP Activity after Flexor Tendon Injury in Mice: Implications for Adhesions Therapy. Sci Rep 2018; 8:5810. [PMID: 29643421 PMCID: PMC5895578 DOI: 10.1038/s41598-018-24144-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
Injuries to flexor tendons can be complicated by fibrotic adhesions, which severely impair the function of the hand. Adhesions have been associated with TGF-β1, which causes upregulation of PAI-1, a master suppressor of protease activity, including matrix metalloproteinases (MMP). In the present study, the effects of inhibiting PAI-1 in murine zone II flexor tendon injury were evaluated utilizing knockout (KO) mice and local nanoparticle-mediated siRNA delivery. In the PAI-1 KO murine model, reduced adherence of injured tendon to surrounding subcutaneous tissue and accelerated recovery of normal biomechanical properties compared to wild type controls were observed. Furthermore, MMP activity was significantly increased in the injured tendons of the PAI-1 KO mice, which could explain their reduced adhesions and accelerated remodeling. These data demonstrate that PAI-1 mediates fibrotic adhesions in injured flexor tendons by suppressing MMP activity. In vitro siRNA delivery to silence Serpine1 expression after treatment with TGF-β1 increased MMP activity. Nanoparticle-mediated delivery of siRNA targeting Serpine1 in injured flexor tendons significantly reduced target gene expression and subsequently increased MMP activity. Collectively, the data demonstrate that PAI-1 can be a druggable target for treating adhesions and accelerating the remodeling of flexor tendon injuries.
Collapse
|
40
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
41
|
Schuliga M, Grainge C, Westall G, Knight D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int J Biochem Cell Biol 2018; 97:108-117. [PMID: 29474926 DOI: 10.1016/j.biocel.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
Fibrosis causes irreversible damage to lung structure and function in restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF). Extravascular coagulation involving fibrin formation in the intra-alveolar compartment is postulated to have a pivotal role in the development of pulmonary fibrosis, serving as a provisional matrix for migrating fibroblasts. Furthermore, proteases of the coagulation and plasminogen activation (plasminergic) systems that form and breakdown fibrin respectively directly contribute to pulmonary fibrosis. The coagulants, thrombin and factor Xa (FXa) evoke fibrogenic effects via cleavage of the N-terminus of protease-activated receptors (PARs). Whilst the formation and activity of plasmin, the principle plasminergic mediator is suppressed in the airspaces of patients with IPF, localized increases are likely to occur in the lung interstitium. Plasmin-evoked proteolytic activation of factor XII (FXII), matrix metalloproteases (MMPs) and latent, matrix-bound growth factors such as epidermal growth factor (EGF) indirectly implicate plasmin in pulmonary fibrosis. Another plasminergic protease, urokinase plasminogen activator (uPA) is associated with regions of fibrosis in the remodelled lung of IPF patients and elicits fibrogenic activity via binding its receptor (uPAR). Plasminogen activator inhibitor-1 (PAI-1) formed in the injured alveolar epithelium also contributes to pulmonary fibrosis in a manner that involves vitronectin binding. This review describes the mechanisms by which components of the two systems primarily involved in fibrin homeostasis contribute to interstitial fibrosis, with a particular focus on IPF. Selectively targeting the receptor-mediated mechanisms of coagulant and plasminergic proteases may limit pulmonary fibrosis, without the bleeding complications associated with conventional anti-coagulant and thrombolytic therapies.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| |
Collapse
|
42
|
Abstract
Intratumoral fibrosis results from the deposition of a cross-linked collagen matrix by cancer-associated fibroblasts (CAFs). This type of fibrosis has been shown to exert mechanical forces and create a biochemical milieu that, together, shape intratumoral immunity and influence tumor cell metastatic behavior. In this Review, we present recent evidence that CAFs and tumor cells are regulated by provisional matrix molecules, that metastasis results from a change in the type of stromal collagen cross-link, and that fibrosis and inflammation perpetuate each other through proteolytic and chemotactic mediators released into the tumor stroma. We also discuss aspects of the emerging biology that have potential therapeutic value.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Sciences and School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology and.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
43
|
Luo M, Ji Y, Luo Y, Li R, Fay WP, Wu J. Plasminogen activator inhibitor-1 regulates the vascular expression of vitronectin. J Thromb Haemost 2017; 15:2451-2460. [PMID: 29028290 PMCID: PMC5716874 DOI: 10.1111/jth.13869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 11/30/2022]
Abstract
Essentials Vitronectin (VN) is produced by smooth muscle cells (SMCs) and promotes neointima formation. We studied the regulation of vascular VN expression by plasminogen activator inhibitor-1 (PAI-1). PAI-1 stimulates VN gene expression in SMCs by binding LDL receptor-related protein 1. Stimulation of VN gene expression may be a mechanism by which PAI-1 controls vascular remodeling. SUMMARY Background Increased expression of vitronectin (VN) by smooth muscle cells (SMCs) promotes neointima formation after vascular injury, and may contribute to chronic vascular diseases, such as atherosclerosis. However, the molecular regulation of vascular VN expression is poorly defined. Given the overlapping expression profiles and functions of VN and plasminogen activator inhibitor (PAI)-1, we hypothesized that PAI-1 regulates vascular VN expression. Objectives To determine whether PAI-1 regulates VN expression in SMCs and in vivo. Methods The effects of genetic alterations in PAI-1 expression, pharmacologic PAI-1 inhibition and recombinant PAI-1 on SMC VN expression were studied, and vascular VN expression in wild-type (WT) and PAI-1-deficient mice was assessed. Results VN expression was significantly lower in PAI-1-deficient SMCs and significantly increased in PAI-1-overexpressing SMCs. PAI-1 small interfering RNA and pharmacologic PAI-1 inhibition significantly decreased SMC VN expression. Recombinant PAI-1 stimulated VN expression by binding LDL receptor-related protein-1 (LRP1), but another LRP1 ligand, α2 -macroglobulin, did not. As compared with WT controls, carotid artery VN expression was significantly lower in PAI-1-deficient mice and significantly higher in PAI-1-transgenic mice. In a vein graft (VG) model of intimal hyperplasia, VN expression was significantly attenuated in PAI-1-deficient VGs as compared with WT controls. The plasma VN concentration was significantly decreased in PAI-1-deficient mice versus WT controls at 4 weeks, but not at 5 days or 8 weeks, after surgery. Conclusions PAI-1 stimulates SMC VN expression by binding LRP1, and controls vascular VN expression in vivo. Autocrine regulation of vascular VN expression by PAI-1 may play important roles in vascular homeostasis and pathologic vascular remodeling.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Gene Expression Regulation
- Humans
- Low Density Lipoprotein Receptor-Related Protein-1
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Neointima/etiology
- Neointima/genetics
- Neointima/metabolism
- RNA, Small Interfering/genetics
- Receptors, LDL/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Serpin E2/deficiency
- Serpin E2/genetics
- Serpin E2/metabolism
- Tumor Suppressor Proteins/metabolism
- Vascular Remodeling
- Vitronectin/deficiency
- Vitronectin/genetics
- Vitronectin/metabolism
Collapse
Affiliation(s)
- M Luo
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Y Ji
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Y Luo
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
| | - R Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
| | - W P Fay
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - J Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
44
|
Beigh S, Rashid H, Sharma S, Parvez S, Raisuddin S. Bleomycin-induced pulmonary toxicopathological changes in rats and its prevention by walnut extract. Biomed Pharmacother 2017; 94:418-429. [DOI: 10.1016/j.biopha.2017.07.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 01/22/2023] Open
|
45
|
Poole LG, Massey VL, Siow DL, Torres-Gonzáles E, Warner NL, Luyendyk JP, Ritzenthaler JD, Roman J, Arteel GE. Plasminogen Activator Inhibitor-1 Is Critical in Alcohol-Enhanced Acute Lung Injury in Mice. Am J Respir Cell Mol Biol 2017; 57:315-323. [PMID: 28445073 PMCID: PMC5625219 DOI: 10.1165/rcmb.2016-0184oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/19/2017] [Indexed: 01/07/2023] Open
Abstract
Chronic alcohol exposure is a clinically important risk factor for the development of acute respiratory distress syndrome, the most severe form of acute lung injury (ALI). However, the mechanisms by which alcohol sensitizes the lung to development of this disease are poorly understood. We determined the role of the antifibrinolytic protein plasminogen activator inhibitor-1 (PAI-1) in alcohol enhancement of experimental endotoxin-induced ALI. Wild-type, PAI-1-/-, and integrin β3-/- mice were fed ethanol-containing Lieber-DeCarli liquid or a control diet for 6 weeks, followed by systemic LPS challenge. LPS administration triggered coagulation cascade activation as evidenced by increased plasma thrombin-antithrombin levels and pulmonary fibrin deposition. Ethanol-exposed animals showed enhanced PAI-1 expression and pulmonary fibrin deposition with coincident exaggeration of pulmonary inflammatory edematous injury. PAI-1 deficiency markedly reduced pulmonary fibrin deposition and greatly reduced inflammation and injury without impacting upstream coagulation. Interestingly, pulmonary platelet accumulation was effectively abolished by PAI-1 deficiency in ethanol/LPS-challenged mice. Moreover, mice lacking integrin αIIBβ3, the primary platelet receptor for fibrinogen, displayed a dramatic reduction in early inflammatory changes after ethanol/LPS challenge. These results indicate that the mechanism whereby alcohol exaggerates LPS-induced lung injury requires PAI-1-mediated pulmonary fibrin accumulation, and suggest a novel mechanism whereby alcohol contributes to inflammatory ALI by enhancing fibrinogen-platelet engagement.
Collapse
Affiliation(s)
- Lauren G. Poole
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Veronica L. Massey
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Deanna L. Siow
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Edilson Torres-Gonzáles
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Nikole L. Warner
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - James P. Luyendyk
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Jeffrey D. Ritzenthaler
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Jesse Roman
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Gavin E. Arteel
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| |
Collapse
|
46
|
Sherenian MG, Cho SH, Levin A, Min JY, Oh SS, Hu D, Galanter J, Sen S, Huntsman S, Eng C, Rodriguez-Santana JR, Serebrisky D, Avila PC, Kalhan R, Smith LJ, Borrell LN, Seibold MA, Keoki Williams L, Burchard EG, Kumar R. PAI-1 gain-of-function genotype, factors increasing PAI-1 levels, and airway obstruction: The GALA II Cohort. Clin Exp Allergy 2017; 47:1150-1158. [PMID: 28543872 DOI: 10.1111/cea.12958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/27/2017] [Accepted: 04/27/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND PAI-1 gain-of-function variants promote airway fibrosis and are associated with asthma and with worse lung function in subjects with asthma. OBJECTIVE We sought to determine whether the association of a gain-of-function polymorphism in plasminogen activator inhibitor-1 (PAI-1) with airway obstruction is modified by asthma status, and whether any genotype effect persists after accounting for common exposures that increase PAI-1 level. METHODS We studied 2070 Latino children (8-21y) with genotypic and pulmonary function data from the GALA II cohort. We estimated the relationship of the PAI-1 risk allele with FEV1/FVC by multivariate linear regression, stratified by asthma status. We examined the association of the polymorphism with asthma and airway obstruction within asthmatics via multivariate logistic regression. We replicated associations in the SAPPHIRE cohort of African Americans (n=1056). Secondary analysis included the effect of the at-risk polymorphism on postbronchodilator lung function. RESULTS There was an interaction between asthma status and the PAI-1 polymorphism on FEV1 /FVC (P=.03). The gain-of-function variants, genotypes (AA/AG), were associated with lower FEV1 /FVC in subjects with asthma (β=-1.25, CI: -2.14,-0.35, P=.006), but not in controls. Subjects with asthma and the AA/AG genotypes had a 5% decrease in FEV1 /FVC (P<.001). In asthmatics, the risk genotype (AA/AG) was associated with a 39% increase in risk of clinically relevant airway obstruction (OR=1.39, CI: 1.01, 1.92, P=.04). These associations persisted after exclusion of factors that increase PAI-1 including tobacco exposure and obesity. CONCLUSIONS AND CLINICAL RELEVANCE The decrease in the FEV1 /FVC ratio associated with the risk genotype was modified by asthma status. The genotype increased the odds of airway obstruction by 75% within asthmatics only. As exposures known to increase PAI-1 levels did not mitigate this association, PAI-1 may contribute to airway obstruction in the context of chronic asthmatic airway inflammation.
Collapse
Affiliation(s)
- M G Sherenian
- Division of Allergy-Immunology, Department of Pediatrics, Northwestern University, Chicago, IL, USA.,The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - S H Cho
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Chicago, IL, USA.,Division of Allergy-Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - A Levin
- Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| | - J-Y Min
- Department of Otolaryngology, Northwestern University, Chicago, IL, USA
| | - S S Oh
- Department of Medicine, University of California, San Francisco, CA, USA
| | - D Hu
- Department of Medicine, University of California, San Francisco, CA, USA
| | - J Galanter
- Department of Medicine, University of California, San Francisco, CA, USA
| | - S Sen
- Division of Biostatistics, Department of Preventive Medicine, UTHSC, Memphis, TN, USA
| | - S Huntsman
- Department of Medicine, University of California, San Francisco, CA, USA
| | - C Eng
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - D Serebrisky
- Pediatric Pulmonary Division, Jacobi Medical Center, Bronx, NY, USA
| | - P C Avila
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - R Kalhan
- Division of Pulmonary Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - L J Smith
- Division of Pulmonary Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - L N Borrell
- Department of Health Sciences, Lehman College, CUNY, New York, NY, USA
| | - M A Seibold
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - L Keoki Williams
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.,Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA
| | - E G Burchard
- Department of Medicine, University of California, San Francisco, CA, USA
| | - R Kumar
- Division of Allergy-Immunology, Department of Pediatrics, Northwestern University, Chicago, IL, USA.,The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 2017; 469:1415-1423. [DOI: 10.1007/s00424-017-2014-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022]
|
48
|
Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK. Plasminogen Activator Inhibitor-1 Is a Marker and a Mediator of Senescence. Arterioscler Thromb Vasc Biol 2017; 37:1446-1452. [PMID: 28572158 DOI: 10.1161/atvbaha.117.309451] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/15/2017] [Indexed: 01/23/2023]
Abstract
PAI-1 (plasminogen activator inhibitor-1) is a member of the evolutionarily conserved serine protease inhibitor family and a potent and rapid-acting inhibitor of both of the mammalian plasminogen activators. Organismal homeostasis requires physiological levels of endogenous PAI-1, and increased PAI-1 production guides the onset and progression of numerous human diseases and contributes to the multimorbidity of aging. Both chronological and stress-induced accelerated aging are associated with cellular senescence and accompanied by marked increases in PAI-1 expression in tissues. Recent studies suggest that PAI-1 is not only a marker but also a key mediator of cellular senescence and organismal aging. Here, we review the significance of PAI-1 as a bonafide marker, as well as a critical mediator, of cellular senescence associated with aging and aging-related pathologies.
Collapse
Affiliation(s)
- Douglas E Vaughan
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| | - Rahul Rai
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sadiya S Khan
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Mesut Eren
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Asish K Ghosh
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
49
|
Shea BS, Probst CK, Brazee PL, Rotile NJ, Blasi F, Weinreb PH, Black KE, Sosnovik DE, Van Cott EM, Violette SM, Caravan P, Tager AM. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2017; 2:86608. [PMID: 28469072 PMCID: PMC5414562 DOI: 10.1172/jci.insight.86608] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Fibrotic lung disease, most notably idiopathic pulmonary fibrosis (IPF), is thought to result from aberrant wound-healing responses to repetitive lung injury. Increased vascular permeability is a cardinal response to tissue injury, but whether it is mechanistically linked to lung fibrosis is unknown. We previously described a model in which exaggeration of vascular leak after lung injury shifts the outcome of wound-healing responses from normal repair to pathological fibrosis. Here we report that the fibrosis produced in this model is highly dependent on thrombin activity and its downstream signaling pathways. Direct thrombin inhibition with dabigatran significantly inhibited protease-activated receptor-1 (PAR1) activation, integrin αvβ6 induction, TGF-β activation, and the development of pulmonary fibrosis in this vascular leak-dependent model. We used a potentially novel imaging method - ultashort echo time (UTE) lung magnetic resonance imaging (MRI) with the gadolinium-based, fibrin-specific probe EP-2104R - to directly visualize fibrin accumulation in injured mouse lungs, and to correlate the antifibrotic effects of dabigatran with attenuation of fibrin deposition. We found that inhibition of the profibrotic effects of thrombin can be uncoupled from inhibition of hemostasis, as therapeutic anticoagulation with warfarin failed to downregulate the PAR1/αvβ6/TGF-β axis or significantly protect against fibrosis. These findings have direct and important clinical implications, given recent findings that warfarin treatment is not beneficial in IPF, and the clinical availability of direct thrombin inhibitors that our data suggest could benefit these patients.
Collapse
Affiliation(s)
- Barry S. Shea
- Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island, USA
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - Patricia L. Brazee
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | | | - Francesco Blasi
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | | | - Katharine E. Black
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - David E. Sosnovik
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | - Elizabeth M. Van Cott
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| |
Collapse
|
50
|
Taroni JN, Greene CS, Martyanov V, Wood TA, Christmann RB, Farber HW, Lafyatis RA, Denton CP, Hinchcliff ME, Pioli PA, Mahoney JM, Whitfield ML. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med 2017; 9:27. [PMID: 28330499 PMCID: PMC5363043 DOI: 10.1186/s13073-017-0417-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. Methods We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. Results We identified a common pathogenic gene expression signature—an immune–fibrotic axis—indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an “inflammatory” SSc gene expression signature. Conclusions Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0417-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaclyn N Taroni
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 7400 Remsen, Hanover, NH, 03755, USA
| | - Casey S Greene
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Viktor Martyanov
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 7400 Remsen, Hanover, NH, 03755, USA
| | - Tammara A Wood
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 7400 Remsen, Hanover, NH, 03755, USA
| | - Romy B Christmann
- Division of Rheumatology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Harrison W Farber
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Robert A Lafyatis
- Division of Rheumatology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
| | | | - Monique E Hinchcliff
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Patricia A Pioli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - J Matthew Mahoney
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, HSRF 426, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - Michael L Whitfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, 7400 Remsen, Hanover, NH, 03755, USA.
| |
Collapse
|