1
|
Islam SMS, Singh S, Keshavarzian A, Abdel-Mohsen M. Intestinal Microbiota and Aging in People with HIV-What We Know and What We Don't. Curr HIV/AIDS Rep 2024; 22:9. [PMID: 39666149 DOI: 10.1007/s11904-024-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF REVIEW People with HIV (PWH) experience premature aging and an elevated risk of age-related comorbidities, even with viral suppression through antiretroviral therapy (ART). We examine gastrointestinal disruptions, specifically impaired intestinal barrier integrity and microbial dysbiosis, as contributors to these comorbidities. RECENT FINDINGS HIV infection compromises the intestinal epithelial barrier, increasing permeability and microbial translocation, which trigger inflammation and cellular stress. ART does not fully restore gut barrier integrity, leading to persistent inflammation and cellular stress. Additionally, HIV-associated microbial dysbiosis favors pro-inflammatory bacteria, intensifying inflammation and tissue damage, which may contribute to premature aging in PWH. Understanding the interactions between intestinal microbiota, chronic inflammation, cellular stress, and aging is essential to developing therapies aimed at reducing inflammation and slowing age-related diseases in PWH. In this review, we discuss critical knowledge gaps and highlight the therapeutic potential of microbiota-targeted interventions to mitigate inflammation and delay age-associated pathologies in PWH.
Collapse
Affiliation(s)
| | - Shalini Singh
- Northwestern University, 300 E Superior St, Chicago, IL, 60611, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
- Departments of Internal Medicine, physiology Rush University Medical Center, Anatomy & Cell Biology, Chicago, IL, USA
| | | |
Collapse
|
2
|
Lippincott RA, O’Connor J, Neff CP, Lozupone C, Palmer BE. Deciphering HIV-associated inflammation: microbiome's influence and experimental insights. Curr Opin HIV AIDS 2024; 19:228-233. [PMID: 38884255 PMCID: PMC11305906 DOI: 10.1097/coh.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
PURPOSE OF REVIEW To review novel experimental approaches for studying host:microbe interactions and their role in intestinal and systemic inflammation in people living with HIV (PLWH). RECENT FINDINGS Inflammation in PLWH is impacted by interactions between the microbiome, the intestinal epithelium, and immune cells. This complex interplay is not fully understood and requires a variety of analytical techniques to study. Using a multiomic systems biology approach provides hypothesis generating data on host:microbe interactions that can be used to guide further investigation. The direct interactions between host cells and microbes can be elucidated using peripheral blood mononuclear cells (PBMCs), lamina propria mononuclear cells (LPMC's) or human intestinal organoids (HIO). Additionally, the broader relationship between the host and the microbiome can be explored using animal models such as nonhuman primates and germ-free and double humanized mice. SUMMARY To explore complex host:microbe relationships, hypotheses are generated and investigations are guided by multiomic data, while causal components are identified using in-vitro and in-vivo assays.
Collapse
Affiliation(s)
| | - John O’Connor
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Catherine Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
3
|
Webb GM, Sauter KA, Takahashi D, Kirigiti M, Bader L, Lindsley SR, Blomenkamp H, Zaro C, Shallman M, McGuire C, Hofmeister H, Avila U, Pessoa C, Hwang JM, McCullen A, Humkey M, Reed J, Gao L, Winchester L, Fletcher CV, Varlamov O, Brown TT, Sacha JB, Kievit P, Roberts CT. Effect of metabolic status on response to SIV infection and antiretroviral therapy in nonhuman primates. JCI Insight 2024; 9:e181968. [PMID: 39115937 PMCID: PMC11457846 DOI: 10.1172/jci.insight.181968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Current antiretroviral therapy (ART) regimens efficiently limit HIV replication, thereby improving the life expectancy of people living with HIV; however, they also cause metabolic side effects. The ongoing obesity epidemic has resulted in more people with metabolic comorbidities at the time of HIV infection, yet the effect of preexisting metabolic dysregulation on infection sequelae and response to ART is unclear. Here, to investigate the impact of preexisting obesity and insulin resistance on acute infection and subsequent long-term ART, we infected a cohort of lean and obese adult male macaques with SIV and administered ART. The responses of lean and obese macaques to SIV and ART were similar with respect to plasma and cell-associated viral loads, ART drug levels in plasma and tissues, SIV-specific immune responses, adipose tissue and islet morphology, and colon inflammation, with baseline differences between lean and obese groups largely maintained. Both groups exhibited a striking depletion of CD4+ T cells from adipose tissue that did not recover with ART. However, differential responses to SIV and ART were observed for body weight, omental adipocyte size, and the adiponectin/leptin ratio, a marker of cardiometabolic risk. Thus, obesity and insulin resistance had limited effects on multiple responses to acute SIV infection and ART, while several factors that underlie long-term metabolic comorbidities were influenced by prior obesity and insulin resistance. These studies provide the foundation for future investigations into the efficacy of adjunct therapies such as metformin and glucagon-like peptide-1 receptor agonists in the prevention of metabolic comorbidities in people living with HIV.
Collapse
Affiliation(s)
| | - Kristin A. Sauter
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Diana Takahashi
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Melissa Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Lindsay Bader
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Sarah R. Lindsley
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Hannah Blomenkamp
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Cicely Zaro
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Molly Shallman
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Casey McGuire
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Heather Hofmeister
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Uriel Avila
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | | | | | | | | | - Jason Reed
- Division of Pathobiology and Immunology, and
| | - Lina Gao
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lee Winchester
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Courtney V. Fletcher
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Oleg Varlamov
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Todd T. Brown
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Charles T. Roberts
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| |
Collapse
|
4
|
Brenchley JM, Serrano-Villar S. From dysbiosis to defense: harnessing the gut microbiome in HIV/SIV therapy. MICROBIOME 2024; 12:113. [PMID: 38907315 PMCID: PMC11193286 DOI: 10.1186/s40168-024-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Although the microbiota has been extensively associated with HIV pathogenesis, the majority of studies, particularly those using omics techniques, are largely correlative and serve primarily as a basis for hypothesis generation. Furthermore, most have focused on characterizing the taxonomic composition of the bacterial component, often overlooking other levels of the microbiome. The intricate mechanisms by which the microbiota influences immune responses to HIV are still poorly understood. Interventional studies on gut microbiota provide a powerful tool to test the hypothesis of whether we can harness the microbiota to improve health outcomes in people with HIV. RESULTS Here, we review the multifaceted role of the gut microbiome in HIV/SIV disease progression and its potential as a therapeutic target. We explore the complex interplay between gut microbial dysbiosis and systemic inflammation, highlighting the potential for microbiome-based therapeutics to open new avenues in HIV management. These include exploring the efficacy of probiotics, prebiotics, fecal microbiota transplantation, and targeted dietary modifications. We also address the challenges inherent in this research area, such as the difficulty in inducing long-lasting microbiome alterations and the complexities of study designs, including variations in probiotic strains, donor selection for FMT, antibiotic conditioning regimens, and the hurdles in translating findings into clinical practice. Finally, we speculate on future directions for this rapidly evolving field, emphasizing the need for a more granular understanding of microbiome-immune interactions, the development of personalized microbiome-based therapies, and the application of novel technologies to identify potential therapeutic agents. CONCLUSIONS Our review underscores the importance of the gut microbiome in HIV/SIV disease and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, MA, USA.
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, IRYCIS and CIBERInfec, Madrid, Spain.
| |
Collapse
|
5
|
Lohani SC, Ramer-Tait AE, Li Q. High-fat diet feeding exacerbates HIV-1 rectal transmission. mSystems 2024; 9:e0132223. [PMID: 38303112 PMCID: PMC10949459 DOI: 10.1128/msystems.01322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
High-fat diet (HFD) is well known to impact various aspects of gut health and has been associated with many diseases and inflammation. However, the impact of HFD feeding on HIV-1 rectal transmission has not yet been well addressed. With an increasing threat of HIV-1 infection in men who have sex with men (MSM), where the rectal route is the primary mode of infection, it is imperative to understand the impact of HFD on gut microbiota and inflammation and consequently, its effect on HIV-1 rectal transmission. Here, we utilized our double humanized bone marrow, liver, thymus (dHu-BLT) mouse model to assess the impact of HFD feeding on the host's susceptibility to HIV-1 rectal transmission. We found that feeding an HFD successfully altered the gut microbial composition within 3 weeks in the dHu-BLT mouse model. In addition, levels of inflammatory mediators, specifically IL-12p70, IP-10, ICAM-1, and fecal calprotectin, were significantly higher in HFD-fed mice compared to control mice on a regular chow diet. We also observed that significantly different inflammatory markers (IL-12p70 and ICAM-1) were negatively correlated with the number of observed ASVs, Shannon diversity, and Faith's diversity in the HFD-fed group. Notably, when repeatedly challenged with a low dose of HIV-1 via a rectal route, mice receiving an HFD were significantly more susceptible to HIV-1 rectal infection than control mice. Together, these results underscore the impact of HFD feeding on the gut microbiota and inflammation and suggest the significance of diet-induced gut microbial dysbiosis and inflammation in promoting viral infection.IMPORTANCEHFD induces gut microbial dysbiosis and inflammation and has been associated with many infections and disease progression; however, its impact on HIV-1 rectal transmission is largely unknown. Given the increasing threat of HIV-1 incidence in men who have sex with men (MSM), it has become crucial to comprehend the impact of factors associated with gut health, like HFD consumption, on host susceptibility to HIV-1 rectal transmission. This is particularly important since anal intercourse remains the primary mode of HIV transmission within the MSM group. In this study, utilizing our unique mouse model, featuring both the human immune system and gut microbiota, we showed that HFD feeding led to gut microbial dysbiosis, induced inflammation, and increased HIV-1 rectal transmission. Collectively, our study highlights the significant impact of HFD on gut microbiota and inflammation and suggests an HFD consumption as a potential risk factor for promoting HIV-1 rectal susceptibility.
Collapse
Affiliation(s)
- Saroj Chandra Lohani
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Qingsheng Li
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
6
|
Derby N, Biswas S, Yusova S, Luevano-Santos C, Pacheco MC, Meyer KA, Johnson BI, Fischer M, Fancher KA, Fisher C, Abraham YM, McMahon CJ, Lutz SS, Smedley JV, Burwitz BJ, Sodora DL. SIV Infection Is Associated with Transient Acute-Phase Steatosis in Hepatocytes In Vivo. Viruses 2024; 16:296. [PMID: 38400071 PMCID: PMC10892327 DOI: 10.3390/v16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a major cause of morbidity and mortality in HIV-infected individuals, even those receiving optimal antiretroviral therapy. Here, we utilized the SIV rhesus macaque model and advanced laparoscopic techniques for longitudinal collection of liver tissue to elucidate the timing of pathologic changes. The livers of both SIV-infected (N = 9) and SIV-naïve uninfected (N = 8) macaques were biopsied and evaluated at four time points (weeks -4, 2, 6, and 16-20 post-infection) and at necropsy (week 32). SIV DNA within the macaques' livers varied by over 4 logs at necropsy, and liver SIV DNA significantly correlated with SIV RNA in the plasma throughout the study. Acute phase liver pathology (2 weeks post-infection) was characterized by evidence for fat accumulation (microvesicular steatosis), a transient elevation in both AST and cholesterol levels within the serum, and increased hepatic expression of the PPARA gene associated with cholesterol metabolism and beta oxidation. By contrast, the chronic phase of the SIV infection (32 weeks post-infection) was associated with sinusoidal dilatation, while steatosis resolved and concentrations of AST and cholesterol remained similar to those in uninfected macaques. These findings suggest differential liver pathologies associated with the acute and chronic phases of infection and the possibility that therapeutic interventions targeting metabolic function may benefit liver health in people newly diagnosed with HIV.
Collapse
Affiliation(s)
- Nina Derby
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Sreya Biswas
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Sofiya Yusova
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Cristina Luevano-Santos
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | | | - Kimberly A. Meyer
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Brooke I. Johnson
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Miranda Fischer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Katherine A. Fancher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Cole Fisher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Yohannes M. Abraham
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Conor J. McMahon
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Savannah S. Lutz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Donald L. Sodora
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Mokhtari I, Moumou M, Harnafi M, Milenkovic D, Amrani S, Harnafi H. Loquat fruit peel extract regulates lipid metabolism and liver oxidative stress in mice: In vivo and in silico approaches. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116376. [PMID: 36918050 DOI: 10.1016/j.jep.2023.116376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Moroccan traditional medicine, fresh or dried loquat (Eriobotrya japonica (Thunb.) Lindl.) fruit peels infused in water and taken for 45 days are used as natural remedies against hypercholesterolemia, hyperglycemia and cardiovascular diseases. This is the first experimental study approving the folk medicinal use of loquat fruit peels originated from eastern Morocco. AIM OF THE STUDY The study aims to investigate the effect of loquat fruit peel extract on lipid metabolism and liver oxidative status in mice as well as to predict the possible mechanisms. MATERIALS AND METHODS The study was carried out using high fat/fructose diet-induced hyperlipidemic mice model treated with the loquat peel extract for 45 days at two doses (100 and 200 mg/kg/day) in comparison to fenofibrate drug. The plasma, tissue, fecal and biliary lipids and blood glucose were analyzed using enzymatic methods. The liver oxidative status was evaluated and the polyphenol profiling was conducted using the HPLC-DAD method. Possible mechanisms involved in the observed pharmacological effects were predicted by in silico method. RESULTS The extract at a dose of 200 mg/kg possessed higher effect than at 100 mg/kg. It significantly reduced plasma total cholesterol (TC), triglycerides (TG), LDL-cholesterol, atherogenic index, LDL-C/HDL-C ratio and plasma glucose (-36%, -45%, -45%, -82%, -87%, 58%, respectively), while the HDL-cholesterol was increased (+172%). Moreover, the extract reduced TC and TG in the liver and adipose tissue by increasing their excretion in bile and fecal matter. It prevented the liver oxidative stress and decreased body weight and organ relative mass. The extract appears to be nontoxic (LD50 > 5000 mg/kg) and contains five polyphenols including ferulic acid (32.74 ± 0.71 mg/g), caffeic acid (21.48 ± 0.32 mg/g), 5-O-Caffeoylquinic acid (112.15 ± 1.86 mg/g), chlorogenic acid (42.05 ± 0.92 mg/g) and quercetin (32.69 ± 0.68 mg/g). These phenolics and/or their circulating metabolites presented differential interaction capacities with the potential enzymes and transcription factors implicated in lipid homeostasis such as HMG-CoA reductase, lipoprotein lipase, fatty acid synthase, Cyp7a1, ABCG, PPARs, RXR, FXR and RAR. CONCLUSION Our findings justify the traditional use of loquat fruit peels and suggest that their aqueous extract could be used as substrate to produce phytotherapeutic drugs or dietary supplements to prevent hyperlipidemia, hyperglycemia and related cardiovascular diseases.
Collapse
Affiliation(s)
- Imane Mokhtari
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000, Oujda, Morocco
| | - Mohammadine Moumou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000, Oujda, Morocco
| | - Mohamed Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000, Oujda, Morocco
| | - Dragan Milenkovic
- Department of Nutrition, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000, Oujda, Morocco
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000, Oujda, Morocco.
| |
Collapse
|
8
|
Martin HR, Sales Martinez S, Stebliankin V, Tamargo JA, Campa A, Narasimhan G, Hernandez J, Rodriguez JAB, Teeman C, Johnson A, Sherman KE, Baum MK. Diet Quality and Liver Health in People Living with HIV in the MASH Cohort: A Multi-Omic Analysis of the Fecal Microbiome and Metabolome. Metabolites 2023; 13:271. [PMID: 36837890 PMCID: PMC9962547 DOI: 10.3390/metabo13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The gut-liver axis has been recognized as a potential pathway in which dietary factors may contribute to liver disease in people living with HIV (PLWH). The objective of this study was to explore associations between dietary quality, the fecal microbiome, the metabolome, and liver health in PLWH from the Miami Adult Studies on HIV (MASH) cohort. We performed a cross-sectional analysis of 50 PLWH from the MASH cohort and utilized the USDA Healthy Eating Index (HEI)-2015 to measure diet quality. A Fibrosis-4 Index (FIB-4) score < 1.45 was used as a strong indication that advanced liver fibrosis was not present. Stool samples and fasting blood plasma samples were collected. Bacterial composition was characterized using 16S rRNA sequencing. Metabolomics in plasma were determined using gas and liquid chromatography/mass spectrometry. Statistical analyses included biomarker identification using linear discriminant analysis effect size. Compared to participants with FIB-4 ≥ 1.45, participants with FIB-4 < 1.45 had higher intake of dairy (p = 0.006). Fibrosis-4 Index score was inversely correlated with seafood and plant protein HEI component score (r = -0.320, p = 0.022). The relative abundances of butyrate-producing taxa Ruminococcaceae, Roseburia, and Lachnospiraceae were higher in participants with FIB-4 < 1.45. Participants with FIB-4 < 1.45 also had higher levels of caffeine (p = 0.045) and related metabolites such as trigonelline (p = 0.008) and 1-methylurate (p = 0.023). Dietary components appear to be associated with the fecal microbiome and metabolome, and liver health in PLWH. Future studies should investigate whether targeting specific dietary components may reduce liver-related morbidity and mortality in PLWH.
Collapse
Affiliation(s)
- Haley R. Martin
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street, AHC-5 500, Miami, FL 33199, USA
| | - Sabrina Sales Martinez
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street, AHC-5 500, Miami, FL 33199, USA
| | - Vitalii Stebliankin
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, University Park Campus, Florida International University, ECS-254, Miami, FL 33199, USA
| | - Javier A. Tamargo
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street, AHC-5 500, Miami, FL 33199, USA
| | - Adriana Campa
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street, AHC-5 500, Miami, FL 33199, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, University Park Campus, Florida International University, ECS-254, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, AHC4 211, Miami, FL 33199, USA
| | - Jacqueline Hernandez
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street, AHC-5 500, Miami, FL 33199, USA
| | - Jose A. Bastida Rodriguez
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street, AHC-5 500, Miami, FL 33199, USA
| | - Colby Teeman
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street, AHC-5 500, Miami, FL 33199, USA
| | - Angelique Johnson
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street, AHC-5 500, Miami, FL 33199, USA
| | - Kenneth E. Sherman
- Department of Internal Medicine, Division of Digestive Diseases, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Marianna K. Baum
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street, AHC-5 500, Miami, FL 33199, USA
| |
Collapse
|
9
|
Talukder MR, Woodman R, Pham H, Wilson K, Gessain A, Kaldor J, Einsiedel L. High Human T-Cell Leukemia Virus Type 1c Proviral Loads Are Associated With Diabetes and Chronic Kidney Disease: Results of a Cross-Sectional Community Survey in Central Australia. Clin Infect Dis 2023; 76:e820-e826. [PMID: 35903021 DOI: 10.1093/cid/ciac614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A link between chronic inflammation and several noncommunicable diseases (NCDs) has been established. Although chronic infection with the human T-cell leukemia virus type 1 (HTLV-1) is the recognized cause of several inflammatory diseases and these are associated with a high number of HTLV-1-infected cells in peripheral blood (proviral load [PVL]), possible interactions between PVL and NCDs have not been studied at a community level. METHODS Adult Aboriginal residents of 7 remote communities were invited to complete a health survey between 25 August 2014 and 30 June 2018. Blood was drawn for HTLV-1 serology and PVL, and relevant medical conditions were obtained from health records. Associations between HTLV-1 PVL and diabetes, chronic kidney disease (CKD), and coronary artery disease (CAD) were determined using logistic regression, adjusting for available confounders. RESULTS Among 510 participants (56% of the estimated adult resident population, 922), 197 (38.6%) were HTLV-1-infected. A high HTLV-1 PVL was associated with a 2-fold increase in the odds of diabetes and CKD (diabetes, adjusted odds ratio [aOR], 1.95; 95% confidence interval [CI], 1.06-3.61; P = .033 and CKD: aOR, 2.00; 95% CI, 1.03-3.8; P = .041). A nonsignificant association between high PVL and CAD (aOR, 7.08; 95% CI, 1.00-50.18; P = .05) was found for participants aged <50 years at the time of angiography. CONCLUSIONS In a community-based study in central Australia, people with HTLV-1 who had high HTLV-1 PVL were more likely to have diabetes and CKD. These findings have potential clinical implications.
Collapse
Affiliation(s)
- Mohammad Radwanur Talukder
- HTLV-1 Research, Baker Heart and Diabetes Institute, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| | - Richard Woodman
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Hai Pham
- HTLV-1 Research, Baker Heart and Diabetes Institute, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| | - Kim Wilson
- National Serology Reference Laboratory, Melbourne, Australia
| | - Antoine Gessain
- Oncogenic Virus Epidemiology and Pathophysiology (EPVO) Unit and Joint Research Unit (UMR) 3569 National Reference Centre (CNRS), Virology Department, Institut Pasteur, Paris, France
| | - John Kaldor
- Global Health Program, Kirby Institute, University of New South Wales, Sydney, Australia
| | - Lloyd Einsiedel
- HTLV-1 Research, Baker Heart and Diabetes Institute, Alice Springs Hospital, Alice Springs, Northern Territory, Australia.,Department of Medicine, NT Health, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| |
Collapse
|
10
|
Zhang Z, Yuan Y, Hu L, Tang J, Meng Z, Dai L, Gao Y, Ma S, Wang X, Yuan Y, Zhang Q, Cai W, Ruan X, Guo X. ANGPTL8 accelerates liver fibrosis mediated by HFD-induced inflammatory activity via LILRB2/ERK signaling pathways. J Adv Res 2022; 47:41-56. [PMID: 36031141 PMCID: PMC10173191 DOI: 10.1016/j.jare.2022.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION High calorie intake is known to induce nonalcoholic fatty liver disease (NAFLD) by promoting chronic inflammation. However, the mechanisms are poorly understood. OBJECTIVES This study examined the roles of ANGPTL8 in the regulation of NAFLD-associated liver fibrosis progression induced by high fat diet (HFD)-mediated inflammation. METHODS The ANGPTL8 concentration was measured in serum samples from liver cancer and liver cirrhosis patients. ANGPTL8 knockout mice were used to induce disease models (HFD, HFHC and CCL4) followed by pathological staining, western blot and immunohistochemistry. Hydrodynamic injection of an adeno-associated virus 8 (AAV8) was used to establish a model for restoring ANGPTL8 expression specifically in ANGPTL8 KO mice livers. RNA-sequencing, protein array, Co-IP, etc. were used to study ANGPTL8's mechanisms in regulating liver fibrosis progression, and drug screening was used to identify an effective inhibitor of ANGPTL8 expression. RESULTS ANGPTL8 level is associated with liver fibrogenesis in both cirrhosis and hepatocellular carcinoma patients. Mouse studies demonstrated that ANGPTL8 deficiency suppresses HFD-stimulated inflammatory activity, hepatic steatosis and liver fibrosis. The AAV-mediated restoration of liver ANGPTL8 expression indicated that liver-derived ANGPTL8 accelerates HFD-induced liver fibrosis. Liver-derived ANGPTL8, as a proinflammatory factor, activates HSCs (hepatic stellate cells) by interacting with the LILRB2 receptor to induce ERK signaling and increase the expression of genes that promote liver fibrosis. The FDA-approved drug metformin, an ANGPTL8 inhibitor, inhibited HFD-induced liver fibrosis in vivo. CONCLUSIONS Our data support that ANGPTL8 is a proinflammatory factor that accelerates NAFLD-associated liver fibrosis induced by HFD. The serum ANGPTL8 level may be a potential and specific diagnostic marker for liver fibrosis, and targeting ANGPTL8 holds great promise for developing innovative therapies to treat NAFLD-associated liver fibrosis.
Collapse
Affiliation(s)
- Zongli Zhang
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yue Yuan
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lin Hu
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jian Tang
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhongji Meng
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Shiyan, Hubei 442000, China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yujiu Gao
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shinan Ma
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xiaoli Wang
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yahong Yuan
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiufang Zhang
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Xuzhi Ruan
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Xingrong Guo
- Institute of Pediatric Disease, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
11
|
Pandrea I, Brooks K, Desai RP, Tare M, Brenchley JM, Apetrei C. I've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Front Immunol 2022; 13:899559. [PMID: 36032119 PMCID: PMC9411647 DOI: 10.3389/fimmu.2022.899559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The lumen of the gastrointestinal (GI) tract contains an incredibly diverse and extensive collection of microorganisms that can directly stimulate the immune system. There are significant data to demonstrate that the spatial localization of the microbiome can impact viral disease pathogenesis. Here we discuss recent studies that have investigated causes and consequences of GI tract pathologies in HIV, SIV, and SARS-CoV-2 infections with HIV and SIV initiating GI pathology from the basal side and SARS-CoV-2 from the luminal side. Both these infections result in alterations of the intestinal barrier, leading to microbial translocation, persistent inflammation, and T-cell immune activation. GI tract damage is one of the major contributors to multisystem inflammatory syndrome in SARS-CoV-2-infected individuals and to the incomplete immune restoration in HIV-infected subjects, even in those with robust viral control with antiretroviral therapy. While the causes of GI tract pathologies differ between these virus families, therapeutic interventions to reduce microbial translocation-induced inflammation and improve the integrity of the GI tract may improve the prognoses of infected individuals.
Collapse
Affiliation(s)
- Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rahul P. Desai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minali Tare
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Wood EK, Sullivan EL. The Influence of Diet on Metabolism and Health Across the Lifespan in Nonhuman Primates. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24. [PMID: 35425871 DOI: 10.1016/j.coemr.2022.100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The macro and micronutrient composition and the overall quantity of the diet are important predictors of physical and psychological health and, as a consequence, behavior. Translational preclinical models are critical to identifying the mechanisms underlying these relationships. Nonhuman primate models are particularly instrumental to this line of research as they exhibit considerable genetic, social, and physiological similarities, as well as similarities in their developmental trajectories to humans. This review aims to discuss recent contributions to the field of diet and metabolism and health using nonhuman primate models. The influence of diet composition on health and physiology across the lifespan will be the primary focus, including recent work examining the impact of maternal diet programming of offspring physiologic and behavioral developmental outcomes.
Collapse
Affiliation(s)
- Elizabeth K Wood
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Elinor L Sullivan
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Oregon National Primate Research Center, 505 NW 185 Avenue, Beaverton, OR 97006
| |
Collapse
|
13
|
Wang X, Wang X, Cong P, Wu L, Ma Y, Wang Z, Jiang T, Xu J. Sea cucumber ether-phospholipids improve hepatic steatosis and enhance hypothalamic autophagy in high-fat diet-fed mice. J Nutr Biochem 2022; 106:109032. [DOI: 10.1016/j.jnutbio.2022.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
14
|
He Z, Zhang H, Song Y, Yang Z, Cai Z. Exposure to ambient fine particulate matter impedes the function of spleen in the mouse metabolism of high-fat diet. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127129. [PMID: 34509742 DOI: 10.1016/j.jhazmat.2021.127129] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological and experimental evidence has been associating the exposure with ambient fine particulate matter (PM2.5) with metabolic malfunctions such as obesity and cardiovascular disease. As the blood-filter and the important lymphatic organ, spleen participates in the regulation of metabolic balance. In this work, liquid chromatography-mass spectrometry (LC-MS)-based lipidomics, metabolomics and proteomics were performed to study the effects of PM2.5 exposure and high-fat diet (HFD) induced obesity on mice spleen. By comparing the differences in lipids, metabolites, and proteins in the spleens from PM2.5 and HFD treated mice, we discovered the individual and combined effects of the two risk factors. The results showed the PM2.5 exposure altered energy metabolism of the mice, as evidenced by the upregulation of TCA cycle. In addition, the metabolism of branched-chain amino acids was also significantly changed, which might be related to the preventive function of spleen in lipid metabolism. The PM2.5-induced metabolic changes in spleen could further aggravate the adverse impacts of HFD on mice, resulting in impeded splenic metabolism of lipids. This study revealed the effects of PM2.5 and obesity mice spleen, which might be of great significance to public health.
Collapse
Affiliation(s)
- Zhao He
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
15
|
Reno TA, Tarnus L, Tracy R, Landay AL, Sereti I, Apetrei C, Pandrea I. The Youngbloods. Get Together. Hypercoagulation, Complement, and NET Formation in HIV/SIV Pathogenesis. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.795373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic, systemic T-cell immune activation and inflammation (IA/INFL) have been reported to be associated with disease progression in persons with HIV (PWH) since the inception of the AIDS pandemic. IA/INFL persist in PWH on antiretroviral therapy (ART), despite complete viral suppression and increases their susceptibility to serious non-AIDS events (SNAEs). Increased IA/INFL also occur during pathogenic SIV infections of macaques, while natural hosts of SIVs that control chronic IA/INFL do not progress to AIDS, despite having persistent high viral replication and severe acute CD4+ T-cell loss. Moreover, natural hosts of SIVs do not present with SNAEs. Multiple mechanisms drive HIV-associated IA/INFL, including the virus itself, persistent gut dysfunction, coinfections (CMV, HCV, HBV), proinflammatory lipids, ART toxicity, comorbidities, and behavioral factors (diet, smoking, and alcohol). Other mechanisms could also significantly contribute to IA/INFL during HIV/SIV infection, notably, a hypercoagulable state, characterized by elevated coagulation biomarkers, including D-dimer and tissue factor, which can accurately identify patients at risk for thromboembolic events and death. Coagulation biomarkers strongly correlate with INFL and predict the risk of SNAE-induced end-organ damage. Meanwhile, the complement system is also involved in the pathogenesis of HIV comorbidities. Despite prolonged viral suppression, PWH on ART have high plasma levels of C3a. HIV/SIV infections also trigger neutrophil extracellular traps (NETs) formation that contribute to the elimination of viral particles and infected CD4+ T-cells. However, as SIV infection progresses, generation of NETs can become excessive, fueling IA/INFL, destruction of multiple immune cells subsets, and microthrombotic events, contributing to further tissue damages and SNAEs. Tackling residual IA/INFL has the potential to improve the clinical course of HIV infection. Therefore, therapeutics targeting new pathways that can fuel IA/INFL such as hypercoagulation, complement activation and excessive formation of NETs might be beneficial for PWH and should be considered and evaluated.
Collapse
|
16
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
17
|
Fisher BS, Fancher KA, Gustin AT, Fisher C, Wood MP, Gale M, Burwitz BJ, Smedley J, Klatt NR, Derby N, Sodora DL. Liver Bacterial Dysbiosis With Non-Tuberculosis Mycobacteria Occurs in SIV-Infected Macaques and Persists During Antiretroviral Therapy. Front Immunol 2022; 12:793842. [PMID: 35082782 PMCID: PMC8784802 DOI: 10.3389/fimmu.2021.793842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/16/2021] [Indexed: 01/26/2023] Open
Abstract
Liver disease is a significant contributor to morbidity and mortality in HIV-infected individuals, even during successful viral suppression with combination antiretroviral therapy (cART). Similar to HIV infection, SIV infection of rhesus macaques is associated with gut microbiome dysbiosis and microbial translocation that can be detected systemically in the blood. As microbes leaving the intestines must first pass through the liver via the portal vein, we evaluated the livers of both SIV-infected (SIV+) and SIV-infected cART treated (SIV+cART) rhesus macaques for evidence of microbial changes compared to uninfected macaques. Dysbiosis was observed in both the SIV+ and SIV+cART macaques, encompassing changes in the relative abundance of several genera, including a reduction in the levels of Lactobacillus and Staphylococcus. Most strikingly, we found an increase in the relative abundance and absolute quantity of bacteria within the Mycobacterium genus in both SIV+ and SIV+cART macaques. Multi-gene sequencing identified a species of atypical mycobacteria similar to the opportunistic pathogen M. smegmatis. Phosphatidyl inositol lipoarabinomannan (PILAM) (a glycolipid cell wall component found in atypical mycobacteria) stimulation in primary human hepatocytes resulted in an upregulation of inflammatory transcriptional responses, including an increase in the chemokines associated with neutrophil recruitment (CXCL1, CXCL5, and CXCL6). These studies provide key insights into SIV associated changes in hepatic microbial composition and indicate a link between microbial components and immune cell recruitment in SIV+ and SIV+cART treated macaques.
Collapse
Affiliation(s)
- Bridget S. Fisher
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Katherine A. Fancher
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Andrew T. Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Cole Fisher
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Matthew P. Wood
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nichole R. Klatt
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nina Derby
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Donald L. Sodora
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| |
Collapse
|
18
|
Coleman C, Doyle-Meyers LA, Russell-Lodrigue KE, Golden N, Threeton B, Song K, Pierre G, Baribault C, Bohm RP, Maness NJ, Kolls JK, Rappaport J, Mudd JC. Similarities and Differences in the Acute-Phase Response to SARS-CoV-2 in Rhesus Macaques and African Green Monkeys. Front Immunol 2021; 12:754642. [PMID: 34691074 PMCID: PMC8527883 DOI: 10.3389/fimmu.2021.754642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding SARS-CoV-2 immune pathology is critical for the development of effective vaccines and treatments. Here, we employed unbiased serial whole-blood transcriptome profiling by weighted gene network correlation analysis (WGCNA) at pre-specified timepoints of infection to understand SARS-CoV-2-related immune alterations in a cohort of rhesus macaques (RMs) and African green monkeys (AGMs) presenting with varying degrees of pulmonary pathology. We found that the bulk of transcriptional changes occurred at day 3 post-infection and normalized to pre-infection levels by 3 weeks. There was evidence of coordination of transcriptional networks in blood (defined by WGCNA) and the nasopharyngeal SARS-CoV-2 burden as well as the absolute monocyte count. Pathway analysis of gene modules revealed prominent regulation of type I and type II interferon stimulated genes (ISGs) in both RMs and AGMs, with the latter species exhibiting a greater breadth of ISG upregulation. Notably, pathways relating to neutrophil degranulation were enriched in blood of SARS-CoV-2 infected AGMs, but not RMs. Our results elude to hallmark similarities as well as differences in the RM and AGM acute response to SARS-CoV-2 infection, and may help guide the selection of particular NHP species in modeling aspects of COVID-19 disease outcome.
Collapse
Affiliation(s)
- Celeste Coleman
- Department of Immunology and Microbiology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lara A Doyle-Meyers
- Department of Immunology and Microbiology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kasi E Russell-Lodrigue
- Department of Immunology and Microbiology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nadia Golden
- Department of Immunology and Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Breanna Threeton
- Department of Immunology and Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Genevieve Pierre
- Center for Translational Research in Infection and Inflammation, Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Carl Baribault
- Center for Research & Scientific Computing, Tulane University Information Technology, New Orleans, LA, United States
| | - Rudolf P Bohm
- Department of Immunology and Microbiology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nicholas J Maness
- Department of Immunology and Microbiology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jay Rappaport
- Department of Immunology and Microbiology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Joseph C Mudd
- Department of Immunology and Microbiology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
19
|
Rosen EM, Primeaux SD, Simon L, Welsh DA, Molina PE, Ferguson TF. Associations of Binge Drinking and Heavy Alcohol Use on Sugar and Fat Intake in a Cohort of Southern People Living with HIV. Alcohol Alcohol 2021; 57:226-233. [PMID: 34611697 DOI: 10.1093/alcalc/agab066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS To assess whether binge drinking and heavy alcohol use are associated with increased sugar and fat consumption among a Southern cohort of people living with HIV (PWH). METHODS This was a cross-sectional analysis of PWH enrolled in the New Orleans Alcohol use in HIV (NOAH) Study (n = 215). Binge and heavy drinking were identified through a 30-day Alcohol Timeline-Followback and dietary intake was assessed through a 24-hour dietary recall. RESULTS Participants were 65.4% male, 83.3% Black, with a mean age of 49.2 ± 9.9. Heavy drinkers consumed more total calories than abstainers (P = 0.035) and low-to-moderate drinkers (P = 0.024), and binge drinkers consumed more calories than non-binge drinkers (P = 0.025). Binge and heavy drinkers had significantly higher intake of total and saturated fat in grams. However, substantially increased caloric intake among these participants led to non-significant associations for alcohol use with high total and saturated fat intake as a percent of total energy intake (%TEI). Binge drinkers had lower odds of consuming high sugar as a %TEI (odds ratio: 0.31 [0.14, 0.68]). Additionally, sugar intake predicted total and saturated fat intake, and this association was slightly higher among binge drinkers (total fat P-value: 0.12). CONCLUSIONS In this population of PWH, while binge and heavy drinking predicted higher caloric and fat intake in grams, binge drinkers were less likely to consume a high-sugar diet. This analysis suggests that interventions focused on reduced alcohol use may be especially beneficial in reducing metabolic disease burden in PWH if supplemented with information on incorporating lower energy-dense foods with reduced fat.
Collapse
Affiliation(s)
- Erika M Rosen
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112 USA.,Louisiana State University Health Sciences Center, School of Public Health, Department of Epidemiology, 2020 Gravier St, New Orleans, LA 70112, USA
| | - Stefany D Primeaux
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112 USA.,Louisiana State University Health Sciences Center, School of Medicine, Department of Physiology, 1901 Perdido St, New Orleans, LA 70112, USA.,Pennington Biomedical Research Center, Joint Diabetes, Endocrinology & Metabolism Program, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112 USA.,Louisiana State University Health Sciences Center, School of Medicine, Department of Physiology, 1901 Perdido St, New Orleans, LA 70112, USA
| | - David A Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112 USA.,Louisiana State University Health Sciences Center, School of Medicine, Department of Pulmonology, 1901 Perdido St, New Orleans, LA 70112, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112 USA.,Louisiana State University Health Sciences Center, School of Medicine, Department of Physiology, 1901 Perdido St, New Orleans, LA 70112, USA
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112 USA.,Louisiana State University Health Sciences Center, School of Public Health, Department of Epidemiology, 2020 Gravier St, New Orleans, LA 70112, USA.,Louisiana State University Health Sciences Center, School of Medicine, Department of Physiology, 1901 Perdido St, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Sferra R, Pompili S, Cappariello A, Gaudio E, Latella G, Vetuschi A. Prolonged Chronic Consumption of a High Fat with Sucrose Diet Alters the Morphology of the Small Intestine. Int J Mol Sci 2021; 22:ijms22147280. [PMID: 34298894 PMCID: PMC8303301 DOI: 10.3390/ijms22147280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
(1) The high-fat diet (HFD) of western countries has dramatic effect on the health of several organs, including the digestive tract, leading to the accumulation of fats that can also trigger a chronic inflammatory process, such as that which occurs in non-alcohol steatohepatitis. The effects of a HFD on the small intestine, the organ involved in the absorption of this class of nutrients, are still poorly investigated. (2) To address this aspect, we administered a combined HFD with sucrose (HFD w/Suc, fat: 58% Kcal) regimen (18 months) to mice and investigated the morphological and molecular changes that occurred in the wall of proximal tract of the small intestine compared to the intestine of mice fed with a standard diet (SD) (fat: 18% Kcal). (3) We found an accumulation of lipid droplets in the mucosa of HFD w/Suc-fed mice that led to a disarrangement of mucosa architecture. Furthermore, we assessed the expression of several key players involved in lipid metabolism and inflammation, such as perilipin, leptin, leptin receptor, PI3K, p-mTOR, p-Akt, and TNF-α. All these molecules were increased in HFD mice compared to the SD group. We also evaluated anti-inflammatory molecules like adiponectin, adiponectin receptor, and PPAR-γ, and observed their significant reduction in the HFD w/Suc group compared to the control. Our data are in line with the knowledge that improper eating habits present a primary harmful assault on the bowel and the entire body's health. (4) These results represent a promising starting point for future studies, helping to better understand the complex and not fully elucidated spectrum of intestinal alterations induced by the overconsumption of fat.
Collapse
Affiliation(s)
- Roberta Sferra
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
- Correspondence: ; Tel.: +39-0862-433504
| | - Simona Pompili
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Division of Gastroenterology, Hepatology, and Nutrition, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| |
Collapse
|
21
|
Al-Shaer AE, Buddenbaum N, Shaikh SR. Polyunsaturated fatty acids, specialized pro-resolving mediators, and targeting inflammation resolution in the age of precision nutrition. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158936. [PMID: 33794384 PMCID: PMC8496879 DOI: 10.1016/j.bbalip.2021.158936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
Chronic inflammation contributes toward the pathogenesis of numerous diseases including, but not limited to, obesity, autoimmunity, cardiovascular diseases, and cancers. The discovery of specialized pro-resolving mediators (SPMs), which are critical for resolving inflammation, has commenced investigation into targeting pathways of inflammation resolution to improve physiological outcomes. SPMs are predominately synthesized from the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Therefore, one viable strategy to promote inflammation resolution would be to increase dietary intake of EPA/DHA, which are deficient in select populations. However, there are inconsistencies between the use of EPA/DHA as dietary or pharmacological supplements and improved inflammatory status. Herein, we review the literature on the relationship between the high n-6/n-3 PUFA ratio, downstream SPM biosynthesis, and inflammatory endpoints. We highlight key studies that have investigated how dietary intake of EPA/DHA increase tissue SPMs and their effects on inflammation. We also discuss the biochemical pathways by which EPA/DHA drive SPM biosynthesis and underscore mechanistic gaps in knowledge about these pathways which include a neglect for host genetics/ethnic differences in SPM metabolism, sexual dimorphism in SPM levels, and potential competition from select dietary n-6 PUFAs for enzymes of SPM synthesis. Altogether, establishing how dietary PUFAs control SPM biosynthesis in a genetic- and sex-dependent manner will drive new precision nutrition studies with EPA/DHA to prevent chronic inflammation in select populations.
Collapse
Affiliation(s)
- Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, 170 Rosenau Hall, CB# 7400, 135 Dauer Drive, Chapel Hill, NC, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, 170 Rosenau Hall, CB# 7400, 135 Dauer Drive, Chapel Hill, NC, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, 170 Rosenau Hall, CB# 7400, 135 Dauer Drive, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Dillon SM, Abdo MH, Wilson MP, Liu J, Jankowski CM, Robertson CE, Tuncil Y, Hamaker B, Frank DN, MaWhinney S, Wilson CC, Erlandson KM. A Unique Gut Microbiome-Physical Function Axis Exists in Older People with HIV: An Exploratory Study. AIDS Res Hum Retroviruses 2021; 37:542-550. [PMID: 33787299 PMCID: PMC8260890 DOI: 10.1089/aid.2020.0283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impairments in physical function and increased systemic levels of inflammation have been observed in middle-aged and older persons with HIV (PWH). We previously demonstrated that in older persons, associations between gut microbiota and inflammation differed by HIV serostatus. To determine whether relationships between the gut microbiome and physical function measurements would also be distinct between older persons with and without HIV, we reanalyzed existing gut microbiome and short chain fatty acid (SCFA) data in conjunction with previously collected measurements of physical function and body composition from the same cohorts of older (51-74 years), nonfrail PWH receiving effective antiretroviral therapy (N = 14) and age-balanced uninfected controls (N = 22). Associations between relative abundance (RA) of the most abundant bacterial taxa or stool SCFA levels with physical function and body composition were tested using HIV-adjusted linear regression models. In older PWH, but not in controls, greater RA of Alistipes, Escherichia, Prevotella, Megasphaera, and Subdoligranulum were associated with reduced lower extremity muscle function, decreased lean mass, or lower Short Physical Performance Battery (SPPB) scores. Conversely, greater RA of Dorea, Coprococcus, and Phascolarctobacterium in older PWH were associated with better muscle function, lean mass, and SPPB scores. Higher levels of the SCFA butyrate associated with increased grip strength in both PWH and controls. Our findings indicate that in older PWH, both negative and positive associations exist between stool microbiota abundance and physical function. Different relationships were observed in older uninfected persons, suggesting features of a unique gut-physical function axis in PWH.
Collapse
Affiliation(s)
- Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mona H. Abdo
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Melissa P. Wilson
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Jay Liu
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Catherine M. Jankowski
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Charles E. Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yunus Tuncil
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Bruce Hamaker
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samantha MaWhinney
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristine M. Erlandson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
23
|
Luo P, Wang Y, Zhao C, Guo J, Shi W, Ma H, Liu T, Yan D, Huo S, Wang M, Li C, Lin J, Li S, Lv J, Zhang C, Lin L. Bazedoxifene exhibits anti-inflammation and anti-atherosclerotic effects via inhibition of IL-6/IL-6R/STAT3 signaling. Eur J Pharmacol 2021; 893:173822. [PMID: 33347820 DOI: 10.1016/j.ejphar.2020.173822] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 01/14/2023]
Abstract
Atherosclerosis is regarded as chronic inflammatory disease. The IL-6/STAT3 pathway plays an important role in inflammation. We previously described a small-molecule compound, Bazedoxifene, which target IL-6/STAT3 pathway and has been approved for clinical use for osteoporosis in postmenopausal women. The aim of this study is to evaluate the effect of Bazedoxifene in the progression of atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. Five-week-old male ApoE-/- mice were fed with High-fat diet (HFD) containing 5 mg/kg Bazedoxifene or a matching control for 12 weeks. Oil red O (ORO) staining was used to detect plaque size; immunohistochemical staining was used to detect the presence of endothelial cells, vascular muscle cells and phosphorylated STAT3 (P-STAT3) in localized plaques. The potential underlying mechanisms in human umbilical vein endothelial cells (HUVECs) and vascular muscle cells (VSMCs) was detected by Western blot analysis, Wound healing assay and Elisa assay. In the ApoE-/- mice fed with HFD, daily Bazedoxifene administration effectively attenuated atherosclerotic plaque area (P < 0.01), down-regulated IL-6 levels (P < 0.01), decreased STAT3 phosphorylation, reduced VSMCs proliferation and increased endothelial coverage in aortic vessels. Interestingly, we found HUVECs lack of membrane IL-6 receptor (IL-6R) compared to VSMCs (P < 0.01). Furthermore, we found that the soluble IL-6 receptor (sIL6R) participates in the activation of STAT3 induced by IL-6 or TNF-α in HUVECs and primary HUVECs. Bazedoxifene did not inhibit the growth of HUVECs while suppressing the proliferation of VSMCs. Bazedoxifene is an attractive novel therapeutic reagent for atherosclerosis diseases. This mechanism may be partially attributed to regulating IL-6/IL-6R/STAT3 signaling pathway.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Indoles/pharmacology
- Interleukin-6/metabolism
- Male
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phosphorylation
- Plaque, Atherosclerotic
- Rats
- Receptors, Interleukin-6/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Pengcheng Luo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yina Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongqiang Zhao
- Cardiovascular Department, Tianjin First Central Hospital, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Ma
- Division of Cardiology, Department of Internal Medicine, First People's Hospital of ShangQiu, Shangqiu, China
| | - Tianshu Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jiayuh Lin
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Ramchoun M, Khouya T, Alibrahim EA, Hmidani A, Sellam K, Amrani S, Harnafi H, Benlyas M, Kasbi Chadli F, Ouguerram K, Alem C. Thymus atlanticus polyphenol-rich extract regulates cholesterol metabolism by inhibiting its biosynthesis without affecting its excretion in hamsters fed a high-fat diet. Arch Physiol Biochem 2020; 129:618-625. [PMID: 33320714 DOI: 10.1080/13813455.2020.1854308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Thymus atlanticus has been reported to have significant hypolipidaemic effect in animal models. However, the mechanism of this hypolipidaemic action still unknown. OBJECTIVE To determinate the possible mechanism(s) of hypolipidaemic action of a Thymus atlanticus polyphenol-rich extract (PRE). MATERIALS AND METHODS Plasma, faecal, and liver cholesterol, bile acid content in the faeces, and gene expression level of HMG-CoA reductase, CYP7A1, ABCG5 and ABCG8 were analysed after 9 weeks in hamsters feeding normal diet, high-fat diet (HFD) or HFD supplemented with 400 mg/kg body weight/day of PRE. RESULTS PRE significantly decreased total cholesterol content (p < .05) and HMG-CoA reductase expression (p < .05), but did not affect the faecal cholesterol, bile acid contents and CYP7A1 and ABCG5/G8 expression (p > .05). CONCLUSION We can conclude that the T. atlanticus extract is efficient in the alleviation of chronic hyperlipidaemia by acting as cholesterol biosynthesis inhibitor.
Collapse
Affiliation(s)
- Mhamed Ramchoun
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal, Morocco
- Biochemistry and Natural Substances Team, Department of Biology, Faculty of Sciences & Techniques, University Moulay Ismail, Errachidia, Morocco
- Laboratory of Biochemistry and Biotechnologies, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Tarik Khouya
- Biochemistry and Natural Substances Team, Department of Biology, Faculty of Sciences & Techniques, University Moulay Ismail, Errachidia, Morocco
| | - Eid Alabed Alibrahim
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers, Université Bretagne-Loire, Angers, France
| | - Abdelbassat Hmidani
- Biochemistry and Natural Substances Team, Department of Biology, Faculty of Sciences & Techniques, University Moulay Ismail, Errachidia, Morocco
| | - Khalid Sellam
- Biochemistry and Natural Substances Team, Department of Biology, Faculty of Sciences & Techniques, University Moulay Ismail, Errachidia, Morocco
| | - Souliman Amrani
- Laboratory of Biochemistry and Biotechnologies, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Hicham Harnafi
- Laboratory of Biochemistry and Biotechnologies, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Mohamed Benlyas
- Biochemistry and Natural Substances Team, Department of Biology, Faculty of Sciences & Techniques, University Moulay Ismail, Errachidia, Morocco
| | - Fatima Kasbi Chadli
- INRA, UMR 1280, Physiologie des Adaptations Nutritionnelles, Nantes, France
- CRNH, Western Human Nutrition Research Centre, CHU Hôtel-Dieu, Nantes, France
| | - Khadija Ouguerram
- INRA, UMR 1280, Physiologie des Adaptations Nutritionnelles, Nantes, France
- CRNH, Western Human Nutrition Research Centre, CHU Hôtel-Dieu, Nantes, France
| | - Chakib Alem
- Biochemistry and Natural Substances Team, Department of Biology, Faculty of Sciences & Techniques, University Moulay Ismail, Errachidia, Morocco
| |
Collapse
|
25
|
Kleinman AJ, Xu C, Cottrell ML, Sivanandham R, Brocca-Cofano E, Dunsmore T, Kashuba A, Pandrea I, Apetrei C. Pharmacokinetics and Immunological Effects of Romidepsin in Rhesus Macaques. Front Immunol 2020; 11:579158. [PMID: 33362765 PMCID: PMC7759686 DOI: 10.3389/fimmu.2020.579158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022] Open
Abstract
HIV/SIV persistence in latent reservoirs requires lifelong antiretroviral treatment and calls for effective cure strategies. Romidepsin (RMD), a histone deacetylase inhibitor, was reported to reactivate HIV/SIV from reservoirs in virus-suppressed individuals. We characterized in detail the pharmacokinetics and safety profile of RMD in three SIV-naïve rhesus macaques which received two rounds of treatment. In plasma, RMD mean terminal half-life was 15.3 h. In comparison, RMD mean terminal half-life was much longer in tissues: 110 h in the lymph nodes (LNs) and 28 h in gastrointestinal tract. RMD administration was accompanied by transient liver and systemic toxicity. Isoflurane anesthesia induced near-immediate transient lymphopenia, which was further exacerbated and extended with the extensive immune modifications by RMD. The effect of RMD on circulating immune cells was complex: (i) slight increase in lymphocyte death rates; (ii) transient, robust increase in neutrophils; (iii) massive downregulation of lymphocyte surface markers; (iv) important migration of CD3+ T cells to the gut and LNs; and (v) hindrance to CD8+ T cell functionality, yet without reaching significance. Our results show that, in contrast to transient plasma concentrations, RMD has a long-term presence in tissues, with multiple immunomodulatory effects and minimal to moderate kidney, liver, and lymphocyte toxicities. As such, we concluded that RMD can be used for “shock and kill” approaches, preferentially in combination with other latency reversal agents or cytotoxic T lymphocyte boosting strategies with consideration taken for adverse effects.
Collapse
Affiliation(s)
- Adam J Kleinman
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cuiling Xu
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mackenzie L Cottrell
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Ranjit Sivanandham
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tammy Dunsmore
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Angela Kashuba
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Jeyarajan AJ, Chung RT. Insights Into the Pathophysiology of Liver Disease in HCV/HIV: Does it End With HCV Cure? J Infect Dis 2020; 222:S802-S813. [PMID: 33245355 PMCID: PMC7693973 DOI: 10.1093/infdis/jiaa279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HCV-HIV coinfected patients exhibit rapid progression of liver damage relative to HCV monoinfected patients. The availability of new directly acting antiviral agents has dramatically improved outcomes for coinfected patients as sustained virologic response rates now exceed 95% and fibrosis-related parameters are improved. Nevertheless, coinfected patients still have a higher mortality risk and more severe hepatocellular carcinoma compared to HCV monoinfected patients, implying the existence of pathways unique to people living with HIV that continue to promote accelerated liver disease. In this article, we review the pathobiology of liver disease in HCV-HIV coinfected patients in the directly acting antiviral era and explore the mechanisms through which HIV itself induces liver damage. Since liver disease is one of the leading causes of non-AIDS-related mortality in HIV-positive patients, enhancing our understanding of HIV-associated fibrotic pathways will remain important for new diagnostic and therapeutic strategies to slow or reverse liver disease progression, even after HCV cure.
Collapse
Affiliation(s)
- Andre J Jeyarajan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raymond T Chung
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Blanco JR, Negredo E, Bernal E, Blanco J. Impact of HIV infection on aging and immune status. Expert Rev Anti Infect Ther 2020; 19:719-731. [PMID: 33167724 DOI: 10.1080/14787210.2021.1848546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Thanks to antiretroviral therapy (ART), persons living with HIV (PLWH), have a longer life expectancy. However, immune activation and inflammation remain elevated, even after viral suppression, and contribute to morbidity and mortality in these individuals.Areas covered: We review aspects related to immune activation and inflammation in PLWH, their consequences, and the potential strategies to reduce immune activation in HIV-infected individuals on ART.Expert opinion: When addressing a problem, it is necessary to thoroughly understand the topic. This is the main limitation faced when dealing with immune activation and inflammation in PLWH since there is no consensus on the ideal markers to evaluate immune activation or inflammation. To date, the different interventions that have addressed this problem by targeting specific mediators have not been able to significantly reduce immune activation or its consequences. Given that there is currently no curative intervention for HIV infection, more studies are necessary to understand the mechanism underlying immune activation and help to identify potential therapeutic targets that contribute to improving the life expectancy of HIV-infected individuals.
Collapse
Affiliation(s)
- Jose-Ramon Blanco
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro- Centro De Investigación Biomédica De La Rioja (CIBIR), La Rioja, Spain
| | - Eugenia Negredo
- Lluita Contra La Sida Foundation, Germans Trias I Pujol University Hospital, Badalona, Spain. Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (Uvic - UCC), Catalonia, Spain
| | - Enrique Bernal
- Unidad De Enfermedades Infecciosas, Hospital General Universitario Reina Sofía, Universidad De Murcia, Murcia, Spain
| | - Juliá Blanco
- AIDS Research Institute-IrsiCaixa, Badalona, Barcelona, Spain.,Universitat De Vic-Central De Catalunya (UVIC-UCC), Vic, Spain
| |
Collapse
|
28
|
Lycium barbarum polysaccharide attenuates myocardial injury in high-fat diet-fed mice through manipulating the gut microbiome and fecal metabolome. Food Res Int 2020; 138:109778. [PMID: 33288164 DOI: 10.1016/j.foodres.2020.109778] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/15/2023]
Abstract
High-fat diets (HFDs) can induce health problems including gut microbiota dysbiosis and cardiac dysfunction. In this study, we modulated the gut microbiota in mice to investigate whether Lycium barbarum polysaccharide (LBP), a potential prebiotic fiber, could alleviate HFD-induced myocardial injury. Mice fed a HFD were given LBP (HFPD group) by gavage once/day for 2 months. Left ventricular function and serum trimethylamine N-oxide were significantly improved in HFPD mice compared with HFD mice. HFD increased the abundances of Bifidobacterium, Lactobacillus, and Romboutsia, while LBP increased the abundances of Gordonibacter, Parabacteroides, and Anaerostipes. Fecal metabolic profiling revealed significant increases in metabolites involved in nicotinate, nicotinamide and purine metabolism pathways, as well as indole derivatives of tryptophan metabolites in the HFPD group. LBP reduced intestinal permeability and inflammatory cytokine levels, maintained a healthy intestinal microenvironment, and alleviated myocardial injury. Modulating the gut microbiota is a potential treatment for cardiovascular diseases.
Collapse
|
29
|
Nonhuman Primate Testing of the Impact of Different Regulatory T Cell Depletion Strategies on Reactivation and Clearance of Latent Simian Immunodeficiency Virus. J Virol 2020; 94:JVI.00533-20. [PMID: 32669326 DOI: 10.1128/jvi.00533-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) may be key contributors to the HIV/SIV latent reservoir, since they harbor high levels of HIV/SIV; reverse CD4+ T cell immune activation status, increasing the pool of resting CD4+ T cells; and impair CD8+ T cell function, favoring HIV persistence. We tested the hypothesis that Treg depletion is a valid intervention toward an HIV cure by depleted Tregs in 14 rhesus macaque (RM) controllers infected with SIVsab, the virus that naturally infects sabaeus monkeys, through different strategies: administration of an anti-CCR4 immunotoxin, two doses of an anti-CD25 immunotoxin (interleukin-2 with diphtheria toxin [IL-2-DT]), or two combinations of both. All of these treatments resulted in significant depletion of the circulating Tregs (>70%) and their partial depletion in the gut (25%) and lymph nodes (>50%). The fractions of CD4+ T cells expressing Ki -67 increased up to 80% in experiments containing IL-2-DT and only 30% in anti-CCR4-treated RMs, paralleled by increases in the inflammatory cytokines. In the absence of ART, plasma virus rebounded to 103 vRNA copies/ml by day 10 after IL-2-DT administration. A large but transient boost of the SIV-specific CD8+ T cell responses occurred in IL-2-DT-treated RMs. Such increases were minimal in the RMs receiving anti-CCR4-based regimens. Five RMs received IL-2-DT on ART, but treatment was discontinued because of high toxicity and lymphopenia. As such, while all treatments depleted a significant proportion of Tregs, the side effects in the presence of ART prevent their clinical use and call for different Treg depletion approaches. Thus, based on our data, Treg targeting as a strategy for HIV cure cannot be discarded.IMPORTANCE Regulatory T cells (Tregs) can decisively contribute to the establishment and persistence of the HIV reservoir, since they harbor high levels of HIV/SIV, increase the pool of resting CD4+ T cells by reversing their immune activation status, and impair CD8+ T cell function, favoring HIV persistence. We tested multiple Treg depletion strategies and showed that all of them are at least partially successful in depleting Tregs. As such, Treg depletion appears to be a valid intervention toward an HIV cure, reducing the size of the reservoir, reactivating the virus, and boosting cell-mediated immune responses. Yet, when Treg depletion was attempted in ART-suppressed animals, the treatment had to be discontinued due to high toxicity and lymphopenia. Therefore, while Treg targeting as a strategy for HIV cure cannot be discarded, the methodology for Treg depletion has to be revisited.
Collapse
|
30
|
Iannetta M, Isnard S, Manuzak J, Guillerme JB, Notin M, Bailly K, Andrieu M, Amraoui S, Vimeux L, Figueiredo S, Charmeteau-de Muylder B, Vaton L, Hatton EX, Samri A, Autran B, Thiébaut R, Chaghil N, Glohi D, Charpentier C, Descamps D, Brun-Vézinet F, Matheron S, Cheynier R, Hosmalin A. Conventional Dendritic Cells and Slan + Monocytes During HIV-2 Infection. Front Immunol 2020; 11:1658. [PMID: 32903610 PMCID: PMC7438582 DOI: 10.3389/fimmu.2020.01658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
HIV-2 infection is characterized by low viremia and slow disease progression as compared to HIV-1 infection. Circulating CD14++CD16+ monocytes were found to accumulate and CD11c+ conventional dendritic cells (cDC) to be depleted in a Portuguese cohort of people living with HIV-2 (PLWHIV-2), compared to blood bank healthy donors (HD). We studied more precisely classical monocytes; CD16+ inflammatory (intermediate, non-classical and slan+ monocytes, known to accumulate during viremic HIV-1 infection); cDC1, important for cross-presentation, and cDC2, both depleted during HIV-1 infection. We analyzed by flow cytometry these PBMC subsets from Paris area residents: 29 asymptomatic, untreated PLWHIV-2 from the IMMUNOVIR-2 study, part of the ANRS-CO5 HIV-2 cohort: 19 long-term non-progressors (LTNP; infection ≥8 years, undetectable viral load, stable CD4 counts≥500/μL; 17 of West-African origin -WA), and 10 non-LTNP (P; progressive infection; 9 WA); and 30 age-and sex-matched controls: 16 blood bank HD with unknown geographical origin, and 10 HD of WA origin (GeoHD). We measured plasma bacterial translocation markers by ELISA. Non-classical monocyte counts were higher in GeoHD than in HD (54 vs. 32 cells/μL, p = 0.0002). Slan+ monocyte counts were twice as high in GeoHD than in HD (WA: 28 vs. 13 cells/μL, p = 0.0002). Thus cell counts were compared only between participants of WA origin. They were similar in LTNP, P and GeoHD, indicating that there were no HIV-2 related differences. cDC counts did not show major differences between the groups. Interestingly, inflammatory monocyte counts correlated with plasma sCD14 and LBP only in PLWHIV-2, especially LTNP, and not in GeoHD. In conclusion, in LTNP PLWHIV-2, inflammatory monocyte counts correlated with LBP or sCD14 plasma levels, indicating a potential innate immune response to subclinical bacterial translocation. As GeoHD had higher inflammatory monocyte counts than HD, our data also show that specific controls are important to refine innate immunity studies.
Collapse
Affiliation(s)
- Marco Iannetta
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Stéphane Isnard
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jennifer Manuzak
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Mathilde Notin
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Karine Bailly
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Sonia Amraoui
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Lene Vimeux
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | | | - Laura Vaton
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Etienne X Hatton
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Assia Samri
- Sorbonne Université, Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Brigitte Autran
- Sorbonne Université, Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Rodolphe Thiébaut
- INSERM, Univ. Bordeaux, CIC 1401, UMR 1219, Bordeaux Population Health Research Center, CHU Bordeaux, Bordeaux, France
| | - Nathalie Chaghil
- INSERM, Univ. Bordeaux, CIC 1401, UMR 1219, Bordeaux Population Health Research Center, CHU Bordeaux, Bordeaux, France
| | - David Glohi
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Charlotte Charpentier
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Diane Descamps
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Sophie Matheron
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France.,INSERM, UMR 1137, IAME (Infection Antimicrobials Modelling Evolution), Université de Paris, Paris, France
| | - Remi Cheynier
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Anne Hosmalin
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
31
|
Abstract
Antiretroviral therapies efficiently block HIV-1 replication but need to be maintained for life. Moreover, chronic inflammation is a hallmark of HIV-1 infection that persists despite treatment. There is, therefore, an urgent need to better understand the mechanisms driving HIV-1 pathogenesis and to identify new targets for therapeutic intervention. In the past few years, the decisive role of cellular metabolism in the fate and activity of immune cells has been uncovered, as well as its impact on the outcome of infectious diseases. Emerging evidence suggests that immunometabolism has a key role in HIV-1 pathogenesis. The metabolic pathways of CD4+ T cells and macrophages determine their susceptibility to infection, the persistence of infected cells and the establishment of latency. Immunometabolism also shapes immune responses against HIV-1, and cell metabolic products are key drivers of inflammation during infection. In this Review, we summarize current knowledge of the links between HIV-1 infection and immunometabolism, and we discuss the potential opportunities and challenges for therapeutic interventions.
Collapse
|