1
|
Wu S, Jiang P, Zhang X, Mao C, Dai Y, Zhuang H, Pang Y. Understanding the Transepithelial Transport and Transbilayer Diffusion of the Antihypertensive Peptide Asn-Cys-Trp: Insights from Caco-2 Cell Monolayers and the DPPC Model Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9828-9841. [PMID: 38639269 DOI: 10.1021/acs.jafc.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Understanding the transport mechanism of the peptide Asn-Cys-Trp (NCW) is crucial to improving its intestinal absorption and bioavailability. This study investigated the absorption of NCW through Caco-2 cell monolayers and its interaction with the DPPC bilayers. Results revealed that after a 3 h incubation, the Papp (AP-BL) and Papp (BL-AP) values of NCW at a concentration of 5 mmol/L were (22.24 ± 4.52) × 10-7 and (6.63 ± 2.31) × 10-7 cm/s, respectively, with the transport rates of 1.59 ± 0.32 and 0.62 ± 0.20%, indicating its moderate absorption. NCW was found to be transported via PepT1 and paracellular transport pathways, as evidenced by the significant impact of Gly-Pro and cytochalasin D on the Papp values. Moreover, NCW upregulated ZO-1 mRNA expression. Further investigation of the ZO-1-mediated interaction between NCW and tight junction proteins will contribute to a better understanding of the paracellular transport mechanism of NCW. The interaction between NCW and the DPPC bilayers was predominantly driven by entropy. NCW permeated the bilayers through electrostatic, hydrogen bonding, and hydrophobic interactions, resulting in increased fluidity, flexibility, and disorder as well as phase transition and phase separation of the bilayers.
Collapse
Affiliation(s)
- Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Ping Jiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
2
|
Elewa SH, Osman MA, Essa EA, Sultan AA. Intestinal absorption pathways of lisinopril: Mechanistic investigations. Biopharm Drug Dispos 2022; 43:233-246. [PMID: 36299167 DOI: 10.1002/bdd.2336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 12/29/2022]
Abstract
Lisinopril is an antihypertensive drug with poor intestinal permeability. Enhancement of intestinal absorption depends on a clear understanding of the permeation pathways and absorption mechanisms. Unfortunately, these are not fully elucidated for lisinopril. Accordingly, the aim was to determine lisinopril permeation pathways and obstacles limiting membrane transport with subsequent nomination of appropriate permeation enhancers. This employed an in situ rabbit intestinal perfusion technique, which revealed site-dependent absorptive clearance (PeA/L) from a lisinopril simple solution (5 μg/ml), with paracellular absorption playing a role. Regional drug permeability ranked as colon> duodenum> jejunum> ileum opposing intestinal expression rank of P-glycoprotein (P-gp) efflux transporters. Duodenal and jejunal perfusion of a higher lisinopril concentration (50 μg/ml) reflected saturable absorption, suggesting carrier-mediated transport. The effect of piperine and verapamil as P-gp inhibitors on intestinal absorption of lisinopril was investigated. Coperfusion with either piperine or verapamil significantly enhanced lisinopril absorption, with enhancement being dominant in the ileum segment. This supported the contribution of P-gp transporters to poor lisinopril permeability. On the other hand, coperfusion of lisinopril with zinc acetate dihydrate significantly multiplied lisinopril PeA/L by 2.3- and 6.6-fold in duodenum and ileum segments, respectively, through magnifying intestinal water flux. The study explored the barriers limiting lisinopril intestinal absorption. Moreover, the study exposed clinically relevant lisinopril interactions with common coadministered cargos that should be considered for an appropriate lisinopril regimen. However, this requires further in vivo verification.
Collapse
Affiliation(s)
- Sarah H Elewa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Amal A Sultan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
3
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|
4
|
Yin H, Shao H, Liu J, Qin Y, Deng W. Sex-specific and concentration-dependent influence of Cremophor RH 40 on ampicillin absorption via its effect on intestinal membrane transporters in rats. PLoS One 2022; 17:e0263692. [PMID: 35226682 PMCID: PMC8884507 DOI: 10.1371/journal.pone.0263692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Pharmaceutical excipients are the basic materials and important components of pharmaceutical preparations, and play an important role in improving the efficacy of drugs and reducing adverse reactions. Therefore, selecting suitable excipients for dosage form is an important step in formulation development. An increasing number of studies have revealed that the traditionally regarded "inert" excipients can, however, influence the bioavailability of drugs. Moreover, these effects on the bioavailability of drugs caused by pharmaceutical excipients may differ in between males and females. In this study, the in situ effect of the widely-used pharmaceutical excipient Cremophor RH 40 spanning from 0.001% to 0.1% on the intestinal absorption of ampicillin in male and female rats using closed-loop models was investigated. Cremophor RH 40 ranging from 0.03% to 0.07% increased the absorption of ampicillin in females, however, was decreased in male rats. The mechanism of such an effect on drug absorption is suggested to be due to the interaction between Cremophor RH 40 and two main membrane transporters P-gp and PepT1. Cremophor RH 40 altered the PepT1 protein content in a sex-dependent manner, showing an increase in female rats but a decrease in males. No modification on the PepT1 mRNA abundance was found with Cremophor RH 40, indicating that the excipient may regulate the protein recruitment of the plasma membrane from the preformed cytoplasm pool to alter the PepT1 function. This influence, however, may differ between males and females. As such, the study herein shows that supposedly inert excipient Cremophor RH 40 can influence membrane fluidity, uptake and efflux transporters in a sex- and concentration-dependent manner. These findings, therefore, highlight the need for sex-specific studies in the application of solubilizing excipients in drug formulation development.
Collapse
Affiliation(s)
- Heyue Yin
- Department of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Haibin Shao
- Department of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- Department of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yujia Qin
- Department of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wenbin Deng
- Department of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
5
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
6
|
Del Vecchio G, Murashita K, Verri T, Gomes AS, Rønnestad I. Leptin receptor-deficient (knockout) zebrafish: Effects on nutrient acquisition. Gen Comp Endocrinol 2021; 310:113832. [PMID: 34089707 DOI: 10.1016/j.ygcen.2021.113832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
In mammals, knockout of LEPR results in a hyperphagic, morbid obese, and diabetic phenotype, which supports that leptin plays an important role in the control of appetite and energy metabolism, and that its receptor, LEPR, mediates these effects. To date, little is known about the role(s) of lepr in teleost physiology. We investigated a zebrafish (Danio rerio) homozygous lepr knockout (lepr-/-) line generated by CRISPR/Cas9 in comparison to its wt counterpart with respect to nutrient acquisition, energy allocation, and metabolism. The metabolic characterization included oxygen consumption rate and morphometric parameters (yolk sac area, standard length, wet weight, and condition factor) as proxies for use and allocation of energy in developing (embryos, larvae, and juveniles) zebrafish and showed no particular differences between the two lines, in agreement with previous studies. One exception was found in oxygen consumption at 72 hpf, when zebrafish switch from embryonic to early larval stages and food-seeking behavior could be observed. In this case, the metabolic rate was significantly lower in lepr-/- than in wt. Both phenotypes showed similar responses, with respect to metabolic rate, to acute alterations (22 and 34 °C) in water temperature (measured in terms of Q10 and activation energy) compared to the standard (28 °C) rearing conditions. To assess lepr involvement in signaling the processing and handling of incoming nutrients when an exogenous meal is digested and absorbed, we conducted an in vivo analysis in lepr-/- and wt early (8 days post-fertilization) zebrafish larvae. The larvae were administered a bolus of protein hydrolysate (0%, 1%, 5%, and 15% lactalbumin) directly into the digestive tract lumen, and changes in the mRNA expression profile before and after (1 and 3 h) administration were quantified. The analysis showed transcriptional differences in the expressions of genes involved in the control of appetite and energy metabolism (cart, npy, agrp, and mc4r), sensing (casr, t1r1, t1r3, t1r2-1, t1r2-2, pept1a, and pept1b), and digestion (cck, pyy, try, ct, and amy), with more pronounced effects observed in the orexigenic than in the anorexigenic pathways, suggesting a role of lepr in their regulations. Differences in the mRNA levels of these genes in lepr-/-vs. wt larvae were also observed. Altogether, our analyses suggest an influence of lepr on physiological processes involved in nutrient acquisition, mainly control of food intake and digestion, during early development, whereas metabolism, energy allocation, and growth seem to be only slightly influenced.
Collapse
Affiliation(s)
- Gianmarco Del Vecchio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy; Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway
| | - Koji Murashita
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway; Aquaculture Research Department, Fisheries Technology Institute, Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway.
| |
Collapse
|
7
|
Abstract
Leptin is a pluripotent peptide hormone produced mainly by adipocytes, as well as by other tissues such as the stomach. Leptin primarily acts on the central nervous system, particularly the hypothalamus, where this hormone regulates energy homeostasis and neuroendocrine function. Owing to this, disruption of leptin signaling has been linked with numerous pathological conditions. Recent studies have also highlighted the diverse roles of leptin in the digestive system including immune regulation, cell proliferation, tissue healing, and glucose metabolism. Of note, leptin acts differently under physiological and pathological conditions. Here, we review the current knowledge on the functions of leptin and its downstream signaling in the gastrointestinal tract and accessory digestive organs, with an emphasis on its physiological and pathological implications. We also discuss the current therapeutic uses of recombinant leptin, as well as its limitations.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
8
|
Mendoza-Herrera K, Florio AA, Moore M, Marrero A, Tamez M, Bhupathiraju SN, Mattei J. The Leptin System and Diet: A Mini Review of the Current Evidence. Front Endocrinol (Lausanne) 2021; 12:749050. [PMID: 34899599 PMCID: PMC8651558 DOI: 10.3389/fendo.2021.749050] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023] Open
Abstract
Leptin promotes satiety and modulates energy balance and weight. Diet-induced obesity leads to leptin resistance, exacerbating overeating. We reviewed the literature on the relationship between diet and leptin, which suggests that addressing leptin resistance through dietary interventions can contribute counteracting obesity. Albeit some limitations (e.g., limited rigor, small samples sizes), studies in animals and humans show that diets high in fat, carbohydrates, fructose, and sucrose, and low in protein are drivers of leptin resistance. Despite methodological heterogeneity pertaining to this body of literature, experimental studies show that energy-restricted diets can reduce leptinemia both in the short and long term and potentially reverse leptin resistance in humans. We also discuss limitations of this evidence, future lines of research, and implications for clinical and public health translations. Main limitations include the lack of a single universally-accepted definition of leptin resistance, and of adequate ways to accurately measure it in humans. The use of leptin sensitizers (drugs) and genetically individualized diets are alternatives against leptin resistance that should be further researched in humans. The tested very-low-energy intervention diets are challenging to translate into wide clinical or population recommendations. In conclusion, the link between nutritional components and leptin resistance, as well as research indicating that this condition is reversible, emphasizes the potential of diet to recover sensitivity to this hormone. A harmonized definition of leptin resistance, reliable methods to measure it, and large-scale, translational, clinical, and precision nutrition research involving rigorous methods are needed to benefit populations through these approaches.
Collapse
|
9
|
Merigo F, Brandolese A, Facchin S, Boschi F, Di Chio M, Savarino E, D'Incà R, Sturniolo GC, Sbarbati A. Immunolocalization of leptin and leptin receptor in colorectal mucosa of ulcerative colitis, Crohn's disease and control subjects with no inflammatory bowel disease. Cell Tissue Res 2020; 383:1103-1122. [PMID: 33159578 PMCID: PMC7960629 DOI: 10.1007/s00441-020-03297-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023]
Abstract
The expression of leptin and leptin receptor (Ob-R) has been partially elucidated in colon of patients with inflammatory bowel diseases (IBDs), even though leptin is involved in angiogenesis and inflammation. We previously reported overexpression of GLUT5 fructose transporter, in aberrant clusters of lymphatic vessels in lamina propria of IBD and controls. Here, we examine leptin and Ob-R expression in the same biopsies. Specimens were obtained from patients with ulcerative colitis (UC), Crohn’s disease (CD) and controls who underwent screening for colorectal cancer, follow-up after polypectomy or with a history of lower gastrointestinal symptoms. Immunohistochemistry revealed leptin in apical and basolateral membranes of short epithelial portions, Ob-R on the apical pole of epithelial cells. Leptin and Ob-R were also identified in structures and cells scattered in the lamina propria. In UC, a significant correlation between leptin and Ob-R in the lamina propria was found in all inflamed samples, beyond non-inflamed samples of the proximal tract, while in CD, it was found in inflamed distal samples. Most of the leptin and Ob-R positive areas in the lamina propria were also GLUT5 immunoreactive in inflamed and non-inflamed mucosa. A significant correlation of leptin or Ob-R expression with GLUT5 was observed in the inflamed distal samples from UC. Our findings suggest that there are different sites of leptin and Ob-R expression in large intestine and those in lamina propria do not reflect the status of mucosal inflammation. The co-localization of leptin and/or Ob-R with GLUT5 may indicate concomitance effects in colorectal lamina propria areas.
Collapse
Affiliation(s)
- Flavia Merigo
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, 37134, Verona, Italy.
| | - Alessandro Brandolese
- Department of Medicine, Gastroenterology Section, University of Verona, 37134, Verona, Italy
| | - Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, 35128, Padua, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Marzia Di Chio
- Department of Diagnostic and Public Health, University of Verona, 37134, Verona, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, 35128, Padua, Italy
| | - Renata D'Incà
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, 35128, Padua, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, 35128, Padua, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, 37134, Verona, Italy
| |
Collapse
|
10
|
Diabetes downregulates peptide transporter 1 in the rat jejunum: possible involvement of cholate-induced FXR activation. Acta Pharmacol Sin 2020; 41:1465-1475. [PMID: 32341465 DOI: 10.1038/s41401-020-0408-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
Peptide transporter 1 (PepT1), highly expressed on the apical membrane of enterocytes, is involved in energy balance and mediates intestinal absorption of peptidomimetic drugs. In this study, we investigated whether and how diabetes affected the function and expression of intestinal PepT1. Diabetes was induced in rats by combination of high-fat diet and low dose streptozocin injection. Pharmacokinetics study demonstrated that diabetes significantly decreased plasma exposures of cephalexin and acyclovir following oral administration of cephalexin and valacyclovir, respectively. Single-pass intestinal perfusion analysis showed that diabetes remarkably decreased cephalexin absorption, which was associated with decreased expression of intestinal PepT1 protein. We assessed the levels of bile acids in intestine of diabetic rats, and found that diabetic rats exhibited significantly higher levels of chenodeoxycholic acid (CDCA), cholic acid (CA) and glycocholic acid (GCA), and lower levels of lithocholic acid (LCA) and hyodeoxycholic acid (HDCA) than control rats; intestinal deoxycholic acid (DCA) levels were unaltered. In Caco-2 cells, the 6 bile acids remarkably decreased expression of PepT1 protein with CDCA causing the strongest inhibition, whereas TNF-α, LPS and insulin little affected expression of PepT1 protein; short-chain fatty acids induced rather than decreased expression of PepT1 protein. Farnesoid X receptor (FXR) inhibitor glycine-β-muricholic acid or FXR knockdown reversed the downregulation of PepT1 expression by CDCA and GW4064 (another FXR agonist). In diabetic rats, the expression of intestinal FXR protein was markedly increased. Oral administration of CDCA (90, 180 mg·kg-1·d-1, for 3 weeks) dose-dependently decreased the expression and function of intestinal PepT1 in rats. In conclusion, diabetes impairs the expression and function of intestinal PepT1 partly via CDCA-mediated FXR activation.
Collapse
|
11
|
Deng Z, Zheng L, Xie X, Wei H, Peng J. GPA peptide enhances Nur77 expression in intestinal epithelial cells to exert a protective effect against DSS-induced colitis. FASEB J 2020; 34:15364-15378. [PMID: 32978839 DOI: 10.1096/fj.202000391rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023]
Abstract
Ulcerative colitis (UC) is a widespread inflammatory bowel disease that causes long-lasting inflammation and ulcers in the colon and rectum. In the inflamed tissue of patients with UC, the tight junctions are disrupted and large amounts of pro-inflammatory cytokines are produced, resulting in immune dysregulation. The expression of Nur77 is significantly reduced in the colon of inflammatory bowel disease, while Nur77 deficiency increases the susceptibility to DSS-induced colitis. Here, we report that Gly-Pro-Ala (GPA) peptide isolated from fish skin gelatin hydrolysate can significantly alleviate intestinal inflammation and damage caused by DSS-induced mice colitis. Besides maintaining the intestinal epithelial barrier, GPA alleviates intestinal inflammation and oxidative stress by inhibiting NF-κB activation. Interestingly, GPA binds to the ligand-binding domain of Nur77 and stimulates its autotranscriptional activity to enhance its expression in intestinal epithelial cells. Furthermore, GPA activates the promoter of IκBα to increase its expression, resulting in the abolishment of the NF-κB pathway. In contrast, the inhibitory effects of GPA on colitis are abolished in Nur77-/- mice. Our results suggest that as a Nur77 modulator, GPA may be applied to the prevention of intestinal inflammation.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Liufeng Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Xiaowei Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
12
|
Drozdzik M, Czekawy I, Oswald S, Drozdzik A. Intestinal drug transporters in pathological states: an overview. Pharmacol Rep 2020; 72:1173-1194. [PMID: 32715435 PMCID: PMC7550293 DOI: 10.1007/s43440-020-00139-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Marek Drozdzik
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111, Szczecin, Poland.
| | - Izabela Czekawy
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111, Szczecin, Poland
| | - Stefan Oswald
- Department of Pharmacology, Medicine University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany.,Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051, Rostock, Germany
| | - Agnieszka Drozdzik
- Department of Integrated Dentistry, Pomeranian Medical University, Powstancow Wlkp 72, 70-111, Szczecin, Poland
| |
Collapse
|
13
|
Iqbal J, Mascareno E, Chua S, Hussain MM. Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids. J Biol Chem 2020; 295:4101-4113. [PMID: 32047110 PMCID: PMC7105304 DOI: 10.1074/jbc.ra119.011881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/06/2020] [Indexed: 11/06/2022] Open
Abstract
The hormone leptin regulates fat storage and metabolism by signaling through the brain and peripheral tissues. Lipids delivered to peripheral tissues originate mostly from the intestine and liver via synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. An intracellular chaperone, microsomal triglyceride transfer protein (MTP), is required for the biosynthesis of these lipoproteins, and its regulation determines fat mobilization to different tissues. Using cell culture and animal models, here we sought to identify the effects of leptin on MTP expression in the intestine and liver. Leptin decreased MTP expression in differentiated intestinal Caco-2 cells, but increased expression in hepatic Huh7 cells. Similarly, acute and chronic leptin treatment of chow diet-fed WT mice decreased MTP expression in the intestine, increased it in the liver, and lowered plasma triglyceride levels. These leptin effects required the presence of leptin receptors (LEPRs). Further experiments also suggested that leptin interacted with long-form LEPR (ObRb), highly expressed in the intestine, to down-regulate MTP. In contrast, in the liver, leptin interacted with short-form LEPR (ObRa) to increase MTP expression. Mechanistic experiments disclosed that leptin activates signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathways in intestinal and hepatic cells, respectively, and thereby regulates divergent MTP expression. Our results also indicated that leptin-mediated MTP regulation in the intestine affects plasma lipid levels. In summary, our findings suggest that leptin regulates MTP expression differentially by engaging with different LEPR types and activating distinct signaling pathways in intestinal and hepatic cells.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia.
| | - Eduardo Mascareno
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| | - Streamson Chua
- Department of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; Department of Foundations of Medicine, NYU Long Island School of Medicine and Diabetes and Obesity Research Center, NYU Winthrop Research Institute, Mineola, New York 11501; Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209.
| |
Collapse
|
14
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
15
|
Luo WJ, Song P, He ZM, Cao SP, Tang JZ, Xu WQ, Xiong D, Qu FF, Zhao DF, Liu Z, Li JZ, Yin YL. JAK2 Mediates the Regulation of Pept1 Expression by Leptin in the Grass Carp ( Ctenopharyngodon idella) Intestine. Front Physiol 2020; 11:79. [PMID: 32116786 PMCID: PMC7033393 DOI: 10.3389/fphys.2020.00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/23/2020] [Indexed: 11/17/2022] Open
Abstract
Oligopeptide transporter 1 (Pept1) is located on the brush border membrane of the intestinal epithelium and plays an important role in dipeptide and tripeptide absorption from protein digestion. In this study, we cloned and characterized the cDNA sequence of Janus kinase 2 (JAK2) from Ctenopharyngodon idella. The expression patterns of JAK2 in various tissues and developmental stages were characterized by quantitative real-time PCR (qRT-PCR). The mRNA expression levels of JAK2 and Pept1 regulated by leptin in the intestine were also analyzed in vitro and in vivo. The cDNA sequence of JAK2 is 3378 bp in length, and the mRNA of JAK2 was broadly expressed in all tissues and embryonic stages of C. idella analyzed. In addition, we found that leptin regulated expression of JAK2 and Pept1 in the intestine; Pept1 expression was down-regulated by the JAK2 inhibitor AG490 in vivo and in vitro. Furthermore, luciferase experiments showed that overexpression of the JAK2 gene significantly upregulated the activity of the Pept1 5′ regulatory sequence in C. idella. In conclusion, these results may help in elucidating the regulatory effect of the leptin-mediated JAK2 pathway on intestinal Pept1 expression in C. idella and the molecular mechanism of peptide transport by the intestinal transporter Pept1 in fishes.
Collapse
Affiliation(s)
- Wen-Jie Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Peng Song
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhi-Min He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Shen-Ping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jian-Zhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wen-Qian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Ding Xiong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Fu-Fa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Da-Fang Zhao
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jian-Zhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Yu-Long Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| |
Collapse
|
16
|
Xu J, Zeug A, Riederer B, Yeruva S, Griesbeck O, Daniel H, Tuo B, Ponimaskin E, Dong H, Seidler U. Calcium-sensing receptor regulates intestinal dipeptide absorption via Ca 2+ signaling and IK Ca activation. Physiol Rep 2020; 8:e14337. [PMID: 31960592 PMCID: PMC6971415 DOI: 10.14814/phy2.14337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although absorption of di- and tripeptides into intestinal epithelial cells occurs via the peptide transporter 1 (PEPT1, also called solute carrier family 15 member 1 (SLC15A1)), the detailed regulatory mechanisms are not fully understood. We examined: (a) whether dipeptide absorption in villous enterocytes is associated with a rise in cytosolic Ca2+ ([Ca2+ ]cyt ), (b) whether the calcium sensing receptor (CaSR) is involved in dipeptide-elicited [Ca2+ ]cyt signaling, and (c) what potential consequences of [Ca2+ ]cyt signaling may enhance enterocyte dipeptide absorption. Dipeptide Gly-Sar and CaSR agonist spermine markedly raised [Ca2+ ]cyt in villous enterocytes, which was abolished by NPS-2143, a selective CaSR antagonist and U73122, an phospholipase C (PLC) inhibitor. Apical application of Gly-Sar induced a jejunal short-circuit current (Isc), which was reduced by NPS-2143. CaSR expression was identified in the lamina propria and on the basal enterocyte membrane of mouse jejunal mucosa in both WT and Slc15a1-/- animals, but Gly-Sar-induced [Ca2+ ]cyt signaling was significantly decreased in Slc15a1-/- villi. Clotrimazole and TRM-34, two selective blockers of the intermediate conductance Ca2+ -activated K+ channel (IKCa ), but not iberiotoxin, a selective blocker of the large-conductance K+ channel (BKCa ) and apamin, a selective blocker of the small-conductance K+ channel (SKCa ), significantly inhibited Gly-Sar-induced Isc in native tissues. We reveal a novel CaSR-PLC-Ca2+ -IKCa pathway in the regulation of small intestinal dipeptide absorption, which may be exploited as a target for future drug development in human nutritional disorders.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Andre Zeug
- Cellular NeurophysiologyHannover Medical SchoolHannoverGermany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Sunil Yeruva
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | | | - Hannelore Daniel
- Nutritional PhysiologyTechnical University of MunichFreisingGermany
| | - Biguang Tuo
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | | | - Hui Dong
- Department of MedicineUniversity of California, San DiegoLa JollaCAUSA
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
17
|
Jin Y, Liu Q, Zhou C, Hu X, Wang L, Han S, Zhou Y, Liu Y. Intestinal oligopeptide transporter PepT1-targeted polymeric micelles for further enhancing the oral absorption of water-insoluble agents. NANOSCALE 2019; 11:21433-21448. [PMID: 31681915 DOI: 10.1039/c9nr07029j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The intestinal epithelium is the main barrier for nanocarriers to orally deliver poorly water-soluble and absorbed agents. To further improve the transmembrane transport efficiency of polymeric micelles, intestinal oligopeptide transporter PepT1-targeted polymeric micelles were fabricated by Gly-Sar-conjugated poly(ethylene glycol)-poly(d,l-lactic acid). The functionalized polymeric micelles with about 40 nm diameter, uniform spherical morphology and favorable cytocompatibility with Caco-2 cells were demonstrated to distinctly enhance the cellular uptake and transmembrane transport of the loaded agents. The results of intestinal absorption strongly evidenced the higher accumulation of the micelles inside the epithelial cells, at the apical and basolateral sides of the epithelium within the villi in mice. Furthermore, the interaction of Gly-Sar decorated polymeric micelles with PepT1 was explored to promote the internalization of the micelles through fluorescence immunoassay, and the PepT1 level on the membrane of Caco-2 cells treated with the micelles appeared to change in a distinctly time-dependent manner. Both clathrin- and caveolae-mediated pathways were involved in the transcellular transport for undecorated polymeric micelles, while the transcellular transport pathway for Gly-Sar decorated ones was changed to be mainly mediated by clathrin and lipid rafts. The colocalization of Gly-Sar decorated micelles with the organelles observed by confocal laser scanning microscopy indicated that late endosomes, lysosomes, endoplasmic reticulum and Golgi apparatus appeared to participate in the intracellular trafficking progression of the micelles. These results suggested that PepT1-targeted polymeric micelles might have a strong potential to greatly promote the oral absorption of poorly water-soluble and absorbed agents.
Collapse
Affiliation(s)
- Yao Jin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qi Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Chuhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xinping Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Leqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Shidi Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Yuanhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
18
|
Du J, Hu C, Bai J, Peng M, Wang Q, Zhao N, Wang Y, Wang G, Tao K, Wang G, Xia Z. Intestinal Glucose Absorption Was Reduced by Vertical Sleeve Gastrectomy via Decreased Gastric Leptin Secretion. Obes Surg 2019; 28:3851-3861. [PMID: 29915972 DOI: 10.1007/s11695-018-3351-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The unique effects of gastric resection after vertical sleeve gastrectomy (VSG) on type 2 diabetes mellitus remain unclear. This work aimed to investigate the effects of VSG on gastric leptin expression and intestinal glucose absorption in high-fat diet-induced obesity. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD) to induce obesity. HFD mice were randomized into VSG and sham-operation groups, and the relevant parameters were measured at 8 weeks postoperation. RESULTS Higher gastric leptin expression and increased intestinal glucose transport were observed in the HFD mice. Furthermore, VSG reduced gastric leptin expression and the intestinal absorption of alimentary glucose. Both exogenous leptin replenishment during the oral glucose tolerance test (OGTT) and the addition of leptin into the everted isolated jejunum loops in vitro restored the glucose transport capacity in VSG-operated mice, and this effect was abolished when the glucose transporter GLUT2 was blocked with phloretin. Moreover, phloretin almost completely suppressed glucose transport in the HFD mice. Intestinal immunohistochemistry in the obese mice showed increased GLUT2 and diminished sodium glucose co-transporter 1 (SGLT-1) in the apical membrane of enterocytes. Decreased GLUT2 and enhanced SGLT1 were observed following VSG. VSG also reduced the phosphorylation status of protein kinase C isoenzyme β II (PKCβ II) in the jejunum, which was stimulated by the combination of leptin and glucose. CONCLUSION Our data demonstrated that the decreased secretion of gastric leptin in VSG results in a decrease in intestinal glucose absorption via modulation of GLUT2 translocation.
Collapse
Affiliation(s)
- Jinpeng Du
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chaojie Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jie Bai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Miaomiao Peng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qingbo Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ning Zhao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Zefeng Xia
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
19
|
Ma GG, Shi B, Zhang XP, Qiu Y, Tu GW, Luo Z. The pathways and mechanisms of muramyl dipeptide transcellular transport mediated by PepT1 in enterogenous infection. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:473. [PMID: 31700909 PMCID: PMC6803211 DOI: 10.21037/atm.2019.07.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The transcellular transport of muramyl dipeptide (MDP) mediated by peptide transporter (PepT1) involves the translocation into intestinal epithelial cell (IEC) stage and the transport out of IEC stage. However, its mechanism has not been fully understood. This study aimed to investigate the pathways and mechanisms of MDP transcellular transport in enterogenous infection. METHODS Firstly, experimental rats were randomly divided into three groups: sham-operation (sham group), MDP perfusion (MDP group), and PepT1 competitive inhibition (MDP + Gly-Gly group). Then, the overall survival (OS) and intestinal weight were measured in MDP and MDP + Gly-Gly group. HE staining was performed to observe the pathological changes of the small intestine. The levels of IL-6, IL-1b, IL-8, IL-10, TNF-α, and nitric oxide (NO) in rat serum and small intestine were determined by ELISA. To further verify the pathways and mechanisms of MDP transcellular transport from IEC in intestinal inflammatory damage, the NFκB inhibitor, PDTC, was used to treated lamina propria macrophages in small intestinal mucosa in sham, MDP, and MDP + Gly-Gly groups. Finally, the expression of CD80/86 and the antigen presentation of dendritic cells (DCs) were measured by flow cytometry. RESULTS MDP infusion was able to induce death, weight loss, and intestinal pathological injury in rats. Competitive binding of Gly-Gly to PepT1 effectively inhibited these effects induced by MDP. As well, competitive of PepT1 by Gly-Gly inhibited inflammation-related cytokines induced by MDP in rat serum and small intestine. Furthermore, we also found that MDP transported by PepT1 contributes to activation of macrophages and antigen presentation of DCs. CONCLUSIONS PepT1-NFκB signal is pivotal for activation of intestinal inflammatory response and MDP transcellular transport.
Collapse
Affiliation(s)
- Guo-Guang Ma
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Shi
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University, Shanghai 200090, China
| | - Xue-Peng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China
| |
Collapse
|
20
|
Inagaki-Ohara K. Gastric Leptin and Tumorigenesis: Beyond Obesity. Int J Mol Sci 2019; 20:ijms20112622. [PMID: 31141984 PMCID: PMC6600422 DOI: 10.3390/ijms20112622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin, an adipocyte-derived hormone and its receptor (ObR) expressed in the hypothalamus are well known as an essential regulator of appetite and energy expenditure. Obesity induces abundant leptin production, however, reduced sensitivity to leptin leads to the development of metabolic disorders, so called leptin resistance. The stomach has been identified as an organ that simultaneously expresses leptin and ObR. Accumulating evidence has shown gastric leptin to perform diverse functions, such as those in nutrient absorption and carcinogenesis in the gastrointestinal system, independent of its well-known role in appetite regulation and obesity. Overexpression of leptin and phosphorylated ObR is implicated in gastric cancer in humans and in murine model, and diet-induced obesity causes precancerous lesions in the stomach in mice. While the underlying pathomechanisms remain unclear, leptin signaling can affect gastric mucosal milieu. In this review, we focus on the significant role of the gastric leptin signaling in neoplasia and tumorigenesis in stomach in the context of hereditary and diet-induced obesity.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
21
|
Dietary alanyl-glutamine improves growth performance of weaned piglets through maintaining intestinal morphology and digestion-absorption function. Animal 2019; 13:1826-1833. [PMID: 30789107 DOI: 10.1017/s1751731119000223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alanyl-glutamine (Ala-Gln), a highly soluble and stable glutamine dipeptide, is known to improve gut integrity and function. The aim of this study was to evaluate whether dietary Ala-Gln supplementation could improve growth performance, intestinal development and digestive-absorption function in weaned piglets. A total of 100 purebred Yorkshire piglets weaned at 21 days of age were assigned randomly to four dietary treatment groups and fed a basal diet (control group) or a basal diet containing 0.15%, 0.30% and 0.45% Ala-Gln, respectively. Compared with the control group, piglets fed the Ala-Gln diets had higher average daily gain and lower feed : gain and diarrhea rate (P < 0.05). Moreover, dietary Ala-Gln supplementation increased villous height and villous height : crypt depth ratio in duodenum and jejunum (P < 0.05), as well as the activities of maltase and lysozyme in jejunum mucosa (P < 0.05). In addition, a decrease in serum diamine oxidase activity and crypt depth in duodenum and jejunum was observed in piglets fed the Ala-Gln diets (P < 0.05). Serum cytosolic phospholipase A2 (cPLA2) concentration and gene expression of cPLA2, Na+-dependent glucose transporter 1, glucose transporter 2 and peptide transporter 1 in jejunum were increased by feeding Ala-Gln diets relative to control diet (P < 0.05). These results indicated that feeding Ala-Gln diet has beneficial effects on the growth performance of weaned piglets, which associated with maintaining intestinal morphology and digestive-absorption function.
Collapse
|
22
|
Huang HH, Lee YC, Chen CY. Effects of burns on gut motor and mucosa functions. Neuropeptides 2018; 72:47-57. [PMID: 30269923 DOI: 10.1016/j.npep.2018.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/16/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
This review analyzed the published studies on the effects of thermal injury on gastrointestinal motility and mucosal damage. Our strategy was to integrate all available evidence to provide a complete review on the prokinetic properties of variable reagents and the potential clinical treatment of mucosal damage and gastrointestinal dysmotility after thermal injury. We classified the studies into two major groups: studies on gastrointestinal dysmotility and studies on mucosal damage. We also subclassified the studies into 3 parts: stomach, small intestine, and colon. This review shows evidence that ghrelin can recover burn-induced delay in gastric emptying and small intestinal transit, and can protect the gastric mucosa from burn-induced injury. Oxytocin and β-glucan reduced the serum inflammatory mediators, and histological change and mucosal damage indicators, but did not show evidence of having the ability to recover gastrointestinal motility. Using a combination of different reagents to protect the gastrointestinal mucosa against damage and to recover gastrointestinal motility is an alternative treatment for thermal injury.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yu-Chi Lee
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Taiwan Association for the Study of Small Intestinal Diseases, Guishan, Taiwan.
| |
Collapse
|
23
|
Nilaweera KN, Speakman JR. Regulation of intestinal growth in response to variations in energy supply and demand. Obes Rev 2018; 19 Suppl 1:61-72. [PMID: 30511508 PMCID: PMC6334514 DOI: 10.1111/obr.12780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
The growth of the intestine requires energy, which is known to be met by catabolism of ingested nutrients. Paradoxically, during whole body energy deficit including calorie restriction, the intestine grows in size. To understand how and why this happens, we reviewed data from several animal models of energetic challenge. These were bariatric surgery, cold exposure, lactation, dietary whey protein intake and calorie restriction. Notably, these challenges all reduced the adipose tissue mass, altered hypothalamic neuropeptide expression and increased intestinal size. Based on these data, we propose that the loss of energy in the adipose tissue promotes the growth of the intestine via a signalling mechanism involving the hypothalamus. We discuss possible candidates in this pathway including data showing a correlative change in intestinal (ileal) expression of the cyclin D1 gene with adipose tissue mass, adipose derived-hormone leptin and hypothalamic expression of leptin receptor and the pro-opiomelanocortin gene. The ability of the intestine to grow in size during depletion of energy stores provides a mechanism to maximize assimilation of ingested energy and in turn sustain critical functions of tissues important for survival.
Collapse
Affiliation(s)
- K N Nilaweera
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, County Cork, Ireland
| | - J R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
24
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Orally Active Peptides: Is There a Magic Bullet? Angew Chem Int Ed Engl 2018; 57:14414-14438. [DOI: 10.1002/anie.201807298] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | | | - Shira Merzbach
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
25
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Oral aktive Peptide: Gibt es ein Patentrezept? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | | | - Shira Merzbach
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
26
|
Chen EC, Broccatelli F, Plise E, Chen B, Liu L, Cheong J, Zhang S, Jorski J, Gaffney K, Umemoto KK, Salphati L. Evaluating the Utility of Canine Mdr1 Knockout Madin-Darby Canine Kidney I Cells in Permeability Screening and Efflux Substrate Determination. Mol Pharm 2018; 15:5103-5113. [DOI: 10.1021/acs.molpharmaceut.8b00688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Eugene C. Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Fabio Broccatelli
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Emile Plise
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Buyun Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Liling Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jonathan Cheong
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Shu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jamie Jorski
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine Gaffney
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kayla K. Umemoto
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Laurent Salphati
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
27
|
Wu L, Bai Y, Liu M, Li L, Shan W, Zhang Z, Huang Y. Transport Mechanisms of Butyrate Modified Nanoparticles: Insight into “Easy Entry, Hard Transcytosis” of Active Targeting System in Oral Administration. Mol Pharm 2018; 15:4273-4283. [PMID: 30102863 DOI: 10.1021/acs.molpharmaceut.8b00713] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Wu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P.R. China
| | - Yuli Bai
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P.R. China
| | - Min Liu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P.R. China
| | - Lian Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P.R. China
| | - Wei Shan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P.R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P.R. China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P.R. China
| |
Collapse
|
28
|
Alghamdi OA, King N, Andronicos NM, Jones GL, Chami B, Witting PK, Moens PDJ. Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. Mol Cell Biochem 2018; 452:71-82. [DOI: 10.1007/s11010-018-3413-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
|
29
|
Garcia-Suarez O, Cabo R, Abbate F, Randazzo B, Laurà R, Piccione G, Germanà A, Levanti M. Presence and distribution of leptin and its receptor in the gut of adult zebrafish in response to feeding and fasting. Anat Histol Embryol 2018; 47:456-465. [PMID: 29998487 DOI: 10.1111/ahe.12384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/07/2017] [Accepted: 06/12/2018] [Indexed: 01/27/2023]
Abstract
Leptin is an anorectic hormone secreted mainly by peripheral adipocytes but also by other central and peripheral tissues. It acts by means of a receptor called OB-R, influencing not only appetite and body mass but being also involved in many fields like endocrinology, metabolism and reproduction. Immunohistochemistry and qRT-PCR techniques were, respectively, used to demonstrate the presence of leptin and its receptor in the gut of adult zebrafish and to evaluate the leptin gene expression response to feeding and fasting. Immunoreactivity for the antibodies utilized was demonstrated in feeding but not in fasting fish, and the gene expression analysis corroborates the data obtained by immunohistochemistry. Therefore, all the obtained results support the hypothesis of the role of this hormone in food regulation in zebrafish.
Collapse
Affiliation(s)
- Olivia Garcia-Suarez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Roberto Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Francesco Abbate
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Basilio Randazzo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Rosaria Laurà
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Giuseppe Piccione
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Antonino Germanà
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Maria Levanti
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| |
Collapse
|
30
|
Gong Y, Wu X, Wang T, Zhao J, Liu X, Yao Z, Zhang Q, Jian X. Targeting PEPT1: a novel strategy to improve the antitumor efficacy of doxorubicin in human hepatocellular carcinoma therapy. Oncotarget 2018; 8:40454-40468. [PMID: 28465466 PMCID: PMC5522267 DOI: 10.18632/oncotarget.17117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/02/2017] [Indexed: 01/10/2023] Open
Abstract
Proton coupled oligopeptide transporter 1 (PEPT1) is a member of the peptide transporter superfamily and plays important role in the absorption of oligopeptide and peptidomimetic drugs. Our previous research verified that PEPT1 expressed specifically in human Hepatocellular carcinoma (HCC) tissue and cell lines and showed potential transport activity to be a new candidate of the tumor therapeutic target. In this study, we aim to explore the feasibility of a novel tumor target therapeutic strategy: Targeting PEPT1 to improve the antitumor efficacy of Doxorubicin in human HCC therapy. First, Doxorubicin was conjugated with Glycylglycylglycine (Gly-Gly-Gly) − a tripeptide which was known as the substrate of PEPT1 and characterized by HPLC and MS successfully. Doxorubicin-tripeptide conjugate was then observed to clarify the target delivery by PEPT1 and the antitumor effect on human hepatocarcinoma in vivo and in vitro. Furthermore, the improvement of the toxic and side effect of Doxorubicin after conjugation was also evaluated by some biochemical tests. Our results reveal that targeting PEPT1 may contribute to the efficient delivery of Doxorubicin to hepatocarcinoma cells and the reduction of drug toxicity. PEPT1 has the prospect to be a novel target of HCC therapy.
Collapse
Affiliation(s)
- Yanxia Gong
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Xiang Wu
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jia Zhao
- Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhi Yao
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xu Jian
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
31
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
32
|
Physiological and therapeutic regulation of glucose homeostasis by upper small intestinal PepT1-mediated protein sensing. Nat Commun 2018; 9:1118. [PMID: 29549253 PMCID: PMC5856761 DOI: 10.1038/s41467-018-03490-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/16/2018] [Indexed: 02/07/2023] Open
Abstract
High protein feeding improves glucose homeostasis in rodents and humans with diabetes, but the mechanisms that underlie this improvement remain elusive. Here we show that acute administration of casein hydrolysate directly into the upper small intestine increases glucose tolerance and inhibits glucose production in rats, independently of changes in plasma amino acids, insulin levels, and food intake. Inhibition of upper small intestinal peptide transporter 1 (PepT1), the primary oligopeptide transporter in the small intestine, reverses the preabsorptive ability of upper small intestinal casein infusion to increase glucose tolerance and suppress glucose production. The glucoregulatory role of PepT1 in the upper small intestine of healthy rats is further demonstrated by glucose homeostasis disruption following high protein feeding when PepT1 is inhibited. PepT1-mediated protein-sensing mechanisms also improve glucose homeostasis in models of early-onset insulin resistance and obesity. We demonstrate that preabsorptive upper small intestinal protein-sensing mechanisms mediated by PepT1 have beneficial effects on whole-body glucose homeostasis. High protein diets are known to improve metabolic parameters including adiposity and glucose homeostasis. Here the authors demonstrate that preabsorptive upper small intestinal protein-sensing mechanisms mediated by peptide transporter 1 improve glucose homeostasis by inhibiting hepatic glucose production.
Collapse
|
33
|
Wang CY, Liu S, Xie XN, Luo ZY, Yang L, Tan ZR. Association between polymorphisms in SLC15A1 and PLA2G16 genes and development of obesity in Chinese subjects. Diabetes Metab Syndr Obes 2018; 11:439-446. [PMID: 30174451 PMCID: PMC6110659 DOI: 10.2147/dmso.s161808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The small peptide transporter 1 (PepT-1) and adipose phospholipase A2 (AdPLA) play a key role in the development of obesity. However, there are no data assessing the impact of PepT-1 (SLC15A1) and AdPLA (PLA2G16) variants on obesity susceptibility. Therefore, we assessed the contribution of 9 single-nucleotide polymorphisms (SNPs) between these two genes on obesity susceptibility in Chinese subjects. MATERIALS AND METHODS A total of 611 participants were enrolled in the study, and 9 SNPs in the SLC15A1 and PLA2G16 genes were selected. Blood samples were collected for genotyping. Overweight and obesity were established by body mass index. Regression analyses were performed to test for any association of genetic polymorphisms with weight abnormality. RESULTS The genotype frequencies (P=0.04 for rs9557029, P=0.027 for rs1289389) were significantly different between obese or overweight subjects and healthy controls. However, no significant difference in allele was found between these three groups (P>0.05). Further logistic regression analyses adjusted for age and sex also failed to reveal significant associations between overweight, obesity, and the selected SNPs (P>0.05). CONCLUSION Data indicate that the selected 9 SNPs in SLC15A1 and PLA2G16 genes were not related to obesity susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Chun-Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Shu Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Xiao-Nv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Zhi-Ying Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Li Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| |
Collapse
|
34
|
Dai C, Zhang W, He R, Xiong F, Ma H. Protein breakdown and release of antioxidant peptides during simulated gastrointestinal digestion and the absorption by everted intestinal sac of rapeseed proteins. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Gong Y, Zhang J, Wu X, Wang T, Zhao J, Yao Z, Zhang Q, Liu X, Jian X. Specific expression of proton-coupled oligopeptide transporter 1 in primary hepatocarcinoma-a novel strategy for tumor-targeted therapy. Oncol Lett 2017; 14:4158-4166. [PMID: 28943923 PMCID: PMC5592876 DOI: 10.3892/ol.2017.6724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Proton-coupled oligopeptide transporter 1 (PEPT1) is a membrane protein which expressed predominantly in intestine and recognized as the target of dietary nutrients (di/tripeptide) or peptidomimetic drug for delivery. The information on the existence of PEPT1 in carcinomas were limited. Our study aimed to investigate the expression profile and transport activity of PEPT1 both in human hepatocarcinoma tissues and cell lines. Western blotting and an immunofluorescence assay revealed the high level of PEPT1 protein expression in hepatocarcinoma Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cell lines. Quantitative real time PCR showed the mRNA expression of PEPT1 in Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cells. High level PEPT1 expression in hepatocarcinoma patient samples were observed by Immunohistology and showed a significant correlation between protein level and pathological grade. Functional activities were also studied using D-Ala-Lys-AMCA (a substrate of peptide transporter) in above five hepatocarcinoma cell lines. The uptake tests performed by fluorescent microscopy suggested that PEPT1 can transport both D-Ala-Lys-AMCA into the hepatocarcinoma cells and the uptake can be competitively inhibited by three PEPT1 substrates (Gly-sar, Gly-gln and Glyglygly). In conclusion, our findings provided the novel information on the expression and function of PEPT1 in human hepatocarcinoma and expanded the potential values for tumor specific drug delivery.
Collapse
Affiliation(s)
- Yanxia Gong
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jie Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiang Wu
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jia Zhao
- Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhi Yao
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xu Jian
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
36
|
Poljaroen J, Tinikul Y, Tinikul R, Anurucpreeda P, Sobhon P. Leptin-like immunoreactivity in the central nervous system, digestive organs, and gonads of the giant freshwater prawn, Macrobrachium rosenbergii. Acta Histochem 2017. [PMID: 28624121 DOI: 10.1016/j.acthis.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leptin, a highly conserved adipocyte-derived hormone, plays important roles in a variety of physiological processes, including the control of fat storage and metabolic status which are linked to food intake, energy homeostasis, and reproduction in all vertebrates. In the present study, we hypothesize that leptin is also present in various organs of the fresh water prawns, Macrobrachium rosenbergii. The existence and distribution of a leptin-like peptide in prawn tissues were verified by using Western blotting (WB) and immunohistochemical detection (ID) using primary antibody against human leptin. With WB, a leptin-like peptide, having a molecular weight of 15kDa, was detected in the brain, thoracic ganglia, abdominal ganglia, parts of the gastro-intestinal tract, hepatopancreas, adipocytes and gonads. By ID, leptin immunoreactivity (leptin-ir) was detected in the brain, thoracic ganglia and intersegmental commissural nerve fibers of abdominal ganglia. In the gastrointestinal tract, there was intense leptin-ir in the apical part of the epithelial cells of the cardiac and pyloric parts of the stomach. In the midgut and hindgut, the leptin-ir was detected in epithelial cells and basal cells located near the basal lamina of the epithelium. In addition, there was leptin-ir in the Restzellen cells in the hepatopancreas which produce digestive enzymes. In the ovary, the strong intensity of a leptin-ir was detected in the cytoplasm of middle to late stage oocytes, whereas no positive staining was detected in follicular cells. An intense leptin-ir was detected in spermatocytes and sustentacular cells in the seminiferous tubules in the testes of small and orange claw males. Taken together, the detection of the leptin-ir in several organs implicates the existence of a leptin-like peptide in various organs of the freshwater prawn; and like in vertebrates this peptide may be an important hormonal factor in controlling feeding and reproductive process.
Collapse
|
37
|
Hart RA, Dobos RC, Agnew LL, Smart NA, McFarlane JR. Leptin pharmacokinetics in male mice. Endocr Connect 2017; 6:20-26. [PMID: 27998953 PMCID: PMC5302164 DOI: 10.1530/ec-16-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 11/09/2022]
Abstract
Pharmacokinetics of leptin in mammals has not been studied in detail and only one study has examined more than one time point in non-mutant mice and this was in a female mice. This is the first study to describe leptin distribution over a detailed time course in normal male mice. A physiologic dose (12 ng) of radiolabelled leptin was injected into adult male mice via the lateral tail vein and tissues were dissected out and measured for radioactivity over a time course of up to two hours. Major targets were the digestive tract, kidneys, skin and lungs. The brain was not a major target, and 0.15% of the total dose was recovered from the brain 5 min after administration. Major differences appear to exist in the distribution of leptin between the male and female mice, indicating a high degree of sexual dimorphism. Although the half-lives were similar between male and female mice, almost twice the proportion of leptin was recovered from the digestive tract of male mice in comparison to that reported previously for females. This would seem to indicate a major difference in leptin distribution and possibly function between males and females.
Collapse
Affiliation(s)
- Robert A Hart
- Centre for Bioactive Discovery in Health and AgeingUniversity of New England, Armidale, New South Wales, Australia
| | - Robin C Dobos
- NSW Department of Primary IndustriesArmidale, New South Wales, Australia
| | - Linda L Agnew
- Centre for Bioactive Discovery in Health and AgeingUniversity of New England, Armidale, New South Wales, Australia
| | - Neil A Smart
- Centre for Bioactive Discovery in Health and AgeingUniversity of New England, Armidale, New South Wales, Australia
| | - James R McFarlane
- Centre for Bioactive Discovery in Health and AgeingUniversity of New England, Armidale, New South Wales, Australia
| |
Collapse
|
38
|
Angotzi AR, Stefansson SO, Nilsen TO, Øvrebø JI, Andersson E, Taranger GL, Rønnestad I. Identification of a novel leptin receptor duplicate in Atlantic salmon: Expression analyses in different life stages and in response to feeding status. Gen Comp Endocrinol 2016; 235:108-119. [PMID: 27288639 DOI: 10.1016/j.ygcen.2016.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Abstract
In recent years rapidly growing research has led to identification of several fish leptin orthologs and numerous duplicated paralogs possibly arisen from the third and fourth round whole genome duplication (3R and 4R WGD) events. In this study we identify in Atlantic salmon a duplicated LepRA gene, named LepRA2, that further extend possible evolutionary scenarios of the leptin and leptin receptor system. The 1121 amino acid sequence of the novel LepRA2 shares 80% sequence identity with the LepRA1 paralog, and contains the protein motifs typical of the functional (long form) leptin receptor in vertebrates. In silico predictions showed similar electrostatic properties of LepRA1 and LepRA2 and high sequence conservation at the leptin interaction surfaces within the CHR/leptin-binding and FNIII domains, suggesting conserved functional specificity between the two duplicates. Analysis of temporal expression profiles during pre-hatching stages indicate that both transcripts are involved in modulating leptin developmental functions, although the LepRA1 paralog may play a major role as the embryo complexity increases. There is ubiquitous distribution of LepRs underlying pleiotropism of leptin in all tissues investigated. LepRA1 and LepRA2 are differentially expressed with LepRA1 more abundant than LepRA2 in most of the tissues investigated, with the only exception of liver. Analysis of constitutive LepRA1 and LepRA2 expression in brain and liver at parr, post-smolt and adult stages reveal striking spatial divergence between the duplicates at all stages investigated. This suggests that, beside increased metabolic requirements, leptin sensitivity in the salmon brain might be linked to important variables such as habitat, ecology and life cycle. Furthermore, leptins and LepRs mRNAs in the brain showed gene-specific variability in response to long term fasting, suggesting that leptin's roles as modulator of nutritional status in Atlantic salmon might be governed by distinct genetic evolutionary processes and distinct functions between the paralogs.
Collapse
Affiliation(s)
- Anna R Angotzi
- Department of Biology, University of Bergen, Thormølensgate 55, Bergen 5020, Norway
| | - Sigurd O Stefansson
- Department of Biology, University of Bergen, Thormølensgate 55, Bergen 5020, Norway
| | - Tom O Nilsen
- Uni Research Environment, Thormøhlensgate 49 B, N-5006 Bergen, Norway
| | - Jan I Øvrebø
- Department of Biology, University of Bergen, Thormølensgate 55, Bergen 5020, Norway; Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 187, Nordnes, N-5817 Bergen, Norway
| | - Geir L Taranger
- Institute of Marine Research, P.O. Box 187, Nordnes, N-5817 Bergen, Norway
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, Thormølensgate 55, Bergen 5020, Norway.
| |
Collapse
|
39
|
Nosworthy MG, Brunton JA. Cysteinyl-glycine reduces mucosal proinflammatory cytokine response to fMLP in a parenterally-fed piglet model. Pediatr Res 2016; 80:293-8. [PMID: 27055186 DOI: 10.1038/pr.2016.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/02/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND PepT1 transports dietary and bacterial peptides in the gut. We hypothesized that cysteinyl-glycine would ameliorate the inflammatory effect of a bacterial peptide, formyl-methionyl-leucyl-phenylalanine (fMLP), in both sow-fed and parenterally-fed piglets. METHODS An intestinal perfusion experiment was performed in piglets (N = 12) that were sow-reared or provided with parenteral nutrition (PN) for 4 d. In each piglet, five segments of isolated intestine were perfused with five treatments including cysteine and glycine, cysteinyl-glycine, fMLP, free cysteine and glycine with fMLP, or cysteinyl-glycine with fMLP. Mucosal cytokine responses and intestinal morphology was assessed in each gut segment. RESULTS PN piglets had lower mucosal IL-10 by approximately 20% (P < 0.01). Cysteinyl-glycine lowered TNF-α response to fMLP in PN-fed animals and IFN-γ response to fMLP in both groups (P < 0.05). The free cysteine and glycine treatment reduced TNF-α in sow-fed animals (P < 0.05). fMLP affected villus height in parenterally (P < 0.05), but not sow-fed animals. CONCLUSION Parenteral feeding conferred a susceptibility to mucosal damage by fMLP. The dipeptide was more effective at attenuating the inflammatory response to a bacterial peptide than free amino acids. This may be due to competitive inhibition of fMLP transport or a greater efficiency of transport of dipeptides.
Collapse
Affiliation(s)
- Matthew G Nosworthy
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
40
|
Carroll RE, Benedetti E, Schowalter JP, Buchman AL. Management and Complications of Short Bowel Syndrome: an Updated Review. Curr Gastroenterol Rep 2016; 18:40. [PMID: 27324885 DOI: 10.1007/s11894-016-0511-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Short bowel syndrome (SBS) is defined as loss of bowel mass from surgical resection, congenital defects, or disease. Intestinal failure (IF) includes the subset of SBS unable to meet nutrition needs with enteral supplements and requires parenteral nutrition (PN). The parenteral treatment of SBS is now a half-century old. Recent pharmacologic treatment (GLP-2 analogues) has begun to make a significant impact in the care and ultimate management of these patients such that the possibility of reducing PN requirements in formerly PN-dependent patients is a now a real possibility. Finally, newer understanding and possible treatment for some of the complications related to IF have more recently evolved and will be an emphasis of this report. This review will focus on developments over the last 10 years with the goal of updating the reader to new advances in our understanding of the care and feeding of the SBS patient.
Collapse
Affiliation(s)
- Robert E Carroll
- Intestinal Rehabilitation and Transplant Center, Departments of Medicine and Surgery, University of Illinois at Chicago and Chicago Veterans Administration Medical Center (West Side Division), 840 South Wood Street (M/C 787), Chicago, IL, 60612, USA.
| | - Enrico Benedetti
- Intestinal Rehabilitation and Transplant Center, Departments of Medicine and Surgery, University of Illinois at Chicago and Chicago Veterans Administration Medical Center (West Side Division), 840 South Wood Street (M/C 787), Chicago, IL, 60612, USA
| | - Joseph P Schowalter
- Intestinal Rehabilitation and Transplant Center, Departments of Medicine and Surgery, University of Illinois at Chicago and Chicago Veterans Administration Medical Center (West Side Division), 840 South Wood Street (M/C 787), Chicago, IL, 60612, USA
| | - Alan L Buchman
- Intestinal Rehabilitation and Transplant Center, Departments of Medicine and Surgery, University of Illinois at Chicago and Chicago Veterans Administration Medical Center (West Side Division), 840 South Wood Street (M/C 787), Chicago, IL, 60612, USA
| |
Collapse
|
41
|
Kwak SJ, Kim CS, Choi MS, Park T, Sung MK, Yun JW, Yoo H, Mine Y, Yu R. The Soy Peptide Phe-Leu-Val Reduces TNFα-Induced Inflammatory Response and Insulin Resistance in Adipocytes. J Med Food 2016; 19:678-85. [PMID: 27322965 DOI: 10.1089/jmf.2016.3685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Obesity-induced adipose inflammation plays a crucial role in the development of obesity-induced metabolic disorders such as insulin resistance and type 2 diabetes. In the presence of obesity, hypertrophic adipocytes release inflammatory mediators, including tumor necrosis factor-alpha (TNFα) and monocyte chemoattractant protein-1 (MCP-1), which enhance the recruitment and activation of macrophages, and in turn augment adipose inflammation. We demonstrate that the soy peptide Phe-Leu-Val (FLV) reduces inflammatory responses and insulin resistance in mature adipocytes. Specifically, the soy peptide FLV inhibits the release of inflammatory cytokines (TNFα, MCP-1, and IL-6) from both TNFα-stimulated adipocytes and cocultured adipocytes/macrophages. This inhibition is mediated by the inactivation of the inflammatory signaling molecules c-Jun N-terminal kinase (JNK) and IκB kinase (IKK), and the downregulation of IκBα in the adipocytes. In addition, soy peptide FLV enhances insulin responsiveness and increases glucose uptake in adipocytes. More importantly, we, for the first time, found that adipocytes express peptide transporter 2 (PepT2) protein, and the beneficial action of the soy peptide FLV was disrupted by the peptide transporter inhibitor GlySar. These findings suggest that soy peptide FLV is transported into adipocytes by PepT2 and then downregulates TNFα-induced inflammatory signaling, thereby increasing insulin responsiveness in the cells. The soy peptide FLV, therefore, has the potential to prevent obesity-induced adipose inflammation and insulin resistance.
Collapse
Affiliation(s)
- Su-Jin Kwak
- 1 Department of Food Science and Nutrition, University of Ulsan , Ulsan, Korea
| | - Chu-Sook Kim
- 1 Department of Food Science and Nutrition, University of Ulsan , Ulsan, Korea
| | - Myung-Sook Choi
- 2 Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Korea
| | - Taesun Park
- 3 Department of Food and Nutrition, Yonsei University , Seoul, Korea
| | - Mi-Kyung Sung
- 4 Department of Food and Nutrition, Sookmyung Women's University , Seoul, Korea
| | - Jong Won Yun
- 5 Department of Biotechnology, Daegu University , Gyeongbuk, Korea
| | - Hoon Yoo
- 6 Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chosun University , Gwangju, Korea
| | - Yoshinori Mine
- 7 Department of Food Science, University of Guelph , Guelph, ON, Canada
| | - Rina Yu
- 1 Department of Food Science and Nutrition, University of Ulsan , Ulsan, Korea
| |
Collapse
|
42
|
Jyotaki M, Sanematsu K, Shigemura N, Yoshida R, Ninomiya Y. Leptin suppresses sweet taste responses of enteroendocrine STC-1 cells. Neuroscience 2016; 332:76-87. [PMID: 27353597 DOI: 10.1016/j.neuroscience.2016.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 12/26/2022]
Abstract
Leptin is an important hormone that regulates food intake and energy homeostasis by acting on central and peripheral targets. In the gustatory system, leptin is known to selectively suppress sweet responses by inhibiting the activation of sweet sensitive taste cells. Sweet taste receptor (T1R2+T1R3) is also expressed in gut enteroendocrine cells and contributes to nutrient sensing, hormone release and glucose absorption. Because of the similarities in expression patterns between enteroendocrine and taste receptor cells, we hypothesized that they may also share similar mechanisms used to modify/regulate the sweet responsiveness of these cells by leptin. Here, we used mouse enteroendocrine cell line STC-1 and examined potential effect of leptin on Ca(2+) responses of STC-1 cells to various taste compounds. Ca(2+) responses to sweet compounds in STC-1 cells were suppressed by a rodent T1R3 inhibitor gurmarin, suggesting the involvement of T1R3-dependent receptors in detection of sweet compounds. Responses to sweet substances were suppressed by ⩾1ng/ml leptin without affecting responses to bitter, umami and salty compounds. This effect was inhibited by a leptin antagonist (mutant L39A/D40A/F41A) and by ATP gated K(+) (KATP) channel closer glibenclamide, suggesting that leptin affects sweet taste responses of enteroendocrine cells via activation of leptin receptor and KATP channel expressed in these cells. Moreover, leptin selectively inhibited sweet-induced but not bitter-induced glucagon-like peptide-1 (GLP-1) secretion from STC-1 cells. These results suggest that leptin modulates sweet taste responses of enteroendocrine cells to regulate nutrient sensing, hormone release and glucose absorption in the gut.
Collapse
Affiliation(s)
- Masafumi Jyotaki
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan; Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan; OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Monell Chemical Senses Center, Philadelphia, PA, United States.
| |
Collapse
|
43
|
Zhang Y, Viennois E, Zhang M, Xiao B, Han MK, Walter L, Garg P, Merlin D. PepT1 Expression Helps Maintain Intestinal Homeostasis by Mediating the Differential Expression of miRNAs along the Crypt-Villus Axis. Sci Rep 2016; 6:27119. [PMID: 27250880 PMCID: PMC4890533 DOI: 10.1038/srep27119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/12/2016] [Indexed: 01/25/2023] Open
Abstract
In the jejunum, PepT1 is particularly enriched in the well-differentiated absorptive epithelial cells in the villi. Studies of expression and function of PepT1 along the crypt-villus axis demonstrated that this protein is crucial to the process of di/tripeptide absorption. We recently exhibited that PepT1 plays an important role in multiple biological functions, including the ability to regulate the expression/secretion of specific microRNAs (miRNAs) and the expression levels of multiple proteins. In this study, we observed that PepT1 knockout (KO) mice exhibited reduced body weight and shorten intestinal microvilli. We then examined the expression levels of various miRNAs and their target proteins along the crypt-villi axis in the jejunum of PepT1 KO mice. We found that PepT1 KO altered the distribution of miRNAs along the crypt-villus axis and changed the miRNA profiles of both villi and crypts. Using miRNA-target prediction and 2D-DIGE/mass spectrometry on villi and crypts samples, we found that ablation of PepT1 further directly or indirectly altered expression levels of certain protein targets. Collectively, our results suggest that PepT1 contributes to maintain balance of homeostasis and proper functions in the small intestine, and dysregulated miRNAs and proteins along the crypt-villus axis are highly related to this process.
Collapse
Affiliation(s)
- Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Bo Xiao
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA.,Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Lewins Walter
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Pallavi Garg
- Department of Biology, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia, 30033, USA
| |
Collapse
|
44
|
Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br J Nutr 2016; 116:470-9. [PMID: 27215379 DOI: 10.1017/s0007114516001999] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.
Collapse
|
45
|
Hammersjö R, Roth B, Höglund P, Ohlsson B. Esophageal and Gastric Dysmotilities are Associated with Altered Glucose Homeostasis and Plasma Levels of Incretins and Leptin. Rev Diabet Stud 2016; 13:79-90. [PMID: 27563696 DOI: 10.1900/rds.2016.13.79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gastrointestinal complications in diabetes may affect glucose and endocrine homeostasis. Glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), and leptin regulate glucose homeostasis, food intake, and gastric emptying. AIM The aim was to investigate associations between diabetes complications and glucose homeostasis and plasma levels of GIP, GLP-1, and leptin. METHODS Sixteen diabetes patients (seven men) were examined with gastric emptying scintigraphy and 72-h continuous subcutaneous glucose monitoring, 14 with the deep-breathing test, and 12 with esophageal manometry. A fiber-rich breakfast was given during the second day of glucose registration. Blood samples were taken 10 min and right before a fat-rich breakfast, as well as 10, 20, 30, 45, 60, 90, 120, 150, and 180 min afterwards. 20 healthy volunteers acted as controls. Plasma was analyzed regarding GIP, GLP-1, and leptin by Luminex. RESULTS Gastroparesis lowered maximal concentration (c-max) (p = 0.003) and total area under the curve (tAUC) (p = 0.019) of glucose levels as well as d-min (p = 0.043) of leptin levels. It tended to lower baseline (p = 0.073), c-max (p = 0.066), change from baseline (d-max) (p = 0.073), and tAUC (p = 0.093) of GLP-1 concentrations. Esophageal dysmotility tended to lower tAUC of glucose levels (p = 0.063), and c-min (p = 0.065) and tAUC (p = 0.063) of leptin levels. Diabetes patients had a higher baseline concentration of glucose (p = 0.013), GIP (p = 0.023), and leptin (p = 0.019) compared with healthy subjects. CONCLUSIONS Gastric and esophageal dysmotility are associated with both lesser increases in postprandial glucose elevations and decreased postprandial changes in GLP-1 and leptin.
Collapse
Affiliation(s)
- Rebecka Hammersjö
- Department of Clinical Sciences, Division of Internal Medicine, Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Bodil Roth
- Department of Clinical Sciences, Division of Internal Medicine, Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Peter Höglund
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Lund University, Lund, Sweden
| | - Bodil Ohlsson
- Department of Clinical Sciences, Division of Internal Medicine, Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| |
Collapse
|
46
|
Arakawa H, Ohmachi T, Ichiba K, Kamioka H, Tomono T, Kanagawa M, Idota Y, Hatano Y, Yano K, Morimoto K, Ogihara T. Interaction of Peptide Transporter 1 With d-Glucose and l-Glutamic Acid; Possible Involvement of Taste Receptors. J Pharm Sci 2016; 105:339-42. [DOI: 10.1016/j.xphs.2015.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/22/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
|
47
|
Chan LKY, Leung PS. Multifaceted interplay among mediators and regulators of intestinal glucose absorption: potential impacts on diabetes research and treatment. Am J Physiol Endocrinol Metab 2015; 309:E887-99. [PMID: 26487007 DOI: 10.1152/ajpendo.00373.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022]
Abstract
Glucose is the prominent molecule that characterizes diabetes and, like the vast majority of nutrients in our diet, it is absorbed and enters the bloodstream directly through the small intestine; hence, small intestine physiology impacts blood glucose levels directly. Accordingly, intestinal regulatory modulators represent a promising avenue through which diabetic blood glucose levels might be moderated clinically. Despite the critical role of small intestine in blood glucose homeostasis, most physiological diabetes research has focused on other organs, such as the pancreas, kidney, and liver. We contend that an improved understanding of intestinal regulatory mediators may be fundamental for the development of first-line preventive and therapeutic interventions in patients with diabetes and diabetes-related diseases. This review summarizes the major important intestinal regulatory mediators, discusses how they influence intestinal glucose absorption, and suggests possible candidates for future diabetes research and the development of antidiabetic therapeutic agents.
Collapse
Affiliation(s)
- Leo Ka Yu Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
48
|
Ma G, Shi B, Liu J, Zhang H, YinTao Z, Lou X, Liang D, Hou Y, Wan S, Yang W. Nod2-Rip2 Signaling Contributes to Intestinal Injury Induced by Muramyl Dipeptide Via Oligopeptide Transporter in Rats. Dig Dis Sci 2015; 60:3264-70. [PMID: 26138652 DOI: 10.1007/s10620-015-3762-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/10/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS PepT1 can transport bacterial oligopeptide products and induce intestinal inflammation. Our aim was to investigate the mechanism of the small intestine injury induced by bacterial oligopeptide product muramyl dipeptide (MDP) which is transported by PepT1. METHODS We perfused the jejunum with a solution with or without MDP, or with a solution of MDP + Gly-Gly and explored the degree of inflammation to determine the role of PepT1-Nod2 signaling pathway in small intestine mucosa. RESULTS MDP perfusion induced inflammatory cell accumulation and intestinal damage, accompanied by an increase in mucosal Nod2 and Rip2 transcript expression. NFκB activity and inflammatory cytokine expression, including serum levels of TNF-α, IL-1β, and IL-6, increased in the MDP group compared to the controls; these effects were reversed by perfusion of the nutritional dipeptide Gly-Gly. CONCLUSION MDP can be transported through PepT1, causing inflammatory damage in the rat small intestine. Nod2-Rip2-NFκB signaling involved in the small intestinal inflammatory injury caused by MDP which is transported through PepT1.
Collapse
Affiliation(s)
- Guoguang Ma
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Bin Shi
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China.
| | - Jingquan Liu
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Hongze Zhang
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Zijun YinTao
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Xiaoli Lou
- Department of Central Laboratory, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, Shanghai, 201600, China
| | - Dongyu Liang
- Department of Central Laboratory, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, Shanghai, 201600, China
| | - Yanqiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, Shanghai, 201600, China
| | - Shengxia Wan
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Wanhua Yang
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| |
Collapse
|
49
|
Russell C, Begum S, Hussain Y, Hussain M, Huen D, Rahman AS, Perrie Y, Mohammed AR. Paediatric drug development of ramipril: reformulation,in vitroandin vivoevaluation. J Drug Target 2015; 23:854-63. [DOI: 10.3109/1061186x.2015.1036275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Fanjul C, Barrenetxe J, Lostao MP, Ducroc R. Modulation of intestinal L-glutamate transport by luminal leptin. J Physiol Biochem 2015; 71:311-7. [DOI: 10.1007/s13105-015-0414-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
|